Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-23 12:05 -0500 (Thu, 23 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4493 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4394 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-20 22:56:54 -0500 (Mon, 20 Jan 2025) |
EndedAt: 2025-01-20 23:12:23 -0500 (Mon, 20 Jan 2025) |
EllapsedTime: 929.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.247 0.535 35.793 FSmethod 33.850 0.436 34.288 corr_plot 33.339 0.086 33.426 pred_ensembel 12.777 0.261 11.773 enrichfindP 0.501 0.029 8.911 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.815741 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.180058 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.698753 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.399235 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.755851 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.524986 iter 10 value 87.950318 iter 20 value 86.931003 iter 30 value 86.604768 final value 86.604706 converged Fitting Repeat 2 # weights: 305 initial value 97.024877 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 112.596951 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 104.415640 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.148633 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 101.717616 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 109.703311 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 98.554358 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 98.036339 iter 10 value 93.309958 final value 93.301231 converged Fitting Repeat 5 # weights: 507 initial value 120.632648 iter 10 value 94.100716 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 106.095575 iter 10 value 93.759347 iter 20 value 85.359542 iter 30 value 84.811947 iter 40 value 83.852867 iter 50 value 83.364288 iter 60 value 82.871377 iter 70 value 82.372699 iter 80 value 82.340454 final value 82.340452 converged Fitting Repeat 2 # weights: 103 initial value 100.579485 iter 10 value 93.796947 iter 20 value 87.458938 iter 30 value 86.252267 iter 40 value 86.085206 iter 50 value 85.640409 iter 60 value 85.471785 iter 70 value 85.467357 final value 85.466123 converged Fitting Repeat 3 # weights: 103 initial value 100.612024 iter 10 value 93.891111 iter 20 value 86.121138 iter 30 value 83.939430 iter 40 value 83.537212 iter 50 value 82.648314 iter 60 value 82.397934 iter 70 value 82.335215 final value 82.334912 converged Fitting Repeat 4 # weights: 103 initial value 105.015123 iter 10 value 94.055046 iter 20 value 93.692604 iter 30 value 93.684504 iter 40 value 93.635731 iter 50 value 93.450814 iter 60 value 92.790796 iter 70 value 88.091262 iter 80 value 84.639578 iter 90 value 83.872588 iter 100 value 83.518883 final value 83.518883 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.482953 iter 10 value 93.801543 iter 20 value 88.560994 iter 30 value 85.609904 iter 40 value 83.632791 iter 50 value 83.054878 iter 60 value 82.232013 iter 70 value 82.142909 iter 80 value 82.116766 iter 90 value 82.095088 final value 82.091655 converged Fitting Repeat 1 # weights: 305 initial value 100.225619 iter 10 value 93.934910 iter 20 value 93.462329 iter 30 value 93.313269 iter 40 value 90.228857 iter 50 value 86.427502 iter 60 value 86.272453 iter 70 value 86.091886 iter 80 value 85.807102 iter 90 value 84.428305 iter 100 value 83.225019 final value 83.225019 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.294646 iter 10 value 93.854501 iter 20 value 90.367009 iter 30 value 88.297788 iter 40 value 87.414431 iter 50 value 86.300458 iter 60 value 84.711735 iter 70 value 84.217563 iter 80 value 83.050415 iter 90 value 82.477568 iter 100 value 81.785148 final value 81.785148 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.006295 iter 10 value 93.925142 iter 20 value 85.615333 iter 30 value 84.624719 iter 40 value 83.755988 iter 50 value 83.022638 iter 60 value 82.501430 iter 70 value 82.054631 iter 80 value 81.443270 iter 90 value 81.126209 iter 100 value 81.048715 final value 81.048715 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.204920 iter 10 value 94.002047 iter 20 value 90.476271 iter 30 value 87.522762 iter 40 value 85.593976 iter 50 value 83.131515 iter 60 value 82.800914 iter 70 value 82.388908 iter 80 value 81.370205 iter 90 value 80.984055 iter 100 value 80.897236 final value 80.897236 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.682347 iter 10 value 93.849233 iter 20 value 93.463867 iter 30 value 92.764382 iter 40 value 90.140757 iter 50 value 89.710023 iter 60 value 85.927377 iter 70 value 84.482761 iter 80 value 84.045489 iter 90 value 83.537308 iter 100 value 83.336751 final value 83.336751 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.088658 iter 10 value 94.165759 iter 20 value 92.240242 iter 30 value 92.012066 iter 40 value 88.853162 iter 50 value 85.164215 iter 60 value 84.551080 iter 70 value 84.334933 iter 80 value 83.937825 iter 90 value 83.841052 iter 100 value 83.500898 final value 83.500898 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.579742 iter 10 value 92.595772 iter 20 value 85.373643 iter 30 value 83.473043 iter 40 value 83.345177 iter 50 value 83.257186 iter 60 value 82.387300 iter 70 value 81.592773 iter 80 value 81.019691 iter 90 value 80.883527 iter 100 value 80.692893 final value 80.692893 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.112497 iter 10 value 94.291662 iter 20 value 91.749708 iter 30 value 85.367251 iter 40 value 85.139161 iter 50 value 84.919857 iter 60 value 84.020991 iter 70 value 83.239995 iter 80 value 82.831472 iter 90 value 82.780978 iter 100 value 82.751734 final value 82.751734 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.417992 iter 10 value 93.832378 iter 20 value 91.540858 iter 30 value 86.120195 iter 40 value 84.302553 iter 50 value 82.954426 iter 60 value 82.167987 iter 70 value 82.004296 iter 80 value 81.669632 iter 90 value 81.381912 iter 100 value 81.295729 final value 81.295729 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.004846 iter 10 value 94.333135 iter 20 value 88.990446 iter 30 value 84.658337 iter 40 value 83.710087 iter 50 value 83.624739 iter 60 value 83.610345 iter 70 value 83.574659 iter 80 value 83.391861 iter 90 value 82.979027 iter 100 value 82.356123 final value 82.356123 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.583411 final value 94.054515 converged Fitting Repeat 2 # weights: 103 initial value 94.197375 final value 94.054663 converged Fitting Repeat 3 # weights: 103 initial value 94.338563 final value 94.054645 converged Fitting Repeat 4 # weights: 103 initial value 96.930801 final value 94.054798 converged Fitting Repeat 5 # weights: 103 initial value 101.574638 final value 94.054598 converged Fitting Repeat 1 # weights: 305 initial value 96.622657 iter 10 value 93.876277 iter 20 value 92.817707 iter 30 value 88.018949 iter 40 value 87.947444 iter 50 value 87.939488 iter 60 value 86.448707 iter 70 value 85.762249 iter 80 value 85.685769 iter 90 value 85.612313 final value 85.612265 converged Fitting Repeat 2 # weights: 305 initial value 102.798856 iter 10 value 93.565631 iter 20 value 93.415430 iter 30 value 93.410619 iter 40 value 87.070502 iter 50 value 83.615494 iter 60 value 83.400243 iter 70 value 83.077770 iter 80 value 82.869893 iter 90 value 82.427448 iter 100 value 82.067240 final value 82.067240 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.081440 iter 10 value 93.371129 iter 20 value 93.369127 iter 30 value 93.366149 iter 40 value 93.291022 iter 50 value 86.465310 iter 60 value 85.267811 iter 70 value 82.061499 iter 80 value 80.245819 iter 90 value 80.036906 iter 100 value 79.965300 final value 79.965300 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.475771 iter 10 value 93.844389 iter 20 value 91.719410 iter 30 value 87.277275 final value 87.277090 converged Fitting Repeat 5 # weights: 305 initial value 95.318053 iter 10 value 93.894896 iter 20 value 93.368464 iter 30 value 85.892299 iter 40 value 85.869783 iter 50 value 85.850610 iter 60 value 85.288660 iter 70 value 84.951970 final value 84.950898 converged Fitting Repeat 1 # weights: 507 initial value 98.860574 iter 10 value 94.061132 iter 20 value 94.000959 iter 30 value 92.449257 iter 40 value 84.407405 iter 50 value 84.312740 iter 60 value 84.284145 final value 84.279610 converged Fitting Repeat 2 # weights: 507 initial value 107.064178 iter 10 value 93.385869 iter 20 value 93.380734 iter 30 value 93.302970 iter 40 value 93.302621 iter 50 value 93.299819 iter 60 value 89.710064 iter 70 value 89.123510 iter 80 value 83.282200 iter 90 value 80.866721 iter 100 value 80.732359 final value 80.732359 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.714412 iter 10 value 94.061412 iter 20 value 94.042344 iter 30 value 93.622847 iter 40 value 88.637292 iter 50 value 88.042872 iter 60 value 87.961633 iter 70 value 87.949257 iter 80 value 87.945394 iter 90 value 84.494301 iter 100 value 84.443961 final value 84.443961 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.205080 iter 10 value 93.617350 iter 20 value 93.612402 iter 30 value 93.606860 iter 40 value 93.561187 final value 93.528787 converged Fitting Repeat 5 # weights: 507 initial value 108.110723 iter 10 value 93.863130 iter 20 value 93.374786 iter 30 value 92.953188 iter 40 value 84.075396 iter 50 value 83.469502 iter 60 value 83.036741 iter 70 value 83.035075 iter 80 value 83.033753 iter 90 value 82.676275 iter 100 value 82.458036 final value 82.458036 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.537587 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.496429 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 109.576361 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.245621 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.171850 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.339334 iter 10 value 94.482393 final value 94.482149 converged Fitting Repeat 2 # weights: 305 initial value 97.544659 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 130.499289 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 108.912360 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.753568 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.720609 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.098210 iter 10 value 94.116364 iter 20 value 87.301514 iter 30 value 85.516226 iter 40 value 85.511292 final value 85.511214 converged Fitting Repeat 3 # weights: 507 initial value 107.531979 iter 10 value 87.599676 iter 20 value 84.055351 iter 30 value 83.540884 iter 40 value 83.531195 iter 50 value 83.111052 iter 60 value 82.985814 final value 82.985738 converged Fitting Repeat 4 # weights: 507 initial value 105.117562 iter 10 value 93.690012 final value 93.654971 converged Fitting Repeat 5 # weights: 507 initial value 115.568512 iter 10 value 94.443244 iter 10 value 94.443244 iter 10 value 94.443244 final value 94.443244 converged Fitting Repeat 1 # weights: 103 initial value 108.724747 iter 10 value 94.452911 iter 20 value 94.003881 iter 30 value 93.173373 iter 40 value 85.879860 iter 50 value 85.257532 iter 60 value 84.459967 iter 70 value 84.060598 iter 80 value 83.468332 iter 90 value 83.204432 iter 100 value 82.171664 final value 82.171664 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.554022 iter 10 value 94.484779 iter 20 value 92.074781 iter 30 value 85.982751 iter 40 value 84.724544 iter 50 value 84.257015 iter 60 value 84.130569 final value 84.130053 converged Fitting Repeat 3 # weights: 103 initial value 101.431276 iter 10 value 94.428849 iter 20 value 89.727671 iter 30 value 87.090393 iter 40 value 84.308621 iter 50 value 83.548748 iter 60 value 82.456795 iter 70 value 81.506697 iter 80 value 81.480671 iter 90 value 81.452628 final value 81.452607 converged Fitting Repeat 4 # weights: 103 initial value 96.533053 iter 10 value 94.433274 iter 20 value 89.321340 iter 30 value 88.276728 iter 40 value 87.984014 iter 50 value 87.879901 iter 60 value 87.442283 iter 70 value 87.125316 iter 80 value 84.067331 iter 90 value 83.718660 iter 100 value 83.711956 final value 83.711956 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.649321 iter 10 value 94.292141 iter 20 value 91.332603 iter 30 value 88.300622 iter 40 value 85.672603 iter 50 value 83.278190 iter 60 value 82.320171 iter 70 value 82.037444 iter 80 value 81.773906 iter 90 value 81.608298 iter 100 value 81.588819 final value 81.588819 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.797805 iter 10 value 94.544529 iter 20 value 90.824883 iter 30 value 90.087602 iter 40 value 88.006561 iter 50 value 84.439837 iter 60 value 83.088992 iter 70 value 82.778523 iter 80 value 82.691913 iter 90 value 82.491189 iter 100 value 81.726073 final value 81.726073 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.773242 iter 10 value 94.416803 iter 20 value 91.711476 iter 30 value 89.878235 iter 40 value 89.432802 iter 50 value 87.350949 iter 60 value 84.106622 iter 70 value 82.917035 iter 80 value 82.649718 iter 90 value 81.832560 iter 100 value 80.803835 final value 80.803835 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.901701 iter 10 value 94.383092 iter 20 value 93.052030 iter 30 value 91.436288 iter 40 value 91.111005 iter 50 value 90.995424 iter 60 value 88.021141 iter 70 value 83.301127 iter 80 value 83.222889 iter 90 value 82.765992 iter 100 value 82.031134 final value 82.031134 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.675489 iter 10 value 92.304666 iter 20 value 91.854885 iter 30 value 88.794449 iter 40 value 83.557279 iter 50 value 82.714891 iter 60 value 81.292137 iter 70 value 80.650399 iter 80 value 80.441314 iter 90 value 80.373582 iter 100 value 80.250199 final value 80.250199 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.829141 iter 10 value 94.486067 iter 20 value 92.576363 iter 30 value 85.719814 iter 40 value 84.555227 iter 50 value 82.028854 iter 60 value 81.367885 iter 70 value 80.779470 iter 80 value 80.629899 iter 90 value 80.571689 iter 100 value 80.569574 final value 80.569574 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.195007 iter 10 value 93.955329 iter 20 value 91.516735 iter 30 value 86.053535 iter 40 value 82.119182 iter 50 value 80.692080 iter 60 value 80.454258 iter 70 value 80.336948 iter 80 value 80.119112 iter 90 value 80.021052 iter 100 value 79.952228 final value 79.952228 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.073517 iter 10 value 93.171100 iter 20 value 91.807415 iter 30 value 87.175226 iter 40 value 84.277901 iter 50 value 83.297987 iter 60 value 82.843186 iter 70 value 82.369792 iter 80 value 81.669578 iter 90 value 80.685766 iter 100 value 80.227132 final value 80.227132 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.911541 iter 10 value 94.889373 iter 20 value 93.825151 iter 30 value 87.404698 iter 40 value 85.045612 iter 50 value 83.414484 iter 60 value 81.693856 iter 70 value 80.947597 iter 80 value 80.240038 iter 90 value 80.179698 iter 100 value 79.974974 final value 79.974974 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.386310 iter 10 value 94.662440 iter 20 value 93.499569 iter 30 value 92.509929 iter 40 value 91.291952 iter 50 value 85.578392 iter 60 value 84.936741 iter 70 value 84.577868 iter 80 value 83.660796 iter 90 value 83.502266 iter 100 value 83.047987 final value 83.047987 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.055930 iter 10 value 94.421967 iter 20 value 87.553306 iter 30 value 85.831386 iter 40 value 84.728973 iter 50 value 84.523455 iter 60 value 83.964536 iter 70 value 81.410756 iter 80 value 81.184954 iter 90 value 80.660712 iter 100 value 80.120203 final value 80.120203 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.115527 final value 94.486089 converged Fitting Repeat 2 # weights: 103 initial value 99.951491 final value 94.485714 converged Fitting Repeat 3 # weights: 103 initial value 104.017129 final value 94.485769 converged Fitting Repeat 4 # weights: 103 initial value 98.295116 final value 94.114627 converged Fitting Repeat 5 # weights: 103 initial value 96.289873 final value 94.485711 converged Fitting Repeat 1 # weights: 305 initial value 96.463504 iter 10 value 94.488370 iter 20 value 94.355442 iter 30 value 86.646314 iter 40 value 85.749617 iter 50 value 85.228793 iter 60 value 83.956463 iter 70 value 83.936717 iter 80 value 83.841871 iter 90 value 83.792407 iter 100 value 83.764193 final value 83.764193 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.510530 iter 10 value 94.487956 iter 20 value 94.484219 final value 94.484214 converged Fitting Repeat 3 # weights: 305 initial value 94.845775 iter 10 value 90.294908 iter 20 value 88.737566 iter 30 value 86.812511 iter 40 value 86.730178 iter 50 value 85.954198 iter 60 value 85.950733 final value 85.946596 converged Fitting Repeat 4 # weights: 305 initial value 98.623070 iter 10 value 94.448023 iter 20 value 94.369236 final value 93.703147 converged Fitting Repeat 5 # weights: 305 initial value 94.546814 iter 10 value 93.112956 iter 20 value 88.637095 iter 30 value 88.315533 iter 40 value 88.314439 iter 50 value 88.236186 iter 60 value 88.169899 iter 70 value 88.168708 final value 88.166630 converged Fitting Repeat 1 # weights: 507 initial value 94.614722 iter 10 value 88.094465 iter 20 value 82.376320 iter 30 value 81.696072 iter 40 value 81.579647 iter 50 value 80.581426 iter 60 value 80.536047 iter 70 value 80.519295 iter 80 value 80.288298 iter 90 value 79.637122 iter 100 value 79.598399 final value 79.598399 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.856780 iter 10 value 88.148815 iter 20 value 83.796908 iter 30 value 83.789742 iter 40 value 83.784009 iter 50 value 83.782886 iter 60 value 83.540412 iter 70 value 83.422141 iter 80 value 83.418850 iter 90 value 83.401490 iter 100 value 83.191967 final value 83.191967 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.902934 iter 10 value 93.681059 iter 20 value 93.673449 iter 30 value 86.540382 iter 40 value 84.241746 iter 50 value 83.782041 iter 60 value 83.778492 final value 83.778401 converged Fitting Repeat 4 # weights: 507 initial value 99.478107 iter 10 value 94.492148 iter 20 value 94.466221 final value 94.166051 converged Fitting Repeat 5 # weights: 507 initial value 101.814184 iter 10 value 94.492691 iter 20 value 94.485861 iter 30 value 94.333035 iter 40 value 84.750598 iter 50 value 83.794782 iter 60 value 83.789210 iter 70 value 83.785496 iter 80 value 83.780513 iter 90 value 83.760004 iter 100 value 83.605960 final value 83.605960 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.507873 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 102.438051 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.741235 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.702306 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.334457 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.084936 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 101.933518 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 98.707835 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 4 # weights: 305 initial value 122.704248 iter 10 value 93.836068 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 119.275882 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 118.754370 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 112.928206 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 101.483145 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 119.439181 iter 10 value 93.836084 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 92.721070 iter 10 value 86.458025 iter 20 value 85.971045 iter 30 value 85.970229 iter 30 value 85.970228 iter 30 value 85.970228 final value 85.970228 converged Fitting Repeat 1 # weights: 103 initial value 107.652422 iter 10 value 94.114022 iter 20 value 94.044205 iter 30 value 93.477867 iter 40 value 93.468042 iter 50 value 93.446905 iter 60 value 90.476405 iter 70 value 87.921241 iter 80 value 86.200607 iter 90 value 82.881681 iter 100 value 82.163914 final value 82.163914 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.239769 iter 10 value 94.056504 iter 20 value 93.907023 iter 30 value 93.889419 iter 40 value 93.817656 iter 50 value 92.565820 iter 60 value 91.457933 iter 70 value 91.161407 iter 80 value 91.141783 final value 91.141589 converged Fitting Repeat 3 # weights: 103 initial value 97.277364 iter 10 value 94.085117 iter 20 value 93.730805 iter 30 value 93.519729 iter 40 value 93.447777 iter 50 value 88.918339 iter 60 value 86.255435 iter 70 value 86.101001 iter 80 value 85.246586 iter 90 value 84.403145 iter 100 value 84.284784 final value 84.284784 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.235218 iter 10 value 89.981007 iter 20 value 85.028851 iter 30 value 84.901868 iter 40 value 82.548438 iter 50 value 81.700516 iter 60 value 81.377434 iter 70 value 81.276765 iter 80 value 81.268834 iter 80 value 81.268834 iter 80 value 81.268834 final value 81.268834 converged Fitting Repeat 5 # weights: 103 initial value 99.155182 iter 10 value 94.055254 iter 20 value 93.754458 iter 30 value 93.569702 iter 40 value 86.584565 iter 50 value 86.068073 iter 60 value 85.967725 iter 70 value 84.615654 iter 80 value 84.050634 iter 90 value 83.809731 iter 100 value 83.808298 final value 83.808298 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.282398 iter 10 value 94.106124 iter 20 value 91.525092 iter 30 value 86.484144 iter 40 value 84.298875 iter 50 value 84.091201 iter 60 value 82.702079 iter 70 value 81.270819 iter 80 value 80.551186 iter 90 value 80.290419 iter 100 value 79.929488 final value 79.929488 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.912163 iter 10 value 90.318242 iter 20 value 87.284214 iter 30 value 87.046893 iter 40 value 85.261067 iter 50 value 83.139465 iter 60 value 82.902099 iter 70 value 82.303925 iter 80 value 82.081367 iter 90 value 82.033373 iter 100 value 81.898269 final value 81.898269 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.321031 iter 10 value 93.970155 iter 20 value 93.079891 iter 30 value 90.532684 iter 40 value 86.115633 iter 50 value 84.584244 iter 60 value 84.039804 iter 70 value 83.568704 iter 80 value 81.713723 iter 90 value 81.364319 iter 100 value 81.110012 final value 81.110012 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.699234 iter 10 value 90.844229 iter 20 value 86.254217 iter 30 value 85.972718 iter 40 value 83.101565 iter 50 value 82.759954 iter 60 value 82.362511 iter 70 value 81.712608 iter 80 value 80.292455 iter 90 value 80.191701 iter 100 value 80.179916 final value 80.179916 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.789358 iter 10 value 92.086698 iter 20 value 86.333697 iter 30 value 85.929259 iter 40 value 84.279438 iter 50 value 82.295015 iter 60 value 81.745237 iter 70 value 80.309957 iter 80 value 79.909564 iter 90 value 79.711779 iter 100 value 79.655647 final value 79.655647 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.079256 iter 10 value 94.961787 iter 20 value 93.728440 iter 30 value 89.894192 iter 40 value 83.333845 iter 50 value 82.178225 iter 60 value 81.930045 iter 70 value 81.473760 iter 80 value 80.259801 iter 90 value 80.070071 iter 100 value 79.973783 final value 79.973783 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.310104 iter 10 value 94.259686 iter 20 value 93.202282 iter 30 value 92.612244 iter 40 value 89.295771 iter 50 value 83.746018 iter 60 value 82.819717 iter 70 value 81.341113 iter 80 value 80.408425 iter 90 value 80.094488 iter 100 value 80.062056 final value 80.062056 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.104791 iter 10 value 94.030870 iter 20 value 86.147167 iter 30 value 85.693098 iter 40 value 83.470155 iter 50 value 82.510700 iter 60 value 81.855980 iter 70 value 81.413944 iter 80 value 81.231587 iter 90 value 80.919117 iter 100 value 80.675174 final value 80.675174 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 138.682702 iter 10 value 94.063808 iter 20 value 86.760218 iter 30 value 85.953013 iter 40 value 84.575874 iter 50 value 84.183904 iter 60 value 83.016830 iter 70 value 82.682197 iter 80 value 82.552270 iter 90 value 81.750792 iter 100 value 80.890631 final value 80.890631 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.175810 iter 10 value 93.992459 iter 20 value 88.114077 iter 30 value 87.433777 iter 40 value 85.582098 iter 50 value 83.268422 iter 60 value 82.822044 iter 70 value 82.349632 iter 80 value 81.670526 iter 90 value 80.990580 iter 100 value 80.679071 final value 80.679071 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.654455 final value 94.054518 converged Fitting Repeat 2 # weights: 103 initial value 103.543299 final value 94.054449 converged Fitting Repeat 3 # weights: 103 initial value 98.105459 final value 94.056478 converged Fitting Repeat 4 # weights: 103 initial value 99.325703 final value 94.054515 converged Fitting Repeat 5 # weights: 103 initial value 99.640666 final value 94.054466 converged Fitting Repeat 1 # weights: 305 initial value 102.653483 iter 10 value 93.841019 iter 20 value 93.480421 iter 30 value 93.377963 iter 40 value 93.377587 iter 40 value 93.377586 iter 40 value 93.377586 final value 93.377586 converged Fitting Repeat 2 # weights: 305 initial value 96.133382 iter 10 value 94.057049 iter 20 value 94.052915 iter 30 value 90.687295 iter 40 value 85.632894 iter 50 value 84.512854 final value 84.512701 converged Fitting Repeat 3 # weights: 305 initial value 97.218323 iter 10 value 94.057643 iter 20 value 94.050955 iter 30 value 88.770545 iter 40 value 85.611808 iter 50 value 85.610945 iter 60 value 85.471426 iter 70 value 85.320298 iter 80 value 83.287813 iter 90 value 82.515854 iter 100 value 82.265187 final value 82.265187 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.408473 iter 10 value 94.036172 iter 20 value 93.383952 iter 30 value 93.382158 iter 40 value 92.940255 iter 50 value 86.940571 iter 60 value 86.303586 iter 70 value 86.275856 iter 80 value 84.368456 iter 90 value 84.286930 iter 100 value 84.253939 final value 84.253939 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.735198 iter 10 value 93.875074 iter 20 value 93.872245 iter 30 value 93.112324 iter 40 value 85.487525 iter 50 value 85.431082 iter 60 value 85.410482 iter 70 value 85.410196 iter 80 value 85.409331 iter 90 value 85.408822 iter 100 value 85.392702 final value 85.392702 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.585804 iter 10 value 94.060059 iter 20 value 93.533099 iter 30 value 85.552504 iter 40 value 83.550631 iter 50 value 81.644541 iter 60 value 80.768692 iter 70 value 79.936517 iter 80 value 79.442012 iter 90 value 79.440841 iter 100 value 79.437207 final value 79.437207 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.334257 iter 10 value 94.059937 iter 20 value 93.252689 iter 30 value 86.575816 iter 40 value 85.979399 iter 50 value 85.909864 iter 60 value 85.869304 iter 70 value 84.025658 iter 80 value 83.709027 iter 90 value 83.698182 iter 100 value 83.447369 final value 83.447369 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 138.669311 iter 10 value 92.425378 iter 20 value 91.882207 iter 30 value 91.344200 iter 40 value 91.334892 iter 50 value 91.321935 iter 60 value 91.314102 final value 91.313960 converged Fitting Repeat 4 # weights: 507 initial value 109.696334 iter 10 value 94.064900 iter 20 value 93.990041 iter 30 value 93.414270 iter 40 value 93.412158 iter 50 value 93.411072 final value 93.410511 converged Fitting Repeat 5 # weights: 507 initial value 97.658089 iter 10 value 92.195357 iter 20 value 88.006076 iter 30 value 85.635769 iter 40 value 85.544793 iter 50 value 85.350510 iter 60 value 85.166915 iter 70 value 85.052339 iter 80 value 84.926854 iter 90 value 84.776573 iter 100 value 84.770333 final value 84.770333 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.101735 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.221373 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.397095 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.876888 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.403346 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.003379 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.536917 final value 93.300000 converged Fitting Repeat 3 # weights: 305 initial value 107.206932 iter 10 value 93.916788 final value 93.753527 converged Fitting Repeat 4 # weights: 305 initial value 101.813678 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.884806 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 103.590053 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 100.075912 final value 94.482478 converged Fitting Repeat 3 # weights: 507 initial value 96.437869 final value 93.738782 converged Fitting Repeat 4 # weights: 507 initial value 101.278021 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 94.950925 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 96.770319 iter 10 value 94.488308 iter 20 value 88.976474 iter 30 value 86.585540 iter 40 value 86.490139 iter 50 value 86.449381 iter 60 value 86.438547 iter 70 value 86.366686 iter 80 value 86.340229 final value 86.340084 converged Fitting Repeat 2 # weights: 103 initial value 98.323191 iter 10 value 94.489667 iter 20 value 94.196677 iter 30 value 89.052998 iter 40 value 88.398149 iter 50 value 88.177348 iter 60 value 88.137241 iter 70 value 86.298887 iter 80 value 85.808903 iter 90 value 84.980406 iter 100 value 84.069577 final value 84.069577 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.945195 iter 10 value 94.513448 iter 20 value 94.421178 iter 30 value 92.963626 iter 40 value 92.460900 iter 50 value 88.724278 iter 60 value 86.610557 iter 70 value 86.159373 iter 80 value 86.110165 iter 90 value 84.922688 iter 100 value 83.950446 final value 83.950446 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.546659 iter 10 value 93.553665 iter 20 value 91.239672 iter 30 value 87.937153 iter 40 value 87.019876 iter 50 value 86.761419 iter 60 value 86.281929 iter 70 value 86.025132 final value 86.020403 converged Fitting Repeat 5 # weights: 103 initial value 103.080513 iter 10 value 94.470228 iter 20 value 87.519644 iter 30 value 86.771667 iter 40 value 86.535106 iter 50 value 86.392694 iter 60 value 86.340630 final value 86.340025 converged Fitting Repeat 1 # weights: 305 initial value 106.995712 iter 10 value 94.779267 iter 20 value 94.463052 iter 30 value 94.139002 iter 40 value 91.493583 iter 50 value 88.823791 iter 60 value 88.070500 iter 70 value 87.469740 iter 80 value 87.062165 iter 90 value 86.628948 iter 100 value 86.009668 final value 86.009668 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.290536 iter 10 value 94.738510 iter 20 value 94.498691 iter 30 value 94.145447 iter 40 value 87.359732 iter 50 value 85.049067 iter 60 value 83.873201 iter 70 value 83.550397 iter 80 value 82.796443 iter 90 value 82.696293 iter 100 value 82.592300 final value 82.592300 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.563190 iter 10 value 94.506587 iter 20 value 94.487836 iter 30 value 90.669140 iter 40 value 88.453725 iter 50 value 88.211548 iter 60 value 87.188845 iter 70 value 84.567753 iter 80 value 83.618654 iter 90 value 83.392757 iter 100 value 83.198401 final value 83.198401 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.041054 iter 10 value 94.822806 iter 20 value 94.598962 iter 30 value 93.675828 iter 40 value 88.551460 iter 50 value 88.338522 iter 60 value 86.979525 iter 70 value 86.096747 iter 80 value 85.983009 iter 90 value 85.127531 iter 100 value 84.012602 final value 84.012602 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.097635 iter 10 value 94.491925 iter 20 value 88.519920 iter 30 value 88.073517 iter 40 value 87.894443 iter 50 value 86.436966 iter 60 value 85.880218 iter 70 value 84.733823 iter 80 value 84.028651 iter 90 value 83.582133 iter 100 value 83.298938 final value 83.298938 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.634427 iter 10 value 94.423127 iter 20 value 90.314842 iter 30 value 89.928102 iter 40 value 88.816464 iter 50 value 88.402945 iter 60 value 88.036740 iter 70 value 87.029648 iter 80 value 84.799357 iter 90 value 83.711341 iter 100 value 83.600006 final value 83.600006 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.029104 iter 10 value 94.072656 iter 20 value 92.553157 iter 30 value 86.372866 iter 40 value 85.695123 iter 50 value 84.866229 iter 60 value 84.260374 iter 70 value 83.439405 iter 80 value 82.987940 iter 90 value 82.838486 iter 100 value 82.783035 final value 82.783035 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.886986 iter 10 value 98.293315 iter 20 value 92.935701 iter 30 value 91.904551 iter 40 value 91.123728 iter 50 value 89.546297 iter 60 value 88.012751 iter 70 value 87.579733 iter 80 value 87.001238 iter 90 value 86.955304 iter 100 value 86.094289 final value 86.094289 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.943551 iter 10 value 94.480712 iter 20 value 90.779821 iter 30 value 88.199093 iter 40 value 87.863997 iter 50 value 86.269666 iter 60 value 85.312125 iter 70 value 83.831035 iter 80 value 83.495733 iter 90 value 83.341970 iter 100 value 83.033001 final value 83.033001 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.984302 iter 10 value 94.536405 iter 20 value 87.986215 iter 30 value 87.631506 iter 40 value 84.941530 iter 50 value 84.023041 iter 60 value 83.875372 iter 70 value 83.775117 iter 80 value 83.358217 iter 90 value 82.845885 iter 100 value 82.729578 final value 82.729578 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.292351 final value 94.485881 converged Fitting Repeat 2 # weights: 103 initial value 101.427173 final value 94.486008 converged Fitting Repeat 3 # weights: 103 initial value 98.296200 iter 10 value 94.486245 iter 20 value 94.484264 iter 30 value 88.680584 iter 40 value 88.441096 iter 50 value 88.387762 final value 88.387239 converged Fitting Repeat 4 # weights: 103 initial value 97.093449 final value 94.486096 converged Fitting Repeat 5 # weights: 103 initial value 102.281410 final value 94.486049 converged Fitting Repeat 1 # weights: 305 initial value 95.471471 iter 10 value 93.904751 iter 20 value 93.713339 final value 93.301278 converged Fitting Repeat 2 # weights: 305 initial value 98.590101 iter 10 value 94.471358 iter 20 value 94.441924 final value 93.301242 converged Fitting Repeat 3 # weights: 305 initial value 126.245467 iter 10 value 94.492590 iter 20 value 94.415638 iter 30 value 89.094490 iter 40 value 89.085317 iter 50 value 89.046300 final value 89.045966 converged Fitting Repeat 4 # weights: 305 initial value 99.151782 iter 10 value 89.272826 iter 20 value 87.137291 iter 30 value 86.896063 iter 40 value 86.881061 iter 50 value 86.880246 iter 60 value 86.879924 iter 70 value 86.879097 final value 86.878746 converged Fitting Repeat 5 # weights: 305 initial value 112.064966 iter 10 value 94.488135 iter 20 value 94.461195 iter 30 value 94.425739 iter 40 value 93.349947 final value 93.300817 converged Fitting Repeat 1 # weights: 507 initial value 98.585588 iter 10 value 93.033351 iter 20 value 92.611806 iter 30 value 92.609460 iter 40 value 87.595427 iter 50 value 87.591680 final value 87.589102 converged Fitting Repeat 2 # weights: 507 initial value 128.255407 iter 10 value 94.432331 iter 20 value 94.245687 iter 30 value 91.966097 iter 40 value 91.797159 iter 50 value 91.795330 final value 91.795161 converged Fitting Repeat 3 # weights: 507 initial value 99.623823 iter 10 value 94.492368 iter 20 value 94.457302 iter 30 value 91.960121 iter 40 value 86.415468 iter 50 value 85.933524 iter 60 value 85.553616 iter 70 value 85.134622 iter 80 value 85.077366 iter 90 value 85.076440 iter 100 value 85.076107 final value 85.076107 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.839408 iter 10 value 94.492253 iter 20 value 94.484345 iter 30 value 85.782903 iter 40 value 85.690704 iter 50 value 85.674180 iter 60 value 84.467729 iter 70 value 84.448873 iter 80 value 84.438033 iter 90 value 84.120748 iter 100 value 83.039376 final value 83.039376 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.640530 iter 10 value 94.472372 iter 20 value 94.465469 final value 94.465415 converged Fitting Repeat 1 # weights: 103 initial value 115.854074 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.844227 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.357057 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.622861 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 107.238478 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.352849 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.056377 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.254462 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.680559 final value 94.484210 converged Fitting Repeat 5 # weights: 305 initial value 107.322134 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 94.968338 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 107.864562 iter 10 value 93.720884 final value 93.720833 converged Fitting Repeat 3 # weights: 507 initial value 99.104807 iter 10 value 94.474155 final value 94.466830 converged Fitting Repeat 4 # weights: 507 initial value 95.248299 iter 10 value 94.101572 final value 94.090583 converged Fitting Repeat 5 # weights: 507 initial value 112.957246 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 103.537658 iter 10 value 94.794305 iter 20 value 94.476055 iter 30 value 87.077735 iter 40 value 85.706970 iter 50 value 84.331725 iter 60 value 82.474378 iter 70 value 81.677859 iter 80 value 81.462349 final value 81.461628 converged Fitting Repeat 2 # weights: 103 initial value 102.528374 iter 10 value 94.494537 iter 20 value 86.321041 iter 30 value 83.322895 iter 40 value 82.849962 iter 50 value 82.509964 iter 60 value 82.424072 iter 70 value 82.388410 final value 82.386354 converged Fitting Repeat 3 # weights: 103 initial value 101.689634 iter 10 value 94.488583 iter 20 value 87.050970 iter 30 value 84.612273 iter 40 value 82.870310 iter 50 value 81.449184 iter 60 value 81.173471 iter 70 value 80.955636 iter 80 value 80.910697 final value 80.910270 converged Fitting Repeat 4 # weights: 103 initial value 98.610620 iter 10 value 94.483445 iter 20 value 93.916926 iter 30 value 92.709844 iter 40 value 92.577286 iter 50 value 92.472853 iter 60 value 86.506891 iter 70 value 84.491818 iter 80 value 81.113124 iter 90 value 80.286284 iter 100 value 79.857095 final value 79.857095 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.017081 iter 10 value 94.462955 iter 20 value 92.902430 iter 30 value 87.076301 iter 40 value 86.160548 iter 50 value 83.569490 iter 60 value 82.922014 iter 70 value 82.722182 iter 80 value 82.622854 final value 82.621674 converged Fitting Repeat 1 # weights: 305 initial value 105.224283 iter 10 value 94.457584 iter 20 value 90.133606 iter 30 value 87.429307 iter 40 value 84.615392 iter 50 value 82.401675 iter 60 value 79.872627 iter 70 value 78.678781 iter 80 value 78.448068 iter 90 value 78.260806 iter 100 value 78.234741 final value 78.234741 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.601260 iter 10 value 95.065393 iter 20 value 94.294391 iter 30 value 88.410984 iter 40 value 85.241297 iter 50 value 84.908930 iter 60 value 83.444333 iter 70 value 82.257585 iter 80 value 81.069111 iter 90 value 79.654501 iter 100 value 79.521684 final value 79.521684 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.926023 iter 10 value 94.463100 iter 20 value 89.476474 iter 30 value 83.873205 iter 40 value 80.659709 iter 50 value 79.810797 iter 60 value 79.102056 iter 70 value 78.840666 iter 80 value 78.666153 iter 90 value 78.576487 iter 100 value 78.393644 final value 78.393644 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.845589 iter 10 value 94.565155 iter 20 value 94.411864 iter 30 value 88.765215 iter 40 value 87.208773 iter 50 value 86.845962 iter 60 value 84.471281 iter 70 value 81.092150 iter 80 value 79.167811 iter 90 value 78.443900 iter 100 value 78.283116 final value 78.283116 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.738524 iter 10 value 93.288608 iter 20 value 84.115537 iter 30 value 81.100653 iter 40 value 80.232842 iter 50 value 79.847243 iter 60 value 78.855261 iter 70 value 78.354211 iter 80 value 78.266350 iter 90 value 78.234297 iter 100 value 78.116384 final value 78.116384 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.982280 iter 10 value 94.765109 iter 20 value 87.723908 iter 30 value 83.917520 iter 40 value 82.879710 iter 50 value 80.808493 iter 60 value 78.850542 iter 70 value 78.641719 iter 80 value 78.507395 iter 90 value 78.427381 iter 100 value 78.181374 final value 78.181374 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 146.419381 iter 10 value 94.708678 iter 20 value 94.046124 iter 30 value 87.121949 iter 40 value 84.894659 iter 50 value 83.150834 iter 60 value 81.995731 iter 70 value 81.582529 iter 80 value 81.390787 iter 90 value 81.276435 iter 100 value 81.208731 final value 81.208731 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.405471 iter 10 value 94.549031 iter 20 value 94.049140 iter 30 value 93.311830 iter 40 value 86.011731 iter 50 value 84.985235 iter 60 value 82.966172 iter 70 value 82.365867 iter 80 value 80.730366 iter 90 value 80.033120 iter 100 value 79.780392 final value 79.780392 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.871896 iter 10 value 92.277559 iter 20 value 84.105381 iter 30 value 83.721292 iter 40 value 82.797077 iter 50 value 79.964407 iter 60 value 78.924510 iter 70 value 78.578295 iter 80 value 78.351978 iter 90 value 78.208274 iter 100 value 78.051707 final value 78.051707 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.955987 iter 10 value 94.710354 iter 20 value 84.412982 iter 30 value 83.486021 iter 40 value 83.119548 iter 50 value 82.702030 iter 60 value 80.798938 iter 70 value 79.754916 iter 80 value 79.213108 iter 90 value 78.434357 iter 100 value 78.114653 final value 78.114653 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.115633 final value 94.485820 converged Fitting Repeat 2 # weights: 103 initial value 101.055540 iter 10 value 94.468321 iter 20 value 94.466897 iter 30 value 88.070529 iter 40 value 87.541091 iter 50 value 86.638790 final value 86.632317 converged Fitting Repeat 3 # weights: 103 initial value 98.588303 final value 94.485874 converged Fitting Repeat 4 # weights: 103 initial value 99.577938 final value 94.485645 converged Fitting Repeat 5 # weights: 103 initial value 103.905797 final value 94.485790 converged Fitting Repeat 1 # weights: 305 initial value 114.793043 iter 10 value 94.489637 iter 20 value 94.394378 iter 30 value 86.746674 final value 86.744516 converged Fitting Repeat 2 # weights: 305 initial value 107.151737 iter 10 value 94.488937 iter 20 value 94.482111 iter 30 value 91.965351 iter 40 value 91.090550 iter 50 value 90.158796 iter 60 value 84.117601 iter 70 value 80.968804 iter 80 value 80.789688 iter 90 value 79.797057 iter 100 value 79.742108 final value 79.742108 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.744992 iter 10 value 94.488576 iter 20 value 94.484071 iter 30 value 93.620233 iter 40 value 93.217815 iter 50 value 92.571294 iter 60 value 88.322986 iter 70 value 86.960240 iter 80 value 85.619584 iter 90 value 80.922089 iter 100 value 80.903902 final value 80.903902 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.617931 iter 10 value 90.951108 iter 20 value 81.464417 iter 30 value 79.853813 iter 40 value 79.847305 iter 50 value 79.842880 iter 60 value 79.695461 iter 70 value 79.624290 iter 80 value 79.528852 iter 90 value 79.472401 final value 79.428474 converged Fitting Repeat 5 # weights: 305 initial value 109.587604 iter 10 value 94.487334 iter 20 value 94.484724 iter 30 value 94.366275 iter 40 value 89.024324 iter 50 value 89.015621 iter 60 value 89.011306 iter 70 value 88.370387 iter 80 value 87.521830 final value 87.498842 converged Fitting Repeat 1 # weights: 507 initial value 101.363670 iter 10 value 93.833040 iter 20 value 93.410571 iter 30 value 93.379495 iter 40 value 93.265291 iter 50 value 93.216294 iter 60 value 93.211877 iter 70 value 93.210691 iter 80 value 93.210126 iter 90 value 93.208666 iter 100 value 93.206492 final value 93.206492 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.793106 iter 10 value 94.482518 iter 20 value 94.475001 iter 30 value 94.472557 iter 40 value 94.470829 iter 50 value 94.167662 iter 60 value 89.459247 iter 70 value 89.378108 iter 80 value 89.378006 iter 90 value 83.278697 iter 100 value 81.935196 final value 81.935196 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.925734 iter 10 value 94.506924 iter 20 value 94.377556 iter 30 value 89.076713 iter 40 value 88.739970 iter 50 value 88.468465 iter 60 value 88.465893 iter 70 value 88.451313 iter 80 value 85.079535 iter 90 value 79.667019 iter 100 value 78.956588 final value 78.956588 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.885114 iter 10 value 94.122653 iter 20 value 94.116928 iter 30 value 94.092738 iter 40 value 94.092111 iter 50 value 94.069038 iter 60 value 88.047996 iter 70 value 83.779148 iter 80 value 81.965963 iter 90 value 78.294082 iter 100 value 76.767747 final value 76.767747 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.042032 iter 10 value 94.495370 iter 20 value 94.398975 iter 30 value 90.164270 iter 40 value 89.115986 iter 50 value 89.074070 iter 60 value 88.966508 iter 70 value 88.965529 iter 80 value 86.029198 iter 90 value 85.736291 iter 100 value 85.521428 final value 85.521428 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 133.976084 iter 10 value 117.534529 iter 20 value 113.707564 iter 30 value 109.093825 iter 40 value 108.907605 iter 50 value 108.905532 iter 60 value 108.866345 iter 70 value 108.766857 iter 80 value 108.248553 iter 90 value 108.126914 final value 108.125225 converged Fitting Repeat 2 # weights: 507 initial value 139.959439 iter 10 value 117.766910 iter 20 value 117.758306 iter 30 value 117.574862 iter 40 value 108.582592 iter 50 value 107.735417 iter 60 value 107.171427 iter 70 value 107.169108 iter 80 value 107.168091 iter 90 value 104.594106 iter 100 value 104.054050 final value 104.054050 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 142.187865 iter 10 value 117.766752 iter 20 value 117.761322 iter 30 value 117.738356 iter 40 value 117.730030 iter 50 value 117.311636 iter 60 value 114.529007 iter 70 value 113.519650 iter 80 value 113.341614 final value 113.222537 converged Fitting Repeat 4 # weights: 507 initial value 153.867994 iter 10 value 117.767247 iter 20 value 117.268456 iter 30 value 113.998718 iter 40 value 113.732215 iter 50 value 113.674702 iter 60 value 113.366100 iter 70 value 113.362690 final value 113.354188 converged Fitting Repeat 5 # weights: 507 initial value 131.123309 iter 10 value 117.865647 iter 20 value 115.295358 iter 30 value 108.865537 iter 40 value 108.326216 iter 50 value 105.612697 iter 60 value 105.050950 iter 70 value 104.829016 iter 80 value 104.739368 iter 90 value 103.529027 iter 100 value 103.437114 final value 103.437114 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Jan 20 23:02:29 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.334 1.458 126.357
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.850 | 0.436 | 34.288 | |
FreqInteractors | 0.203 | 0.013 | 0.216 | |
calculateAAC | 0.031 | 0.007 | 0.038 | |
calculateAutocor | 0.286 | 0.019 | 0.305 | |
calculateCTDC | 0.069 | 0.000 | 0.068 | |
calculateCTDD | 0.474 | 0.001 | 0.476 | |
calculateCTDT | 0.186 | 0.000 | 0.186 | |
calculateCTriad | 0.337 | 0.008 | 0.345 | |
calculateDC | 0.081 | 0.000 | 0.081 | |
calculateF | 0.282 | 0.008 | 0.290 | |
calculateKSAAP | 0.085 | 0.002 | 0.087 | |
calculateQD_Sm | 1.590 | 0.018 | 1.607 | |
calculateTC | 1.417 | 0.026 | 1.443 | |
calculateTC_Sm | 0.284 | 0.000 | 0.285 | |
corr_plot | 33.339 | 0.086 | 33.426 | |
enrichfindP | 0.501 | 0.029 | 8.911 | |
enrichfind_hp | 0.082 | 0.005 | 1.115 | |
enrichplot | 0.366 | 0.002 | 0.368 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.362 | 0.032 | 3.694 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.004 | 0.000 | 0.004 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.077 | 0.007 | 0.084 | |
pred_ensembel | 12.777 | 0.261 | 11.773 | |
var_imp | 35.247 | 0.535 | 35.793 | |