pyspark.pandas.Series.to_numpy¶
- 
Series.to_numpy() → numpy.ndarray¶
- A NumPy ndarray representing the values in this DataFrame or Series. - Note - This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver’s memory. - Returns
- numpy.ndarray
 
 - Examples - >>> ps.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) - With heterogeneous data, the lowest common type will have to be used. - >>> ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}).to_numpy() array([[1. , 3. ], [2. , 4.5]]) - For a mix of numeric and non-numeric types, the output array will have object dtype. - >>> df = ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5], "C": pd.date_range('2000', periods=2)}) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) - For Series, - >>> ps.Series(['a', 'b', 'a']).to_numpy() array(['a', 'b', 'a'], dtype=object)