pyspark.sql.functions.schema_of_csv¶
- 
pyspark.sql.functions.schema_of_csv(csv: ColumnOrName, options: Optional[Dict[str, str]] = None) → pyspark.sql.column.Column[source]¶
- Parses a CSV string and infers its schema in DDL format. - New in version 3.0.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- csvColumnor str
- a CSV string or a foldable string column containing a CSV string. 
- optionsdict, optional
- options to control parsing. accepts the same options as the CSV datasource. See Data Source Option for the version you use. 
 
- csv
- Returns
- Column
- a string representation of a - StructTypeparsed from given CSV.
 
 - Examples - >>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<_c0: INT, _c1: STRING>')]