pyspark.sql.DataFrame.withColumnsRenamed¶
- 
DataFrame.withColumnsRenamed(colsMap: Dict[str, str]) → pyspark.sql.dataframe.DataFrame[source]¶
- Returns a new - DataFrameby renaming multiple columns. This is a no-op if the schema doesn’t contain the given column names.- New in version 3.4.0: Added support for multiple columns renaming - Parameters
- colsMapdict
- a dict of existing column names and corresponding desired column names. Currently, only a single map is supported. 
 
- Returns
- DataFrame
- DataFrame with renamed columns. 
 
 - See also - Notes - Support Spark Connect - Examples - >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df = df.withColumns({'age2': df.age + 2, 'age3': df.age + 3}) >>> df.withColumnsRenamed({'age2': 'age4', 'age3': 'age5'}).show() +---+-----+----+----+ |age| name|age4|age5| +---+-----+----+----+ | 2|Alice| 4| 5| | 5| Bob| 7| 8| +---+-----+----+----+