Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-03 12:10 -0500 (Mon, 03 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4400 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-31 22:08:09 -0500 (Fri, 31 Jan 2025) |
EndedAt: 2025-01-31 22:14:42 -0500 (Fri, 31 Jan 2025) |
EllapsedTime: 392.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 54.532 1.897 56.465 corr_plot 53.632 1.925 55.619 FSmethod 52.466 1.743 54.260 pred_ensembel 16.703 0.490 15.135 enrichfindP 0.498 0.075 9.501 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.694853 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.188051 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.574713 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.516345 iter 10 value 84.645482 iter 20 value 84.583753 final value 84.583659 converged Fitting Repeat 5 # weights: 103 initial value 94.890650 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.835568 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.202296 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.729860 iter 10 value 88.653938 iter 20 value 88.324831 iter 30 value 88.322522 final value 88.322511 converged Fitting Repeat 4 # weights: 305 initial value 111.007987 iter 10 value 94.112933 final value 94.112903 converged Fitting Repeat 5 # weights: 305 initial value 138.477272 iter 10 value 94.461539 iter 10 value 94.461538 iter 10 value 94.461538 final value 94.461538 converged Fitting Repeat 1 # weights: 507 initial value 109.930359 iter 10 value 93.342546 iter 20 value 87.291192 iter 30 value 83.653753 iter 40 value 83.464668 iter 50 value 83.437806 iter 60 value 83.436828 iter 70 value 83.429172 iter 80 value 83.404701 iter 90 value 83.023584 iter 100 value 82.632724 final value 82.632724 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.948145 iter 10 value 94.460126 iter 20 value 92.143875 iter 30 value 90.776201 iter 40 value 90.774686 final value 90.604382 converged Fitting Repeat 3 # weights: 507 initial value 140.580698 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 114.452324 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 100.707159 iter 10 value 88.969767 final value 88.789517 converged Fitting Repeat 1 # weights: 103 initial value 107.533781 iter 10 value 94.190585 iter 20 value 93.787191 iter 30 value 89.362994 iter 40 value 88.437282 iter 50 value 84.020124 iter 60 value 83.085658 iter 70 value 82.642850 iter 80 value 81.931815 iter 90 value 81.671045 iter 100 value 81.426476 final value 81.426476 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.133828 iter 10 value 94.434103 iter 20 value 94.162561 iter 30 value 93.242009 iter 40 value 85.910935 iter 50 value 83.233337 iter 60 value 82.011511 iter 70 value 81.811737 iter 80 value 81.712411 iter 90 value 81.540916 iter 100 value 81.176019 final value 81.176019 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.834922 iter 10 value 94.737651 iter 20 value 94.262177 iter 30 value 86.178142 iter 40 value 83.599455 iter 50 value 82.825810 iter 60 value 82.785788 iter 70 value 82.781782 final value 82.781780 converged Fitting Repeat 4 # weights: 103 initial value 96.766393 iter 10 value 94.490906 iter 20 value 92.793649 iter 30 value 91.410706 iter 40 value 91.206253 iter 50 value 90.912740 iter 60 value 90.902432 final value 90.902320 converged Fitting Repeat 5 # weights: 103 initial value 102.389810 iter 10 value 94.498325 iter 20 value 92.420450 iter 30 value 87.854332 iter 40 value 87.266281 iter 50 value 83.601342 iter 60 value 82.815318 iter 70 value 81.710055 iter 80 value 81.181095 final value 81.172565 converged Fitting Repeat 1 # weights: 305 initial value 102.202823 iter 10 value 94.517040 iter 20 value 87.979555 iter 30 value 86.274843 iter 40 value 85.473213 iter 50 value 84.588056 iter 60 value 83.573305 iter 70 value 82.271309 iter 80 value 81.725725 iter 90 value 81.519202 iter 100 value 81.178646 final value 81.178646 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.241404 iter 10 value 94.444961 iter 20 value 88.647941 iter 30 value 84.259695 iter 40 value 83.251823 iter 50 value 82.713781 iter 60 value 81.732916 iter 70 value 80.499376 iter 80 value 80.047117 iter 90 value 79.939711 iter 100 value 79.845107 final value 79.845107 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 133.009098 iter 10 value 95.326689 iter 20 value 94.842622 iter 30 value 90.245496 iter 40 value 87.514766 iter 50 value 85.479546 iter 60 value 84.583777 iter 70 value 83.707527 iter 80 value 82.154198 iter 90 value 81.559559 iter 100 value 81.545151 final value 81.545151 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.540197 iter 10 value 94.497330 iter 20 value 86.939814 iter 30 value 85.836365 iter 40 value 85.510167 iter 50 value 84.525735 iter 60 value 83.159142 iter 70 value 82.734650 iter 80 value 82.045378 iter 90 value 81.648774 iter 100 value 81.509427 final value 81.509427 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.048070 iter 10 value 94.500285 iter 20 value 90.838810 iter 30 value 90.425869 iter 40 value 89.134940 iter 50 value 83.966354 iter 60 value 83.098701 iter 70 value 82.998747 iter 80 value 82.855402 iter 90 value 81.154507 iter 100 value 80.281712 final value 80.281712 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.439234 iter 10 value 94.233397 iter 20 value 87.181012 iter 30 value 85.058364 iter 40 value 84.260990 iter 50 value 83.316877 iter 60 value 82.752399 iter 70 value 82.175183 iter 80 value 81.823089 iter 90 value 80.683298 iter 100 value 80.304503 final value 80.304503 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.131747 iter 10 value 94.109939 iter 20 value 85.267745 iter 30 value 83.924386 iter 40 value 83.438770 iter 50 value 82.887944 iter 60 value 82.714395 iter 70 value 82.572916 iter 80 value 82.500739 iter 90 value 82.451085 iter 100 value 82.258777 final value 82.258777 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.762306 iter 10 value 95.205432 iter 20 value 92.324738 iter 30 value 86.513031 iter 40 value 85.357419 iter 50 value 83.397752 iter 60 value 82.730531 iter 70 value 81.327917 iter 80 value 80.560287 iter 90 value 80.163040 iter 100 value 79.695423 final value 79.695423 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.193884 iter 10 value 94.304370 iter 20 value 85.663293 iter 30 value 83.518864 iter 40 value 83.190399 iter 50 value 81.721757 iter 60 value 80.154308 iter 70 value 79.851738 iter 80 value 79.816320 iter 90 value 79.807982 iter 100 value 79.791438 final value 79.791438 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.836147 iter 10 value 101.673344 iter 20 value 98.951509 iter 30 value 88.916186 iter 40 value 85.775581 iter 50 value 84.622858 iter 60 value 82.960186 iter 70 value 81.478650 iter 80 value 81.352945 iter 90 value 81.181695 iter 100 value 80.924531 final value 80.924531 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.886864 final value 94.485953 converged Fitting Repeat 2 # weights: 103 initial value 98.708199 iter 10 value 94.504097 final value 94.444893 converged Fitting Repeat 3 # weights: 103 initial value 100.545535 final value 94.485796 converged Fitting Repeat 4 # weights: 103 initial value 97.999782 final value 94.469230 converged Fitting Repeat 5 # weights: 103 initial value 94.943858 iter 10 value 94.136827 iter 20 value 94.107072 iter 30 value 94.106638 final value 94.106072 converged Fitting Repeat 1 # weights: 305 initial value 99.961918 iter 10 value 87.299045 iter 20 value 87.038115 iter 30 value 86.487441 iter 40 value 86.428941 iter 50 value 86.425809 iter 60 value 86.425085 final value 86.424975 converged Fitting Repeat 2 # weights: 305 initial value 97.279518 iter 10 value 94.489339 iter 20 value 94.483486 iter 30 value 90.764803 iter 40 value 85.523158 iter 50 value 85.515532 iter 60 value 85.396943 iter 70 value 85.342243 iter 80 value 85.339633 iter 90 value 85.338555 iter 100 value 83.058504 final value 83.058504 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.672573 iter 10 value 94.488920 iter 20 value 93.467488 iter 30 value 92.445060 iter 40 value 91.735876 iter 50 value 91.728989 iter 60 value 91.145727 iter 70 value 90.656301 iter 80 value 90.536750 iter 90 value 90.528171 iter 100 value 90.521816 final value 90.521816 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.497763 iter 10 value 94.489024 iter 20 value 94.281919 iter 30 value 85.531632 iter 40 value 84.540535 iter 50 value 84.538935 iter 60 value 84.455365 iter 70 value 84.342234 iter 80 value 84.339890 iter 90 value 84.263703 final value 84.253709 converged Fitting Repeat 5 # weights: 305 initial value 104.233643 iter 10 value 94.360568 iter 20 value 94.358470 iter 30 value 94.357817 iter 40 value 94.355009 iter 50 value 94.136327 iter 60 value 85.560035 iter 70 value 85.502383 final value 85.502338 converged Fitting Repeat 1 # weights: 507 initial value 113.243018 iter 10 value 94.478411 iter 20 value 94.471183 iter 30 value 93.742238 iter 40 value 89.739957 iter 50 value 84.328084 iter 60 value 84.265083 iter 70 value 84.250015 iter 80 value 84.238047 iter 90 value 84.232489 iter 100 value 84.232027 final value 84.232027 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.393239 iter 10 value 94.450025 iter 20 value 93.601109 iter 30 value 88.183765 iter 40 value 88.066990 final value 88.066392 converged Fitting Repeat 3 # weights: 507 initial value 102.006448 iter 10 value 94.407874 iter 20 value 93.442735 iter 30 value 88.672407 final value 88.672246 converged Fitting Repeat 4 # weights: 507 initial value 100.590066 iter 10 value 94.444639 iter 20 value 94.108037 iter 30 value 94.100545 final value 94.100531 converged Fitting Repeat 5 # weights: 507 initial value 107.404145 iter 10 value 94.475042 iter 20 value 94.423990 iter 30 value 86.981816 iter 40 value 83.435480 iter 50 value 83.433452 iter 60 value 83.432265 iter 70 value 83.112840 iter 80 value 82.729544 iter 90 value 81.428242 iter 100 value 78.888285 final value 78.888285 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.311081 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.499621 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.984804 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.603120 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.958006 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.070306 iter 10 value 94.252966 final value 94.252921 converged Fitting Repeat 2 # weights: 305 initial value 106.339371 final value 93.567525 converged Fitting Repeat 3 # weights: 305 initial value 108.300227 iter 10 value 92.754062 final value 92.613874 converged Fitting Repeat 4 # weights: 305 initial value 98.773513 final value 94.252920 converged Fitting Repeat 5 # weights: 305 initial value 110.154442 iter 10 value 94.090635 final value 94.090583 converged Fitting Repeat 1 # weights: 507 initial value 96.823511 iter 10 value 91.239248 iter 20 value 89.429105 iter 30 value 89.160217 iter 40 value 89.159981 final value 89.159980 converged Fitting Repeat 2 # weights: 507 initial value 107.253834 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 111.161464 iter 10 value 94.112906 final value 94.112903 converged Fitting Repeat 4 # weights: 507 initial value 97.374575 iter 10 value 94.090585 iter 20 value 88.389641 final value 88.344498 converged Fitting Repeat 5 # weights: 507 initial value 94.967772 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 101.899810 iter 10 value 94.488593 iter 20 value 91.580875 iter 30 value 84.624026 iter 40 value 84.129166 iter 50 value 83.317167 iter 60 value 83.186487 iter 70 value 83.163537 final value 83.162997 converged Fitting Repeat 2 # weights: 103 initial value 101.410929 iter 10 value 94.327344 iter 20 value 89.388877 iter 30 value 87.018281 iter 40 value 85.582575 iter 50 value 84.679398 iter 60 value 81.280597 iter 70 value 81.164176 iter 80 value 81.039960 iter 90 value 80.647531 iter 100 value 80.603247 final value 80.603247 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.178094 iter 10 value 94.574624 iter 20 value 94.488803 iter 30 value 88.950913 iter 40 value 85.004676 iter 50 value 83.236800 iter 60 value 80.990476 iter 70 value 80.828094 iter 80 value 80.680208 iter 90 value 80.447356 final value 80.445769 converged Fitting Repeat 4 # weights: 103 initial value 101.211195 iter 10 value 94.264279 iter 20 value 85.212755 iter 30 value 84.893385 iter 40 value 83.585297 iter 50 value 83.570166 final value 83.567551 converged Fitting Repeat 5 # weights: 103 initial value 120.100490 iter 10 value 94.159767 iter 20 value 87.282826 iter 30 value 86.307260 iter 40 value 85.162714 iter 50 value 83.834913 iter 60 value 83.651328 final value 83.651174 converged Fitting Repeat 1 # weights: 305 initial value 113.348440 iter 10 value 97.633729 iter 20 value 94.642325 iter 30 value 94.283343 iter 40 value 86.049638 iter 50 value 85.257460 iter 60 value 83.917854 iter 70 value 83.003050 iter 80 value 82.860820 iter 90 value 82.767486 iter 100 value 82.561902 final value 82.561902 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.341271 iter 10 value 94.477201 iter 20 value 86.969523 iter 30 value 85.705630 iter 40 value 84.974511 iter 50 value 83.576561 iter 60 value 83.416173 iter 70 value 83.368835 iter 80 value 83.361222 iter 90 value 83.340313 iter 100 value 83.268679 final value 83.268679 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.222869 iter 10 value 94.376334 iter 20 value 94.086246 iter 30 value 86.109702 iter 40 value 84.613702 iter 50 value 83.573632 iter 60 value 83.311641 iter 70 value 83.183390 iter 80 value 83.127403 iter 90 value 82.691850 iter 100 value 81.955084 final value 81.955084 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.212368 iter 10 value 94.036431 iter 20 value 93.134117 iter 30 value 91.885485 iter 40 value 84.497861 iter 50 value 84.146417 iter 60 value 83.887527 iter 70 value 83.280682 iter 80 value 83.158784 iter 90 value 83.088837 iter 100 value 81.760842 final value 81.760842 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.042661 iter 10 value 94.482472 iter 20 value 87.755400 iter 30 value 84.419004 iter 40 value 83.688939 iter 50 value 83.580408 iter 60 value 83.228030 iter 70 value 82.097888 iter 80 value 81.832452 iter 90 value 81.538720 iter 100 value 81.253106 final value 81.253106 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.081771 iter 10 value 94.250308 iter 20 value 90.550674 iter 30 value 83.919228 iter 40 value 81.692943 iter 50 value 81.246556 iter 60 value 80.626266 iter 70 value 80.303569 iter 80 value 79.752030 iter 90 value 79.658177 iter 100 value 79.622958 final value 79.622958 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 133.281508 iter 10 value 94.378460 iter 20 value 89.469800 iter 30 value 84.992806 iter 40 value 84.617178 iter 50 value 83.468642 iter 60 value 82.301661 iter 70 value 81.681872 iter 80 value 80.562836 iter 90 value 80.208371 iter 100 value 80.125125 final value 80.125125 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.505448 iter 10 value 96.319417 iter 20 value 94.297877 iter 30 value 84.129838 iter 40 value 82.197000 iter 50 value 81.634357 iter 60 value 81.085813 iter 70 value 79.994136 iter 80 value 79.456748 iter 90 value 79.042834 iter 100 value 79.014118 final value 79.014118 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.183585 iter 10 value 95.352178 iter 20 value 86.065072 iter 30 value 83.886969 iter 40 value 83.361770 iter 50 value 83.284181 iter 60 value 83.253520 iter 70 value 83.046327 iter 80 value 82.069790 iter 90 value 80.326455 iter 100 value 79.886077 final value 79.886077 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.769469 iter 10 value 94.008207 iter 20 value 87.809956 iter 30 value 85.824241 iter 40 value 85.450252 iter 50 value 85.124063 iter 60 value 83.897852 iter 70 value 82.228739 iter 80 value 80.947998 iter 90 value 80.095435 iter 100 value 79.315588 final value 79.315588 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.804520 final value 94.485709 converged Fitting Repeat 2 # weights: 103 initial value 97.391184 final value 94.485713 converged Fitting Repeat 3 # weights: 103 initial value 102.525752 iter 10 value 94.485951 iter 20 value 94.484233 iter 30 value 92.616762 iter 40 value 92.614574 iter 50 value 92.614441 iter 60 value 92.614380 iter 70 value 84.330581 iter 80 value 83.887025 iter 90 value 83.877941 final value 83.877921 converged Fitting Repeat 4 # weights: 103 initial value 109.364429 final value 94.485946 converged Fitting Repeat 5 # weights: 103 initial value 98.303224 final value 94.485882 converged Fitting Repeat 1 # weights: 305 initial value 112.163344 iter 10 value 94.489146 iter 20 value 94.484243 final value 94.484214 converged Fitting Repeat 2 # weights: 305 initial value 98.241702 iter 10 value 94.489028 iter 20 value 94.484231 iter 30 value 92.620205 final value 92.614622 converged Fitting Repeat 3 # weights: 305 initial value 108.767526 iter 10 value 94.489131 iter 20 value 94.376373 iter 30 value 90.894900 iter 40 value 86.522876 iter 50 value 83.142507 iter 60 value 83.036340 iter 70 value 83.022620 iter 80 value 83.001661 final value 83.001550 converged Fitting Repeat 4 # weights: 305 initial value 102.528477 iter 10 value 94.472018 iter 20 value 94.467543 iter 30 value 92.614690 iter 30 value 92.614690 iter 30 value 92.614690 final value 92.614690 converged Fitting Repeat 5 # weights: 305 initial value 97.010995 iter 10 value 94.485350 iter 20 value 94.475526 iter 30 value 85.683560 iter 40 value 84.382194 final value 84.382147 converged Fitting Repeat 1 # weights: 507 initial value 103.512840 iter 10 value 94.121441 iter 20 value 94.116026 iter 30 value 94.091726 iter 40 value 92.035601 iter 50 value 90.293708 iter 60 value 90.121262 iter 70 value 90.120412 iter 80 value 89.784855 iter 90 value 87.408225 iter 100 value 87.336069 final value 87.336069 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.797521 iter 10 value 84.602738 iter 20 value 84.489488 iter 30 value 83.993159 final value 83.985124 converged Fitting Repeat 3 # weights: 507 initial value 99.001661 iter 10 value 94.490415 iter 20 value 94.042264 iter 30 value 89.060484 iter 40 value 88.097094 iter 50 value 88.094240 iter 60 value 87.730087 iter 70 value 82.670266 iter 80 value 82.657526 iter 90 value 82.656081 iter 100 value 82.201899 final value 82.201899 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.794872 iter 10 value 94.475026 iter 20 value 94.468152 final value 94.467160 converged Fitting Repeat 5 # weights: 507 initial value 144.697164 iter 10 value 94.488646 iter 20 value 94.480962 iter 30 value 94.478703 iter 40 value 91.305052 iter 50 value 83.941543 iter 60 value 83.878640 iter 70 value 83.878563 iter 80 value 82.463174 iter 90 value 82.339892 iter 100 value 82.170140 final value 82.170140 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.863277 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.981199 iter 10 value 92.945456 final value 92.945355 converged Fitting Repeat 3 # weights: 103 initial value 94.141665 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.823354 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.764487 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.558268 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.618582 final value 94.011429 converged Fitting Repeat 3 # weights: 305 initial value 106.688619 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.604528 iter 10 value 89.748768 iter 20 value 89.447992 final value 89.446857 converged Fitting Repeat 5 # weights: 305 initial value 105.285787 iter 10 value 92.945372 final value 92.945355 converged Fitting Repeat 1 # weights: 507 initial value 94.625790 final value 94.052907 converged Fitting Repeat 2 # weights: 507 initial value 110.455665 final value 94.052907 converged Fitting Repeat 3 # weights: 507 initial value 109.217571 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 94.406204 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 107.146437 final value 94.052907 converged Fitting Repeat 1 # weights: 103 initial value 100.817449 iter 10 value 93.711301 iter 20 value 93.353769 iter 30 value 93.292907 iter 40 value 89.814150 iter 50 value 89.547767 iter 60 value 84.996426 iter 70 value 84.796259 iter 80 value 84.347067 iter 90 value 84.152788 iter 100 value 84.040202 final value 84.040202 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.216426 iter 10 value 94.070832 iter 20 value 93.847247 iter 30 value 93.380122 iter 40 value 93.131581 iter 50 value 93.039103 iter 60 value 89.843773 iter 70 value 88.718846 iter 80 value 86.671612 iter 90 value 85.482797 iter 100 value 83.622263 final value 83.622263 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.096090 iter 10 value 87.381372 iter 20 value 86.712444 iter 30 value 84.220771 iter 40 value 84.043803 iter 50 value 84.032958 iter 60 value 84.032171 iter 70 value 84.031810 final value 84.031782 converged Fitting Repeat 4 # weights: 103 initial value 96.652845 iter 10 value 93.341731 iter 20 value 86.795808 iter 30 value 86.765854 iter 40 value 86.759732 iter 50 value 86.757739 iter 60 value 86.671512 iter 70 value 86.629472 iter 80 value 84.383434 iter 90 value 84.116656 iter 100 value 84.074034 final value 84.074034 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.898971 iter 10 value 93.998609 iter 20 value 86.028751 iter 30 value 85.006953 iter 40 value 84.900381 iter 50 value 84.856752 final value 84.855811 converged Fitting Repeat 1 # weights: 305 initial value 107.035523 iter 10 value 95.273109 iter 20 value 93.076017 iter 30 value 90.914283 iter 40 value 87.755217 iter 50 value 87.249092 iter 60 value 84.274860 iter 70 value 83.983555 iter 80 value 83.699445 iter 90 value 83.500686 iter 100 value 82.936883 final value 82.936883 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.702455 iter 10 value 94.109061 iter 20 value 93.290171 iter 30 value 89.398110 iter 40 value 88.636572 iter 50 value 85.517737 iter 60 value 84.268569 iter 70 value 82.814068 iter 80 value 81.622342 iter 90 value 81.281218 iter 100 value 80.993907 final value 80.993907 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.825100 iter 10 value 94.305627 iter 20 value 87.992012 iter 30 value 87.310971 iter 40 value 86.421502 iter 50 value 86.160248 iter 60 value 83.655574 iter 70 value 82.103798 iter 80 value 81.754532 iter 90 value 81.639120 iter 100 value 81.600249 final value 81.600249 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.713195 iter 10 value 93.381348 iter 20 value 92.520849 iter 30 value 85.456143 iter 40 value 84.155714 iter 50 value 83.933440 iter 60 value 83.603691 iter 70 value 82.088418 iter 80 value 81.266818 iter 90 value 81.214916 iter 100 value 81.078266 final value 81.078266 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.881605 iter 10 value 92.852850 iter 20 value 91.433507 iter 30 value 91.151415 iter 40 value 88.680807 iter 50 value 85.372084 iter 60 value 83.603248 iter 70 value 82.343207 iter 80 value 82.067537 iter 90 value 81.679277 iter 100 value 81.568427 final value 81.568427 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.735595 iter 10 value 94.124512 iter 20 value 93.404427 iter 30 value 90.103413 iter 40 value 84.603738 iter 50 value 83.872198 iter 60 value 83.699577 iter 70 value 82.558312 iter 80 value 82.015643 iter 90 value 81.777292 iter 100 value 81.361712 final value 81.361712 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.486746 iter 10 value 93.995558 iter 20 value 93.111251 iter 30 value 89.085594 iter 40 value 84.818469 iter 50 value 84.184690 iter 60 value 83.506736 iter 70 value 82.024713 iter 80 value 81.271420 iter 90 value 81.054075 iter 100 value 81.045193 final value 81.045193 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.157085 iter 10 value 97.033503 iter 20 value 93.623821 iter 30 value 92.219849 iter 40 value 87.154492 iter 50 value 84.192664 iter 60 value 83.914128 iter 70 value 83.600771 iter 80 value 83.579356 iter 90 value 83.545458 iter 100 value 83.206734 final value 83.206734 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.809436 iter 10 value 93.755868 iter 20 value 86.471118 iter 30 value 85.204785 iter 40 value 84.728273 iter 50 value 83.384652 iter 60 value 83.008363 iter 70 value 82.742241 iter 80 value 82.691508 iter 90 value 82.660083 iter 100 value 82.652907 final value 82.652907 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.514451 iter 10 value 93.229616 iter 20 value 91.754455 iter 30 value 85.436414 iter 40 value 84.077245 iter 50 value 83.435412 iter 60 value 82.242357 iter 70 value 81.290670 iter 80 value 81.073137 iter 90 value 80.900186 iter 100 value 80.877973 final value 80.877973 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.174387 final value 94.054669 converged Fitting Repeat 2 # weights: 103 initial value 96.926013 iter 10 value 94.058797 final value 94.055298 converged Fitting Repeat 3 # weights: 103 initial value 95.840470 final value 94.054364 converged Fitting Repeat 4 # weights: 103 initial value 107.978324 final value 94.054776 converged Fitting Repeat 5 # weights: 103 initial value 103.315248 final value 94.054648 converged Fitting Repeat 1 # weights: 305 initial value 94.356818 iter 10 value 85.583564 iter 20 value 84.976841 iter 30 value 84.596019 iter 40 value 84.193565 iter 50 value 83.151265 iter 60 value 83.137745 iter 70 value 83.135458 iter 80 value 83.134860 iter 90 value 83.123410 iter 100 value 81.908252 final value 81.908252 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.736575 iter 10 value 92.951530 iter 20 value 92.950751 iter 30 value 92.946411 final value 92.946357 converged Fitting Repeat 3 # weights: 305 initial value 95.357141 iter 10 value 93.633670 iter 20 value 93.629651 final value 93.629549 converged Fitting Repeat 4 # weights: 305 initial value 108.165983 iter 10 value 94.057811 iter 20 value 93.992323 iter 30 value 92.946813 iter 40 value 92.946554 iter 50 value 87.661924 iter 60 value 85.855554 iter 70 value 85.789934 final value 85.789928 converged Fitting Repeat 5 # weights: 305 initial value 96.394075 iter 10 value 93.546881 iter 20 value 92.951168 iter 30 value 92.947376 final value 92.946136 converged Fitting Repeat 1 # weights: 507 initial value 95.149414 iter 10 value 92.998032 iter 20 value 92.899692 iter 30 value 92.895269 iter 40 value 92.887370 iter 50 value 92.820258 iter 60 value 92.556125 iter 70 value 87.957851 iter 80 value 85.982843 iter 90 value 85.620583 iter 100 value 81.170018 final value 81.170018 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.901405 iter 10 value 94.060972 iter 20 value 93.937802 iter 30 value 86.715808 iter 40 value 86.619612 iter 50 value 86.611332 iter 60 value 86.611142 iter 70 value 84.014084 iter 80 value 83.819178 iter 90 value 83.815329 final value 83.815314 converged Fitting Repeat 3 # weights: 507 initial value 100.167724 iter 10 value 88.594895 iter 20 value 86.430500 iter 30 value 86.421977 final value 86.420714 converged Fitting Repeat 4 # weights: 507 initial value 119.308077 iter 10 value 92.962121 iter 20 value 92.890701 iter 30 value 92.827944 iter 40 value 92.823696 iter 50 value 92.812708 iter 60 value 92.681898 iter 70 value 91.659750 iter 80 value 85.146385 iter 90 value 84.081201 iter 100 value 83.933078 final value 83.933078 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.461049 iter 10 value 94.060534 iter 20 value 93.429309 iter 30 value 92.827145 final value 92.814627 converged Fitting Repeat 1 # weights: 103 initial value 98.442919 final value 93.582418 converged Fitting Repeat 2 # weights: 103 initial value 100.851606 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 103.262257 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.993198 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.922086 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.257032 final value 93.582418 converged Fitting Repeat 2 # weights: 305 initial value 96.424690 final value 93.582418 converged Fitting Repeat 3 # weights: 305 initial value 98.167935 final value 92.945739 converged Fitting Repeat 4 # weights: 305 initial value 96.238443 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.483648 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 136.149901 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 105.146472 iter 10 value 93.552301 final value 93.552265 converged Fitting Repeat 3 # weights: 507 initial value 104.415458 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 114.435096 iter 10 value 92.578017 iter 20 value 92.259226 iter 30 value 92.255848 final value 92.255844 converged Fitting Repeat 5 # weights: 507 initial value 101.866586 final value 93.904720 converged Fitting Repeat 1 # weights: 103 initial value 105.393659 iter 10 value 93.963358 iter 20 value 91.585312 iter 30 value 84.931153 iter 40 value 84.171795 iter 50 value 82.878665 iter 60 value 82.611120 final value 82.611106 converged Fitting Repeat 2 # weights: 103 initial value 100.726585 iter 10 value 94.054890 iter 20 value 93.358000 iter 30 value 93.278387 iter 40 value 87.098159 iter 50 value 85.027748 iter 60 value 84.010914 iter 70 value 82.316043 iter 80 value 81.885480 iter 90 value 81.752514 final value 81.752512 converged Fitting Repeat 3 # weights: 103 initial value 97.844332 iter 10 value 94.035346 iter 20 value 89.311421 iter 30 value 84.191430 iter 40 value 83.240020 iter 50 value 82.961214 iter 60 value 82.708998 iter 70 value 82.611828 final value 82.611106 converged Fitting Repeat 4 # weights: 103 initial value 99.833947 iter 10 value 93.808635 iter 20 value 92.901653 iter 30 value 86.023319 iter 40 value 84.830505 iter 50 value 83.609292 iter 60 value 82.661722 iter 70 value 82.611450 final value 82.611106 converged Fitting Repeat 5 # weights: 103 initial value 106.275723 iter 10 value 94.058861 iter 20 value 93.742537 iter 30 value 92.618896 iter 40 value 85.850281 iter 50 value 85.710115 iter 60 value 84.229179 iter 70 value 83.328946 iter 80 value 82.447000 iter 90 value 82.162697 final value 82.161625 converged Fitting Repeat 1 # weights: 305 initial value 101.260668 iter 10 value 91.674076 iter 20 value 86.018872 iter 30 value 85.905039 iter 40 value 85.181826 iter 50 value 81.581498 iter 60 value 79.737893 iter 70 value 79.402414 iter 80 value 79.128900 iter 90 value 78.646844 iter 100 value 78.349125 final value 78.349125 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.281929 iter 10 value 93.696126 iter 20 value 89.268882 iter 30 value 85.345219 iter 40 value 84.803248 iter 50 value 83.403850 iter 60 value 82.891685 iter 70 value 81.519928 iter 80 value 81.103279 iter 90 value 80.242258 iter 100 value 79.785963 final value 79.785963 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.288813 iter 10 value 94.122059 iter 20 value 93.648500 iter 30 value 86.748413 iter 40 value 83.669957 iter 50 value 82.136664 iter 60 value 80.568841 iter 70 value 79.482957 iter 80 value 79.385649 iter 90 value 79.164133 iter 100 value 79.021957 final value 79.021957 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 125.522714 iter 10 value 94.137143 iter 20 value 87.190582 iter 30 value 86.025561 iter 40 value 85.470435 iter 50 value 84.746461 iter 60 value 82.144156 iter 70 value 80.612963 iter 80 value 80.548356 iter 90 value 80.516700 iter 100 value 80.334905 final value 80.334905 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.546759 iter 10 value 93.952852 iter 20 value 93.688030 iter 30 value 89.819160 iter 40 value 87.158446 iter 50 value 86.289685 iter 60 value 85.197505 iter 70 value 82.916398 iter 80 value 82.203024 iter 90 value 81.835972 iter 100 value 81.827653 final value 81.827653 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.352371 iter 10 value 93.930039 iter 20 value 88.978463 iter 30 value 87.237841 iter 40 value 85.676366 iter 50 value 82.573449 iter 60 value 81.349528 iter 70 value 79.154957 iter 80 value 78.960727 iter 90 value 78.680441 iter 100 value 78.581843 final value 78.581843 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.437608 iter 10 value 91.673950 iter 20 value 88.582271 iter 30 value 86.717051 iter 40 value 83.983102 iter 50 value 83.028817 iter 60 value 82.339054 iter 70 value 80.736395 iter 80 value 80.095012 iter 90 value 79.867464 iter 100 value 79.581024 final value 79.581024 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.770290 iter 10 value 94.349860 iter 20 value 90.936686 iter 30 value 87.505530 iter 40 value 85.119011 iter 50 value 80.055142 iter 60 value 79.163910 iter 70 value 78.563595 iter 80 value 78.271797 iter 90 value 78.247025 iter 100 value 78.223186 final value 78.223186 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.244428 iter 10 value 94.313687 iter 20 value 93.956595 iter 30 value 85.917878 iter 40 value 83.499735 iter 50 value 81.824370 iter 60 value 80.539967 iter 70 value 79.233465 iter 80 value 79.099018 iter 90 value 79.025247 iter 100 value 79.019823 final value 79.019823 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.268641 iter 10 value 93.969451 iter 20 value 89.390328 iter 30 value 88.009322 iter 40 value 86.933905 iter 50 value 84.912113 iter 60 value 83.750125 iter 70 value 82.795272 iter 80 value 82.182201 iter 90 value 81.801844 iter 100 value 81.750242 final value 81.750242 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.000443 final value 94.054602 converged Fitting Repeat 2 # weights: 103 initial value 94.115814 final value 94.054413 converged Fitting Repeat 3 # weights: 103 initial value 101.198979 final value 94.054412 converged Fitting Repeat 4 # weights: 103 initial value 101.219928 iter 10 value 86.408258 iter 20 value 84.074609 iter 30 value 84.005053 iter 40 value 84.004462 iter 50 value 82.445846 iter 60 value 82.305081 iter 70 value 82.304624 iter 80 value 82.259330 iter 90 value 82.148752 iter 100 value 82.147179 final value 82.147179 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.225089 final value 94.054482 converged Fitting Repeat 1 # weights: 305 initial value 95.088083 iter 10 value 90.989256 iter 20 value 90.887392 iter 30 value 90.724895 iter 40 value 90.550806 iter 50 value 90.550491 iter 60 value 90.549999 iter 70 value 90.549621 iter 80 value 90.549146 final value 90.548752 converged Fitting Repeat 2 # weights: 305 initial value 97.170130 iter 10 value 94.055548 iter 20 value 88.565200 iter 30 value 86.117929 iter 40 value 81.911429 iter 50 value 81.560136 iter 60 value 81.558551 iter 70 value 81.538476 iter 80 value 81.505649 iter 90 value 81.504959 iter 100 value 81.504432 final value 81.504432 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.361996 iter 10 value 94.057877 iter 20 value 94.037294 iter 30 value 93.604869 final value 93.604661 converged Fitting Repeat 4 # weights: 305 initial value 94.165788 iter 10 value 94.058001 iter 20 value 93.904730 iter 30 value 88.011875 iter 40 value 82.424060 iter 50 value 82.423884 iter 50 value 82.423884 iter 50 value 82.423884 final value 82.423884 converged Fitting Repeat 5 # weights: 305 initial value 102.228402 iter 10 value 93.587715 iter 20 value 93.583895 iter 30 value 92.782999 iter 40 value 88.121083 iter 50 value 88.006526 iter 50 value 88.006525 iter 50 value 88.006525 final value 88.006525 converged Fitting Repeat 1 # weights: 507 initial value 120.977759 iter 10 value 91.175768 iter 20 value 91.169363 iter 30 value 90.733628 iter 40 value 90.541940 iter 50 value 90.425340 iter 60 value 90.325428 iter 70 value 90.303739 iter 80 value 90.268935 iter 90 value 90.255020 iter 100 value 90.254911 final value 90.254911 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.197195 iter 10 value 93.856923 iter 20 value 92.718369 iter 30 value 92.714651 iter 40 value 92.677632 iter 50 value 92.675204 iter 60 value 84.546629 iter 70 value 83.090755 iter 80 value 80.478590 iter 90 value 79.752097 iter 100 value 78.810210 final value 78.810210 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.949399 iter 10 value 93.886664 iter 20 value 93.878424 iter 30 value 93.318472 iter 40 value 93.273647 iter 50 value 84.807519 iter 60 value 82.372791 iter 70 value 82.144753 iter 80 value 82.134589 iter 90 value 82.128783 iter 100 value 82.126095 final value 82.126095 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.994066 iter 10 value 91.303970 iter 20 value 91.225992 iter 30 value 90.894566 iter 40 value 90.883894 iter 50 value 90.881700 iter 60 value 90.552071 iter 70 value 90.548999 iter 80 value 90.545780 iter 90 value 90.165980 iter 100 value 89.975664 final value 89.975664 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.332992 iter 10 value 93.912735 iter 20 value 93.104323 iter 30 value 93.103889 iter 40 value 93.055728 iter 50 value 91.047241 iter 60 value 82.588021 iter 70 value 81.863226 iter 80 value 81.477210 iter 90 value 81.359297 iter 100 value 81.351253 final value 81.351253 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.440040 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.009920 final value 94.467391 converged Fitting Repeat 3 # weights: 103 initial value 107.806937 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.253596 final value 94.467391 converged Fitting Repeat 5 # weights: 103 initial value 96.697919 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.591791 iter 10 value 94.467397 final value 94.467391 converged Fitting Repeat 2 # weights: 305 initial value 100.653441 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.380189 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.933111 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 111.981102 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 127.921963 iter 10 value 94.467391 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 107.503007 iter 10 value 88.274150 iter 20 value 87.744325 iter 30 value 87.741096 final value 87.740932 converged Fitting Repeat 3 # weights: 507 initial value 107.870271 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.234063 iter 10 value 88.727084 final value 88.726318 converged Fitting Repeat 5 # weights: 507 initial value 99.790630 final value 94.064368 converged Fitting Repeat 1 # weights: 103 initial value 106.967124 iter 10 value 94.002121 iter 20 value 89.793798 iter 30 value 86.355934 iter 40 value 85.441843 iter 50 value 85.195745 iter 60 value 84.735180 iter 70 value 84.185610 iter 80 value 84.088888 final value 84.088686 converged Fitting Repeat 2 # weights: 103 initial value 101.896093 iter 10 value 94.477177 iter 20 value 92.857933 iter 30 value 89.572687 iter 40 value 86.773394 iter 50 value 85.035150 iter 60 value 82.587464 iter 70 value 82.158726 iter 80 value 81.814672 iter 90 value 81.761776 iter 100 value 81.695798 final value 81.695798 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.123280 iter 10 value 94.537712 iter 20 value 94.485141 iter 30 value 90.359165 iter 40 value 87.823120 iter 50 value 87.472205 iter 60 value 86.616863 iter 70 value 85.952970 final value 85.931146 converged Fitting Repeat 4 # weights: 103 initial value 100.180321 iter 10 value 94.391357 iter 20 value 88.931083 iter 30 value 88.289524 iter 40 value 84.694605 iter 50 value 83.793135 iter 60 value 83.693328 iter 70 value 83.617606 iter 80 value 83.543719 iter 90 value 83.410222 iter 100 value 82.837066 final value 82.837066 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.192540 iter 10 value 94.485616 iter 20 value 94.158213 iter 30 value 88.120831 iter 40 value 85.072052 iter 50 value 84.922565 iter 60 value 84.693979 iter 70 value 83.939812 iter 80 value 83.670316 iter 90 value 83.634046 final value 83.627339 converged Fitting Repeat 1 # weights: 305 initial value 99.658167 iter 10 value 94.352098 iter 20 value 92.693074 iter 30 value 90.815121 iter 40 value 88.964531 iter 50 value 85.655250 iter 60 value 82.609903 iter 70 value 81.716124 iter 80 value 81.256505 iter 90 value 80.992577 iter 100 value 80.811480 final value 80.811480 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.763301 iter 10 value 94.514757 iter 20 value 94.412747 iter 30 value 91.860872 iter 40 value 89.290301 iter 50 value 84.263583 iter 60 value 83.209314 iter 70 value 82.707803 iter 80 value 82.246964 iter 90 value 81.929589 iter 100 value 81.537172 final value 81.537172 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.172233 iter 10 value 94.663966 iter 20 value 93.738703 iter 30 value 88.212825 iter 40 value 86.432054 iter 50 value 82.699402 iter 60 value 81.538608 iter 70 value 81.103827 iter 80 value 80.741258 iter 90 value 80.534750 iter 100 value 80.366348 final value 80.366348 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.358527 iter 10 value 94.487931 iter 20 value 93.241624 iter 30 value 86.732979 iter 40 value 84.309634 iter 50 value 83.948048 iter 60 value 83.027641 iter 70 value 82.646300 iter 80 value 81.395626 iter 90 value 81.244296 iter 100 value 81.160500 final value 81.160500 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.967661 iter 10 value 92.724715 iter 20 value 85.057121 iter 30 value 84.075635 iter 40 value 83.961019 iter 50 value 82.276907 iter 60 value 82.044595 iter 70 value 81.840827 iter 80 value 81.789889 iter 90 value 81.632198 iter 100 value 81.377836 final value 81.377836 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.591038 iter 10 value 94.173661 iter 20 value 88.364447 iter 30 value 87.434096 iter 40 value 87.192509 iter 50 value 85.305042 iter 60 value 83.563619 iter 70 value 82.974422 iter 80 value 81.598765 iter 90 value 81.325991 iter 100 value 81.023758 final value 81.023758 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.788261 iter 10 value 94.591382 iter 20 value 91.190038 iter 30 value 85.861100 iter 40 value 83.888593 iter 50 value 82.737299 iter 60 value 82.539514 iter 70 value 81.603359 iter 80 value 81.061298 iter 90 value 80.736949 iter 100 value 80.517442 final value 80.517442 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.764943 iter 10 value 94.612844 iter 20 value 92.047129 iter 30 value 90.912864 iter 40 value 87.295333 iter 50 value 82.452311 iter 60 value 81.487872 iter 70 value 81.295845 iter 80 value 81.136226 iter 90 value 80.955324 iter 100 value 80.765239 final value 80.765239 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.518508 iter 10 value 94.584130 iter 20 value 89.680128 iter 30 value 87.995473 iter 40 value 85.651747 iter 50 value 85.194716 iter 60 value 84.984815 iter 70 value 84.013251 iter 80 value 83.346202 iter 90 value 82.267392 iter 100 value 82.022290 final value 82.022290 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.499680 iter 10 value 93.926810 iter 20 value 87.225406 iter 30 value 86.360271 iter 40 value 83.802743 iter 50 value 83.510699 iter 60 value 82.520787 iter 70 value 82.366191 iter 80 value 82.215133 iter 90 value 82.134709 iter 100 value 81.906097 final value 81.906097 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.042984 final value 94.485779 converged Fitting Repeat 2 # weights: 103 initial value 96.403155 final value 94.486023 converged Fitting Repeat 3 # weights: 103 initial value 102.144253 final value 94.485726 converged Fitting Repeat 4 # weights: 103 initial value 101.888210 final value 94.485938 converged Fitting Repeat 5 # weights: 103 initial value 100.841716 final value 94.485786 converged Fitting Repeat 1 # weights: 305 initial value 104.815066 iter 10 value 94.489001 iter 20 value 94.470860 final value 94.467688 converged Fitting Repeat 2 # weights: 305 initial value 97.380855 iter 10 value 94.489192 iter 20 value 94.436252 iter 30 value 90.910165 iter 40 value 85.576955 iter 50 value 85.514291 iter 60 value 85.219847 final value 85.211584 converged Fitting Repeat 3 # weights: 305 initial value 98.127205 iter 10 value 94.378005 iter 20 value 92.996795 iter 30 value 83.770495 iter 40 value 83.532503 iter 50 value 83.531464 iter 60 value 83.531329 iter 70 value 83.531128 iter 80 value 83.530999 iter 90 value 83.530804 iter 100 value 82.476986 final value 82.476986 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.680677 iter 10 value 94.267216 iter 20 value 94.265176 iter 30 value 93.969120 iter 40 value 87.272663 iter 50 value 87.236065 final value 87.235895 converged Fitting Repeat 5 # weights: 305 initial value 113.089758 iter 10 value 94.489433 iter 20 value 94.423925 iter 30 value 84.878513 iter 40 value 84.871307 iter 50 value 84.864027 iter 60 value 84.862961 iter 70 value 83.570052 iter 80 value 83.375289 iter 90 value 81.713039 iter 100 value 80.004261 final value 80.004261 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 138.109094 iter 10 value 94.493213 iter 20 value 94.335870 iter 30 value 83.020085 iter 40 value 82.918130 iter 50 value 82.915875 iter 60 value 82.914971 iter 70 value 82.912629 iter 80 value 82.911617 iter 90 value 82.909771 final value 82.909159 converged Fitting Repeat 2 # weights: 507 initial value 111.069923 iter 10 value 94.500697 iter 20 value 94.369405 iter 30 value 91.281119 iter 40 value 86.780084 iter 50 value 86.761861 iter 60 value 85.063114 iter 70 value 84.096027 iter 80 value 84.003605 iter 90 value 83.911416 iter 100 value 83.910456 final value 83.910456 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.247086 iter 10 value 94.475011 iter 20 value 94.447684 iter 30 value 89.713606 iter 40 value 89.679578 iter 50 value 89.295299 iter 60 value 88.857977 iter 70 value 88.558032 iter 80 value 86.077607 iter 90 value 86.009438 iter 100 value 86.008015 final value 86.008015 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.318914 iter 10 value 94.492437 iter 20 value 94.486954 iter 30 value 94.478804 final value 94.467452 converged Fitting Repeat 5 # weights: 507 initial value 103.093825 iter 10 value 94.490705 iter 20 value 94.471282 iter 30 value 94.240117 iter 40 value 94.203124 iter 50 value 93.364996 iter 60 value 84.867318 iter 70 value 83.910163 iter 80 value 81.807796 iter 90 value 81.040625 iter 100 value 80.909511 final value 80.909511 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 125.474619 iter 10 value 117.870899 iter 20 value 117.850705 iter 30 value 112.986128 iter 40 value 106.187846 iter 50 value 105.074323 iter 60 value 104.941111 final value 104.936230 converged Fitting Repeat 2 # weights: 305 initial value 131.685043 iter 10 value 114.665743 iter 20 value 107.585377 iter 30 value 107.054795 iter 40 value 105.696195 final value 105.673757 converged Fitting Repeat 3 # weights: 305 initial value 122.622015 iter 10 value 117.554747 iter 20 value 117.532180 iter 30 value 115.492827 iter 40 value 114.803776 iter 50 value 114.797840 iter 60 value 104.830333 iter 70 value 103.974377 final value 103.974143 converged Fitting Repeat 4 # weights: 305 initial value 122.909970 iter 10 value 117.763810 iter 20 value 117.733093 iter 30 value 117.729403 iter 40 value 117.728526 iter 40 value 117.728525 iter 40 value 117.728525 final value 117.728525 converged Fitting Repeat 5 # weights: 305 initial value 122.871591 iter 10 value 117.763695 iter 20 value 117.759703 final value 117.759648 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 31 22:14:32 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 48.985 1.680 100.816
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 52.466 | 1.743 | 54.260 | |
FreqInteractors | 0.255 | 0.014 | 0.269 | |
calculateAAC | 0.044 | 0.009 | 0.053 | |
calculateAutocor | 0.431 | 0.065 | 0.496 | |
calculateCTDC | 0.078 | 0.008 | 0.086 | |
calculateCTDD | 0.554 | 0.035 | 0.589 | |
calculateCTDT | 0.249 | 0.013 | 0.262 | |
calculateCTriad | 0.452 | 0.032 | 0.484 | |
calculateDC | 0.098 | 0.011 | 0.109 | |
calculateF | 0.213 | 0.012 | 0.227 | |
calculateKSAAP | 0.047 | 0.006 | 0.053 | |
calculateQD_Sm | 1.472 | 0.141 | 1.619 | |
calculateTC | 1.668 | 0.159 | 1.828 | |
calculateTC_Sm | 0.293 | 0.016 | 0.309 | |
corr_plot | 53.632 | 1.925 | 55.619 | |
enrichfindP | 0.498 | 0.075 | 9.501 | |
enrichfind_hp | 0.067 | 0.014 | 0.791 | |
enrichplot | 0.383 | 0.009 | 0.393 | |
filter_missing_values | 0.001 | 0.001 | 0.001 | |
getFASTA | 0.063 | 0.010 | 1.057 | |
getHPI | 0.000 | 0.001 | 0.001 | |
get_negativePPI | 0.000 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.035 | 0.004 | 0.041 | |
pred_ensembel | 16.703 | 0.490 | 15.135 | |
var_imp | 54.532 | 1.897 | 56.465 | |