pyspark.sql.DataFrameReader.load¶
- 
DataFrameReader.load(path: Union[str, List[str], None] = None, format: Optional[str] = None, schema: Union[pyspark.sql.types.StructType, str, None] = None, **options: OptionalPrimitiveType) → DataFrame[source]¶
- Loads data from a data source and returns it as a - DataFrame.- New in version 1.4.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- pathstr or list, optional
- optional string or a list of string for file-system backed data sources. 
- formatstr, optional
- optional string for format of the data source. Default to ‘parquet’. 
- schemapyspark.sql.types.StructTypeor str, optional
- optional - pyspark.sql.types.StructTypefor the input schema or a DDL-formatted string (For example- col0 INT, col1 DOUBLE).
- **optionsdict
- all other string options 
 
 - Examples - Load a CSV file with format, schema and options specified. - >>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a CSV file with a header ... df = spark.createDataFrame([{"age": 100, "name": "Hyukjin Kwon"}]) ... df.write.option("header", True).mode("overwrite").format("csv").save(d) ... ... # Read the CSV file as a DataFrame with 'nullValue' option set to 'Hyukjin Kwon', ... # and 'header' option set to `True`. ... df = spark.read.load( ... d, schema=df.schema, format="csv", nullValue="Hyukjin Kwon", header=True) ... df.printSchema() ... df.show() root |-- age: long (nullable = true) |-- name: string (nullable = true) +---+----+ |age|name| +---+----+ |100|NULL| +---+----+