Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-23 12:12 -0500 (Thu, 23 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4493 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4394 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-21 07:52:59 -0000 (Tue, 21 Jan 2025) |
EndedAt: 2025-01-21 07:58:45 -0000 (Tue, 21 Jan 2025) |
EllapsedTime: 345.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 12.3.1 (openEuler 12.3.1-36.oe2403) * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.804 0.355 36.250 corr_plot 34.086 0.252 34.418 FSmethod 34.021 0.263 34.362 pred_ensembel 17.489 0.348 16.631 enrichfindP 0.498 0.019 21.931 getFASTA 0.124 0.024 6.209 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.2/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.558135 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.214340 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 111.747267 final value 94.305882 converged Fitting Repeat 4 # weights: 103 initial value 101.197391 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.765017 iter 10 value 94.088257 iter 20 value 94.002158 iter 20 value 94.002158 iter 20 value 94.002158 final value 94.002158 converged Fitting Repeat 1 # weights: 305 initial value 105.717349 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.361030 iter 10 value 94.275365 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 108.032774 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.346367 iter 10 value 93.701685 final value 93.701657 converged Fitting Repeat 5 # weights: 305 initial value 96.179223 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 132.131505 iter 10 value 91.967391 iter 20 value 86.524842 iter 30 value 86.495791 final value 86.495642 converged Fitting Repeat 2 # weights: 507 initial value 102.423996 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 99.756529 final value 94.275362 converged Fitting Repeat 4 # weights: 507 initial value 111.684449 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.704653 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.186888 iter 10 value 94.496140 iter 20 value 94.377591 iter 30 value 94.121283 iter 40 value 87.723022 iter 50 value 87.129821 iter 60 value 87.061505 iter 70 value 86.857684 iter 80 value 85.887621 iter 90 value 85.522131 iter 100 value 85.502478 final value 85.502478 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.793546 iter 10 value 94.474523 iter 20 value 94.016210 iter 30 value 92.826920 iter 40 value 87.671113 iter 50 value 85.370719 iter 60 value 84.663046 iter 70 value 83.935204 iter 80 value 82.989633 iter 90 value 82.878603 iter 100 value 82.852796 final value 82.852796 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.724181 iter 10 value 94.483841 iter 20 value 87.449049 iter 30 value 85.658976 iter 40 value 85.108812 iter 50 value 85.023509 iter 60 value 84.977680 iter 70 value 84.698466 iter 80 value 84.564659 iter 90 value 84.562559 final value 84.562558 converged Fitting Repeat 4 # weights: 103 initial value 107.054363 iter 10 value 94.454973 iter 20 value 90.799324 iter 30 value 87.314496 iter 40 value 87.081432 iter 50 value 86.439208 iter 60 value 86.085157 iter 70 value 85.552467 iter 80 value 85.336127 final value 85.336116 converged Fitting Repeat 5 # weights: 103 initial value 98.540817 iter 10 value 94.497619 iter 20 value 94.135216 iter 30 value 92.461025 iter 40 value 89.980664 iter 50 value 87.751835 iter 60 value 83.691066 iter 70 value 83.190791 iter 80 value 83.106804 iter 90 value 82.924797 iter 100 value 82.862349 final value 82.862349 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.449501 iter 10 value 94.741025 iter 20 value 93.257007 iter 30 value 92.607462 iter 40 value 87.562776 iter 50 value 86.086798 iter 60 value 85.068484 iter 70 value 85.005872 iter 80 value 84.832021 iter 90 value 84.616304 iter 100 value 83.706938 final value 83.706938 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.505116 iter 10 value 93.277110 iter 20 value 89.031898 iter 30 value 86.160686 iter 40 value 85.573957 iter 50 value 84.313528 iter 60 value 82.794141 iter 70 value 82.503424 iter 80 value 82.095143 iter 90 value 81.981810 iter 100 value 81.907405 final value 81.907405 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.795035 iter 10 value 94.418794 iter 20 value 91.821668 iter 30 value 87.415197 iter 40 value 86.182019 iter 50 value 85.498484 iter 60 value 85.361160 iter 70 value 85.209025 iter 80 value 84.903906 iter 90 value 83.127940 iter 100 value 81.578002 final value 81.578002 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.013337 iter 10 value 94.478049 iter 20 value 88.373267 iter 30 value 84.143624 iter 40 value 83.737307 iter 50 value 83.542647 iter 60 value 82.417186 iter 70 value 81.986759 iter 80 value 81.890150 iter 90 value 81.749510 iter 100 value 81.607738 final value 81.607738 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.775644 iter 10 value 89.121022 iter 20 value 85.630727 iter 30 value 84.831146 iter 40 value 84.045009 iter 50 value 83.906175 iter 60 value 83.561820 iter 70 value 83.398740 iter 80 value 82.975550 iter 90 value 82.146702 iter 100 value 81.874086 final value 81.874086 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.206457 iter 10 value 94.541959 iter 20 value 91.180456 iter 30 value 87.378260 iter 40 value 86.907761 iter 50 value 85.446835 iter 60 value 84.906529 iter 70 value 84.824667 iter 80 value 82.630624 iter 90 value 81.841701 iter 100 value 81.674709 final value 81.674709 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.077117 iter 10 value 94.790691 iter 20 value 90.364788 iter 30 value 88.944886 iter 40 value 86.267196 iter 50 value 84.604563 iter 60 value 84.093377 iter 70 value 83.913058 iter 80 value 83.473363 iter 90 value 82.550995 iter 100 value 81.384045 final value 81.384045 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.829163 iter 10 value 95.407628 iter 20 value 94.723393 iter 30 value 93.616151 iter 40 value 91.518041 iter 50 value 85.672639 iter 60 value 84.569868 iter 70 value 83.275566 iter 80 value 83.072807 iter 90 value 82.759705 iter 100 value 82.601511 final value 82.601511 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.196351 iter 10 value 94.565219 iter 20 value 92.585628 iter 30 value 86.950648 iter 40 value 86.610850 iter 50 value 85.907882 iter 60 value 85.751508 iter 70 value 85.435759 iter 80 value 84.833449 iter 90 value 82.359946 iter 100 value 81.985986 final value 81.985986 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.090730 iter 10 value 94.831930 iter 20 value 94.163357 iter 30 value 87.257930 iter 40 value 86.960160 iter 50 value 85.941179 iter 60 value 83.370835 iter 70 value 83.036624 iter 80 value 82.493431 iter 90 value 81.501995 iter 100 value 81.333727 final value 81.333727 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.244096 final value 94.485797 converged Fitting Repeat 2 # weights: 103 initial value 110.547778 final value 94.485892 converged Fitting Repeat 3 # weights: 103 initial value 94.529526 final value 94.485866 converged Fitting Repeat 4 # weights: 103 initial value 116.584126 final value 94.486724 converged Fitting Repeat 5 # weights: 103 initial value 99.886135 final value 94.485794 converged Fitting Repeat 1 # weights: 305 initial value 98.495986 iter 10 value 94.488838 iter 20 value 94.458937 iter 30 value 94.113896 iter 40 value 94.112828 final value 94.112800 converged Fitting Repeat 2 # weights: 305 initial value 113.924118 iter 10 value 94.489075 iter 20 value 94.106354 final value 93.995587 converged Fitting Repeat 3 # weights: 305 initial value 99.869078 iter 10 value 94.488966 iter 20 value 91.442281 iter 30 value 88.383238 iter 40 value 86.556937 iter 50 value 86.429421 iter 60 value 86.386483 iter 70 value 86.326117 iter 80 value 84.296232 iter 90 value 84.173400 iter 100 value 84.155522 final value 84.155522 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 123.878332 iter 10 value 94.488780 iter 20 value 94.484252 iter 30 value 93.998522 iter 40 value 87.627846 iter 50 value 84.875346 iter 60 value 84.415625 iter 70 value 80.875453 iter 80 value 80.660026 iter 90 value 80.620514 iter 100 value 80.125056 final value 80.125056 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.907451 iter 10 value 94.280708 iter 20 value 94.275888 iter 30 value 86.493693 iter 40 value 86.493167 final value 86.493110 converged Fitting Repeat 1 # weights: 507 initial value 101.093960 iter 10 value 94.283216 iter 20 value 94.275942 iter 30 value 94.141636 final value 94.052842 converged Fitting Repeat 2 # weights: 507 initial value 98.449739 iter 10 value 94.491879 iter 20 value 94.484260 iter 30 value 92.769821 iter 40 value 88.332053 iter 50 value 85.393682 iter 60 value 82.391189 iter 70 value 82.247025 iter 80 value 82.222765 iter 90 value 82.143492 iter 100 value 82.139918 final value 82.139918 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.203464 iter 10 value 94.283732 iter 20 value 94.270503 iter 30 value 93.770176 iter 40 value 87.540695 iter 50 value 87.178140 iter 60 value 87.173869 iter 70 value 87.163274 final value 87.163221 converged Fitting Repeat 4 # weights: 507 initial value 98.296643 iter 10 value 94.494669 iter 20 value 94.486501 iter 30 value 91.555198 iter 40 value 89.678479 final value 89.429674 converged Fitting Repeat 5 # weights: 507 initial value 99.633460 iter 10 value 94.491901 iter 20 value 94.144494 iter 30 value 87.743624 iter 40 value 85.466183 iter 50 value 85.465817 final value 85.465791 converged Fitting Repeat 1 # weights: 103 initial value 105.726503 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.321909 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.093014 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.471545 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.415594 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 108.983260 final value 94.035941 converged Fitting Repeat 2 # weights: 305 initial value 105.010601 iter 10 value 94.036958 iter 20 value 94.008795 final value 94.008696 converged Fitting Repeat 3 # weights: 305 initial value 100.593418 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.742121 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 97.107123 iter 10 value 93.100811 iter 20 value 93.093218 final value 93.093198 converged Fitting Repeat 1 # weights: 507 initial value 111.057009 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 103.658125 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 108.620226 final value 94.038252 converged Fitting Repeat 4 # weights: 507 initial value 103.237539 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 113.205318 final value 94.038251 converged Fitting Repeat 1 # weights: 103 initial value 100.015694 iter 10 value 94.061784 iter 20 value 93.240171 iter 30 value 88.610952 iter 40 value 86.307877 iter 50 value 84.396041 iter 60 value 83.059116 iter 70 value 82.821282 iter 80 value 82.689145 iter 90 value 82.464437 iter 100 value 82.403718 final value 82.403718 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.155445 iter 10 value 94.048879 iter 20 value 86.968648 iter 30 value 85.012368 iter 40 value 84.757783 iter 50 value 84.148583 iter 60 value 83.445102 iter 70 value 83.194520 final value 83.194365 converged Fitting Repeat 3 # weights: 103 initial value 97.735618 iter 10 value 94.062051 iter 20 value 88.882935 iter 30 value 86.259020 iter 40 value 83.714230 iter 50 value 83.267044 iter 60 value 83.194476 final value 83.194364 converged Fitting Repeat 4 # weights: 103 initial value 99.802596 iter 10 value 94.129761 iter 20 value 94.055203 iter 30 value 91.980123 iter 40 value 89.560044 iter 50 value 86.128667 iter 60 value 85.814123 iter 70 value 85.717885 iter 80 value 85.136462 iter 90 value 83.615534 iter 100 value 83.194438 final value 83.194438 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.899088 iter 10 value 94.027750 iter 20 value 92.956139 iter 30 value 90.226355 iter 40 value 85.117972 iter 50 value 84.440076 iter 60 value 84.002512 iter 70 value 83.365903 iter 80 value 81.980406 iter 90 value 81.801873 final value 81.801541 converged Fitting Repeat 1 # weights: 305 initial value 110.737139 iter 10 value 94.066750 iter 20 value 92.805303 iter 30 value 85.531961 iter 40 value 83.597389 iter 50 value 82.923056 iter 60 value 82.832885 iter 70 value 82.618649 iter 80 value 82.347427 iter 90 value 82.226873 iter 100 value 82.192149 final value 82.192149 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.146421 iter 10 value 93.875683 iter 20 value 91.380449 iter 30 value 87.243017 iter 40 value 84.477723 iter 50 value 83.851307 iter 60 value 81.140457 iter 70 value 80.662760 iter 80 value 80.307437 iter 90 value 80.258636 iter 100 value 80.122124 final value 80.122124 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 136.165825 iter 10 value 93.932677 iter 20 value 90.764676 iter 30 value 85.566122 iter 40 value 84.311730 iter 50 value 83.799815 iter 60 value 82.997256 iter 70 value 82.532862 iter 80 value 82.422285 iter 90 value 82.409647 iter 100 value 82.274129 final value 82.274129 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.019823 iter 10 value 93.840431 iter 20 value 88.220815 iter 30 value 84.542373 iter 40 value 82.644623 iter 50 value 82.035200 iter 60 value 81.305779 iter 70 value 80.826941 iter 80 value 80.675313 iter 90 value 80.615084 iter 100 value 80.334981 final value 80.334981 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.918667 iter 10 value 94.066291 iter 20 value 88.497841 iter 30 value 88.293592 iter 40 value 87.761641 iter 50 value 84.861459 iter 60 value 83.189045 iter 70 value 81.560871 iter 80 value 80.641373 iter 90 value 80.394944 iter 100 value 80.260370 final value 80.260370 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.355898 iter 10 value 94.093604 iter 20 value 85.227520 iter 30 value 84.832638 iter 40 value 83.055787 iter 50 value 82.320322 iter 60 value 82.211723 iter 70 value 82.081796 iter 80 value 82.034610 iter 90 value 81.594672 iter 100 value 80.877950 final value 80.877950 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.114053 iter 10 value 94.093169 iter 20 value 94.056186 iter 30 value 93.845137 iter 40 value 86.284290 iter 50 value 84.708260 iter 60 value 84.475315 iter 70 value 83.714945 iter 80 value 82.851918 iter 90 value 81.595335 iter 100 value 81.334564 final value 81.334564 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.093222 iter 10 value 92.647201 iter 20 value 86.124471 iter 30 value 85.566371 iter 40 value 84.357691 iter 50 value 82.624508 iter 60 value 81.791570 iter 70 value 80.739476 iter 80 value 80.523953 iter 90 value 79.958903 iter 100 value 79.816896 final value 79.816896 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.231159 iter 10 value 94.073312 iter 20 value 85.045762 iter 30 value 83.934788 iter 40 value 82.106979 iter 50 value 81.539334 iter 60 value 80.945657 iter 70 value 80.214482 iter 80 value 79.902733 iter 90 value 79.859293 iter 100 value 79.799446 final value 79.799446 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.693187 iter 10 value 94.463559 iter 20 value 94.123403 iter 30 value 87.018946 iter 40 value 84.882997 iter 50 value 83.172124 iter 60 value 82.908551 iter 70 value 82.529228 iter 80 value 81.577290 iter 90 value 80.699692 iter 100 value 80.309755 final value 80.309755 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.733039 iter 10 value 94.054482 iter 20 value 93.677708 iter 30 value 84.911561 final value 84.894532 converged Fitting Repeat 2 # weights: 103 initial value 98.230531 iter 10 value 94.054497 iter 20 value 94.046676 iter 30 value 85.580070 iter 40 value 85.482508 iter 50 value 84.199709 iter 60 value 84.152876 iter 70 value 84.144783 iter 80 value 84.142087 iter 90 value 84.109578 iter 100 value 84.106530 final value 84.106530 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.902774 final value 94.054643 converged Fitting Repeat 4 # weights: 103 initial value 110.575586 iter 10 value 88.782336 final value 88.778868 converged Fitting Repeat 5 # weights: 103 initial value 95.713359 final value 94.054494 converged Fitting Repeat 1 # weights: 305 initial value 101.902086 iter 10 value 94.056769 iter 20 value 93.878716 final value 92.359381 converged Fitting Repeat 2 # weights: 305 initial value 98.553317 iter 10 value 94.043123 iter 20 value 93.909069 iter 30 value 92.536898 iter 40 value 84.652220 iter 50 value 84.267896 iter 60 value 84.267308 final value 84.267257 converged Fitting Repeat 3 # weights: 305 initial value 95.606774 iter 10 value 94.057251 iter 20 value 89.131804 iter 30 value 82.754369 iter 40 value 82.738767 iter 50 value 82.113324 iter 60 value 82.087681 iter 70 value 82.086859 iter 80 value 81.952470 final value 81.952041 converged Fitting Repeat 4 # weights: 305 initial value 106.476054 iter 10 value 94.054836 iter 20 value 93.988250 iter 30 value 92.658115 iter 40 value 92.654295 iter 50 value 92.654116 iter 60 value 92.653743 iter 70 value 92.567132 iter 80 value 92.123039 iter 90 value 85.990002 iter 100 value 81.654389 final value 81.654389 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.285627 iter 10 value 94.057094 iter 20 value 93.891811 iter 30 value 84.356113 iter 40 value 83.652301 iter 50 value 83.575889 iter 60 value 83.544308 iter 70 value 83.476311 iter 80 value 83.362139 iter 90 value 83.361166 final value 83.361152 converged Fitting Repeat 1 # weights: 507 initial value 96.631752 iter 10 value 94.061795 iter 20 value 94.040269 iter 30 value 93.597821 iter 40 value 83.434238 iter 50 value 82.908927 iter 60 value 81.565946 iter 70 value 81.200319 iter 80 value 80.394980 iter 90 value 80.388104 iter 100 value 80.387793 final value 80.387793 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.047109 iter 10 value 90.135121 iter 20 value 87.528375 iter 30 value 85.845764 iter 40 value 85.219581 iter 50 value 85.216681 iter 60 value 85.097248 iter 70 value 85.091853 iter 80 value 83.284602 iter 90 value 83.151954 iter 100 value 83.134060 final value 83.134060 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.521814 iter 10 value 92.836079 iter 20 value 85.117706 iter 30 value 82.955784 iter 40 value 82.898315 final value 82.894455 converged Fitting Repeat 4 # weights: 507 initial value 98.121098 iter 10 value 86.438442 iter 20 value 86.392864 iter 30 value 85.176988 iter 40 value 84.508202 iter 50 value 84.339562 iter 60 value 82.194770 iter 70 value 82.194028 iter 80 value 82.193888 iter 90 value 82.187828 iter 100 value 82.173260 final value 82.173260 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.921493 iter 10 value 94.058822 iter 20 value 87.414552 iter 30 value 85.970813 iter 40 value 82.722199 iter 50 value 81.134704 iter 60 value 80.996272 iter 70 value 80.901296 iter 80 value 80.608375 iter 90 value 80.296209 iter 100 value 79.950665 final value 79.950665 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.118569 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.372333 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.075087 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.340015 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.155871 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.623824 final value 94.052448 converged Fitting Repeat 2 # weights: 305 initial value 110.460801 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 107.864529 final value 94.052448 converged Fitting Repeat 4 # weights: 305 initial value 92.056405 iter 10 value 87.646156 iter 20 value 87.529649 final value 87.526844 converged Fitting Repeat 5 # weights: 305 initial value 122.341159 iter 10 value 93.943343 final value 93.943263 converged Fitting Repeat 1 # weights: 507 initial value 100.843595 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 134.478968 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 113.096123 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.616180 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 99.019521 final value 93.900821 converged Fitting Repeat 1 # weights: 103 initial value 98.773126 iter 10 value 94.057415 iter 20 value 93.990076 iter 30 value 93.373403 iter 40 value 89.870881 iter 50 value 87.188412 iter 60 value 86.718290 iter 70 value 86.546223 final value 86.543141 converged Fitting Repeat 2 # weights: 103 initial value 97.210620 iter 10 value 93.713864 iter 20 value 91.717370 iter 30 value 89.755269 iter 40 value 86.154061 iter 50 value 85.480641 iter 60 value 85.033921 iter 70 value 84.752795 iter 80 value 84.566611 iter 90 value 84.408788 iter 100 value 84.308830 final value 84.308830 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.861967 iter 10 value 94.056704 iter 20 value 92.262280 iter 30 value 89.943953 iter 40 value 88.839395 iter 50 value 87.767383 iter 60 value 85.750894 iter 70 value 85.309186 iter 80 value 84.953579 iter 90 value 84.643896 iter 100 value 84.283463 final value 84.283463 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.066466 iter 10 value 93.944253 iter 20 value 90.747543 iter 30 value 88.541417 iter 40 value 88.453038 iter 50 value 88.292409 iter 60 value 87.831025 iter 70 value 87.386333 iter 80 value 87.184760 final value 87.184163 converged Fitting Repeat 5 # weights: 103 initial value 97.106158 iter 10 value 93.957055 iter 20 value 91.440579 iter 30 value 88.775000 iter 40 value 86.685527 iter 50 value 86.562296 iter 60 value 86.505345 iter 70 value 86.050709 iter 80 value 85.930956 final value 85.915457 converged Fitting Repeat 1 # weights: 305 initial value 117.218816 iter 10 value 94.049862 iter 20 value 87.786321 iter 30 value 87.152919 iter 40 value 86.110651 iter 50 value 84.716727 iter 60 value 84.461144 iter 70 value 84.361752 iter 80 value 84.305868 iter 90 value 84.086248 iter 100 value 83.817651 final value 83.817651 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.799747 iter 10 value 93.958451 iter 20 value 92.873064 iter 30 value 88.475210 iter 40 value 88.097825 iter 50 value 86.346513 iter 60 value 85.913535 iter 70 value 84.735976 iter 80 value 84.191497 iter 90 value 83.737076 iter 100 value 83.455819 final value 83.455819 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.277003 iter 10 value 94.119809 iter 20 value 94.056947 iter 30 value 94.036383 iter 40 value 90.757153 iter 50 value 87.071786 iter 60 value 86.530273 iter 70 value 86.380883 iter 80 value 86.223635 iter 90 value 85.980595 iter 100 value 85.836691 final value 85.836691 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.951048 iter 10 value 94.430595 iter 20 value 91.802941 iter 30 value 90.986943 iter 40 value 86.696363 iter 50 value 85.536230 iter 60 value 84.376746 iter 70 value 84.030158 iter 80 value 83.946745 iter 90 value 83.884066 iter 100 value 83.862154 final value 83.862154 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.607648 iter 10 value 94.424811 iter 20 value 88.441889 iter 30 value 87.601044 iter 40 value 86.985904 iter 50 value 86.012137 iter 60 value 84.652274 iter 70 value 84.236554 iter 80 value 83.977589 iter 90 value 83.723526 iter 100 value 83.210492 final value 83.210492 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.046923 iter 10 value 94.161355 iter 20 value 87.877794 iter 30 value 86.829727 iter 40 value 86.459644 iter 50 value 84.856665 iter 60 value 84.593794 iter 70 value 83.989812 iter 80 value 83.285110 iter 90 value 83.172482 iter 100 value 83.138585 final value 83.138585 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.224885 iter 10 value 97.105404 iter 20 value 89.428160 iter 30 value 86.770590 iter 40 value 85.471568 iter 50 value 85.381919 iter 60 value 85.200889 iter 70 value 85.055076 iter 80 value 84.124910 iter 90 value 83.606471 iter 100 value 83.440720 final value 83.440720 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.100133 iter 10 value 94.474679 iter 20 value 87.875252 iter 30 value 85.359334 iter 40 value 84.695832 iter 50 value 83.688677 iter 60 value 83.230856 iter 70 value 83.196656 iter 80 value 83.113899 iter 90 value 83.070963 iter 100 value 82.989950 final value 82.989950 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.600068 iter 10 value 94.173168 iter 20 value 92.895942 iter 30 value 87.101920 iter 40 value 86.356328 iter 50 value 85.308933 iter 60 value 85.090058 iter 70 value 84.696308 iter 80 value 84.133928 iter 90 value 83.385051 iter 100 value 83.293867 final value 83.293867 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.522414 iter 10 value 94.125668 iter 20 value 88.688052 iter 30 value 87.055460 iter 40 value 86.723819 iter 50 value 85.173039 iter 60 value 84.787990 iter 70 value 84.526718 iter 80 value 84.438741 iter 90 value 84.275965 iter 100 value 84.024807 final value 84.024807 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.258034 final value 94.067987 converged Fitting Repeat 2 # weights: 103 initial value 96.520402 final value 94.054411 converged Fitting Repeat 3 # weights: 103 initial value 113.376668 final value 94.054545 converged Fitting Repeat 4 # weights: 103 initial value 94.895430 final value 94.054567 converged Fitting Repeat 5 # weights: 103 initial value 99.340563 final value 94.054369 converged Fitting Repeat 1 # weights: 305 initial value 95.123006 iter 10 value 94.056909 iter 20 value 93.881235 final value 93.672055 converged Fitting Repeat 2 # weights: 305 initial value 97.617932 iter 10 value 94.060861 iter 20 value 94.057556 iter 30 value 93.951040 iter 40 value 90.872923 iter 50 value 87.385599 iter 60 value 87.366424 final value 87.366227 converged Fitting Repeat 3 # weights: 305 initial value 98.121656 iter 10 value 94.057491 iter 20 value 94.052174 iter 30 value 87.654196 iter 40 value 87.634917 iter 50 value 87.634082 iter 60 value 87.243526 iter 70 value 87.177221 iter 80 value 87.124993 iter 90 value 87.065896 iter 100 value 86.438784 final value 86.438784 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.641376 iter 10 value 89.449361 iter 20 value 89.195906 iter 30 value 88.776288 iter 40 value 88.773927 iter 50 value 88.636242 iter 60 value 88.631665 iter 70 value 88.631580 iter 80 value 88.629686 iter 80 value 88.629685 final value 88.629685 converged Fitting Repeat 5 # weights: 305 initial value 95.432651 iter 10 value 94.057610 iter 20 value 94.018715 iter 30 value 91.477096 iter 40 value 88.217361 final value 88.212477 converged Fitting Repeat 1 # weights: 507 initial value 117.009638 iter 10 value 94.041284 iter 20 value 94.039399 iter 30 value 93.764010 iter 40 value 88.876946 iter 50 value 88.791810 iter 60 value 87.616871 iter 70 value 87.360163 iter 80 value 87.282087 final value 87.282079 converged Fitting Repeat 2 # weights: 507 initial value 108.391540 iter 10 value 93.186268 iter 20 value 91.829995 iter 30 value 91.816697 iter 40 value 91.695054 iter 50 value 91.576655 iter 60 value 91.575362 iter 70 value 91.573174 iter 80 value 91.572148 iter 90 value 91.375716 iter 100 value 91.196366 final value 91.196366 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.461562 iter 10 value 90.054115 iter 20 value 87.880258 iter 30 value 87.852798 final value 87.850883 converged Fitting Repeat 4 # weights: 507 initial value 113.290358 iter 10 value 94.061217 iter 20 value 93.798511 iter 30 value 91.600040 iter 40 value 91.598149 iter 50 value 91.590170 iter 60 value 90.930612 iter 70 value 90.923076 final value 90.922993 converged Fitting Repeat 5 # weights: 507 initial value 106.949886 iter 10 value 94.061085 iter 20 value 94.000833 iter 30 value 93.083728 iter 30 value 93.083727 iter 30 value 93.083727 final value 93.083727 converged Fitting Repeat 1 # weights: 103 initial value 104.523030 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.838784 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.879484 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.755979 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.950331 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.361674 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 102.111407 final value 94.275363 converged Fitting Repeat 3 # weights: 305 initial value 109.053659 iter 10 value 93.924634 final value 93.922222 converged Fitting Repeat 4 # weights: 305 initial value 102.483351 iter 10 value 93.360526 iter 20 value 92.109567 iter 30 value 92.023971 final value 92.017778 converged Fitting Repeat 5 # weights: 305 initial value 101.973017 iter 10 value 93.991342 iter 10 value 93.991342 iter 10 value 93.991342 final value 93.991342 converged Fitting Repeat 1 # weights: 507 initial value 112.586767 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 105.844895 iter 10 value 93.971015 iter 10 value 93.971015 iter 10 value 93.971015 final value 93.971015 converged Fitting Repeat 3 # weights: 507 initial value 100.826352 final value 94.275362 converged Fitting Repeat 4 # weights: 507 initial value 105.249460 final value 94.264859 converged Fitting Repeat 5 # weights: 507 initial value 104.098273 iter 10 value 93.789504 final value 93.788489 converged Fitting Repeat 1 # weights: 103 initial value 101.211965 iter 10 value 94.488537 iter 20 value 87.762859 iter 30 value 86.319582 iter 40 value 83.859813 iter 50 value 82.603156 iter 60 value 82.339995 iter 70 value 82.215782 iter 70 value 82.215782 iter 70 value 82.215782 final value 82.215782 converged Fitting Repeat 2 # weights: 103 initial value 99.570778 iter 10 value 94.502486 iter 20 value 94.487581 iter 30 value 94.457859 iter 40 value 94.035345 iter 50 value 93.953575 iter 60 value 93.941535 iter 70 value 92.523705 iter 80 value 86.636136 iter 90 value 84.191134 iter 100 value 83.870230 final value 83.870230 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.503662 iter 10 value 93.757014 iter 20 value 89.068188 iter 30 value 88.046349 iter 40 value 87.416971 iter 50 value 86.958157 iter 60 value 85.707472 iter 70 value 85.048714 iter 80 value 84.982491 final value 84.968163 converged Fitting Repeat 4 # weights: 103 initial value 96.307097 iter 10 value 94.287328 iter 20 value 85.742521 iter 30 value 84.991712 iter 40 value 84.528158 iter 50 value 83.150779 iter 60 value 82.161655 iter 70 value 82.107811 iter 80 value 82.020742 final value 82.011271 converged Fitting Repeat 5 # weights: 103 initial value 98.654408 iter 10 value 94.475820 iter 20 value 92.821636 iter 30 value 86.563421 iter 40 value 84.978135 iter 50 value 84.653391 iter 60 value 84.514507 iter 70 value 84.440555 iter 80 value 84.417080 final value 84.416968 converged Fitting Repeat 1 # weights: 305 initial value 109.464270 iter 10 value 93.900980 iter 20 value 85.938583 iter 30 value 85.235701 iter 40 value 84.698811 iter 50 value 82.961266 iter 60 value 81.815376 iter 70 value 81.012802 iter 80 value 80.925679 iter 90 value 80.872018 iter 100 value 80.861773 final value 80.861773 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.745929 iter 10 value 94.332119 iter 20 value 88.505798 iter 30 value 86.129409 iter 40 value 83.991689 iter 50 value 83.370035 iter 60 value 82.695081 iter 70 value 82.630792 iter 80 value 82.497304 iter 90 value 81.603106 iter 100 value 80.940643 final value 80.940643 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.807087 iter 10 value 93.811090 iter 20 value 88.224059 iter 30 value 87.011708 iter 40 value 86.696443 iter 50 value 84.459047 iter 60 value 83.972928 iter 70 value 82.427160 iter 80 value 81.913751 iter 90 value 81.333198 iter 100 value 81.179844 final value 81.179844 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.071087 iter 10 value 94.080717 iter 20 value 91.912455 iter 30 value 86.465762 iter 40 value 86.007734 iter 50 value 85.675368 iter 60 value 85.379798 iter 70 value 85.185573 iter 80 value 85.013726 iter 90 value 84.996789 iter 100 value 84.963059 final value 84.963059 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.191777 iter 10 value 94.437893 iter 20 value 89.514798 iter 30 value 87.885189 iter 40 value 86.978402 iter 50 value 85.500771 iter 60 value 84.396745 iter 70 value 83.020498 iter 80 value 82.568671 iter 90 value 82.413823 iter 100 value 82.372417 final value 82.372417 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.880097 iter 10 value 93.353353 iter 20 value 87.217627 iter 30 value 84.645638 iter 40 value 82.276127 iter 50 value 82.105244 iter 60 value 81.620704 iter 70 value 81.269873 iter 80 value 81.160482 iter 90 value 81.059458 iter 100 value 80.902136 final value 80.902136 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.147546 iter 10 value 95.535479 iter 20 value 88.946242 iter 30 value 86.963873 iter 40 value 85.115532 iter 50 value 83.348393 iter 60 value 82.754682 iter 70 value 81.980012 iter 80 value 81.649720 iter 90 value 81.006101 iter 100 value 80.721105 final value 80.721105 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.462037 iter 10 value 95.041999 iter 20 value 94.124111 iter 30 value 88.569482 iter 40 value 87.449757 iter 50 value 85.963146 iter 60 value 85.343418 iter 70 value 84.332653 iter 80 value 81.912880 iter 90 value 81.160925 iter 100 value 80.929479 final value 80.929479 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.082733 iter 10 value 94.454486 iter 20 value 93.190432 iter 30 value 87.851402 iter 40 value 86.557805 iter 50 value 86.164398 iter 60 value 85.936812 iter 70 value 83.236249 iter 80 value 81.778074 iter 90 value 81.568556 iter 100 value 80.788781 final value 80.788781 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.094061 iter 10 value 94.547560 iter 20 value 94.165056 iter 30 value 93.931971 iter 40 value 87.658243 iter 50 value 86.363119 iter 60 value 86.123365 iter 70 value 85.096184 iter 80 value 84.719687 iter 90 value 84.620092 iter 100 value 84.350609 final value 84.350609 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.919736 final value 94.485846 converged Fitting Repeat 2 # weights: 103 initial value 95.187024 final value 94.485745 converged Fitting Repeat 3 # weights: 103 initial value 101.644815 final value 94.485807 converged Fitting Repeat 4 # weights: 103 initial value 98.259791 final value 94.485945 converged Fitting Repeat 5 # weights: 103 initial value 98.176300 final value 94.485813 converged Fitting Repeat 1 # weights: 305 initial value 105.970779 iter 10 value 94.280669 iter 20 value 94.276681 iter 30 value 92.121559 iter 40 value 92.113881 iter 50 value 89.377806 iter 60 value 87.545356 iter 70 value 87.157235 iter 80 value 84.661206 final value 84.643631 converged Fitting Repeat 2 # weights: 305 initial value 101.187063 iter 10 value 94.488898 iter 20 value 94.484230 final value 94.484208 converged Fitting Repeat 3 # weights: 305 initial value 103.053691 iter 10 value 94.488807 iter 20 value 94.423979 iter 30 value 85.746719 iter 40 value 85.516895 iter 50 value 85.392490 iter 60 value 84.165101 iter 70 value 83.726915 final value 83.725942 converged Fitting Repeat 4 # weights: 305 initial value 107.702432 iter 10 value 93.891056 iter 20 value 93.814797 iter 30 value 93.811946 iter 40 value 90.399774 iter 50 value 86.186508 iter 60 value 86.148778 iter 70 value 86.115603 iter 80 value 85.977373 final value 85.976504 converged Fitting Repeat 5 # weights: 305 initial value 105.442172 iter 10 value 94.489256 iter 20 value 93.950995 iter 30 value 88.376434 iter 40 value 87.196669 iter 50 value 86.021799 iter 60 value 85.981686 iter 70 value 85.881771 final value 85.881755 converged Fitting Repeat 1 # weights: 507 initial value 108.615536 iter 10 value 94.491909 iter 20 value 94.113147 iter 30 value 85.981607 iter 40 value 84.868212 iter 50 value 84.233085 iter 60 value 84.146032 final value 84.145331 converged Fitting Repeat 2 # weights: 507 initial value 99.180230 iter 10 value 94.492422 iter 20 value 93.084971 iter 30 value 84.984532 iter 40 value 84.501603 iter 50 value 84.437735 iter 60 value 84.415243 iter 70 value 84.369795 iter 80 value 84.360804 iter 90 value 84.224950 iter 100 value 82.853385 final value 82.853385 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.853654 iter 10 value 92.071605 iter 20 value 84.725594 iter 30 value 84.489195 iter 40 value 84.216878 iter 50 value 83.936682 iter 60 value 83.934996 iter 70 value 83.873140 iter 80 value 83.829503 iter 90 value 83.729809 iter 100 value 83.727942 final value 83.727942 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.394557 iter 10 value 93.979231 iter 20 value 93.919743 iter 30 value 93.785285 iter 40 value 93.743923 iter 50 value 93.733473 iter 60 value 93.733318 iter 60 value 93.733317 iter 60 value 93.733317 final value 93.733317 converged Fitting Repeat 5 # weights: 507 initial value 103.064199 iter 10 value 94.445666 iter 20 value 94.436632 iter 30 value 94.428807 iter 40 value 93.272320 iter 50 value 90.605329 iter 60 value 90.430655 iter 70 value 86.751259 iter 80 value 86.511607 iter 90 value 86.036554 iter 100 value 85.551115 final value 85.551115 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.101669 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.914784 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.981143 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.954543 iter 10 value 94.026546 final value 94.026542 converged Fitting Repeat 5 # weights: 103 initial value 101.786034 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 113.765177 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.165008 final value 94.026542 converged Fitting Repeat 3 # weights: 305 initial value 99.300497 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.705743 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.732126 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.271351 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 122.341006 iter 10 value 94.026543 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 110.153007 final value 94.482478 converged Fitting Repeat 4 # weights: 507 initial value 114.072765 iter 10 value 94.026544 final value 94.026542 converged Fitting Repeat 5 # weights: 507 initial value 112.585841 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 111.824516 iter 10 value 96.834484 iter 20 value 94.487731 iter 30 value 90.958205 iter 40 value 90.296179 iter 50 value 89.880219 iter 60 value 87.962634 iter 70 value 87.679619 iter 80 value 78.698929 iter 90 value 77.427356 iter 100 value 77.147446 final value 77.147446 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.800836 iter 10 value 94.430650 iter 20 value 94.127768 iter 30 value 94.109662 iter 40 value 83.952648 iter 50 value 82.140509 iter 60 value 80.782355 iter 70 value 80.625161 iter 80 value 80.609311 iter 90 value 80.601983 final value 80.600510 converged Fitting Repeat 3 # weights: 103 initial value 105.665426 iter 10 value 94.408864 iter 20 value 94.133509 iter 30 value 82.878504 iter 40 value 78.402446 iter 50 value 77.874624 iter 60 value 77.456188 iter 70 value 77.214744 iter 80 value 77.186416 iter 90 value 77.185093 iter 100 value 77.183818 final value 77.183818 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.380564 iter 10 value 94.486433 iter 20 value 94.091341 iter 30 value 82.022276 iter 40 value 80.387792 iter 50 value 78.549984 iter 60 value 77.842657 iter 70 value 77.400842 iter 80 value 77.308857 iter 90 value 77.185058 final value 77.183816 converged Fitting Repeat 5 # weights: 103 initial value 100.374255 iter 10 value 94.454535 iter 20 value 90.680032 iter 30 value 90.422729 iter 40 value 90.278764 iter 50 value 82.293929 iter 60 value 81.694881 iter 70 value 81.460496 iter 80 value 81.333180 iter 90 value 81.323614 iter 90 value 81.323613 iter 90 value 81.323613 final value 81.323613 converged Fitting Repeat 1 # weights: 305 initial value 103.846086 iter 10 value 94.423500 iter 20 value 94.116672 iter 30 value 85.075080 iter 40 value 80.016897 iter 50 value 79.042084 iter 60 value 78.186358 iter 70 value 77.710632 iter 80 value 77.085927 iter 90 value 76.015029 iter 100 value 75.705629 final value 75.705629 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.042531 iter 10 value 94.445288 iter 20 value 93.464859 iter 30 value 86.029628 iter 40 value 83.536965 iter 50 value 79.895864 iter 60 value 79.584445 iter 70 value 78.994946 iter 80 value 76.734555 iter 90 value 75.917090 iter 100 value 75.348266 final value 75.348266 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.102092 iter 10 value 94.193399 iter 20 value 90.465370 iter 30 value 86.531293 iter 40 value 82.459310 iter 50 value 81.638114 iter 60 value 80.845356 iter 70 value 78.977814 iter 80 value 77.265058 iter 90 value 76.895263 iter 100 value 76.670178 final value 76.670178 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.970379 iter 10 value 94.356946 iter 20 value 87.617783 iter 30 value 83.276325 iter 40 value 82.395702 iter 50 value 82.015871 iter 60 value 79.147274 iter 70 value 77.517031 iter 80 value 77.208131 iter 90 value 77.143997 iter 100 value 77.101953 final value 77.101953 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.356162 iter 10 value 94.220026 iter 20 value 92.376066 iter 30 value 84.469107 iter 40 value 82.232206 iter 50 value 79.831381 iter 60 value 77.982512 iter 70 value 76.073568 iter 80 value 75.670892 iter 90 value 75.360883 iter 100 value 75.138850 final value 75.138850 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.619125 iter 10 value 94.514529 iter 20 value 93.175401 iter 30 value 87.634388 iter 40 value 82.871435 iter 50 value 79.684216 iter 60 value 77.474803 iter 70 value 76.926659 iter 80 value 76.687641 iter 90 value 76.373689 iter 100 value 76.156459 final value 76.156459 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.835405 iter 10 value 92.926012 iter 20 value 81.235919 iter 30 value 80.636118 iter 40 value 80.450249 iter 50 value 79.941704 iter 60 value 78.111816 iter 70 value 76.819963 iter 80 value 76.146168 iter 90 value 75.709686 iter 100 value 75.579555 final value 75.579555 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.104994 iter 10 value 95.862296 iter 20 value 94.496119 iter 30 value 89.909707 iter 40 value 81.751993 iter 50 value 80.800211 iter 60 value 79.872820 iter 70 value 78.206993 iter 80 value 76.852206 iter 90 value 76.712879 iter 100 value 76.459085 final value 76.459085 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 153.000257 iter 10 value 94.462458 iter 20 value 93.521452 iter 30 value 88.044895 iter 40 value 84.388442 iter 50 value 83.240152 iter 60 value 82.726960 iter 70 value 80.300579 iter 80 value 77.662063 iter 90 value 77.032345 iter 100 value 76.396178 final value 76.396178 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.200492 iter 10 value 94.492125 iter 20 value 82.097942 iter 30 value 81.177704 iter 40 value 79.881495 iter 50 value 76.704250 iter 60 value 76.092600 iter 70 value 75.351965 iter 80 value 75.247881 iter 90 value 75.038208 iter 100 value 74.996840 final value 74.996840 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.349615 final value 94.485806 converged Fitting Repeat 2 # weights: 103 initial value 95.711536 final value 94.486040 converged Fitting Repeat 3 # weights: 103 initial value 95.629221 iter 10 value 94.028551 iter 20 value 94.027102 final value 94.026870 converged Fitting Repeat 4 # weights: 103 initial value 95.812497 final value 94.485942 converged Fitting Repeat 5 # weights: 103 initial value 94.699173 final value 94.485622 converged Fitting Repeat 1 # weights: 305 initial value 109.305951 iter 10 value 94.488883 iter 20 value 94.484511 final value 94.484503 converged Fitting Repeat 2 # weights: 305 initial value 102.132336 iter 10 value 94.485669 iter 20 value 94.443842 iter 30 value 90.058931 iter 40 value 89.407930 iter 50 value 89.340073 final value 89.325736 converged Fitting Repeat 3 # weights: 305 initial value 101.996188 iter 10 value 94.037701 iter 20 value 94.031450 iter 30 value 94.028911 final value 94.027374 converged Fitting Repeat 4 # weights: 305 initial value 97.674747 iter 10 value 92.652909 iter 20 value 92.009797 iter 30 value 91.991414 iter 40 value 91.990830 iter 50 value 91.989768 iter 60 value 91.988449 iter 70 value 91.962134 iter 80 value 90.402993 iter 90 value 81.832599 iter 100 value 75.338024 final value 75.338024 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.161320 iter 10 value 94.031358 iter 20 value 91.344663 iter 30 value 80.896182 iter 40 value 80.445120 iter 50 value 80.438230 iter 60 value 80.438053 iter 70 value 80.437975 final value 80.437846 converged Fitting Repeat 1 # weights: 507 initial value 95.948791 iter 10 value 94.488122 iter 20 value 94.315099 iter 30 value 87.318851 iter 40 value 86.899686 iter 50 value 86.843999 iter 60 value 85.432690 iter 70 value 85.399925 iter 80 value 85.191417 iter 90 value 85.156169 final value 85.156159 converged Fitting Repeat 2 # weights: 507 initial value 110.763943 iter 10 value 94.492657 iter 20 value 93.827456 iter 30 value 92.561737 iter 40 value 91.403542 iter 50 value 91.201657 final value 91.201558 converged Fitting Repeat 3 # weights: 507 initial value 104.002356 iter 10 value 94.173759 iter 20 value 94.123638 iter 30 value 93.977171 iter 40 value 93.969269 iter 50 value 92.998555 iter 60 value 87.880489 iter 70 value 83.426451 iter 80 value 80.120544 iter 90 value 79.816631 iter 100 value 79.770987 final value 79.770987 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.372734 iter 10 value 90.563844 iter 20 value 83.290510 iter 30 value 80.479468 iter 40 value 80.396277 iter 50 value 80.395849 iter 60 value 80.394710 iter 70 value 79.802250 iter 80 value 79.750029 iter 90 value 79.413883 iter 100 value 79.408908 final value 79.408908 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.932302 iter 10 value 94.492762 iter 20 value 94.373953 iter 30 value 93.787983 iter 40 value 90.358686 iter 50 value 89.364258 iter 60 value 89.344130 iter 70 value 89.342977 iter 80 value 89.342232 iter 90 value 89.331877 iter 100 value 89.331771 final value 89.331771 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 120.453894 iter 10 value 117.908886 iter 20 value 117.810482 iter 30 value 117.792271 iter 40 value 114.835216 iter 50 value 107.076038 iter 60 value 106.167407 iter 70 value 105.964374 iter 80 value 105.306870 iter 90 value 105.259723 iter 100 value 105.258523 final value 105.258523 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 124.167120 iter 10 value 117.439633 iter 20 value 107.847291 iter 30 value 105.654150 iter 40 value 105.356273 iter 50 value 104.687462 iter 60 value 103.589326 iter 70 value 103.095869 iter 80 value 102.541774 iter 90 value 102.325418 final value 102.325293 converged Fitting Repeat 3 # weights: 103 initial value 120.873422 iter 10 value 117.894868 iter 20 value 112.407664 iter 30 value 108.134436 iter 40 value 107.787061 iter 50 value 106.820520 iter 60 value 106.254860 iter 70 value 105.628085 iter 80 value 105.615640 iter 80 value 105.615639 final value 105.615639 converged Fitting Repeat 4 # weights: 103 initial value 119.242592 iter 10 value 106.544213 iter 20 value 105.392085 iter 30 value 104.401993 iter 40 value 103.044215 iter 50 value 102.777512 iter 60 value 102.773380 iter 70 value 102.574428 iter 80 value 102.094913 final value 102.094294 converged Fitting Repeat 5 # weights: 103 initial value 129.363721 iter 10 value 117.551710 iter 20 value 115.493129 iter 30 value 113.169913 iter 40 value 112.251630 iter 50 value 111.827383 iter 60 value 110.480746 iter 70 value 103.879049 iter 80 value 103.259687 iter 90 value 102.994618 iter 100 value 102.644306 final value 102.644306 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Jan 21 07:58:40 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 51.147 1.230 89.476
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.021 | 0.263 | 34.362 | |
FreqInteractors | 0.283 | 0.000 | 0.283 | |
calculateAAC | 0.033 | 0.012 | 0.045 | |
calculateAutocor | 0.632 | 0.016 | 0.652 | |
calculateCTDC | 0.085 | 0.004 | 0.089 | |
calculateCTDD | 0.721 | 0.000 | 0.723 | |
calculateCTDT | 0.249 | 0.000 | 0.248 | |
calculateCTriad | 0.434 | 0.008 | 0.443 | |
calculateDC | 0.119 | 0.000 | 0.120 | |
calculateF | 0.418 | 0.000 | 0.419 | |
calculateKSAAP | 0.128 | 0.000 | 0.129 | |
calculateQD_Sm | 2.351 | 0.040 | 2.397 | |
calculateTC | 2.226 | 0.036 | 2.268 | |
calculateTC_Sm | 0.382 | 0.000 | 0.383 | |
corr_plot | 34.086 | 0.252 | 34.418 | |
enrichfindP | 0.498 | 0.019 | 21.931 | |
enrichfind_hp | 0.079 | 0.004 | 1.684 | |
enrichplot | 0.482 | 0.004 | 0.488 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.124 | 0.024 | 6.209 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.001 | |
plotPPI | 0.085 | 0.000 | 0.085 | |
pred_ensembel | 17.489 | 0.348 | 16.631 | |
var_imp | 35.804 | 0.355 | 36.250 | |