BucketedRandomProjectionLSHModel¶
- 
class pyspark.ml.feature.BucketedRandomProjectionLSHModel(java_model: Optional[JavaObject] = None)[source]¶
- Model fitted by - BucketedRandomProjectionLSH, where multiple random vectors are stored. The vectors are normalized to be unit vectors and each vector is used in a hash function: \(h_i(x) = floor(r_i \cdot x / bucketLength)\) where \(r_i\) is the i-th random unit vector. The number of buckets will be (max L2 norm of input vectors) / bucketLength.- New in version 2.2.0. - Methods - approxNearestNeighbors(dataset, key, …[, …])- Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. - approxSimilarityJoin(datasetA, datasetB, …)- Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of bucketLength or its default value. - Gets the value of inputCol or its default value. - Gets the value of numHashTables or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setInputCol(value)- Sets the value of - inputCol.- setOutputCol(value)- Sets the value of - outputCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
approxNearestNeighbors(dataset: pyspark.sql.dataframe.DataFrame, key: pyspark.ml.linalg.Vector, numNearestNeighbors: int, distCol: str = 'distCol') → pyspark.sql.dataframe.DataFrame¶
- Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. If the - outputColis missing, the method will transform the data; if the- outputColexists, it will use that. This allows caching of the transformed data when necessary.- Parameters
- datasetpyspark.sql.DataFrame
- The dataset to search for nearest neighbors of the key. 
- keypyspark.ml.linalg.Vector
- Feature vector representing the item to search for. 
- numNearestNeighborsint
- The maximum number of nearest neighbors. 
- distColstr
- Output column for storing the distance between each result row and the key. Use “distCol” as default value if it’s not specified. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- A dataset containing at most k items closest to the key. A column “distCol” is added to show the distance between each row and the key. 
 
 - Notes - This method is experimental and will likely change behavior in the next release. 
 - 
approxSimilarityJoin(datasetA: pyspark.sql.dataframe.DataFrame, datasetB: pyspark.sql.dataframe.DataFrame, threshold: float, distCol: str = 'distCol') → pyspark.sql.dataframe.DataFrame¶
- Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. If the - outputColis missing, the method will transform the data; if the- outputColexists, it will use that. This allows caching of the transformed data when necessary.- Parameters
- datasetApyspark.sql.DataFrame
- One of the datasets to join. 
- datasetBpyspark.sql.DataFrame
- Another dataset to join. 
- thresholdfloat
- The threshold for the distance of row pairs. 
- distColstr, optional
- Output column for storing the distance between each pair of rows. Use “distCol” as default value if it’s not specified. 
 
- datasetA
- Returns
- pyspark.sql.DataFrame
- A joined dataset containing pairs of rows. The original rows are in columns “datasetA” and “datasetB”, and a column “distCol” is added to show the distance between each pair. 
 
 
 - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getBucketLength() → float¶
- Gets the value of bucketLength or its default value. - New in version 2.2.0. 
 - 
getInputCol() → str¶
- Gets the value of inputCol or its default value. 
 - 
getNumHashTables() → int¶
- Gets the value of numHashTables or its default value. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol() → str¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
bucketLength= Param(parent='undefined', name='bucketLength', doc='the length of each hash bucket, a larger bucket lowers the false negative rate.')¶
 - 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
 - 
numHashTables: pyspark.ml.param.Param[int] = Param(parent='undefined', name='numHashTables', doc='number of hash tables, where increasing number of hash tables lowers the false negative rate, and decreasing it improves the running performance.')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 
-