Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-12-23 12:07 -0500 (Mon, 23 Dec 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4744 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4515 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4467 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-12-20 22:18:47 -0500 (Fri, 20 Dec 2024) |
EndedAt: 2024-12-20 22:24:27 -0500 (Fri, 20 Dec 2024) |
EllapsedTime: 339.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 52.549 2.017 54.671 FSmethod 52.247 1.907 54.249 var_imp 49.518 1.856 51.532 pred_ensembel 16.738 0.526 15.187 enrichfindP 0.475 0.075 6.385 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 103.900381 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.849035 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.171375 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.148228 final value 94.305882 converged Fitting Repeat 5 # weights: 103 initial value 106.293641 iter 10 value 91.736947 iter 20 value 83.122289 iter 30 value 83.037810 iter 40 value 83.037364 final value 83.037362 converged Fitting Repeat 1 # weights: 305 initial value 117.202980 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.265743 final value 94.305882 converged Fitting Repeat 3 # weights: 305 initial value 97.372894 iter 10 value 94.132718 iter 20 value 94.040584 iter 30 value 93.909678 iter 30 value 93.909677 iter 30 value 93.909677 final value 93.909677 converged Fitting Repeat 4 # weights: 305 initial value 100.218870 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.227967 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.420068 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.814363 iter 10 value 94.450262 final value 94.443243 converged Fitting Repeat 3 # weights: 507 initial value 104.486499 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 103.900627 final value 94.443243 converged Fitting Repeat 5 # weights: 507 initial value 97.544587 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 100.883410 iter 10 value 94.463546 iter 20 value 87.497057 iter 30 value 85.567349 iter 40 value 83.888897 iter 50 value 83.578413 iter 60 value 83.505709 iter 70 value 83.493052 final value 83.491682 converged Fitting Repeat 2 # weights: 103 initial value 103.491596 iter 10 value 94.355870 iter 20 value 87.504667 iter 30 value 86.521013 iter 40 value 84.718633 iter 50 value 84.062709 iter 60 value 83.935075 iter 70 value 83.919059 final value 83.915541 converged Fitting Repeat 3 # weights: 103 initial value 99.337050 iter 10 value 94.510778 iter 20 value 94.439349 iter 30 value 90.947289 iter 40 value 88.309767 iter 50 value 86.368244 iter 60 value 84.957656 iter 70 value 83.964324 iter 80 value 83.916261 iter 90 value 83.915551 final value 83.915541 converged Fitting Repeat 4 # weights: 103 initial value 103.433335 iter 10 value 94.442469 iter 20 value 92.192091 iter 30 value 91.955462 iter 40 value 85.994423 iter 50 value 85.635219 iter 60 value 84.680046 iter 70 value 84.140770 iter 80 value 83.940743 iter 90 value 83.929423 iter 100 value 83.916037 final value 83.916037 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.398246 iter 10 value 94.344502 iter 20 value 87.898507 iter 30 value 87.257496 iter 40 value 86.344182 iter 50 value 86.111110 iter 60 value 86.045632 iter 70 value 85.912060 iter 80 value 85.201191 iter 90 value 85.131238 final value 85.130875 converged Fitting Repeat 1 # weights: 305 initial value 103.042680 iter 10 value 94.168875 iter 20 value 85.520366 iter 30 value 83.276817 iter 40 value 82.273590 iter 50 value 81.359266 iter 60 value 80.797155 iter 70 value 80.748245 iter 80 value 80.721133 iter 90 value 80.709024 iter 100 value 80.688977 final value 80.688977 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.750570 iter 10 value 92.665995 iter 20 value 86.019479 iter 30 value 85.207010 iter 40 value 83.615328 iter 50 value 82.743576 iter 60 value 82.612443 iter 70 value 82.434473 iter 80 value 82.136033 iter 90 value 81.898683 iter 100 value 81.823463 final value 81.823463 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.536768 iter 10 value 94.439573 iter 20 value 91.552016 iter 30 value 85.515350 iter 40 value 84.814563 iter 50 value 84.132063 iter 60 value 83.150853 iter 70 value 82.279755 iter 80 value 81.582240 iter 90 value 80.939240 iter 100 value 80.859225 final value 80.859225 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.145226 iter 10 value 94.330535 iter 20 value 86.454228 iter 30 value 85.997100 iter 40 value 85.714761 iter 50 value 84.623874 iter 60 value 82.840457 iter 70 value 81.417256 iter 80 value 80.793116 iter 90 value 80.393454 iter 100 value 80.356986 final value 80.356986 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.887560 iter 10 value 94.430676 iter 20 value 92.944987 iter 30 value 87.680234 iter 40 value 87.039273 iter 50 value 85.567263 iter 60 value 83.862972 iter 70 value 83.692473 iter 80 value 83.690222 iter 90 value 83.634259 iter 100 value 83.618838 final value 83.618838 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.767163 iter 10 value 94.579446 iter 20 value 86.191152 iter 30 value 84.803979 iter 40 value 84.321309 iter 50 value 83.604611 iter 60 value 83.264149 iter 70 value 82.934667 iter 80 value 82.789549 iter 90 value 82.694621 iter 100 value 82.678970 final value 82.678970 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.711069 iter 10 value 94.523302 iter 20 value 87.337211 iter 30 value 85.839723 iter 40 value 85.284518 iter 50 value 83.429858 iter 60 value 80.991436 iter 70 value 80.435228 iter 80 value 80.278996 iter 90 value 80.224789 iter 100 value 80.072034 final value 80.072034 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.040795 iter 10 value 92.968833 iter 20 value 86.699897 iter 30 value 85.154548 iter 40 value 83.005652 iter 50 value 81.684249 iter 60 value 81.060806 iter 70 value 80.948356 iter 80 value 80.653367 iter 90 value 80.464208 iter 100 value 80.333727 final value 80.333727 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.553241 iter 10 value 94.509618 iter 20 value 88.443907 iter 30 value 87.037380 iter 40 value 86.849102 iter 50 value 86.275313 iter 60 value 85.555740 iter 70 value 84.365631 iter 80 value 82.326955 iter 90 value 81.989564 iter 100 value 80.860720 final value 80.860720 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.786337 iter 10 value 94.626038 iter 20 value 91.555313 iter 30 value 88.984975 iter 40 value 84.801617 iter 50 value 83.011442 iter 60 value 81.950720 iter 70 value 81.047933 iter 80 value 80.809686 iter 90 value 80.755901 iter 100 value 80.654822 final value 80.654822 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.973694 final value 94.486110 converged Fitting Repeat 2 # weights: 103 initial value 119.780312 final value 94.485590 converged Fitting Repeat 3 # weights: 103 initial value 96.923285 iter 10 value 94.444770 iter 20 value 94.260827 iter 30 value 84.911583 final value 83.795241 converged Fitting Repeat 4 # weights: 103 initial value 96.352287 iter 10 value 94.485703 iter 20 value 94.438615 iter 30 value 87.506609 iter 40 value 86.543415 iter 50 value 86.541969 iter 60 value 86.485469 iter 70 value 86.466541 final value 86.466443 converged Fitting Repeat 5 # weights: 103 initial value 104.333276 final value 94.401626 converged Fitting Repeat 1 # weights: 305 initial value 98.309691 iter 10 value 94.488908 iter 20 value 94.484214 iter 20 value 94.484214 final value 94.484214 converged Fitting Repeat 2 # weights: 305 initial value 106.004874 iter 10 value 94.540055 iter 20 value 94.429622 iter 30 value 86.143563 iter 40 value 85.859867 iter 50 value 85.753980 iter 60 value 85.620726 iter 70 value 85.617784 iter 80 value 85.605074 iter 90 value 85.598650 iter 100 value 85.590879 final value 85.590879 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.096541 iter 10 value 94.448420 iter 20 value 94.444348 iter 30 value 94.404069 iter 40 value 86.056920 final value 86.056296 converged Fitting Repeat 4 # weights: 305 initial value 98.819401 iter 10 value 94.310475 iter 20 value 94.258530 iter 30 value 94.254663 iter 30 value 94.254662 final value 94.254662 converged Fitting Repeat 5 # weights: 305 initial value 96.768428 iter 10 value 93.760835 iter 20 value 93.755120 iter 30 value 87.518442 iter 40 value 86.916337 iter 50 value 86.913648 iter 60 value 86.913590 final value 86.913446 converged Fitting Repeat 1 # weights: 507 initial value 101.632036 iter 10 value 94.490323 iter 20 value 93.317902 iter 30 value 84.266133 iter 40 value 82.785646 iter 50 value 82.669307 iter 50 value 82.669306 iter 50 value 82.669306 final value 82.669306 converged Fitting Repeat 2 # weights: 507 initial value 99.162418 iter 10 value 94.491649 iter 20 value 93.866183 iter 30 value 84.895001 iter 40 value 83.929731 iter 50 value 83.895527 iter 60 value 83.881895 iter 70 value 83.878633 iter 80 value 83.878281 iter 90 value 83.729940 iter 100 value 82.951352 final value 82.951352 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.030145 iter 10 value 94.364697 iter 20 value 94.361904 iter 30 value 94.361068 iter 40 value 94.356403 iter 50 value 93.885294 iter 60 value 87.214775 iter 70 value 87.184972 iter 80 value 86.170871 iter 90 value 85.898160 iter 100 value 85.888803 final value 85.888803 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.095330 iter 10 value 94.493664 iter 20 value 94.456738 iter 30 value 87.655744 iter 40 value 85.971897 iter 50 value 85.968289 iter 60 value 82.469445 iter 70 value 82.221121 iter 80 value 82.163542 iter 90 value 81.984409 iter 100 value 81.496088 final value 81.496088 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.729636 iter 10 value 94.491578 iter 20 value 94.481172 final value 94.256112 converged Fitting Repeat 1 # weights: 103 initial value 94.770883 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 105.086029 final value 93.567525 converged Fitting Repeat 3 # weights: 103 initial value 102.953804 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.958459 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.472061 final value 94.026542 converged Fitting Repeat 1 # weights: 305 initial value 111.979905 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 123.409736 iter 10 value 94.683288 iter 20 value 91.877209 iter 30 value 89.504540 iter 40 value 86.842047 iter 50 value 86.812920 iter 60 value 86.812629 iter 70 value 86.812583 iter 70 value 86.812582 iter 70 value 86.812582 final value 86.812582 converged Fitting Repeat 3 # weights: 305 initial value 98.955916 final value 94.254545 converged Fitting Repeat 4 # weights: 305 initial value 97.639630 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.647372 iter 10 value 93.538060 final value 93.538042 converged Fitting Repeat 1 # weights: 507 initial value 110.641631 iter 10 value 94.027074 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 99.291174 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 108.279768 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.972609 iter 10 value 85.286993 final value 84.616652 converged Fitting Repeat 5 # weights: 507 initial value 105.433254 iter 10 value 94.484137 iter 10 value 94.484137 iter 10 value 94.484137 final value 94.484137 converged Fitting Repeat 1 # weights: 103 initial value 101.826992 iter 10 value 94.495299 iter 20 value 94.488614 iter 30 value 94.327730 iter 40 value 88.091212 iter 50 value 86.141641 iter 60 value 85.937522 iter 70 value 85.619340 iter 80 value 85.209505 iter 90 value 85.079203 iter 100 value 83.561065 final value 83.561065 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.379307 iter 10 value 94.225308 iter 20 value 87.748839 iter 30 value 85.401045 iter 40 value 85.053185 iter 50 value 84.899013 iter 60 value 84.254666 iter 70 value 83.919556 iter 80 value 83.848959 iter 90 value 83.840422 iter 100 value 83.839529 final value 83.839529 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 119.937378 iter 10 value 94.497756 iter 20 value 94.239446 iter 30 value 94.084664 iter 40 value 93.770557 iter 50 value 92.480243 iter 60 value 91.331480 iter 70 value 85.951341 iter 80 value 84.701280 iter 90 value 84.613024 iter 100 value 84.292056 final value 84.292056 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.735408 iter 10 value 93.913986 iter 20 value 85.924053 iter 30 value 84.586014 iter 40 value 84.144580 iter 50 value 83.472504 iter 60 value 82.087974 iter 70 value 81.742158 iter 80 value 81.687800 iter 90 value 81.613437 final value 81.611128 converged Fitting Repeat 5 # weights: 103 initial value 101.518826 iter 10 value 94.198126 iter 20 value 94.075353 iter 30 value 90.842883 iter 40 value 86.619638 iter 50 value 86.482005 iter 60 value 85.345116 iter 70 value 84.657105 iter 80 value 83.404356 iter 90 value 82.042989 iter 100 value 81.849109 final value 81.849109 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.300028 iter 10 value 94.490868 iter 20 value 94.277212 iter 30 value 94.095480 iter 40 value 94.016685 iter 50 value 89.201260 iter 60 value 85.405870 iter 70 value 84.953932 iter 80 value 84.518952 iter 90 value 84.230924 iter 100 value 84.008635 final value 84.008635 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.142194 iter 10 value 93.489365 iter 20 value 90.266364 iter 30 value 84.341825 iter 40 value 81.463180 iter 50 value 80.712802 iter 60 value 80.289678 iter 70 value 80.159452 iter 80 value 80.069877 iter 90 value 80.050633 iter 100 value 80.012238 final value 80.012238 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.342588 iter 10 value 94.669935 iter 20 value 94.299234 iter 30 value 89.598589 iter 40 value 88.372403 iter 50 value 85.633115 iter 60 value 82.532557 iter 70 value 82.069440 iter 80 value 81.728279 iter 90 value 81.154794 iter 100 value 81.053711 final value 81.053711 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.122151 iter 10 value 94.851916 iter 20 value 90.334348 iter 30 value 86.791294 iter 40 value 85.808509 iter 50 value 85.613201 iter 60 value 85.589599 iter 70 value 85.452295 iter 80 value 85.419256 iter 90 value 85.230335 iter 100 value 84.464742 final value 84.464742 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.826517 iter 10 value 95.064378 iter 20 value 94.282219 iter 30 value 94.056751 iter 40 value 91.976364 iter 50 value 87.432668 iter 60 value 86.319675 iter 70 value 85.402231 iter 80 value 85.171253 iter 90 value 84.793429 iter 100 value 82.659307 final value 82.659307 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.344847 iter 10 value 94.669578 iter 20 value 87.539048 iter 30 value 86.659746 iter 40 value 84.484736 iter 50 value 82.412904 iter 60 value 81.565405 iter 70 value 80.893052 iter 80 value 80.375375 iter 90 value 80.132883 iter 100 value 79.928540 final value 79.928540 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.571896 iter 10 value 95.409071 iter 20 value 93.400766 iter 30 value 85.510081 iter 40 value 83.029895 iter 50 value 82.525790 iter 60 value 82.315024 iter 70 value 81.355419 iter 80 value 81.100447 iter 90 value 80.685700 iter 100 value 80.531986 final value 80.531986 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.962514 iter 10 value 93.173608 iter 20 value 92.503429 iter 30 value 85.088186 iter 40 value 84.880604 iter 50 value 84.462855 iter 60 value 83.113873 iter 70 value 81.653779 iter 80 value 81.060505 iter 90 value 80.931018 iter 100 value 80.855953 final value 80.855953 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.264995 iter 10 value 95.721350 iter 20 value 89.954129 iter 30 value 88.336509 iter 40 value 84.989006 iter 50 value 83.586932 iter 60 value 83.179345 iter 70 value 82.690989 iter 80 value 82.481227 iter 90 value 81.934821 iter 100 value 81.601163 final value 81.601163 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.564535 iter 10 value 94.267658 iter 20 value 93.161259 iter 30 value 89.926485 iter 40 value 84.549804 iter 50 value 82.608844 iter 60 value 82.235146 iter 70 value 81.830451 iter 80 value 81.218826 iter 90 value 80.730768 iter 100 value 80.318753 final value 80.318753 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.951447 final value 94.485595 converged Fitting Repeat 2 # weights: 103 initial value 103.889494 final value 94.486008 converged Fitting Repeat 3 # weights: 103 initial value 107.499708 iter 10 value 94.486063 iter 20 value 94.484293 final value 94.484218 converged Fitting Repeat 4 # weights: 103 initial value 94.788196 final value 94.486004 converged Fitting Repeat 5 # weights: 103 initial value 97.130682 iter 10 value 94.485843 iter 20 value 94.484221 final value 94.484216 converged Fitting Repeat 1 # weights: 305 initial value 105.465008 iter 10 value 93.642873 iter 20 value 87.452902 iter 30 value 86.678034 iter 40 value 86.677344 iter 50 value 85.754357 iter 60 value 85.680079 iter 70 value 85.675853 iter 80 value 85.553756 iter 90 value 83.091248 iter 100 value 82.557377 final value 82.557377 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.229334 iter 10 value 94.488779 iter 20 value 94.432158 final value 94.026745 converged Fitting Repeat 3 # weights: 305 initial value 103.844843 iter 10 value 94.489033 iter 20 value 93.324175 iter 30 value 85.841687 final value 85.841617 converged Fitting Repeat 4 # weights: 305 initial value 96.906649 iter 10 value 94.488421 iter 20 value 85.610037 iter 30 value 84.976435 iter 30 value 84.976435 iter 30 value 84.976435 final value 84.976435 converged Fitting Repeat 5 # weights: 305 initial value 108.720191 iter 10 value 94.487319 iter 20 value 93.476669 iter 30 value 91.821626 iter 40 value 91.819736 iter 50 value 91.819116 iter 60 value 85.849691 iter 70 value 84.653990 iter 80 value 84.590882 iter 90 value 84.589890 final value 84.589886 converged Fitting Repeat 1 # weights: 507 initial value 96.727431 iter 10 value 94.033456 iter 20 value 94.025871 iter 30 value 88.307613 iter 40 value 87.397254 iter 50 value 86.837594 iter 60 value 86.819983 iter 70 value 85.922714 iter 80 value 85.223559 iter 90 value 85.182735 iter 100 value 85.164064 final value 85.164064 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.621006 iter 10 value 94.491101 iter 20 value 94.484268 iter 30 value 94.323601 final value 93.406379 converged Fitting Repeat 3 # weights: 507 initial value 101.503017 iter 10 value 94.035004 iter 20 value 94.023003 iter 30 value 84.798013 iter 40 value 84.791504 iter 50 value 83.696473 iter 60 value 80.927950 iter 70 value 80.337368 iter 80 value 80.270595 iter 90 value 80.207161 iter 100 value 80.188162 final value 80.188162 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.687109 iter 10 value 88.442414 iter 20 value 85.593494 iter 30 value 85.483847 iter 40 value 83.816736 iter 50 value 82.167423 iter 60 value 81.873327 iter 70 value 81.871555 iter 80 value 81.870033 final value 81.869939 converged Fitting Repeat 5 # weights: 507 initial value 94.581902 iter 10 value 89.850723 iter 20 value 86.849417 iter 30 value 86.036399 iter 40 value 85.038515 iter 50 value 81.786617 iter 60 value 81.263345 iter 70 value 81.257286 iter 80 value 81.254777 iter 90 value 80.752955 iter 100 value 80.091326 final value 80.091326 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.574734 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 108.845034 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.908174 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.519543 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.715228 iter 10 value 94.484235 iter 10 value 94.484235 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.524588 iter 10 value 93.847301 iter 20 value 93.846804 final value 93.846802 converged Fitting Repeat 2 # weights: 305 initial value 99.220132 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.062033 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.845601 iter 10 value 94.427726 iter 10 value 94.427726 iter 10 value 94.427726 final value 94.427726 converged Fitting Repeat 5 # weights: 305 initial value 102.977956 iter 10 value 89.254163 final value 88.527428 converged Fitting Repeat 1 # weights: 507 initial value 98.438752 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 106.221895 iter 10 value 94.112571 iter 10 value 94.112570 iter 10 value 94.112570 final value 94.112570 converged Fitting Repeat 3 # weights: 507 initial value 122.527068 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 98.648046 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.695896 iter 10 value 94.354403 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 104.446354 iter 10 value 94.423548 iter 20 value 87.524239 iter 30 value 86.724328 iter 40 value 86.575726 iter 50 value 86.376645 iter 60 value 86.331153 iter 70 value 86.329442 final value 86.329432 converged Fitting Repeat 2 # weights: 103 initial value 101.820920 iter 10 value 94.439553 iter 20 value 89.870795 iter 30 value 89.073219 iter 40 value 88.018859 iter 50 value 85.195786 iter 60 value 84.894383 iter 70 value 84.767652 iter 80 value 84.093275 iter 90 value 83.136252 iter 100 value 82.729854 final value 82.729854 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 107.458078 iter 10 value 94.552460 iter 20 value 94.454127 iter 30 value 88.858476 iter 40 value 86.757515 iter 50 value 86.469082 iter 60 value 86.332466 iter 70 value 86.330995 final value 86.329432 converged Fitting Repeat 4 # weights: 103 initial value 102.160193 iter 10 value 94.488865 iter 20 value 94.396735 iter 30 value 93.922728 iter 40 value 93.745207 iter 50 value 91.090777 iter 60 value 90.671430 iter 70 value 87.134407 iter 80 value 85.173099 iter 90 value 84.059271 iter 100 value 83.356381 final value 83.356381 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.688645 iter 10 value 94.490748 iter 20 value 94.321766 iter 30 value 92.024379 iter 40 value 89.545040 iter 50 value 86.742709 iter 60 value 84.551712 iter 70 value 83.746091 iter 80 value 82.694701 iter 90 value 82.520079 iter 100 value 82.402384 final value 82.402384 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.320843 iter 10 value 94.461576 iter 20 value 94.146524 iter 30 value 93.827677 iter 40 value 90.358030 iter 50 value 89.474900 iter 60 value 86.720739 iter 70 value 85.197546 iter 80 value 84.622423 iter 90 value 82.889682 iter 100 value 82.460285 final value 82.460285 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.713636 iter 10 value 94.419491 iter 20 value 87.737293 iter 30 value 86.281518 iter 40 value 84.294407 iter 50 value 82.791533 iter 60 value 82.332423 iter 70 value 82.211185 iter 80 value 82.016867 iter 90 value 81.720483 iter 100 value 81.578475 final value 81.578475 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.887160 iter 10 value 91.195276 iter 20 value 88.436785 iter 30 value 87.830468 iter 40 value 85.978877 iter 50 value 84.483240 iter 60 value 83.624066 iter 70 value 82.933696 iter 80 value 82.489346 iter 90 value 81.958261 iter 100 value 81.565538 final value 81.565538 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.714911 iter 10 value 95.742484 iter 20 value 94.410118 iter 30 value 87.938688 iter 40 value 86.057344 iter 50 value 85.802149 iter 60 value 85.612971 iter 70 value 85.445313 iter 80 value 85.331461 iter 90 value 84.449592 iter 100 value 82.500568 final value 82.500568 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.676828 iter 10 value 94.512942 iter 20 value 94.281418 iter 30 value 91.564093 iter 40 value 88.024209 iter 50 value 86.278150 iter 60 value 86.038989 iter 70 value 84.731408 iter 80 value 84.238237 iter 90 value 84.216833 iter 100 value 84.157517 final value 84.157517 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.149868 iter 10 value 93.619499 iter 20 value 93.188429 iter 30 value 92.611424 iter 40 value 91.828480 iter 50 value 86.434487 iter 60 value 84.735209 iter 70 value 83.597038 iter 80 value 82.807058 iter 90 value 82.043620 iter 100 value 81.874991 final value 81.874991 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.973853 iter 10 value 100.976845 iter 20 value 92.282843 iter 30 value 88.803726 iter 40 value 85.688959 iter 50 value 85.499242 iter 60 value 85.464975 iter 70 value 85.443720 iter 80 value 85.247144 iter 90 value 83.598150 iter 100 value 82.700702 final value 82.700702 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.761413 iter 10 value 94.774920 iter 20 value 92.932150 iter 30 value 89.850748 iter 40 value 85.886376 iter 50 value 83.515428 iter 60 value 82.886335 iter 70 value 82.259047 iter 80 value 81.690545 iter 90 value 81.437676 iter 100 value 81.398223 final value 81.398223 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.938293 iter 10 value 90.299210 iter 20 value 87.396046 iter 30 value 84.939825 iter 40 value 82.798634 iter 50 value 82.189496 iter 60 value 82.055443 iter 70 value 81.793807 iter 80 value 81.705717 iter 90 value 81.287992 iter 100 value 80.942882 final value 80.942882 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.076817 iter 10 value 94.600740 iter 20 value 94.379673 iter 30 value 93.161670 iter 40 value 87.659359 iter 50 value 83.996942 iter 60 value 83.579970 iter 70 value 82.822957 iter 80 value 82.318144 iter 90 value 82.064017 iter 100 value 81.536526 final value 81.536526 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.948151 final value 94.485706 converged Fitting Repeat 2 # weights: 103 initial value 111.664693 final value 94.485844 converged Fitting Repeat 3 # weights: 103 initial value 95.401843 iter 10 value 94.431836 iter 20 value 94.431648 iter 30 value 88.465105 iter 40 value 87.303137 iter 50 value 86.944375 final value 86.944357 converged Fitting Repeat 4 # weights: 103 initial value 96.317685 final value 94.485786 converged Fitting Repeat 5 # weights: 103 initial value 104.202921 final value 94.485741 converged Fitting Repeat 1 # weights: 305 initial value 102.783841 iter 10 value 94.488887 iter 20 value 94.315825 iter 30 value 94.112810 iter 40 value 94.104385 iter 50 value 94.055484 iter 60 value 94.053738 final value 94.053728 converged Fitting Repeat 2 # weights: 305 initial value 101.539209 iter 10 value 93.840746 iter 20 value 93.815197 iter 30 value 93.809907 iter 40 value 86.597413 iter 50 value 84.710399 iter 60 value 84.448811 final value 84.434581 converged Fitting Repeat 3 # weights: 305 initial value 116.134188 iter 10 value 94.359719 iter 20 value 94.307149 iter 30 value 93.033734 iter 40 value 88.525315 iter 50 value 87.697952 iter 60 value 87.656633 iter 70 value 87.458833 iter 80 value 86.392423 iter 90 value 86.300443 final value 86.296684 converged Fitting Repeat 4 # weights: 305 initial value 95.930714 iter 10 value 94.488538 iter 20 value 94.280412 final value 93.810778 converged Fitting Repeat 5 # weights: 305 initial value 108.498615 iter 10 value 94.359476 iter 20 value 94.354780 final value 94.354488 converged Fitting Repeat 1 # weights: 507 initial value 106.938865 iter 10 value 94.494729 iter 20 value 94.320126 iter 30 value 86.700672 iter 40 value 86.032341 iter 50 value 84.263981 iter 60 value 83.420492 iter 70 value 83.376958 iter 80 value 83.258850 iter 90 value 82.668730 iter 100 value 80.883099 final value 80.883099 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.833871 iter 10 value 93.813361 iter 20 value 93.808219 iter 30 value 93.742780 iter 40 value 86.267740 iter 50 value 85.409534 iter 60 value 85.035279 iter 70 value 83.796868 iter 80 value 83.790710 iter 90 value 83.788748 iter 100 value 83.772357 final value 83.772357 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.704984 iter 10 value 94.362399 iter 20 value 94.004745 iter 30 value 93.805358 iter 40 value 93.761567 iter 50 value 92.740810 iter 60 value 86.716745 iter 70 value 85.316376 iter 80 value 85.221453 iter 90 value 85.219542 final value 85.219540 converged Fitting Repeat 4 # weights: 507 initial value 102.032225 iter 10 value 93.818153 iter 20 value 93.810644 iter 30 value 93.182946 iter 40 value 89.588760 iter 50 value 83.718817 iter 60 value 82.886080 iter 70 value 81.239199 iter 80 value 80.820432 iter 90 value 80.760745 iter 100 value 80.652636 final value 80.652636 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 135.646901 iter 10 value 94.492137 iter 20 value 89.562821 iter 30 value 88.591504 iter 40 value 88.587516 iter 50 value 88.502598 final value 88.502564 converged Fitting Repeat 1 # weights: 103 initial value 97.650497 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.687827 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.517928 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.545227 iter 10 value 94.008750 final value 94.008696 converged Fitting Repeat 5 # weights: 103 initial value 99.625994 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.870921 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 2 # weights: 305 initial value 99.122400 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 121.764491 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.295691 final value 94.008696 converged Fitting Repeat 5 # weights: 305 initial value 130.546353 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 114.130354 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 2 # weights: 507 initial value 97.687493 iter 10 value 93.637904 iter 20 value 88.109569 iter 30 value 87.333107 iter 40 value 87.326163 final value 87.326151 converged Fitting Repeat 3 # weights: 507 initial value 133.391224 iter 10 value 93.011268 iter 20 value 90.409376 iter 30 value 89.308515 iter 40 value 82.880177 iter 50 value 81.480820 iter 60 value 80.805798 iter 70 value 80.522845 iter 80 value 80.512619 iter 90 value 80.512063 iter 100 value 80.511962 final value 80.511962 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.979925 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 108.940525 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 100.389624 iter 10 value 94.054527 iter 20 value 84.270678 iter 30 value 83.200994 iter 40 value 82.312324 iter 50 value 82.279607 final value 82.279603 converged Fitting Repeat 2 # weights: 103 initial value 103.982080 iter 10 value 93.938904 iter 20 value 93.242447 iter 30 value 89.616650 iter 40 value 88.040655 iter 50 value 87.883143 iter 60 value 83.687048 iter 70 value 82.711457 iter 80 value 82.657701 iter 90 value 82.355666 iter 100 value 82.179647 final value 82.179647 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 108.040251 iter 10 value 94.056201 iter 20 value 93.930096 iter 30 value 91.446883 iter 40 value 84.565113 iter 50 value 82.941277 iter 60 value 82.907085 final value 82.907027 converged Fitting Repeat 4 # weights: 103 initial value 108.815947 iter 10 value 94.056354 iter 20 value 94.022918 iter 30 value 92.191575 iter 40 value 89.969706 iter 50 value 89.596701 iter 60 value 86.606101 iter 70 value 83.209321 iter 80 value 81.862906 iter 90 value 81.010712 iter 100 value 80.849155 final value 80.849155 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.534836 iter 10 value 94.056688 iter 20 value 88.948833 iter 30 value 84.285835 iter 40 value 82.670455 iter 50 value 82.257680 iter 60 value 82.139426 iter 70 value 81.361870 iter 80 value 80.767742 iter 90 value 80.718992 iter 100 value 80.629033 final value 80.629033 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 116.447074 iter 10 value 94.226405 iter 20 value 85.838006 iter 30 value 83.575845 iter 40 value 83.176325 iter 50 value 83.005428 iter 60 value 80.702151 iter 70 value 79.267267 iter 80 value 78.884493 iter 90 value 78.743680 iter 100 value 78.579321 final value 78.579321 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.125333 iter 10 value 92.821830 iter 20 value 89.787007 iter 30 value 89.016415 iter 40 value 88.814202 iter 50 value 87.222536 iter 60 value 81.176112 iter 70 value 80.755228 iter 80 value 80.498862 iter 90 value 80.182372 iter 100 value 78.881289 final value 78.881289 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.573558 iter 10 value 93.872921 iter 20 value 88.279048 iter 30 value 84.269535 iter 40 value 83.384737 iter 50 value 82.302538 iter 60 value 81.953813 iter 70 value 79.803089 iter 80 value 79.273795 iter 90 value 78.756231 iter 100 value 78.360986 final value 78.360986 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.922136 iter 10 value 94.076564 iter 20 value 89.516569 iter 30 value 86.009957 iter 40 value 84.729374 iter 50 value 82.668252 iter 60 value 81.905393 iter 70 value 80.425637 iter 80 value 79.663301 iter 90 value 78.355198 iter 100 value 78.100019 final value 78.100019 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.469206 iter 10 value 93.370719 iter 20 value 88.043816 iter 30 value 85.404970 iter 40 value 83.290259 iter 50 value 82.764904 iter 60 value 82.507989 iter 70 value 82.485444 iter 70 value 82.485444 final value 82.485444 converged Fitting Repeat 1 # weights: 507 initial value 108.320604 iter 10 value 94.009439 iter 20 value 87.718522 iter 30 value 84.576796 iter 40 value 82.749688 iter 50 value 81.020718 iter 60 value 79.892468 iter 70 value 79.377770 iter 80 value 78.945330 iter 90 value 78.761458 iter 100 value 78.170213 final value 78.170213 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.739767 iter 10 value 90.928280 iter 20 value 86.216027 iter 30 value 85.173482 iter 40 value 83.602698 iter 50 value 80.470429 iter 60 value 79.666156 iter 70 value 78.798754 iter 80 value 78.449667 iter 90 value 78.327935 iter 100 value 78.057098 final value 78.057098 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.319402 iter 10 value 93.953879 iter 20 value 86.662928 iter 30 value 85.407952 iter 40 value 84.864504 iter 50 value 83.557373 iter 60 value 81.654334 iter 70 value 80.292275 iter 80 value 78.954352 iter 90 value 78.416505 iter 100 value 77.967798 final value 77.967798 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.010348 iter 10 value 94.450911 iter 20 value 85.765541 iter 30 value 84.093854 iter 40 value 80.980410 iter 50 value 79.196633 iter 60 value 78.976051 iter 70 value 78.882028 iter 80 value 78.557030 iter 90 value 78.406509 iter 100 value 78.369265 final value 78.369265 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.517731 iter 10 value 92.676852 iter 20 value 85.499665 iter 30 value 81.757172 iter 40 value 81.172353 iter 50 value 79.997216 iter 60 value 79.623186 iter 70 value 79.531581 iter 80 value 79.070930 iter 90 value 78.288498 iter 100 value 77.775234 final value 77.775234 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.186548 final value 94.054386 converged Fitting Repeat 2 # weights: 103 initial value 99.181418 final value 94.054219 converged Fitting Repeat 3 # weights: 103 initial value 96.162109 final value 94.054551 converged Fitting Repeat 4 # weights: 103 initial value 109.351722 final value 94.054379 converged Fitting Repeat 5 # weights: 103 initial value 97.110772 iter 10 value 94.054711 iter 20 value 94.052896 iter 30 value 87.888382 iter 40 value 87.532062 iter 50 value 85.881806 iter 60 value 85.142620 iter 70 value 84.766719 iter 80 value 84.765838 final value 84.765808 converged Fitting Repeat 1 # weights: 305 initial value 100.449422 iter 10 value 94.055890 iter 20 value 91.031381 iter 30 value 87.038410 iter 40 value 87.031172 iter 50 value 85.458740 iter 60 value 85.191056 iter 70 value 85.027720 iter 80 value 84.593043 iter 90 value 82.339691 iter 100 value 82.213293 final value 82.213293 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 94.780548 iter 10 value 94.057917 iter 20 value 94.053029 iter 20 value 94.053029 final value 94.053029 converged Fitting Repeat 3 # weights: 305 initial value 96.033229 iter 10 value 94.057976 final value 94.052975 converged Fitting Repeat 4 # weights: 305 initial value 95.662712 iter 10 value 94.057089 iter 20 value 92.132706 iter 30 value 89.298932 iter 40 value 87.940143 iter 50 value 87.931302 iter 60 value 87.208017 iter 70 value 86.912447 iter 80 value 85.909937 iter 90 value 83.716171 iter 100 value 83.500604 final value 83.500604 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.987594 iter 10 value 94.013899 iter 20 value 94.009097 final value 94.008768 converged Fitting Repeat 1 # weights: 507 initial value 111.114673 iter 10 value 94.060226 iter 20 value 93.929520 iter 30 value 88.778911 iter 40 value 80.001168 iter 50 value 77.113877 iter 60 value 76.019391 iter 70 value 75.913067 iter 80 value 75.866802 iter 90 value 75.796429 iter 100 value 75.752546 final value 75.752546 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.489038 iter 10 value 94.061143 iter 20 value 94.053058 iter 30 value 91.986555 iter 40 value 91.229522 iter 50 value 91.227428 iter 60 value 90.803713 iter 70 value 90.612711 iter 80 value 87.170751 iter 90 value 84.289255 iter 100 value 84.188355 final value 84.188355 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.240788 iter 10 value 93.877989 iter 20 value 93.819546 iter 30 value 93.818384 iter 40 value 93.818252 iter 50 value 93.817961 iter 60 value 93.817457 iter 60 value 93.817457 iter 60 value 93.817457 final value 93.817457 converged Fitting Repeat 4 # weights: 507 initial value 101.991962 iter 10 value 82.899600 iter 20 value 82.167813 iter 30 value 82.167186 iter 40 value 81.680718 iter 50 value 81.677409 iter 60 value 81.470173 iter 70 value 81.417945 iter 80 value 81.322030 iter 90 value 81.292764 iter 100 value 81.291576 final value 81.291576 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.340734 iter 10 value 94.061376 iter 20 value 93.978462 iter 30 value 87.005877 final value 86.927375 converged Fitting Repeat 1 # weights: 103 initial value 102.394345 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 103.407265 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 107.560153 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.456002 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.598330 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.993411 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 110.401493 final value 94.027933 converged Fitting Repeat 3 # weights: 305 initial value 100.881716 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 108.206163 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 106.614812 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 117.540092 iter 10 value 94.023571 final value 94.023310 converged Fitting Repeat 2 # weights: 507 initial value 97.946103 iter 10 value 94.032818 iter 20 value 93.299877 final value 93.299763 converged Fitting Repeat 3 # weights: 507 initial value 99.051663 final value 93.893849 converged Fitting Repeat 4 # weights: 507 initial value 97.533222 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 98.668674 iter 10 value 86.509124 iter 20 value 86.364264 iter 30 value 84.923559 final value 84.898025 converged Fitting Repeat 1 # weights: 103 initial value 98.222560 iter 10 value 94.044410 iter 20 value 92.279487 iter 30 value 86.371343 iter 40 value 84.584942 iter 50 value 84.376580 iter 60 value 82.946958 iter 70 value 82.145875 iter 80 value 82.121015 final value 82.118030 converged Fitting Repeat 2 # weights: 103 initial value 104.368186 iter 10 value 94.068967 iter 20 value 93.779840 iter 30 value 86.463307 iter 40 value 86.132329 iter 50 value 83.619673 iter 60 value 82.824958 iter 70 value 82.728758 final value 82.728756 converged Fitting Repeat 3 # weights: 103 initial value 110.766268 iter 10 value 92.773203 iter 20 value 86.773239 iter 30 value 84.984159 iter 40 value 84.084571 iter 50 value 83.936535 iter 60 value 83.449054 iter 70 value 83.183003 iter 80 value 83.109403 final value 83.109381 converged Fitting Repeat 4 # weights: 103 initial value 99.212726 iter 10 value 93.790622 iter 20 value 92.608033 iter 30 value 92.275837 iter 40 value 85.620700 iter 50 value 84.599554 iter 60 value 83.222267 iter 70 value 82.668758 iter 80 value 81.345751 iter 90 value 81.115360 iter 100 value 80.909412 final value 80.909412 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.596381 iter 10 value 94.059493 iter 20 value 92.814336 iter 30 value 88.801751 iter 40 value 83.879230 iter 50 value 83.434071 iter 60 value 82.359996 iter 70 value 82.134954 iter 80 value 81.378747 iter 90 value 80.783870 iter 100 value 80.751648 final value 80.751648 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.971176 iter 10 value 94.191540 iter 20 value 84.849173 iter 30 value 83.824116 iter 40 value 83.493476 iter 50 value 82.183967 iter 60 value 81.472110 iter 70 value 81.073700 iter 80 value 80.730554 iter 90 value 80.129586 iter 100 value 79.684308 final value 79.684308 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.798375 iter 10 value 93.914988 iter 20 value 88.109808 iter 30 value 86.781958 iter 40 value 83.928636 iter 50 value 82.867938 iter 60 value 81.047165 iter 70 value 80.719426 iter 80 value 80.557919 iter 90 value 80.545845 iter 100 value 80.498238 final value 80.498238 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.026282 iter 10 value 93.890744 iter 20 value 91.197028 iter 30 value 88.731236 iter 40 value 85.527500 iter 50 value 84.027911 iter 60 value 82.208305 iter 70 value 80.254697 iter 80 value 79.874894 iter 90 value 79.682166 iter 100 value 79.651465 final value 79.651465 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.523517 iter 10 value 94.015124 iter 20 value 91.456223 iter 30 value 85.506093 iter 40 value 83.801026 iter 50 value 83.721046 iter 60 value 83.538551 iter 70 value 82.991022 iter 80 value 81.163145 iter 90 value 80.319994 iter 100 value 80.191121 final value 80.191121 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.102665 iter 10 value 96.644934 iter 20 value 86.971395 iter 30 value 86.745080 iter 40 value 85.432545 iter 50 value 81.603117 iter 60 value 80.762434 iter 70 value 79.964248 iter 80 value 79.744143 iter 90 value 79.635732 iter 100 value 79.568517 final value 79.568517 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.609495 iter 10 value 93.715243 iter 20 value 83.815455 iter 30 value 83.258113 iter 40 value 83.163545 iter 50 value 81.463075 iter 60 value 80.163936 iter 70 value 79.726979 iter 80 value 79.619584 iter 90 value 79.541373 iter 100 value 79.405175 final value 79.405175 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.791147 iter 10 value 94.237486 iter 20 value 88.676450 iter 30 value 87.053146 iter 40 value 85.328015 iter 50 value 80.105480 iter 60 value 79.513582 iter 70 value 79.353977 iter 80 value 79.230695 iter 90 value 79.155421 iter 100 value 78.976831 final value 78.976831 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.906687 iter 10 value 95.531997 iter 20 value 93.794727 iter 30 value 85.557625 iter 40 value 84.308615 iter 50 value 83.738857 iter 60 value 83.231422 iter 70 value 81.933804 iter 80 value 80.546972 iter 90 value 80.366052 iter 100 value 80.207147 final value 80.207147 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.422177 iter 10 value 94.229408 iter 20 value 88.764544 iter 30 value 87.036548 iter 40 value 84.473296 iter 50 value 81.066737 iter 60 value 80.500381 iter 70 value 79.950317 iter 80 value 79.894725 iter 90 value 79.866478 iter 100 value 79.521763 final value 79.521763 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.717432 iter 10 value 93.826469 iter 20 value 88.751238 iter 30 value 87.264678 iter 40 value 85.968056 iter 50 value 82.049029 iter 60 value 80.964910 iter 70 value 80.879575 iter 80 value 80.652400 iter 90 value 80.002092 iter 100 value 79.742330 final value 79.742330 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.639955 final value 94.054553 converged Fitting Repeat 2 # weights: 103 initial value 96.708491 iter 10 value 90.586029 iter 20 value 86.263730 iter 30 value 86.256012 iter 40 value 86.254893 iter 50 value 86.206294 iter 60 value 85.002602 iter 70 value 84.769682 iter 80 value 84.768267 final value 84.767193 converged Fitting Repeat 3 # weights: 103 initial value 101.362856 iter 10 value 94.054501 iter 20 value 94.052936 iter 30 value 93.604784 iter 30 value 93.604784 iter 30 value 93.604784 final value 93.604784 converged Fitting Repeat 4 # weights: 103 initial value 101.071192 final value 94.054564 converged Fitting Repeat 5 # weights: 103 initial value 99.778587 iter 10 value 94.054494 iter 20 value 94.052914 iter 30 value 85.728356 iter 40 value 84.733885 iter 50 value 84.435730 iter 60 value 84.282445 iter 70 value 84.277418 iter 80 value 84.276574 final value 84.276572 converged Fitting Repeat 1 # weights: 305 initial value 100.619387 iter 10 value 94.057996 iter 20 value 94.050904 iter 30 value 93.677879 iter 40 value 93.604690 iter 50 value 93.333455 final value 93.328824 converged Fitting Repeat 2 # weights: 305 initial value 94.915297 iter 10 value 94.056289 iter 20 value 92.463933 iter 30 value 89.077221 iter 40 value 89.074624 iter 50 value 87.024345 iter 60 value 86.475625 iter 70 value 86.473900 iter 80 value 86.468051 iter 90 value 86.449109 iter 100 value 86.448317 final value 86.448317 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.485083 iter 10 value 93.949327 iter 20 value 93.804831 iter 30 value 93.335429 iter 40 value 93.304554 iter 50 value 90.537028 iter 60 value 81.080477 iter 70 value 80.976635 iter 80 value 80.882965 iter 90 value 80.872671 iter 100 value 79.110231 final value 79.110231 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.308911 iter 10 value 94.042228 iter 20 value 94.036913 iter 30 value 94.034077 iter 40 value 94.033433 iter 50 value 94.030988 iter 60 value 85.630707 iter 70 value 82.166185 iter 80 value 81.561265 iter 90 value 80.967621 iter 100 value 80.679539 final value 80.679539 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.279545 iter 10 value 94.057860 iter 20 value 93.874605 iter 30 value 84.613358 iter 40 value 84.612143 iter 50 value 84.611876 iter 60 value 84.610509 iter 70 value 83.768478 iter 80 value 83.745856 iter 90 value 83.743343 final value 83.743011 converged Fitting Repeat 1 # weights: 507 initial value 131.602379 iter 10 value 92.546997 iter 20 value 92.036264 iter 30 value 92.029902 iter 40 value 91.957561 iter 50 value 91.956252 iter 60 value 91.794383 iter 70 value 91.654717 final value 91.654704 converged Fitting Repeat 2 # weights: 507 initial value 102.909164 iter 10 value 94.035488 iter 20 value 94.033825 iter 30 value 94.032890 iter 40 value 92.340203 iter 50 value 91.953479 final value 91.953449 converged Fitting Repeat 3 # weights: 507 initial value 97.056985 iter 10 value 92.941245 iter 20 value 92.669599 iter 30 value 92.661810 iter 40 value 92.661178 iter 50 value 92.656706 final value 92.656662 converged Fitting Repeat 4 # weights: 507 initial value 99.407815 iter 10 value 93.680120 iter 20 value 93.676632 iter 30 value 93.493502 iter 40 value 85.127329 iter 50 value 82.502034 iter 60 value 82.427944 final value 82.426620 converged Fitting Repeat 5 # weights: 507 initial value 127.390155 iter 10 value 94.043953 iter 20 value 94.027262 iter 30 value 92.286852 iter 40 value 86.748159 iter 50 value 86.316791 iter 60 value 86.167774 iter 70 value 86.149587 iter 80 value 85.924626 iter 90 value 82.939841 iter 100 value 82.127541 final value 82.127541 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 156.098859 iter 10 value 117.689361 iter 20 value 114.494486 iter 30 value 111.863760 iter 40 value 110.704330 iter 50 value 105.674862 iter 60 value 103.585587 iter 70 value 103.178662 iter 80 value 102.857231 iter 90 value 102.079981 iter 100 value 101.919655 final value 101.919655 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 153.729344 iter 10 value 117.848777 iter 20 value 117.425886 iter 30 value 113.947498 iter 40 value 112.693389 iter 50 value 107.800053 iter 60 value 106.955899 iter 70 value 106.191884 iter 80 value 105.768225 iter 90 value 102.432937 iter 100 value 101.475758 final value 101.475758 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.033599 iter 10 value 110.065016 iter 20 value 107.922226 iter 30 value 105.031648 iter 40 value 103.566370 iter 50 value 101.649984 iter 60 value 100.932628 iter 70 value 100.630835 iter 80 value 100.478577 iter 90 value 100.320636 iter 100 value 100.185660 final value 100.185660 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.449983 iter 10 value 117.565995 iter 20 value 107.392827 iter 30 value 105.598220 iter 40 value 104.248923 iter 50 value 103.642866 iter 60 value 102.905690 iter 70 value 102.195008 iter 80 value 101.897120 iter 90 value 101.758835 iter 100 value 101.701252 final value 101.701252 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.838399 iter 10 value 119.996116 iter 20 value 111.533293 iter 30 value 108.048637 iter 40 value 106.283547 iter 50 value 103.663443 iter 60 value 102.190946 iter 70 value 101.802005 iter 80 value 101.418185 iter 90 value 100.965808 iter 100 value 100.675080 final value 100.675080 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Dec 20 22:24:17 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 51.662 1.783 56.058
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 52.247 | 1.907 | 54.249 | |
FreqInteractors | 0.252 | 0.016 | 0.269 | |
calculateAAC | 0.045 | 0.009 | 0.053 | |
calculateAutocor | 0.427 | 0.054 | 0.481 | |
calculateCTDC | 0.085 | 0.004 | 0.089 | |
calculateCTDD | 0.552 | 0.024 | 0.576 | |
calculateCTDT | 0.247 | 0.015 | 0.263 | |
calculateCTriad | 0.443 | 0.026 | 0.470 | |
calculateDC | 0.097 | 0.010 | 0.106 | |
calculateF | 0.297 | 0.011 | 0.307 | |
calculateKSAAP | 0.096 | 0.008 | 0.104 | |
calculateQD_Sm | 1.886 | 0.160 | 2.046 | |
calculateTC | 1.684 | 0.170 | 1.855 | |
calculateTC_Sm | 0.304 | 0.023 | 0.326 | |
corr_plot | 52.549 | 2.017 | 54.671 | |
enrichfindP | 0.475 | 0.075 | 6.385 | |
enrichfind_hp | 0.069 | 0.016 | 0.717 | |
enrichplot | 0.370 | 0.008 | 0.378 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.092 | 0.016 | 1.264 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.001 | 0.002 | |
plotPPI | 0.082 | 0.003 | 0.086 | |
pred_ensembel | 16.738 | 0.526 | 15.187 | |
var_imp | 49.518 | 1.856 | 51.532 | |