RidgeRegressionWithSGD¶
- 
class pyspark.mllib.regression.RidgeRegressionWithSGD[source]¶
- Train a regression model with L2-regularization using Stochastic Gradient Descent. - New in version 0.9.0. - Deprecated since version 2.0.0: Use - pyspark.ml.regression.LinearRegressionwith elasticNetParam = 0.0. Note the default regParam is 0.01 for RidgeRegressionWithSGD, but is 0.0 for LinearRegression.- Methods - train(data[, iterations, step, regParam, …])- Train a regression model with L2-regularization using Stochastic Gradient Descent. - Methods Documentation - 
classmethod train(data: pyspark.rdd.RDD[pyspark.mllib.regression.LabeledPoint], iterations: int = 100, step: float = 1.0, regParam: float = 0.01, miniBatchFraction: float = 1.0, initialWeights: Optional[VectorLike] = None, intercept: bool = False, validateData: bool = True, convergenceTol: float = 0.001) → pyspark.mllib.regression.RidgeRegressionModel[source]¶
- Train a regression model with L2-regularization using Stochastic Gradient Descent. This solves the l2-regularized least squares regression formulation - f(weights) = 1/(2n) ||A weights - y||^2 + regParam/2 ||weights||^2 - Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y. See also the documentation for the precise formulation. - New in version 0.9.0. - Parameters
- datapyspark.RDD
- The training data, an RDD of LabeledPoint. 
- iterationsint, optional
- The number of iterations. (default: 100) 
- stepfloat, optional
- The step parameter used in SGD. (default: 1.0) 
- regParamfloat, optional
- The regularizer parameter. (default: 0.01) 
- miniBatchFractionfloat, optional
- Fraction of data to be used for each SGD iteration. (default: 1.0) 
- initialWeightspyspark.mllib.linalg.Vectoror convertible, optional
- The initial weights. (default: None) 
- interceptbool, optional
- Boolean parameter which indicates the use or not of the augmented representation for training data (i.e. whether bias features are activated or not). (default: False) 
- validateDatabool, optional
- Boolean parameter which indicates if the algorithm should validate data before training. (default: True) 
- convergenceTolfloat, optional
- A condition which decides iteration termination. (default: 0.001) 
 
- data
 
 
- 
classmethod