UnivariateFeatureSelector¶
- 
class pyspark.ml.feature.UnivariateFeatureSelector(*, featuresCol: str = 'features', outputCol: Optional[str] = None, labelCol: str = 'label', selectionMode: str = 'numTopFeatures')[source]¶
- Feature selector based on univariate statistical tests against labels. Currently, Spark supports three Univariate Feature Selectors: chi-squared, ANOVA F-test and F-value. User can choose Univariate Feature Selector by setting featureType and labelType, and Spark will pick the score function based on the specified featureType and labelType. - The following combination of featureType and labelType are supported: - featureType categorical and labelType categorical, Spark uses chi-squared, i.e. chi2 in sklearn. 
- featureType continuous and labelType categorical, Spark uses ANOVA F-test, i.e. f_classif in sklearn. 
- featureType continuous and labelType continuous, Spark uses F-value, i.e. f_regression in sklearn. 
 - The UnivariateFeatureSelector supports different selection modes: numTopFeatures, percentile, fpr, fdr, fwe. - numTopFeatures chooses a fixed number of top features according to a according to a hypothesis. 
- percentile is similar but chooses a fraction of all features instead of a fixed number. 
- fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. 
- fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold. 
- fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1 / numFeatures, thus controlling the family-wise error rate of selection. 
 - By default, the selection mode is numTopFeatures. - New in version 3.1.1. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([1.7, 4.4, 7.6, 5.8, 9.6, 2.3]), 3.0), ... (Vectors.dense([8.8, 7.3, 5.7, 7.3, 2.2, 4.1]), 2.0), ... (Vectors.dense([1.2, 9.5, 2.5, 3.1, 8.7, 2.5]), 1.0), ... (Vectors.dense([3.7, 9.2, 6.1, 4.1, 7.5, 3.8]), 2.0), ... (Vectors.dense([8.9, 5.2, 7.8, 8.3, 5.2, 3.0]), 4.0), ... (Vectors.dense([7.9, 8.5, 9.2, 4.0, 9.4, 2.1]), 4.0)], ... ["features", "label"]) >>> selector = UnivariateFeatureSelector(outputCol="selectedFeatures") >>> selector.setFeatureType("continuous").setLabelType("categorical").setSelectionThreshold(1) UnivariateFeatureSelector... >>> model = selector.fit(df) >>> model.getFeaturesCol() 'features' >>> model.setFeaturesCol("features") UnivariateFeatureSelectorModel... >>> model.transform(df).head().selectedFeatures DenseVector([7.6]) >>> model.selectedFeatures [2] >>> selectorPath = temp_path + "/selector" >>> selector.save(selectorPath) >>> loadedSelector = UnivariateFeatureSelector.load(selectorPath) >>> loadedSelector.getSelectionThreshold() == selector.getSelectionThreshold() True >>> modelPath = temp_path + "/selector-model" >>> model.save(modelPath) >>> loadedModel = UnivariateFeatureSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of featureType or its default value. - Gets the value of featuresCol or its default value. - Gets the value of labelCol or its default value. - Gets the value of labelType or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of selectionMode or its default value. - Gets the value of selectionThreshold or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFeatureType(value)- Sets the value of - featureType.- setFeaturesCol(value)- Sets the value of - featuresCol.- setLabelCol(value)- Sets the value of - labelCol.- setLabelType(value)- Sets the value of - labelType.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, featuresCol, …])- Sets params for this UnivariateFeatureSelector. - setSelectionMode(value)- Sets the value of - selectionMode.- setSelectionThreshold(value)- Sets the value of - selectionThreshold.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getFeatureType() → str¶
- Gets the value of featureType or its default value. - New in version 3.1.1. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getLabelType() → str¶
- Gets the value of labelType or its default value. - New in version 3.1.1. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol() → str¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getSelectionMode() → str¶
- Gets the value of selectionMode or its default value. - New in version 3.1.1. 
 - 
getSelectionThreshold() → float¶
- Gets the value of selectionThreshold or its default value. - New in version 3.1.1. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFeatureType(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - featureType.- New in version 3.1.1. 
 - 
setFeaturesCol(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - featuresCol.
 - 
setLabelCol(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - labelCol.
 - 
setLabelType(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - labelType.- New in version 3.1.1. 
 - 
setOutputCol(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - outputCol.
 - 
setParams(self, \*, featuresCol="features", outputCol=None, labelCol="label", selectionMode="numTopFeatures")[source]¶
- Sets params for this UnivariateFeatureSelector. - New in version 3.1.1. 
 - 
setSelectionMode(value: str) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - selectionMode.- New in version 3.1.1. 
 - 
setSelectionThreshold(value: float) → pyspark.ml.feature.UnivariateFeatureSelector[source]¶
- Sets the value of - selectionThreshold.- New in version 3.1.1. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
featureType= Param(parent='undefined', name='featureType', doc='The feature type. Supported options: categorical, continuous.')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
labelType= Param(parent='undefined', name='labelType', doc='The label type. Supported options: categorical, continuous.')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
selectionMode= Param(parent='undefined', name='selectionMode', doc='The selection mode. Supported options: numTopFeatures (default), percentile, fpr, fdr, fwe.')¶
 - 
selectionThreshold= Param(parent='undefined', name='selectionThreshold', doc='The upper bound of the features that selector will select.')¶