Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-12-23 12:04 -0500 (Mon, 23 Dec 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4744 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4515 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4467 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-12-20 01:09:23 -0500 (Fri, 20 Dec 2024) |
EndedAt: 2024-12-20 01:30:12 -0500 (Fri, 20 Dec 2024) |
EllapsedTime: 1248.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 32.768 0.309 33.078 FSmethod 32.202 0.486 32.691 corr_plot 31.907 0.330 32.238 pred_ensembel 12.702 0.316 11.748 enrichfindP 0.530 0.027 7.938 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.601050 final value 94.354396 converged Fitting Repeat 2 # weights: 103 initial value 95.484077 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.680277 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.205774 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.595302 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.988953 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.531419 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.999273 final value 94.461207 converged Fitting Repeat 4 # weights: 305 initial value 101.385879 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.384020 final value 94.313816 converged Fitting Repeat 1 # weights: 507 initial value 96.687778 final value 94.103571 converged Fitting Repeat 2 # weights: 507 initial value 97.157033 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 102.922803 iter 10 value 94.484298 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 106.574727 iter 10 value 94.358982 iter 20 value 94.275411 final value 94.275363 converged Fitting Repeat 5 # weights: 507 initial value 128.213697 iter 10 value 93.835920 iter 20 value 93.518448 iter 30 value 93.120169 iter 40 value 92.657868 iter 50 value 92.628008 final value 92.627913 converged Fitting Repeat 1 # weights: 103 initial value 98.040107 iter 10 value 94.314026 iter 20 value 86.657855 iter 30 value 85.179541 iter 40 value 84.409225 iter 50 value 84.209924 iter 60 value 84.207332 final value 84.207305 converged Fitting Repeat 2 # weights: 103 initial value 98.834661 iter 10 value 94.486670 iter 20 value 94.160540 iter 30 value 94.150243 iter 40 value 90.788219 iter 50 value 89.250635 iter 60 value 87.476643 iter 70 value 85.003230 iter 80 value 84.635614 iter 90 value 84.560707 iter 100 value 84.512754 final value 84.512754 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.031007 iter 10 value 94.464212 iter 20 value 94.413458 iter 30 value 94.411852 iter 40 value 89.635135 iter 50 value 87.644569 iter 60 value 85.998798 iter 70 value 83.425313 iter 80 value 83.236257 iter 90 value 83.233954 final value 83.233147 converged Fitting Repeat 4 # weights: 103 initial value 102.607894 iter 10 value 94.640287 iter 20 value 94.493484 iter 30 value 94.035745 iter 40 value 90.681181 iter 50 value 89.138924 iter 60 value 85.533538 iter 70 value 84.422470 iter 80 value 83.437858 iter 90 value 83.263314 iter 100 value 83.233255 final value 83.233255 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.673309 iter 10 value 94.486604 iter 20 value 93.102671 iter 30 value 85.124999 iter 40 value 84.366769 iter 50 value 83.880608 iter 60 value 83.769211 final value 83.766940 converged Fitting Repeat 1 # weights: 305 initial value 112.987709 iter 10 value 94.312426 iter 20 value 89.689616 iter 30 value 87.198224 iter 40 value 84.120366 iter 50 value 82.594750 iter 60 value 80.912960 iter 70 value 80.596979 iter 80 value 80.572364 iter 90 value 80.532421 iter 100 value 80.514875 final value 80.514875 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.969027 iter 10 value 95.107606 iter 20 value 92.249496 iter 30 value 92.204346 iter 40 value 91.167008 iter 50 value 87.909670 iter 60 value 86.016730 iter 70 value 84.690414 iter 80 value 83.042667 iter 90 value 81.853250 iter 100 value 80.471622 final value 80.471622 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.114693 iter 10 value 94.266973 iter 20 value 86.009310 iter 30 value 84.779251 iter 40 value 84.623903 iter 50 value 84.000944 iter 60 value 83.572222 iter 70 value 83.090574 iter 80 value 81.531868 iter 90 value 80.991143 iter 100 value 80.081985 final value 80.081985 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.262499 iter 10 value 94.400470 iter 20 value 87.912922 iter 30 value 86.661404 iter 40 value 86.080346 iter 50 value 85.096349 iter 60 value 84.873169 iter 70 value 84.270728 iter 80 value 82.841297 iter 90 value 82.129469 iter 100 value 81.761398 final value 81.761398 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.984919 iter 10 value 94.611878 iter 20 value 85.075519 iter 30 value 84.150295 iter 40 value 82.491367 iter 50 value 82.394277 iter 60 value 82.136698 iter 70 value 81.842762 iter 80 value 81.778517 iter 90 value 81.757425 iter 100 value 81.708813 final value 81.708813 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.639172 iter 10 value 94.284872 iter 20 value 85.693792 iter 30 value 82.941668 iter 40 value 81.977516 iter 50 value 80.956460 iter 60 value 80.529011 iter 70 value 80.144271 iter 80 value 79.780803 iter 90 value 79.669429 iter 100 value 79.452729 final value 79.452729 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.600072 iter 10 value 93.469753 iter 20 value 86.081645 iter 30 value 84.421681 iter 40 value 84.297968 iter 50 value 84.212987 iter 60 value 83.306271 iter 70 value 82.583387 iter 80 value 81.201775 iter 90 value 80.949533 iter 100 value 80.583281 final value 80.583281 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.771453 iter 10 value 95.573344 iter 20 value 93.377082 iter 30 value 88.921771 iter 40 value 85.139405 iter 50 value 82.958887 iter 60 value 82.359227 iter 70 value 81.064490 iter 80 value 80.735837 iter 90 value 80.592047 iter 100 value 80.361332 final value 80.361332 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.860507 iter 10 value 94.468866 iter 20 value 87.457271 iter 30 value 86.089157 iter 40 value 83.787816 iter 50 value 83.708997 iter 60 value 83.526219 iter 70 value 82.004152 iter 80 value 81.338870 iter 90 value 80.821081 iter 100 value 80.325638 final value 80.325638 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.442795 iter 10 value 94.180660 iter 20 value 90.230125 iter 30 value 86.933402 iter 40 value 84.067417 iter 50 value 83.347297 iter 60 value 82.887428 iter 70 value 82.780141 iter 80 value 81.607008 iter 90 value 80.600546 iter 100 value 80.362520 final value 80.362520 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.803848 final value 94.485695 converged Fitting Repeat 2 # weights: 103 initial value 95.187451 final value 94.485822 converged Fitting Repeat 3 # weights: 103 initial value 97.988254 final value 94.487085 converged Fitting Repeat 4 # weights: 103 initial value 98.505151 final value 94.486138 converged Fitting Repeat 5 # weights: 103 initial value 96.430861 iter 10 value 94.485846 iter 20 value 94.483018 iter 30 value 86.930398 iter 40 value 84.865362 iter 50 value 84.864011 iter 60 value 84.863874 iter 70 value 84.862623 iter 80 value 84.862267 iter 90 value 84.862122 iter 100 value 83.835491 final value 83.835491 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 97.676247 iter 10 value 94.359535 iter 20 value 94.325215 final value 94.323944 converged Fitting Repeat 2 # weights: 305 initial value 100.427989 iter 10 value 94.361031 iter 20 value 94.074559 iter 30 value 88.371039 iter 40 value 88.358925 iter 50 value 88.358306 iter 60 value 88.358064 final value 88.357901 converged Fitting Repeat 3 # weights: 305 initial value 94.688983 iter 10 value 94.488195 iter 20 value 92.915272 iter 30 value 92.480984 final value 92.477385 converged Fitting Repeat 4 # weights: 305 initial value 98.066052 iter 10 value 92.745713 iter 20 value 92.744282 iter 30 value 92.165886 iter 40 value 92.146148 iter 50 value 92.142022 final value 92.141844 converged Fitting Repeat 5 # weights: 305 initial value 99.252493 iter 10 value 94.488907 iter 20 value 93.370070 final value 84.861681 converged Fitting Repeat 1 # weights: 507 initial value 107.640396 iter 10 value 94.492101 iter 20 value 94.380355 iter 30 value 92.753547 iter 40 value 91.516633 iter 50 value 91.331519 iter 60 value 82.891556 iter 70 value 80.645437 iter 80 value 80.396751 iter 90 value 80.344757 iter 100 value 80.309890 final value 80.309890 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.717936 iter 10 value 94.188347 iter 20 value 94.181180 iter 30 value 94.179787 iter 40 value 94.179134 iter 50 value 94.177290 iter 60 value 94.043271 iter 70 value 93.959622 iter 80 value 93.958178 iter 90 value 93.957814 iter 100 value 93.957249 final value 93.957249 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.609758 iter 10 value 94.492269 iter 20 value 94.426793 iter 30 value 86.883983 iter 40 value 84.038957 iter 50 value 83.944228 iter 60 value 83.678065 iter 70 value 83.254135 iter 80 value 81.435114 iter 90 value 80.214208 iter 100 value 79.966234 final value 79.966234 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.676469 iter 10 value 94.470039 iter 20 value 94.385740 iter 30 value 87.785099 iter 40 value 83.735614 iter 50 value 82.832940 iter 60 value 82.749919 iter 70 value 82.741248 iter 80 value 82.445193 iter 90 value 82.192852 final value 82.192804 converged Fitting Repeat 5 # weights: 507 initial value 105.676645 iter 10 value 94.491321 iter 20 value 92.958300 iter 30 value 86.251008 iter 40 value 82.913329 final value 82.669840 converged Fitting Repeat 1 # weights: 103 initial value 103.803012 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.158923 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.056174 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.292836 final value 93.714286 converged Fitting Repeat 5 # weights: 103 initial value 96.097866 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.608829 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.243626 iter 10 value 93.761844 final value 93.643064 converged Fitting Repeat 3 # weights: 305 initial value 101.529893 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 106.306612 iter 10 value 93.912644 iter 10 value 93.912644 iter 10 value 93.912644 final value 93.912644 converged Fitting Repeat 5 # weights: 305 initial value 98.297819 final value 93.836066 converged Fitting Repeat 1 # weights: 507 initial value 120.982924 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 100.917162 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 117.361849 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 133.811706 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 98.453950 iter 10 value 92.729917 iter 20 value 88.682989 iter 30 value 88.270964 final value 88.268014 converged Fitting Repeat 1 # weights: 103 initial value 99.227195 iter 10 value 94.038633 iter 20 value 93.304755 iter 30 value 93.163408 iter 40 value 92.278964 iter 50 value 92.249939 iter 60 value 92.247889 iter 70 value 92.247792 final value 92.247790 converged Fitting Repeat 2 # weights: 103 initial value 102.259473 iter 10 value 94.054902 iter 20 value 93.273074 iter 30 value 93.181709 iter 40 value 93.159481 iter 50 value 93.156036 iter 60 value 87.071707 iter 70 value 85.815787 iter 80 value 85.519096 iter 90 value 85.441352 iter 100 value 85.437903 final value 85.437903 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.030714 iter 10 value 94.057185 final value 94.057093 converged Fitting Repeat 4 # weights: 103 initial value 100.210798 iter 10 value 94.055011 iter 20 value 93.968504 iter 30 value 93.687873 iter 40 value 93.671276 iter 50 value 92.480057 iter 60 value 90.539704 iter 70 value 90.418607 iter 80 value 90.393367 iter 90 value 88.021224 iter 100 value 85.725996 final value 85.725996 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.383079 iter 10 value 93.464657 iter 20 value 87.748517 iter 30 value 87.353349 iter 40 value 84.585829 iter 50 value 84.252322 iter 60 value 84.173256 iter 70 value 84.111256 iter 80 value 84.093650 iter 90 value 84.030123 iter 100 value 83.904487 final value 83.904487 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.544483 iter 10 value 88.518267 iter 20 value 87.137824 iter 30 value 86.988354 iter 40 value 85.364080 iter 50 value 84.016280 iter 60 value 83.664995 iter 70 value 83.341399 iter 80 value 83.226167 iter 90 value 83.126410 iter 100 value 83.034483 final value 83.034483 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.111202 iter 10 value 94.063628 iter 20 value 93.541145 iter 30 value 88.917102 iter 40 value 85.818440 iter 50 value 84.766536 iter 60 value 84.078937 iter 70 value 83.634144 iter 80 value 83.556380 iter 90 value 83.508617 iter 100 value 83.357322 final value 83.357322 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.700694 iter 10 value 94.034007 iter 20 value 93.677099 iter 30 value 93.453392 iter 40 value 90.616062 iter 50 value 88.071993 iter 60 value 85.744481 iter 70 value 84.333922 iter 80 value 84.055621 iter 90 value 83.618607 iter 100 value 83.140947 final value 83.140947 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.640386 iter 10 value 93.655351 iter 20 value 90.429644 iter 30 value 88.837613 iter 40 value 86.426873 iter 50 value 86.099527 iter 60 value 85.837861 iter 70 value 85.433060 iter 80 value 85.299929 iter 90 value 84.316051 iter 100 value 83.585711 final value 83.585711 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.887348 iter 10 value 94.003884 iter 20 value 92.896889 iter 30 value 87.118486 iter 40 value 86.956333 iter 50 value 85.612683 iter 60 value 85.279712 iter 70 value 85.147032 iter 80 value 84.957725 iter 90 value 84.446628 iter 100 value 84.280544 final value 84.280544 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.922644 iter 10 value 94.094467 iter 20 value 89.244814 iter 30 value 86.373582 iter 40 value 85.566783 iter 50 value 84.878276 iter 60 value 83.455183 iter 70 value 83.280966 iter 80 value 83.261093 iter 90 value 82.971357 iter 100 value 82.821937 final value 82.821937 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.686774 iter 10 value 94.093677 iter 20 value 93.664459 iter 30 value 87.597578 iter 40 value 86.064880 iter 50 value 85.391158 iter 60 value 84.056994 iter 70 value 83.584361 iter 80 value 83.180414 iter 90 value 82.518445 iter 100 value 82.230350 final value 82.230350 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.253152 iter 10 value 96.104690 iter 20 value 94.412386 iter 30 value 92.793259 iter 40 value 89.272357 iter 50 value 86.986934 iter 60 value 86.181684 iter 70 value 85.706417 iter 80 value 83.910783 iter 90 value 83.252842 iter 100 value 83.017472 final value 83.017472 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.954049 iter 10 value 95.048295 iter 20 value 93.745245 iter 30 value 92.199626 iter 40 value 90.286245 iter 50 value 86.449952 iter 60 value 85.235497 iter 70 value 83.796490 iter 80 value 82.727842 iter 90 value 82.342194 iter 100 value 82.255399 final value 82.255399 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.538552 iter 10 value 96.270832 iter 20 value 87.755595 iter 30 value 87.076114 iter 40 value 86.108514 iter 50 value 84.973254 iter 60 value 83.921574 iter 70 value 83.384482 iter 80 value 83.223281 iter 90 value 82.905914 iter 100 value 82.787694 final value 82.787694 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.428137 iter 10 value 94.054537 iter 20 value 94.053000 final value 94.052918 converged Fitting Repeat 2 # weights: 103 initial value 116.341752 iter 10 value 94.054392 final value 94.053062 converged Fitting Repeat 3 # weights: 103 initial value 107.551841 final value 94.054550 converged Fitting Repeat 4 # weights: 103 initial value 97.462783 final value 93.837561 converged Fitting Repeat 5 # weights: 103 initial value 107.541342 final value 94.054411 converged Fitting Repeat 1 # weights: 305 initial value 103.101441 iter 10 value 94.057686 iter 20 value 94.052921 iter 30 value 92.642818 iter 40 value 87.376341 iter 50 value 87.256192 iter 60 value 87.255228 iter 70 value 86.929137 iter 80 value 86.690377 iter 90 value 86.687354 iter 100 value 86.605229 final value 86.605229 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.507394 iter 10 value 93.682752 iter 20 value 93.680613 iter 30 value 93.649943 iter 40 value 93.643657 iter 50 value 93.643565 iter 60 value 93.643495 iter 60 value 93.643495 iter 60 value 93.643494 final value 93.643494 converged Fitting Repeat 3 # weights: 305 initial value 101.950889 iter 10 value 94.057766 iter 20 value 93.850315 iter 30 value 93.786582 final value 93.785952 converged Fitting Repeat 4 # weights: 305 initial value 98.471576 iter 10 value 93.840974 iter 20 value 93.692888 final value 93.617140 converged Fitting Repeat 5 # weights: 305 initial value 109.276368 iter 10 value 93.841096 iter 20 value 93.822856 iter 30 value 92.520391 iter 40 value 86.033184 iter 50 value 85.990924 iter 60 value 85.538183 iter 70 value 85.185101 final value 85.184952 converged Fitting Repeat 1 # weights: 507 initial value 96.017193 iter 10 value 93.798178 iter 20 value 93.793009 iter 30 value 93.179922 iter 40 value 92.717850 iter 50 value 92.717278 final value 92.716735 converged Fitting Repeat 2 # weights: 507 initial value 107.937430 iter 10 value 93.793491 iter 20 value 92.467722 iter 30 value 88.034367 iter 40 value 87.131416 iter 50 value 87.128006 final value 87.127268 converged Fitting Repeat 3 # weights: 507 initial value 96.750020 iter 10 value 93.844434 iter 20 value 93.409152 iter 30 value 86.891282 iter 40 value 84.477792 iter 50 value 84.368084 final value 84.367731 converged Fitting Repeat 4 # weights: 507 initial value 130.912859 iter 10 value 94.062580 iter 20 value 94.054532 iter 30 value 93.943474 iter 40 value 93.622563 iter 50 value 93.601053 iter 60 value 91.753514 iter 70 value 90.790846 iter 80 value 90.790404 iter 90 value 90.769447 iter 100 value 90.763860 final value 90.763860 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.707981 iter 10 value 93.173384 iter 20 value 91.900161 iter 30 value 91.854321 iter 40 value 91.850562 iter 50 value 89.288441 iter 60 value 88.112012 iter 70 value 88.092881 iter 80 value 86.456854 iter 90 value 86.016891 final value 86.016759 converged Fitting Repeat 1 # weights: 103 initial value 96.479924 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.303948 iter 10 value 86.620380 final value 85.165665 converged Fitting Repeat 3 # weights: 103 initial value 95.629783 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.210672 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.724907 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.964106 iter 10 value 92.053460 iter 20 value 91.049853 iter 30 value 91.030150 final value 91.030067 converged Fitting Repeat 2 # weights: 305 initial value 112.936814 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.964158 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.669345 iter 10 value 85.170682 final value 85.165664 converged Fitting Repeat 5 # weights: 305 initial value 101.221492 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.067786 final value 94.484210 converged Fitting Repeat 2 # weights: 507 initial value 95.679722 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 100.198030 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 105.768673 final value 93.874286 converged Fitting Repeat 5 # weights: 507 initial value 102.289289 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 96.459435 iter 10 value 94.514700 iter 20 value 94.236001 iter 30 value 93.406203 iter 40 value 93.380914 iter 50 value 92.545044 iter 60 value 90.381866 iter 70 value 84.529342 iter 80 value 84.478085 iter 90 value 83.314124 iter 100 value 81.790274 final value 81.790274 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.216848 iter 10 value 94.486848 iter 20 value 92.405343 iter 30 value 86.276847 iter 40 value 85.850509 iter 50 value 84.918371 iter 60 value 82.983466 iter 70 value 82.951681 iter 80 value 82.947962 final value 82.947702 converged Fitting Repeat 3 # weights: 103 initial value 96.664031 iter 10 value 94.409887 iter 20 value 92.762057 iter 30 value 90.601105 iter 40 value 85.237496 iter 50 value 83.570550 iter 60 value 83.546009 iter 70 value 83.221140 iter 80 value 82.932686 iter 90 value 82.930884 iter 100 value 82.929740 final value 82.929740 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.763721 iter 10 value 94.535347 iter 20 value 94.396203 iter 30 value 86.927234 iter 40 value 83.660095 iter 50 value 83.011437 iter 60 value 82.556326 final value 82.544054 converged Fitting Repeat 5 # weights: 103 initial value 98.397377 iter 10 value 94.480224 iter 20 value 84.526457 iter 30 value 84.458803 iter 40 value 83.078748 iter 50 value 82.640564 iter 60 value 82.549605 iter 70 value 82.543731 iter 70 value 82.543731 iter 70 value 82.543731 final value 82.543731 converged Fitting Repeat 1 # weights: 305 initial value 132.261189 iter 10 value 94.399598 iter 20 value 93.565049 iter 30 value 91.750884 iter 40 value 90.600284 iter 50 value 82.535709 iter 60 value 81.602478 iter 70 value 81.125528 iter 80 value 81.036103 iter 90 value 80.951479 iter 100 value 80.904242 final value 80.904242 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.542234 iter 10 value 94.497456 iter 20 value 93.569779 iter 30 value 85.512553 iter 40 value 82.018361 iter 50 value 81.479947 iter 60 value 80.457837 iter 70 value 80.180325 iter 80 value 79.661209 iter 90 value 79.379471 iter 100 value 79.307796 final value 79.307796 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.823328 iter 10 value 93.951889 iter 20 value 84.597882 iter 30 value 83.053787 iter 40 value 82.586731 iter 50 value 82.532393 iter 60 value 82.301047 iter 70 value 81.840258 iter 80 value 81.519360 iter 90 value 80.745315 iter 100 value 80.357522 final value 80.357522 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.216777 iter 10 value 89.334479 iter 20 value 85.541442 iter 30 value 84.880354 iter 40 value 84.330376 iter 50 value 81.883355 iter 60 value 81.568202 iter 70 value 81.043866 iter 80 value 80.584247 iter 90 value 80.389471 iter 100 value 80.152147 final value 80.152147 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.838560 iter 10 value 94.797870 iter 20 value 94.393658 iter 30 value 89.853674 iter 40 value 86.319944 iter 50 value 83.908778 iter 60 value 83.124371 iter 70 value 82.897060 iter 80 value 82.440953 iter 90 value 81.821062 iter 100 value 81.296090 final value 81.296090 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.659837 iter 10 value 95.201663 iter 20 value 94.181513 iter 30 value 89.018117 iter 40 value 86.259975 iter 50 value 85.898820 iter 60 value 85.318206 iter 70 value 83.233350 iter 80 value 82.702820 iter 90 value 81.173195 iter 100 value 80.317256 final value 80.317256 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.564254 iter 10 value 95.472814 iter 20 value 91.432142 iter 30 value 85.780664 iter 40 value 84.450591 iter 50 value 81.553049 iter 60 value 80.684392 iter 70 value 80.558329 iter 80 value 80.487681 iter 90 value 80.304423 iter 100 value 79.731094 final value 79.731094 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.039699 iter 10 value 94.625857 iter 20 value 91.041025 iter 30 value 87.681655 iter 40 value 84.154187 iter 50 value 83.296940 iter 60 value 81.353883 iter 70 value 80.499867 iter 80 value 80.104698 iter 90 value 79.484047 iter 100 value 79.395173 final value 79.395173 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.713567 iter 10 value 94.471116 iter 20 value 91.250380 iter 30 value 89.848838 iter 40 value 85.684599 iter 50 value 83.568968 iter 60 value 83.346128 iter 70 value 82.753228 iter 80 value 81.567729 iter 90 value 81.506750 iter 100 value 81.430450 final value 81.430450 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.747423 iter 10 value 94.221749 iter 20 value 93.569476 iter 30 value 89.524086 iter 40 value 82.824973 iter 50 value 81.826336 iter 60 value 80.690421 iter 70 value 80.263531 iter 80 value 79.697344 iter 90 value 79.444884 iter 100 value 79.361181 final value 79.361181 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.779877 final value 94.485842 converged Fitting Repeat 2 # weights: 103 initial value 96.986108 final value 94.485836 converged Fitting Repeat 3 # weights: 103 initial value 115.157516 final value 94.485639 converged Fitting Repeat 4 # weights: 103 initial value 98.255123 final value 94.486104 converged Fitting Repeat 5 # weights: 103 initial value 102.279487 final value 94.485781 converged Fitting Repeat 1 # weights: 305 initial value 114.070430 iter 10 value 94.489258 iter 20 value 94.460140 iter 30 value 94.208200 iter 40 value 84.646577 iter 50 value 83.851677 final value 83.820122 converged Fitting Repeat 2 # weights: 305 initial value 97.206711 iter 10 value 94.471683 iter 20 value 90.700131 final value 87.161412 converged Fitting Repeat 3 # weights: 305 initial value 96.972596 iter 10 value 93.879380 iter 20 value 93.277695 iter 30 value 93.260916 iter 40 value 93.240841 final value 93.077068 converged Fitting Repeat 4 # weights: 305 initial value 108.830943 iter 10 value 94.471829 iter 20 value 94.351872 iter 30 value 87.892091 iter 40 value 87.871878 iter 50 value 87.177286 iter 60 value 87.168728 iter 70 value 85.898510 iter 80 value 83.337095 iter 90 value 82.290989 iter 100 value 82.268171 final value 82.268171 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.612380 iter 10 value 94.472534 iter 20 value 94.421448 iter 30 value 94.306597 iter 40 value 94.306298 iter 50 value 88.110413 iter 60 value 87.178627 final value 87.178321 converged Fitting Repeat 1 # weights: 507 initial value 102.234638 iter 10 value 94.492283 iter 20 value 94.468932 iter 30 value 85.270199 iter 40 value 84.436330 iter 50 value 84.410917 iter 60 value 84.399880 iter 70 value 84.182255 iter 80 value 81.625497 iter 90 value 79.901478 iter 100 value 79.770343 final value 79.770343 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.768447 iter 10 value 94.489819 iter 20 value 94.480412 iter 30 value 92.657213 iter 40 value 83.508739 iter 50 value 83.050329 iter 60 value 80.702232 iter 70 value 79.065898 iter 80 value 79.001663 iter 90 value 78.745664 iter 100 value 78.395463 final value 78.395463 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.375888 iter 10 value 94.362245 iter 20 value 94.356622 final value 94.354485 converged Fitting Repeat 4 # weights: 507 initial value 108.375675 iter 10 value 94.357649 iter 20 value 94.204968 iter 30 value 94.194212 iter 40 value 94.191448 iter 50 value 90.857148 iter 60 value 82.628024 iter 70 value 82.415029 iter 80 value 80.920505 iter 90 value 80.423054 iter 100 value 80.406448 final value 80.406448 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.764316 iter 10 value 94.475360 iter 20 value 94.467514 iter 30 value 87.894748 iter 40 value 85.526681 iter 50 value 85.525873 iter 60 value 84.771518 iter 70 value 84.394611 iter 80 value 82.491622 iter 90 value 82.479735 iter 100 value 82.423182 final value 82.423182 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.980653 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.653666 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.280472 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.687659 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.225957 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 106.383992 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 107.497740 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.837094 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.073952 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 109.743414 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.980625 iter 10 value 93.728733 iter 20 value 93.722227 final value 93.722223 converged Fitting Repeat 2 # weights: 507 initial value 105.313620 iter 10 value 93.472525 iter 20 value 92.738584 iter 30 value 92.735635 final value 92.735633 converged Fitting Repeat 3 # weights: 507 initial value 136.276342 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.351754 final value 93.636782 converged Fitting Repeat 5 # weights: 507 initial value 96.068317 final value 94.050155 converged Fitting Repeat 1 # weights: 103 initial value 96.279157 iter 10 value 92.583160 iter 20 value 86.632211 iter 30 value 83.438694 iter 40 value 82.780844 iter 50 value 82.700401 iter 60 value 82.698626 iter 70 value 82.594584 iter 80 value 82.544645 final value 82.542089 converged Fitting Repeat 2 # weights: 103 initial value 104.233339 iter 10 value 94.022163 iter 20 value 88.886967 iter 30 value 85.635783 iter 40 value 84.217961 iter 50 value 83.151442 iter 60 value 82.605999 iter 70 value 82.542109 final value 82.542089 converged Fitting Repeat 3 # weights: 103 initial value 105.069240 iter 10 value 94.037963 iter 20 value 88.120359 iter 30 value 86.693933 iter 40 value 83.902935 iter 50 value 79.236046 iter 60 value 78.225845 iter 70 value 77.830180 iter 80 value 77.768853 final value 77.768693 converged Fitting Repeat 4 # weights: 103 initial value 102.037474 iter 10 value 92.411631 iter 20 value 87.628477 iter 30 value 87.589736 iter 40 value 86.694669 iter 50 value 85.485276 iter 60 value 85.238419 iter 70 value 83.753822 iter 80 value 83.017659 iter 90 value 82.548391 iter 100 value 82.152480 final value 82.152480 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.039348 iter 10 value 94.060600 iter 20 value 91.233849 iter 30 value 81.557510 iter 40 value 79.992121 iter 50 value 79.205575 iter 60 value 78.831825 iter 70 value 78.821193 iter 70 value 78.821192 iter 70 value 78.821192 final value 78.821192 converged Fitting Repeat 1 # weights: 305 initial value 99.641563 iter 10 value 92.081987 iter 20 value 87.585175 iter 30 value 81.334528 iter 40 value 80.607579 iter 50 value 79.717527 iter 60 value 78.222031 iter 70 value 77.160262 iter 80 value 76.985439 iter 90 value 76.913102 final value 76.911683 converged Fitting Repeat 2 # weights: 305 initial value 109.062882 iter 10 value 93.591008 iter 20 value 83.410179 iter 30 value 82.474645 iter 40 value 80.162499 iter 50 value 77.736411 iter 60 value 76.629267 iter 70 value 75.898825 iter 80 value 75.723971 iter 90 value 75.528543 iter 100 value 75.500623 final value 75.500623 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.869683 iter 10 value 94.055069 iter 20 value 92.220174 iter 30 value 83.319561 iter 40 value 81.806289 iter 50 value 81.517743 iter 60 value 81.359997 iter 70 value 81.187239 iter 80 value 80.206135 iter 90 value 78.409185 iter 100 value 76.990492 final value 76.990492 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 134.927591 iter 10 value 93.650477 iter 20 value 84.941651 iter 30 value 80.903719 iter 40 value 79.145987 iter 50 value 76.498406 iter 60 value 76.184702 iter 70 value 75.864839 iter 80 value 75.832591 iter 90 value 75.799223 iter 100 value 75.628225 final value 75.628225 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.039583 iter 10 value 93.829676 iter 20 value 91.367119 iter 30 value 88.843459 iter 40 value 88.326126 iter 50 value 88.179221 iter 60 value 87.006562 iter 70 value 82.432468 iter 80 value 80.458731 iter 90 value 77.794969 iter 100 value 76.753474 final value 76.753474 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.459442 iter 10 value 96.838960 iter 20 value 87.289668 iter 30 value 81.328459 iter 40 value 80.592531 iter 50 value 79.983197 iter 60 value 77.704855 iter 70 value 77.248329 iter 80 value 76.640756 iter 90 value 76.101346 iter 100 value 75.797419 final value 75.797419 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.569721 iter 10 value 94.051532 iter 20 value 91.769072 iter 30 value 86.609467 iter 40 value 81.449212 iter 50 value 80.436314 iter 60 value 79.995903 iter 70 value 78.849124 iter 80 value 77.538102 iter 90 value 76.882938 iter 100 value 76.610858 final value 76.610858 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.060018 iter 10 value 95.726529 iter 20 value 89.283456 iter 30 value 84.808662 iter 40 value 82.856102 iter 50 value 80.545712 iter 60 value 78.837349 iter 70 value 77.588187 iter 80 value 77.419837 iter 90 value 77.156864 iter 100 value 77.055246 final value 77.055246 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.065342 iter 10 value 94.154293 iter 20 value 86.596731 iter 30 value 84.039630 iter 40 value 78.372350 iter 50 value 77.225587 iter 60 value 76.828076 iter 70 value 76.601360 iter 80 value 76.414823 iter 90 value 76.228593 iter 100 value 76.051673 final value 76.051673 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.246477 iter 10 value 94.262166 iter 20 value 85.209458 iter 30 value 83.447486 iter 40 value 80.053904 iter 50 value 78.428235 iter 60 value 77.964288 iter 70 value 77.350056 iter 80 value 77.227807 iter 90 value 76.606783 iter 100 value 75.967121 final value 75.967121 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.784540 final value 94.054712 converged Fitting Repeat 2 # weights: 103 initial value 104.581323 iter 10 value 94.054590 iter 20 value 94.040282 iter 30 value 91.394488 iter 40 value 90.780050 iter 50 value 90.721269 iter 60 value 90.008690 iter 70 value 89.941657 iter 80 value 89.941343 iter 90 value 83.392001 iter 100 value 82.477495 final value 82.477495 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.565407 final value 93.723945 converged Fitting Repeat 4 # weights: 103 initial value 100.688661 final value 94.054633 converged Fitting Repeat 5 # weights: 103 initial value 105.213865 final value 94.054612 converged Fitting Repeat 1 # weights: 305 initial value 115.871711 iter 10 value 94.013997 iter 20 value 94.010681 iter 30 value 90.218984 iter 40 value 89.759787 iter 50 value 89.759378 iter 60 value 87.082363 iter 70 value 78.733630 iter 80 value 78.461559 iter 90 value 77.642256 iter 100 value 77.641407 final value 77.641407 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.884417 iter 10 value 92.962197 iter 20 value 92.936876 iter 30 value 92.931604 iter 40 value 92.928139 iter 40 value 92.928138 iter 40 value 92.928138 final value 92.928138 converged Fitting Repeat 3 # weights: 305 initial value 105.960476 iter 10 value 94.019427 iter 20 value 94.014138 final value 94.013896 converged Fitting Repeat 4 # weights: 305 initial value 101.250494 iter 10 value 94.057754 iter 20 value 94.052859 iter 30 value 93.372641 iter 30 value 93.372641 iter 30 value 93.372641 final value 93.372641 converged Fitting Repeat 5 # weights: 305 initial value 94.664853 iter 10 value 94.056231 iter 20 value 92.602117 iter 30 value 85.631925 iter 40 value 84.336276 iter 50 value 83.866857 iter 60 value 83.863044 iter 70 value 83.856820 iter 80 value 83.855827 final value 83.855553 converged Fitting Repeat 1 # weights: 507 initial value 112.096348 iter 10 value 94.017372 iter 20 value 94.009422 final value 94.009092 converged Fitting Repeat 2 # weights: 507 initial value 99.923441 iter 10 value 91.432244 iter 20 value 90.426988 iter 30 value 90.423719 iter 40 value 90.418094 iter 50 value 90.416424 final value 90.416416 converged Fitting Repeat 3 # weights: 507 initial value 106.519782 iter 10 value 94.059383 iter 20 value 90.534265 iter 30 value 86.999779 iter 40 value 86.998047 iter 50 value 86.013910 iter 60 value 85.489748 iter 70 value 85.488438 iter 80 value 85.487184 final value 85.487181 converged Fitting Repeat 4 # weights: 507 initial value 94.816020 iter 10 value 93.705761 iter 20 value 93.662425 iter 30 value 93.638286 iter 40 value 93.618463 final value 93.612148 converged Fitting Repeat 5 # weights: 507 initial value 95.302579 iter 10 value 94.060721 iter 20 value 93.461850 iter 30 value 83.949502 iter 40 value 83.447905 iter 50 value 83.423060 iter 60 value 83.394869 iter 70 value 83.394399 iter 80 value 83.393596 final value 83.392439 converged Fitting Repeat 1 # weights: 103 initial value 96.969114 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.081738 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 114.040767 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.445752 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.796149 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.067292 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.859217 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 106.762864 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.383995 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 95.441242 iter 10 value 88.906319 iter 20 value 86.907111 iter 30 value 86.712400 iter 40 value 86.710673 final value 86.710659 converged Fitting Repeat 1 # weights: 507 initial value 100.700931 final value 94.484210 converged Fitting Repeat 2 # weights: 507 initial value 97.585687 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 119.451931 final value 93.822880 converged Fitting Repeat 4 # weights: 507 initial value 133.298281 iter 10 value 93.385614 final value 93.383632 converged Fitting Repeat 5 # weights: 507 initial value 106.375703 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 96.850816 iter 10 value 94.033741 iter 20 value 91.944698 iter 30 value 90.303136 iter 40 value 88.194971 iter 50 value 85.945738 iter 60 value 85.249450 iter 70 value 83.025595 iter 80 value 82.475796 iter 90 value 82.357796 iter 100 value 82.351472 final value 82.351472 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.865784 iter 10 value 94.298607 iter 20 value 93.717074 iter 30 value 93.708308 iter 40 value 90.696502 iter 50 value 85.303561 iter 60 value 85.163192 iter 70 value 84.833720 iter 80 value 83.707620 iter 90 value 83.643631 final value 83.643610 converged Fitting Repeat 3 # weights: 103 initial value 105.544498 iter 10 value 94.257837 iter 20 value 93.380711 iter 30 value 93.287914 iter 40 value 93.254523 iter 50 value 87.162144 iter 60 value 86.861938 iter 70 value 86.611417 iter 80 value 86.422863 iter 90 value 86.390506 final value 86.390074 converged Fitting Repeat 4 # weights: 103 initial value 102.463806 iter 10 value 94.488977 iter 20 value 88.287248 iter 30 value 85.208181 iter 40 value 85.084911 iter 50 value 84.734085 iter 60 value 83.734857 iter 70 value 83.645552 iter 80 value 83.643611 final value 83.643610 converged Fitting Repeat 5 # weights: 103 initial value 114.811396 iter 10 value 94.414422 iter 20 value 93.636540 iter 30 value 93.630466 iter 40 value 86.859239 iter 50 value 84.107959 iter 60 value 83.420561 iter 70 value 82.865931 iter 80 value 82.478231 iter 90 value 82.417342 iter 100 value 82.369488 final value 82.369488 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.952140 iter 10 value 94.881375 iter 20 value 93.234952 iter 30 value 92.248120 iter 40 value 86.955416 iter 50 value 84.502455 iter 60 value 83.845680 iter 70 value 83.248619 iter 80 value 82.853287 iter 90 value 81.706280 iter 100 value 81.363528 final value 81.363528 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 149.526763 iter 10 value 94.780357 iter 20 value 90.485103 iter 30 value 87.835763 iter 40 value 85.265349 iter 50 value 83.360569 iter 60 value 82.180223 iter 70 value 81.739634 iter 80 value 81.277963 iter 90 value 81.106208 iter 100 value 80.985518 final value 80.985518 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.779480 iter 10 value 100.443490 iter 20 value 94.076838 iter 30 value 93.746468 iter 40 value 93.685976 iter 50 value 89.041458 iter 60 value 87.153965 iter 70 value 86.154840 iter 80 value 85.543713 iter 90 value 81.956561 iter 100 value 81.739307 final value 81.739307 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.172236 iter 10 value 94.223178 iter 20 value 93.628745 iter 30 value 86.687015 iter 40 value 84.381881 iter 50 value 83.987232 iter 60 value 82.834087 iter 70 value 82.008131 iter 80 value 81.830928 iter 90 value 81.624555 iter 100 value 81.494835 final value 81.494835 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.723176 iter 10 value 94.391790 iter 20 value 92.032849 iter 30 value 91.700823 iter 40 value 91.514543 iter 50 value 87.159971 iter 60 value 85.792847 iter 70 value 84.454556 iter 80 value 84.042387 iter 90 value 83.520663 iter 100 value 82.253386 final value 82.253386 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.597224 iter 10 value 91.980641 iter 20 value 84.282472 iter 30 value 83.815400 iter 40 value 83.588354 iter 50 value 82.774794 iter 60 value 81.791636 iter 70 value 81.602271 iter 80 value 81.573862 iter 90 value 81.541021 iter 100 value 81.456647 final value 81.456647 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.947259 iter 10 value 90.526633 iter 20 value 87.959882 iter 30 value 85.512831 iter 40 value 85.277815 iter 50 value 85.208142 iter 60 value 84.803630 iter 70 value 83.748585 iter 80 value 83.369300 iter 90 value 82.914433 iter 100 value 82.612610 final value 82.612610 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.650445 iter 10 value 94.806638 iter 20 value 93.805739 iter 30 value 93.553914 iter 40 value 90.775610 iter 50 value 89.510264 iter 60 value 86.819222 iter 70 value 82.360044 iter 80 value 81.698778 iter 90 value 81.425831 iter 100 value 81.246599 final value 81.246599 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.298672 iter 10 value 94.459790 iter 20 value 93.681147 iter 30 value 93.202202 iter 40 value 86.090555 iter 50 value 85.596665 iter 60 value 83.971506 iter 70 value 81.773121 iter 80 value 81.444452 iter 90 value 81.311036 iter 100 value 81.232229 final value 81.232229 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.685649 iter 10 value 94.182783 iter 20 value 91.691958 iter 30 value 88.409060 iter 40 value 85.670259 iter 50 value 84.119788 iter 60 value 83.403374 iter 70 value 81.840806 iter 80 value 81.362045 iter 90 value 81.100196 iter 100 value 81.024441 final value 81.024441 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.659062 final value 94.146114 converged Fitting Repeat 2 # weights: 103 initial value 98.381985 final value 94.486063 converged Fitting Repeat 3 # weights: 103 initial value 101.792828 final value 94.485807 converged Fitting Repeat 4 # weights: 103 initial value 97.013748 final value 94.485896 converged Fitting Repeat 5 # weights: 103 initial value 97.870290 iter 10 value 94.277113 iter 20 value 94.275927 iter 30 value 92.548418 iter 40 value 84.919575 iter 50 value 84.005597 iter 60 value 83.890011 iter 70 value 83.804022 final value 83.803152 converged Fitting Repeat 1 # weights: 305 initial value 117.917470 iter 10 value 94.489155 iter 20 value 94.484457 iter 30 value 93.913026 final value 93.912021 converged Fitting Repeat 2 # weights: 305 initial value 117.985484 iter 10 value 94.186707 iter 20 value 93.818701 iter 30 value 93.501887 iter 40 value 93.493634 iter 50 value 93.491552 final value 93.489907 converged Fitting Repeat 3 # weights: 305 initial value 94.638100 iter 10 value 94.272190 iter 20 value 94.178800 iter 30 value 93.912320 iter 40 value 93.907838 iter 50 value 93.548105 iter 60 value 93.517663 iter 70 value 93.359585 iter 80 value 85.912330 iter 90 value 85.679651 iter 100 value 85.527882 final value 85.527882 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 94.058070 iter 10 value 93.551537 iter 20 value 93.524929 iter 30 value 93.522450 iter 40 value 93.521212 iter 50 value 93.520891 final value 93.520543 converged Fitting Repeat 5 # weights: 305 initial value 101.467553 iter 10 value 94.300262 iter 20 value 94.279304 final value 94.275508 converged Fitting Repeat 1 # weights: 507 initial value 109.017779 iter 10 value 91.394944 iter 20 value 86.815957 iter 30 value 86.763710 iter 40 value 86.756643 final value 86.755239 converged Fitting Repeat 2 # weights: 507 initial value 110.770789 iter 10 value 94.492288 iter 20 value 94.394907 iter 30 value 88.240364 iter 40 value 84.767477 final value 84.631952 converged Fitting Repeat 3 # weights: 507 initial value 110.691978 iter 10 value 93.915878 iter 20 value 93.908783 iter 30 value 93.697415 iter 40 value 88.883939 iter 50 value 86.703677 iter 60 value 86.435852 iter 70 value 86.019882 iter 80 value 86.019738 final value 86.019735 converged Fitting Repeat 4 # weights: 507 initial value 110.234917 iter 10 value 89.490964 iter 20 value 88.234533 iter 30 value 88.213140 iter 40 value 88.211345 iter 50 value 87.699141 iter 60 value 86.630122 iter 70 value 86.493564 iter 80 value 86.484234 iter 80 value 86.484234 final value 86.484234 converged Fitting Repeat 5 # weights: 507 initial value 98.051668 iter 10 value 94.283401 iter 20 value 92.001428 iter 30 value 85.530535 iter 40 value 83.818723 iter 50 value 83.549791 iter 60 value 83.338265 iter 70 value 82.271290 iter 80 value 81.551210 iter 90 value 81.458757 iter 100 value 81.426836 final value 81.426836 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.430710 iter 10 value 117.767005 iter 20 value 117.759628 iter 30 value 113.651017 iter 40 value 107.699225 iter 50 value 106.963580 final value 106.963570 converged Fitting Repeat 2 # weights: 507 initial value 130.256888 iter 10 value 117.130877 iter 20 value 111.081180 iter 30 value 111.049177 iter 40 value 109.230304 iter 50 value 107.720695 iter 60 value 103.062848 iter 70 value 101.001170 iter 80 value 99.704874 iter 90 value 99.604210 iter 100 value 99.561127 final value 99.561127 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.364517 iter 10 value 117.898571 iter 20 value 117.890374 iter 30 value 110.499949 iter 40 value 107.926608 iter 50 value 107.066440 iter 60 value 105.363050 iter 70 value 105.105055 iter 80 value 104.854467 iter 90 value 104.823433 iter 100 value 104.821739 final value 104.821739 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.943610 iter 10 value 117.766716 iter 20 value 113.875677 iter 30 value 104.641807 iter 40 value 104.410897 iter 50 value 104.068740 iter 60 value 104.058343 iter 70 value 104.057908 final value 104.057811 converged Fitting Repeat 5 # weights: 507 initial value 154.089981 iter 10 value 117.898480 iter 20 value 117.848811 iter 30 value 108.581941 final value 107.003786 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Dec 20 01:20:48 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 37.225 1.428 44.890
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.202 | 0.486 | 32.691 | |
FreqInteractors | 0.195 | 0.014 | 0.209 | |
calculateAAC | 0.033 | 0.004 | 0.036 | |
calculateAutocor | 0.274 | 0.012 | 0.286 | |
calculateCTDC | 0.065 | 0.000 | 0.065 | |
calculateCTDD | 0.459 | 0.002 | 0.461 | |
calculateCTDT | 0.180 | 0.001 | 0.181 | |
calculateCTriad | 0.347 | 0.002 | 0.349 | |
calculateDC | 0.078 | 0.001 | 0.078 | |
calculateF | 0.259 | 0.006 | 0.264 | |
calculateKSAAP | 0.084 | 0.001 | 0.084 | |
calculateQD_Sm | 1.472 | 0.015 | 1.487 | |
calculateTC | 1.344 | 0.026 | 1.370 | |
calculateTC_Sm | 0.255 | 0.002 | 0.257 | |
corr_plot | 31.907 | 0.330 | 32.238 | |
enrichfindP | 0.530 | 0.027 | 7.938 | |
enrichfind_hp | 0.062 | 0.003 | 0.987 | |
enrichplot | 0.303 | 0.004 | 0.308 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.274 | 0.021 | 4.216 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.000 | 0.001 | |
plotPPI | 0.059 | 0.007 | 0.066 | |
pred_ensembel | 12.702 | 0.316 | 11.748 | |
var_imp | 32.768 | 0.309 | 33.078 | |