Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-09 12:06 -0500 (Thu, 09 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4744
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4487
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4515
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4467
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4358
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-01-02 13:00 -0500 (Thu, 02 Jan 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    ERROR  skipped


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-01-03 02:37:23 -0500 (Fri, 03 Jan 2025)
EndedAt: 2025-01-03 02:42:41 -0500 (Fri, 03 Jan 2025)
EllapsedTime: 317.5 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.2 (2024-10-31 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      34.77   1.87   36.84
var_imp       34.96   1.33   36.29
corr_plot     31.59   1.54   33.22
pred_ensembel 13.75   0.27   13.55
enrichfindP    0.65   0.06   14.96
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 96.448696 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.646069 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.149338 
iter  10 value 94.228678
iter  10 value 94.228678
iter  10 value 94.228678
final  value 94.228678 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.163525 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.650185 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.126085 
iter  10 value 94.411959
iter  20 value 90.253926
iter  30 value 89.404105
iter  40 value 88.508413
iter  50 value 88.490150
final  value 88.489561 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.002585 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.808478 
final  value 94.252920 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.202782 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.728143 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.367117 
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.943104 
final  value 94.275362 
converged
Fitting Repeat 3 

# weights:  507
initial  value 113.555504 
iter  10 value 94.058705
final  value 94.057229 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.840217 
iter  10 value 91.186453
iter  20 value 86.803431
iter  30 value 84.148769
iter  40 value 82.601496
iter  50 value 82.567532
iter  60 value 82.295102
iter  70 value 81.886139
final  value 81.869472 
converged
Fitting Repeat 5 

# weights:  507
initial  value 123.849858 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.687840 
iter  10 value 94.422626
iter  20 value 91.426700
iter  30 value 87.444390
iter  40 value 87.111904
iter  50 value 86.411865
iter  60 value 85.797287
iter  70 value 85.461182
iter  80 value 85.448715
iter  90 value 85.412043
final  value 85.409951 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.253008 
iter  10 value 94.495478
iter  20 value 94.345343
iter  30 value 94.327314
iter  40 value 94.267186
iter  50 value 94.076709
iter  60 value 94.015531
iter  70 value 91.704788
iter  80 value 87.718711
iter  90 value 87.422847
iter 100 value 85.611540
final  value 85.611540 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 103.277699 
iter  10 value 94.449800
iter  20 value 91.900413
iter  30 value 88.544324
iter  40 value 88.281364
iter  50 value 88.105994
iter  60 value 87.154679
iter  70 value 86.745059
iter  80 value 86.487639
iter  90 value 86.350725
final  value 86.349068 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.746867 
iter  10 value 94.474538
iter  20 value 94.242085
iter  30 value 94.127775
iter  40 value 94.118252
iter  50 value 94.117478
iter  60 value 94.116386
iter  70 value 93.660677
iter  80 value 91.122980
iter  90 value 90.405164
iter 100 value 90.345640
final  value 90.345640 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 105.722380 
iter  10 value 94.474457
iter  20 value 93.042316
iter  30 value 91.498373
iter  40 value 91.349182
iter  50 value 89.898992
iter  60 value 87.840791
iter  70 value 87.501353
iter  80 value 87.137858
iter  90 value 85.548547
iter 100 value 84.925122
final  value 84.925122 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 128.121393 
iter  10 value 104.691860
iter  20 value 99.921783
iter  30 value 86.696556
iter  40 value 86.111534
iter  50 value 85.437012
iter  60 value 85.376359
iter  70 value 85.160126
iter  80 value 84.531137
iter  90 value 83.515008
iter 100 value 83.319628
final  value 83.319628 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.963561 
iter  10 value 95.114766
iter  20 value 89.050240
iter  30 value 85.671975
iter  40 value 85.466277
iter  50 value 85.147150
iter  60 value 85.124303
iter  70 value 84.933921
iter  80 value 83.324359
iter  90 value 82.491590
iter 100 value 82.406024
final  value 82.406024 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.766559 
iter  10 value 93.725460
iter  20 value 87.782560
iter  30 value 87.230140
iter  40 value 85.173996
iter  50 value 84.762359
iter  60 value 84.296732
iter  70 value 83.385233
iter  80 value 82.666641
iter  90 value 82.159268
iter 100 value 82.026089
final  value 82.026089 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.867391 
iter  10 value 95.247746
iter  20 value 94.665754
iter  30 value 94.320971
iter  40 value 93.377245
iter  50 value 89.041724
iter  60 value 88.063443
iter  70 value 84.615019
iter  80 value 83.803850
iter  90 value 83.227883
iter 100 value 82.948861
final  value 82.948861 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.075956 
iter  10 value 94.357187
iter  20 value 89.006050
iter  30 value 85.951236
iter  40 value 84.451221
iter  50 value 84.021301
iter  60 value 82.700759
iter  70 value 82.103554
iter  80 value 81.802393
iter  90 value 81.559851
iter 100 value 81.471803
final  value 81.471803 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.137148 
iter  10 value 94.236962
iter  20 value 91.846435
iter  30 value 86.460093
iter  40 value 86.069122
iter  50 value 85.258348
iter  60 value 84.634010
iter  70 value 83.227784
iter  80 value 82.940841
iter  90 value 82.627895
iter 100 value 82.311868
final  value 82.311868 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.303803 
iter  10 value 94.813639
iter  20 value 88.682089
iter  30 value 84.668727
iter  40 value 84.599266
iter  50 value 83.839645
iter  60 value 83.160793
iter  70 value 82.763530
iter  80 value 82.488862
iter  90 value 82.117281
iter 100 value 81.838403
final  value 81.838403 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.865516 
iter  10 value 95.452266
iter  20 value 94.412738
iter  30 value 91.506723
iter  40 value 88.761858
iter  50 value 86.282268
iter  60 value 83.984018
iter  70 value 83.294126
iter  80 value 82.976170
iter  90 value 82.858291
iter 100 value 82.559415
final  value 82.559415 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 117.785607 
iter  10 value 95.673501
iter  20 value 94.220866
iter  30 value 91.865695
iter  40 value 89.469125
iter  50 value 88.216284
iter  60 value 87.119315
iter  70 value 84.965556
iter  80 value 83.661285
iter  90 value 82.762016
iter 100 value 82.305977
final  value 82.305977 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 128.989849 
iter  10 value 94.388416
iter  20 value 94.089200
iter  30 value 92.365607
iter  40 value 87.463052
iter  50 value 85.294980
iter  60 value 84.783551
iter  70 value 84.473844
iter  80 value 84.349167
iter  90 value 84.078941
iter 100 value 83.853207
final  value 83.853207 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.125026 
iter  10 value 94.277310
iter  20 value 94.260547
iter  30 value 94.087174
iter  40 value 94.083938
iter  50 value 94.083904
final  value 94.083901 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.400212 
final  value 94.485769 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.228425 
iter  10 value 94.277433
iter  20 value 94.248161
iter  30 value 94.229025
final  value 94.228879 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.274329 
iter  10 value 94.485960
final  value 94.484218 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.386303 
iter  10 value 94.485764
iter  20 value 94.484218
final  value 94.484213 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.814947 
iter  10 value 94.486694
iter  20 value 94.112790
final  value 94.050234 
converged
Fitting Repeat 2 

# weights:  305
initial  value 112.806153 
iter  10 value 94.489369
iter  20 value 94.433487
iter  30 value 92.782857
iter  40 value 91.755178
iter  50 value 91.662264
iter  60 value 91.640252
iter  70 value 88.644419
iter  80 value 87.208308
iter  90 value 87.084498
iter 100 value 87.081872
final  value 87.081872 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.048748 
iter  10 value 94.489542
iter  20 value 94.481399
iter  30 value 90.210004
final  value 87.652549 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.478608 
iter  10 value 94.280432
iter  20 value 94.276104
final  value 94.275662 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.208306 
iter  10 value 93.970212
iter  20 value 93.901957
final  value 93.873431 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.412893 
iter  10 value 94.093679
iter  20 value 94.062552
iter  30 value 94.057035
final  value 94.053769 
converged
Fitting Repeat 2 

# weights:  507
initial  value 169.801965 
iter  10 value 92.109394
iter  20 value 87.447112
iter  30 value 87.442068
iter  40 value 87.438694
iter  50 value 86.733960
iter  60 value 84.002759
iter  70 value 81.914710
iter  80 value 80.256373
iter  90 value 80.104919
iter 100 value 80.102621
final  value 80.102621 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.710766 
iter  10 value 94.485175
iter  20 value 94.192450
iter  30 value 94.100501
final  value 94.084339 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.434203 
iter  10 value 94.283464
iter  20 value 94.276321
iter  30 value 93.585549
iter  40 value 90.335805
iter  50 value 85.843375
iter  60 value 85.364003
iter  70 value 85.029272
iter  80 value 83.964812
iter  90 value 83.391100
final  value 83.390740 
converged
Fitting Repeat 5 

# weights:  507
initial  value 125.963086 
iter  10 value 94.283818
iter  20 value 94.279275
iter  30 value 94.153568
iter  40 value 88.223228
iter  50 value 88.213569
iter  60 value 87.354500
iter  70 value 85.752932
iter  80 value 85.675178
iter  90 value 85.675094
iter 100 value 85.674353
final  value 85.674353 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.582769 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.113879 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.160474 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 116.221375 
final  value 94.052911 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.240065 
iter  10 value 92.838625
iter  20 value 92.830891
iter  30 value 91.944690
iter  40 value 91.857360
iter  50 value 91.270036
iter  60 value 91.250774
final  value 91.250752 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.643712 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.201989 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 93.889071 
iter  10 value 92.720275
final  value 92.720270 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.472985 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.852032 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.907243 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.560317 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 94.853244 
iter  10 value 90.960765
iter  20 value 81.255827
iter  30 value 81.158387
final  value 81.158121 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.168397 
final  value 93.628453 
converged
Fitting Repeat 5 

# weights:  507
initial  value 123.485612 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.397888 
iter  10 value 94.063428
iter  20 value 88.861215
iter  30 value 85.404049
iter  40 value 84.679211
iter  50 value 84.428012
iter  60 value 84.221424
iter  70 value 84.081299
iter  80 value 83.791853
final  value 83.776320 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.352829 
iter  10 value 93.613245
iter  20 value 85.195535
iter  30 value 84.622601
iter  40 value 84.410299
iter  50 value 84.318872
iter  60 value 83.816846
final  value 83.776320 
converged
Fitting Repeat 3 

# weights:  103
initial  value 122.112912 
iter  10 value 93.937564
iter  20 value 91.568668
iter  30 value 91.310459
iter  40 value 91.297576
iter  50 value 91.032355
iter  60 value 86.702282
iter  70 value 82.983705
iter  80 value 82.693455
iter  90 value 82.596808
iter 100 value 82.549072
final  value 82.549072 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.185122 
iter  10 value 94.057424
iter  20 value 91.540140
iter  30 value 89.691810
iter  40 value 89.471870
iter  50 value 88.732055
iter  60 value 87.891924
iter  70 value 86.203417
iter  80 value 84.249251
iter  90 value 84.153947
iter 100 value 84.046330
final  value 84.046330 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 112.311199 
iter  10 value 94.219668
iter  20 value 93.572702
iter  30 value 87.232426
iter  40 value 86.038330
iter  50 value 84.639534
iter  60 value 84.192219
iter  70 value 83.895086
iter  80 value 83.776320
iter  80 value 83.776320
iter  80 value 83.776320
final  value 83.776320 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.934080 
iter  10 value 94.439262
iter  20 value 90.984467
iter  30 value 84.006963
iter  40 value 83.329962
iter  50 value 82.679236
iter  60 value 82.399874
iter  70 value 81.643219
iter  80 value 80.792596
iter  90 value 79.791855
iter 100 value 79.413890
final  value 79.413890 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.846823 
iter  10 value 93.985222
iter  20 value 87.799655
iter  30 value 86.698609
iter  40 value 85.775100
iter  50 value 84.497984
iter  60 value 81.813491
iter  70 value 81.293235
iter  80 value 79.906419
iter  90 value 79.751964
iter 100 value 79.662567
final  value 79.662567 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.087614 
iter  10 value 92.513511
iter  20 value 85.660382
iter  30 value 83.790620
iter  40 value 82.257678
iter  50 value 80.963350
iter  60 value 80.392610
iter  70 value 80.076966
iter  80 value 79.982247
iter  90 value 79.809577
iter 100 value 79.562490
final  value 79.562490 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.841635 
iter  10 value 94.080922
iter  20 value 90.135509
iter  30 value 85.417127
iter  40 value 85.193202
iter  50 value 84.184042
iter  60 value 82.026126
iter  70 value 80.860907
iter  80 value 80.241838
iter  90 value 80.142557
iter 100 value 80.090736
final  value 80.090736 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 129.990044 
iter  10 value 93.868801
iter  20 value 92.798523
iter  30 value 88.484751
iter  40 value 83.746194
iter  50 value 82.285763
iter  60 value 81.242603
iter  70 value 80.527176
iter  80 value 79.869485
iter  90 value 79.513109
iter 100 value 79.336449
final  value 79.336449 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 128.276850 
iter  10 value 94.233713
iter  20 value 88.112920
iter  30 value 86.365912
iter  40 value 84.840277
iter  50 value 83.948732
iter  60 value 83.740193
iter  70 value 82.129083
iter  80 value 81.314046
iter  90 value 80.620066
iter 100 value 80.206810
final  value 80.206810 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 123.489698 
iter  10 value 94.153915
iter  20 value 94.061144
iter  30 value 92.165892
iter  40 value 85.139350
iter  50 value 84.215795
iter  60 value 81.149093
iter  70 value 80.375373
iter  80 value 79.869444
iter  90 value 79.719911
iter 100 value 79.502638
final  value 79.502638 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.259290 
iter  10 value 94.021173
iter  20 value 93.047135
iter  30 value 84.883351
iter  40 value 84.119897
iter  50 value 81.533321
iter  60 value 80.861306
iter  70 value 80.478672
iter  80 value 80.113288
iter  90 value 79.942527
iter 100 value 79.704827
final  value 79.704827 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 123.264398 
iter  10 value 94.591192
iter  20 value 87.375958
iter  30 value 86.496949
iter  40 value 83.255170
iter  50 value 81.479790
iter  60 value 81.103704
iter  70 value 80.100448
iter  80 value 79.598173
iter  90 value 79.247440
iter 100 value 79.146938
final  value 79.146938 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.758657 
iter  10 value 94.578750
iter  20 value 94.011600
iter  30 value 93.316680
iter  40 value 88.364880
iter  50 value 84.629110
iter  60 value 82.280940
iter  70 value 81.186952
iter  80 value 80.775247
iter  90 value 80.379298
iter 100 value 80.260455
final  value 80.260455 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.648510 
final  value 94.039847 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.495400 
final  value 94.054541 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.931710 
final  value 94.054522 
converged
Fitting Repeat 4 

# weights:  103
initial  value 111.956051 
iter  10 value 94.054558
iter  20 value 94.052973
final  value 94.052916 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.165085 
final  value 94.039663 
converged
Fitting Repeat 1 

# weights:  305
initial  value 113.332445 
iter  10 value 94.057319
iter  20 value 94.041039
iter  30 value 93.785045
iter  40 value 83.786382
iter  50 value 81.750135
iter  60 value 81.427762
iter  70 value 81.386706
iter  80 value 81.386410
final  value 81.386401 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.054828 
iter  10 value 94.058248
iter  20 value 93.932459
iter  30 value 89.605793
iter  40 value 88.650931
iter  50 value 88.529484
iter  60 value 88.390613
iter  70 value 88.189531
iter  80 value 84.894730
iter  90 value 84.839318
iter 100 value 83.535172
final  value 83.535172 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.250007 
iter  10 value 94.057904
iter  20 value 93.481956
iter  30 value 87.137968
iter  40 value 87.062223
iter  50 value 85.330453
iter  60 value 84.311827
iter  70 value 84.294723
iter  80 value 83.279966
iter  90 value 83.067711
iter 100 value 83.067426
final  value 83.067426 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.523684 
iter  10 value 94.057911
iter  20 value 94.048467
iter  30 value 90.983787
iter  40 value 83.224462
iter  50 value 82.880415
iter  60 value 81.849660
iter  70 value 81.631980
iter  80 value 81.428469
iter  90 value 81.389912
iter 100 value 81.389528
final  value 81.389528 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.512667 
iter  10 value 91.784813
iter  20 value 84.577117
iter  30 value 84.018586
iter  40 value 83.713098
iter  50 value 83.712395
iter  60 value 83.711758
final  value 83.710938 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.472671 
iter  10 value 94.057446
iter  20 value 90.500730
iter  30 value 85.453305
iter  40 value 85.226042
final  value 85.129947 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.311665 
iter  10 value 93.966528
iter  20 value 91.077244
iter  30 value 90.802949
iter  40 value 90.798911
iter  50 value 90.255608
iter  60 value 90.100228
iter  70 value 90.098956
iter  80 value 90.068882
iter  90 value 90.008829
iter 100 value 90.006400
final  value 90.006400 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 94.506495 
iter  10 value 93.270970
iter  20 value 93.266034
iter  30 value 91.206979
iter  40 value 90.846610
iter  50 value 81.687481
final  value 81.672892 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.517568 
iter  10 value 94.046653
iter  20 value 94.036355
iter  30 value 94.009287
iter  40 value 87.011579
iter  50 value 86.899631
iter  60 value 80.147060
iter  70 value 79.238468
iter  80 value 78.870883
iter  90 value 78.865995
iter 100 value 78.806286
final  value 78.806286 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 121.451572 
iter  10 value 89.089480
iter  20 value 85.038665
iter  30 value 82.234636
iter  40 value 80.561291
iter  50 value 80.513030
iter  60 value 80.330403
iter  70 value 80.032205
iter  80 value 79.803286
iter  90 value 79.789357
iter 100 value 79.788951
final  value 79.788951 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.492769 
iter  10 value 93.320229
final  value 93.320225 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.861887 
iter  10 value 91.934041
iter  20 value 91.930427
iter  30 value 91.786273
iter  40 value 91.725299
iter  50 value 89.124206
iter  60 value 88.854635
iter  70 value 88.850853
final  value 88.850842 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.800185 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.300761 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.276791 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.078261 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.396407 
iter  10 value 92.579686
final  value 92.579683 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.737601 
final  value 94.467391 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.703825 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.860453 
final  value 94.467391 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.884083 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 118.514332 
iter  10 value 94.467553
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.752195 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 108.884636 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 131.585351 
final  value 94.467391 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.596357 
iter  10 value 94.848454
iter  20 value 94.471816
iter  30 value 83.843252
iter  40 value 82.808450
iter  50 value 82.495880
iter  60 value 82.258640
iter  70 value 81.884826
iter  80 value 81.873233
final  value 81.873104 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.414111 
iter  10 value 94.486456
iter  20 value 94.259865
iter  30 value 93.248813
iter  40 value 92.707508
iter  50 value 83.830334
iter  60 value 82.767150
iter  70 value 82.534571
iter  80 value 82.440267
iter  90 value 82.300777
final  value 82.297439 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.774791 
iter  10 value 94.488524
iter  20 value 93.512655
iter  30 value 93.473573
final  value 93.472503 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.606803 
iter  10 value 94.648530
iter  20 value 94.459040
iter  30 value 89.172404
iter  40 value 85.636546
iter  50 value 83.710802
iter  60 value 82.760347
iter  70 value 82.542513
iter  80 value 82.508707
final  value 82.508685 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.091166 
iter  10 value 94.439349
iter  20 value 93.690073
iter  30 value 93.490562
iter  40 value 93.481565
iter  50 value 83.943925
iter  60 value 82.756836
iter  70 value 81.697363
iter  80 value 79.950515
iter  90 value 79.767976
iter 100 value 79.756196
final  value 79.756196 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 100.581243 
iter  10 value 92.965386
iter  20 value 92.760600
iter  30 value 87.607250
iter  40 value 82.883811
iter  50 value 82.308606
iter  60 value 81.940823
iter  70 value 80.272219
iter  80 value 79.799699
iter  90 value 79.273474
iter 100 value 78.830163
final  value 78.830163 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 128.978238 
iter  10 value 94.894558
iter  20 value 94.589110
iter  30 value 88.429955
iter  40 value 87.154448
iter  50 value 86.388813
iter  60 value 86.190463
iter  70 value 86.002699
iter  80 value 85.670320
iter  90 value 85.257156
iter 100 value 85.136661
final  value 85.136661 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.166368 
iter  10 value 93.907299
iter  20 value 89.715189
iter  30 value 85.828492
iter  40 value 84.493187
iter  50 value 83.333337
iter  60 value 80.739363
iter  70 value 80.291949
iter  80 value 80.166791
iter  90 value 79.666615
iter 100 value 78.992864
final  value 78.992864 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.786864 
iter  10 value 89.610322
iter  20 value 82.797230
iter  30 value 82.347166
iter  40 value 82.229961
iter  50 value 81.238596
iter  60 value 79.780341
iter  70 value 78.795321
iter  80 value 78.622050
iter  90 value 78.357170
iter 100 value 78.113065
final  value 78.113065 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.051629 
iter  10 value 94.430318
iter  20 value 93.114499
iter  30 value 93.018134
iter  40 value 91.046813
iter  50 value 89.916388
iter  60 value 84.884245
iter  70 value 83.054496
iter  80 value 81.822903
iter  90 value 80.941635
iter 100 value 80.738338
final  value 80.738338 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.505890 
iter  10 value 94.231030
iter  20 value 87.743376
iter  30 value 84.692777
iter  40 value 81.333676
iter  50 value 80.052342
iter  60 value 79.252794
iter  70 value 78.895182
iter  80 value 78.402151
iter  90 value 78.214238
iter 100 value 78.188343
final  value 78.188343 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.582898 
iter  10 value 93.756964
iter  20 value 84.408638
iter  30 value 82.745856
iter  40 value 82.461318
iter  50 value 81.048676
iter  60 value 80.322052
iter  70 value 79.233466
iter  80 value 78.714653
iter  90 value 78.596742
iter 100 value 78.492429
final  value 78.492429 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 113.920642 
iter  10 value 94.440501
iter  20 value 91.426520
iter  30 value 86.370386
iter  40 value 84.069444
iter  50 value 80.397495
iter  60 value 78.836893
iter  70 value 78.309426
iter  80 value 78.147233
iter  90 value 77.753474
iter 100 value 77.583714
final  value 77.583714 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.905747 
iter  10 value 93.914136
iter  20 value 83.670376
iter  30 value 82.319346
iter  40 value 81.983103
iter  50 value 81.910906
iter  60 value 81.803997
iter  70 value 81.477066
iter  80 value 80.017347
iter  90 value 79.697516
iter 100 value 79.568879
final  value 79.568879 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.492402 
iter  10 value 94.506456
iter  20 value 93.630896
iter  30 value 83.291601
iter  40 value 82.268638
iter  50 value 81.798793
iter  60 value 81.558745
iter  70 value 80.984352
iter  80 value 80.388546
iter  90 value 80.166431
iter 100 value 79.715219
final  value 79.715219 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.062346 
iter  10 value 94.468927
iter  20 value 94.301999
iter  30 value 91.381132
iter  40 value 90.474177
iter  50 value 82.681844
iter  60 value 82.580595
iter  70 value 82.453129
iter  80 value 82.431194
final  value 82.431158 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.238616 
final  value 94.485795 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.647153 
final  value 94.485981 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.261396 
iter  10 value 93.322315
iter  20 value 93.320708
iter  30 value 92.982679
iter  40 value 85.175610
final  value 85.175434 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.011834 
iter  10 value 94.486004
iter  20 value 94.484274
iter  30 value 94.343889
final  value 93.322557 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.057595 
iter  10 value 94.466234
iter  20 value 87.743340
iter  30 value 84.144869
iter  40 value 83.958791
iter  50 value 83.955740
iter  60 value 83.890760
iter  70 value 81.071871
iter  80 value 80.942984
iter  90 value 80.913934
iter 100 value 80.475393
final  value 80.475393 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.405636 
iter  10 value 94.481860
iter  20 value 94.478090
iter  30 value 94.477862
final  value 94.477849 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.455021 
iter  10 value 94.472802
iter  20 value 94.232038
iter  30 value 93.902071
iter  40 value 93.898776
iter  50 value 92.840858
iter  60 value 92.748201
iter  70 value 92.743513
final  value 92.743392 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.782458 
iter  10 value 94.489018
iter  20 value 94.484326
iter  30 value 93.321486
iter  40 value 92.937489
iter  50 value 90.134405
iter  60 value 85.774749
iter  70 value 83.283771
iter  80 value 81.891971
iter  90 value 81.602947
iter 100 value 80.958037
final  value 80.958037 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.780028 
iter  10 value 94.488647
iter  20 value 94.399670
iter  30 value 93.275145
iter  40 value 91.505680
iter  50 value 91.470556
iter  60 value 91.470262
iter  70 value 90.055530
iter  80 value 89.936063
iter  90 value 89.935626
final  value 89.935614 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.362893 
iter  10 value 94.469508
iter  20 value 94.395328
iter  30 value 87.399047
iter  40 value 85.170832
iter  50 value 85.167168
iter  60 value 84.499857
iter  70 value 84.468640
iter  80 value 82.024362
iter  90 value 80.833882
iter 100 value 80.778668
final  value 80.778668 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.053470 
iter  10 value 93.822380
iter  20 value 93.584646
iter  30 value 93.317700
iter  40 value 93.316921
iter  50 value 93.312642
iter  60 value 92.042209
iter  70 value 85.590421
iter  80 value 84.726584
iter  90 value 84.631176
final  value 84.630939 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.451059 
iter  10 value 94.492955
iter  20 value 94.484704
iter  30 value 94.484566
final  value 94.484522 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.500958 
iter  10 value 94.486155
iter  20 value 86.429478
iter  30 value 83.950460
iter  40 value 83.788787
iter  50 value 83.619167
iter  60 value 83.611588
iter  70 value 81.431650
iter  80 value 81.197658
iter  90 value 81.010291
final  value 81.010271 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.716859 
iter  10 value 94.491657
iter  20 value 93.243881
final  value 92.614685 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.820602 
iter  10 value 94.047268
final  value 94.026542 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.107347 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.862484 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.041678 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.009552 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.111255 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.018232 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.519313 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.638542 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.142194 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 116.953788 
iter  10 value 93.847480
final  value 93.793007 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.769797 
final  value 93.300000 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.549291 
iter  10 value 94.052244
iter  20 value 87.999023
iter  30 value 87.943236
iter  30 value 87.943236
iter  30 value 87.943236
final  value 87.943236 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.004005 
iter  10 value 94.484624
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.272233 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.910616 
iter  10 value 94.459470
iter  20 value 94.134190
iter  30 value 93.586929
iter  40 value 91.827031
iter  50 value 84.311214
iter  60 value 82.632317
iter  70 value 82.566495
iter  80 value 82.034054
iter  90 value 81.595676
iter 100 value 81.297716
final  value 81.297716 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 104.277801 
iter  10 value 91.419741
iter  20 value 83.934758
iter  30 value 82.229533
iter  40 value 81.650137
iter  50 value 80.962406
iter  60 value 80.477127
iter  70 value 80.176626
iter  80 value 80.145551
final  value 80.142573 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.807554 
iter  10 value 94.879939
iter  20 value 94.467227
iter  30 value 91.583083
iter  40 value 90.880328
iter  50 value 88.401101
iter  60 value 82.370708
iter  70 value 82.217351
iter  80 value 81.989682
iter  90 value 81.968057
iter 100 value 81.954009
final  value 81.954009 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 115.047118 
iter  10 value 94.461493
iter  20 value 89.490415
iter  30 value 87.900057
iter  40 value 85.307517
iter  50 value 82.701773
iter  60 value 82.028268
iter  70 value 80.771356
iter  80 value 80.241124
iter  90 value 80.154012
iter 100 value 80.145574
final  value 80.145574 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 104.415174 
iter  10 value 91.066229
iter  20 value 85.992043
iter  30 value 83.738080
iter  40 value 83.057181
iter  50 value 82.883994
iter  60 value 82.496458
iter  70 value 82.336226
final  value 82.335144 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.597472 
iter  10 value 94.325339
iter  20 value 85.995091
iter  30 value 82.306452
iter  40 value 81.997651
iter  50 value 80.665867
iter  60 value 79.902452
iter  70 value 79.400825
iter  80 value 79.324031
iter  90 value 79.206328
iter 100 value 78.911045
final  value 78.911045 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.624202 
iter  10 value 91.223332
iter  20 value 84.301026
iter  30 value 83.811382
iter  40 value 82.059374
iter  50 value 81.820735
iter  60 value 80.742404
iter  70 value 80.505229
iter  80 value 80.331311
iter  90 value 79.692969
iter 100 value 79.334319
final  value 79.334319 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.457006 
iter  10 value 93.739096
iter  20 value 83.968934
iter  30 value 82.944656
iter  40 value 82.384773
iter  50 value 82.250484
iter  60 value 81.916888
iter  70 value 81.869523
iter  80 value 81.782839
iter  90 value 80.724648
iter 100 value 80.288489
final  value 80.288489 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.260256 
iter  10 value 93.094876
iter  20 value 83.468334
iter  30 value 83.199318
iter  40 value 82.911652
iter  50 value 82.517853
iter  60 value 82.352182
iter  70 value 82.203133
iter  80 value 82.140027
iter  90 value 82.096138
iter 100 value 82.067026
final  value 82.067026 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.656306 
iter  10 value 94.514542
iter  20 value 91.199654
iter  30 value 83.894876
iter  40 value 83.403188
iter  50 value 81.239461
iter  60 value 80.757120
iter  70 value 80.648002
iter  80 value 79.822034
iter  90 value 79.443046
iter 100 value 79.041013
final  value 79.041013 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.199154 
iter  10 value 96.689918
iter  20 value 93.658041
iter  30 value 93.456030
iter  40 value 92.257271
iter  50 value 89.082285
iter  60 value 85.602947
iter  70 value 84.821290
iter  80 value 83.704125
iter  90 value 83.136598
iter 100 value 82.389238
final  value 82.389238 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.770608 
iter  10 value 94.046747
iter  20 value 92.079953
iter  30 value 84.165762
iter  40 value 82.748833
iter  50 value 81.711683
iter  60 value 79.996901
iter  70 value 79.399178
iter  80 value 79.024773
iter  90 value 78.862283
iter 100 value 78.588033
final  value 78.588033 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.024623 
iter  10 value 93.936182
iter  20 value 88.483156
iter  30 value 84.695171
iter  40 value 84.157139
iter  50 value 81.004548
iter  60 value 80.107397
iter  70 value 79.893387
iter  80 value 79.480590
iter  90 value 79.070590
iter 100 value 79.019339
final  value 79.019339 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 126.796525 
iter  10 value 94.918953
iter  20 value 94.522202
iter  30 value 93.750966
iter  40 value 88.777685
iter  50 value 87.695066
iter  60 value 87.319815
iter  70 value 86.715236
iter  80 value 83.218897
iter  90 value 80.029635
iter 100 value 79.609960
final  value 79.609960 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.983411 
iter  10 value 93.543107
iter  20 value 83.266214
iter  30 value 82.729817
iter  40 value 82.589889
iter  50 value 81.912202
iter  60 value 81.435250
iter  70 value 81.031193
iter  80 value 80.398540
iter  90 value 79.553402
iter 100 value 79.296857
final  value 79.296857 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 107.512228 
iter  10 value 94.485853
iter  20 value 94.484303
final  value 94.484219 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.691361 
final  value 94.485974 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.242281 
iter  10 value 91.813062
iter  20 value 86.957112
iter  30 value 86.956012
iter  40 value 86.955099
final  value 86.955093 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.259445 
final  value 94.411169 
converged
Fitting Repeat 5 

# weights:  103
initial  value 115.101671 
iter  10 value 90.755938
iter  20 value 90.724496
iter  30 value 90.723704
iter  40 value 90.658793
final  value 90.623745 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.865388 
iter  10 value 94.488856
iter  20 value 94.471059
iter  30 value 83.558208
iter  40 value 83.341334
iter  50 value 82.323445
iter  60 value 81.509417
iter  70 value 81.335864
final  value 81.333449 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.431153 
iter  10 value 94.034828
iter  20 value 94.030420
final  value 94.029894 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.058383 
iter  10 value 94.489351
iter  20 value 94.484767
iter  30 value 94.370391
iter  40 value 94.180671
iter  50 value 86.599903
iter  60 value 85.651693
iter  70 value 85.197594
iter  80 value 80.955315
iter  90 value 80.952145
final  value 80.952024 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.206316 
iter  10 value 94.489016
iter  20 value 93.545312
iter  30 value 88.307894
iter  40 value 87.285516
iter  50 value 87.263064
iter  60 value 87.262486
final  value 87.262089 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.460777 
iter  10 value 94.489828
iter  20 value 94.076196
final  value 94.027281 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.162552 
iter  10 value 94.035441
iter  20 value 91.661730
iter  30 value 87.771716
iter  40 value 84.452892
iter  50 value 83.147317
iter  60 value 83.142367
iter  70 value 82.164260
iter  80 value 81.932276
iter  90 value 81.926132
iter 100 value 81.676594
final  value 81.676594 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.844816 
iter  10 value 94.035882
iter  20 value 94.032558
iter  30 value 85.208055
iter  40 value 83.097158
iter  50 value 82.686849
iter  60 value 81.834954
iter  70 value 81.336667
iter  80 value 81.335079
iter  90 value 81.326947
iter 100 value 81.319820
final  value 81.319820 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 97.484664 
iter  10 value 93.303214
iter  20 value 87.614924
iter  30 value 82.359835
iter  40 value 82.122608
iter  50 value 82.002961
iter  60 value 81.602864
iter  70 value 81.025834
iter  80 value 80.619254
iter  90 value 80.530434
iter 100 value 80.529642
final  value 80.529642 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.232140 
iter  10 value 94.489998
iter  20 value 92.254284
iter  30 value 84.218257
iter  40 value 83.406559
iter  50 value 83.404582
iter  60 value 83.090216
iter  70 value 82.977287
iter  80 value 82.957000
final  value 82.942899 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.925156 
iter  10 value 94.035234
iter  20 value 93.842347
final  value 93.809822 
converged
Fitting Repeat 1 

# weights:  103
initial  value 94.898995 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 113.399571 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.103929 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.436532 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.832396 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.850461 
iter  10 value 93.469980
final  value 93.460693 
converged
Fitting Repeat 2 

# weights:  305
initial  value 116.946663 
iter  10 value 93.582418
iter  10 value 93.582418
iter  10 value 93.582418
final  value 93.582418 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.469979 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.277413 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 128.544550 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.708004 
final  value 94.052908 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.168627 
iter  10 value 93.479840
final  value 93.460693 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.871375 
iter  10 value 93.582418
iter  10 value 93.582418
iter  10 value 93.582418
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  507
initial  value 133.753354 
final  value 93.904720 
converged
Fitting Repeat 5 

# weights:  507
initial  value 128.840927 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.790676 
iter  10 value 94.054988
iter  20 value 93.851392
iter  30 value 93.684525
iter  40 value 93.393385
iter  50 value 88.680944
iter  60 value 88.074055
iter  70 value 87.678067
iter  80 value 86.852701
iter  90 value 83.598233
iter 100 value 82.568649
final  value 82.568649 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.867419 
iter  10 value 94.054915
iter  20 value 93.211597
iter  30 value 88.439441
iter  40 value 85.024077
iter  50 value 84.731508
iter  60 value 84.228514
iter  70 value 83.651242
iter  80 value 83.517893
final  value 83.517611 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.694042 
iter  10 value 93.755901
iter  20 value 92.177697
iter  30 value 91.657139
iter  40 value 91.331452
iter  50 value 91.310609
final  value 91.310597 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.574518 
iter  10 value 94.056754
iter  20 value 85.822265
iter  30 value 85.056123
iter  40 value 84.395459
iter  50 value 83.430458
iter  60 value 83.365545
iter  70 value 83.325721
iter  80 value 83.275896
final  value 83.275796 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.586334 
iter  10 value 93.764328
iter  20 value 93.686586
iter  30 value 93.685418
iter  40 value 93.482691
iter  50 value 91.070296
iter  60 value 87.910547
iter  70 value 87.872801
iter  80 value 87.817543
iter  90 value 87.289926
iter 100 value 85.510811
final  value 85.510811 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.176734 
iter  10 value 93.592918
iter  20 value 87.704324
iter  30 value 86.564774
iter  40 value 83.329454
iter  50 value 82.193214
iter  60 value 81.709349
iter  70 value 81.478897
iter  80 value 81.262962
iter  90 value 81.195600
iter 100 value 81.174168
final  value 81.174168 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.823723 
iter  10 value 92.516358
iter  20 value 86.251207
iter  30 value 85.325033
iter  40 value 82.523816
iter  50 value 81.454440
iter  60 value 81.232384
iter  70 value 81.075181
iter  80 value 80.894726
iter  90 value 80.824056
iter 100 value 80.740958
final  value 80.740958 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.177786 
iter  10 value 93.625650
iter  20 value 84.668882
iter  30 value 83.235265
iter  40 value 81.851738
iter  50 value 81.640212
iter  60 value 81.083092
iter  70 value 80.675062
iter  80 value 80.621551
iter  90 value 80.572027
iter 100 value 80.522626
final  value 80.522626 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.826315 
iter  10 value 94.212935
iter  20 value 93.553743
iter  30 value 93.457608
iter  40 value 92.961335
iter  50 value 88.358729
iter  60 value 86.872090
iter  70 value 84.940740
iter  80 value 82.530180
iter  90 value 81.470962
iter 100 value 80.683445
final  value 80.683445 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 112.611791 
iter  10 value 94.048573
iter  20 value 87.232099
iter  30 value 84.745585
iter  40 value 83.059079
iter  50 value 82.896311
iter  60 value 82.369696
iter  70 value 82.040414
iter  80 value 81.709496
iter  90 value 81.590463
iter 100 value 81.133589
final  value 81.133589 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.545490 
iter  10 value 93.558590
iter  20 value 88.257611
iter  30 value 85.737160
iter  40 value 84.180802
iter  50 value 83.840433
iter  60 value 83.565411
iter  70 value 83.056579
iter  80 value 82.606789
iter  90 value 82.004227
iter 100 value 81.273587
final  value 81.273587 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.993431 
iter  10 value 94.213694
iter  20 value 88.449228
iter  30 value 85.876049
iter  40 value 82.275977
iter  50 value 81.833838
iter  60 value 81.483562
iter  70 value 80.873764
iter  80 value 80.781208
iter  90 value 80.638419
iter 100 value 80.595070
final  value 80.595070 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.341647 
iter  10 value 93.821275
iter  20 value 93.315058
iter  30 value 87.322931
iter  40 value 85.494628
iter  50 value 83.973088
iter  60 value 83.742633
iter  70 value 83.716116
iter  80 value 83.396303
iter  90 value 82.026027
iter 100 value 81.025827
final  value 81.025827 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.453270 
iter  10 value 93.541121
iter  20 value 91.377948
iter  30 value 84.895872
iter  40 value 83.006749
iter  50 value 82.036437
iter  60 value 81.722566
iter  70 value 81.630570
iter  80 value 81.456928
iter  90 value 81.428662
iter 100 value 81.075589
final  value 81.075589 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.315190 
iter  10 value 94.140053
iter  20 value 89.250369
iter  30 value 85.478411
iter  40 value 84.817905
iter  50 value 83.935994
iter  60 value 83.076529
iter  70 value 83.026724
iter  80 value 82.849023
iter  90 value 82.573979
iter 100 value 82.400227
final  value 82.400227 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.494544 
final  value 93.584263 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.141988 
iter  10 value 94.054714
final  value 94.052913 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.716676 
final  value 94.054691 
converged
Fitting Repeat 4 

# weights:  103
initial  value 127.768803 
final  value 94.054377 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.350322 
final  value 94.054705 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.332730 
iter  10 value 94.057653
iter  20 value 94.053077
final  value 94.053070 
converged
Fitting Repeat 2 

# weights:  305
initial  value 111.141345 
iter  10 value 94.057978
iter  20 value 93.801564
final  value 93.582648 
converged
Fitting Repeat 3 

# weights:  305
initial  value 118.679303 
iter  10 value 94.058453
iter  20 value 94.053887
iter  30 value 93.584329
final  value 93.583757 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.950390 
iter  10 value 94.058032
iter  20 value 94.053240
iter  30 value 93.628950
iter  40 value 86.428313
iter  50 value 86.272456
iter  60 value 86.271951
iter  70 value 86.271708
iter  80 value 86.271334
iter  90 value 86.270087
iter 100 value 83.592052
final  value 83.592052 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.051428 
iter  10 value 93.710823
iter  20 value 93.586937
iter  30 value 93.349368
iter  40 value 93.345694
iter  50 value 93.240544
iter  60 value 90.920762
iter  70 value 90.641871
final  value 90.615479 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.602205 
iter  10 value 94.059539
iter  20 value 87.670578
iter  30 value 87.489395
iter  40 value 87.488953
iter  40 value 87.488952
iter  40 value 87.488952
final  value 87.488952 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.109954 
iter  10 value 93.590526
iter  20 value 93.264767
iter  30 value 89.102344
iter  40 value 88.678339
iter  50 value 87.805178
iter  60 value 87.803505
final  value 87.803343 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.664384 
iter  10 value 94.038995
iter  20 value 93.590477
iter  30 value 93.586775
iter  40 value 91.506066
iter  50 value 88.494560
iter  60 value 88.334729
iter  70 value 88.330385
final  value 88.330313 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.331524 
iter  10 value 93.590933
iter  20 value 92.554952
iter  30 value 89.509741
iter  40 value 89.349670
iter  50 value 89.138523
iter  60 value 83.933595
iter  70 value 83.551531
iter  80 value 81.865065
iter  90 value 81.819738
iter  90 value 81.819737
final  value 81.819737 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.005646 
iter  10 value 94.030747
iter  20 value 91.937867
iter  30 value 91.263590
iter  40 value 86.301740
iter  50 value 86.274795
iter  60 value 86.269915
iter  70 value 85.317125
iter  80 value 83.771193
iter  90 value 83.019616
iter 100 value 83.013106
final  value 83.013106 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 121.027430 
iter  10 value 116.903799
iter  20 value 116.883546
iter  30 value 116.811405
iter  40 value 116.661412
iter  50 value 116.621647
iter  60 value 116.619191
iter  70 value 116.613018
iter  80 value 116.612355
iter  90 value 116.588987
iter 100 value 107.684335
final  value 107.684335 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 118.585479 
iter  10 value 110.245736
iter  20 value 107.011928
iter  30 value 106.785716
iter  40 value 106.784145
iter  50 value 105.607336
iter  60 value 104.937340
iter  70 value 104.834164
iter  80 value 104.228826
iter  90 value 103.754571
iter 100 value 103.753792
final  value 103.753792 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 125.824808 
iter  10 value 117.766749
iter  20 value 117.759629
iter  30 value 110.988636
iter  40 value 106.123857
iter  50 value 102.964051
iter  60 value 100.438159
iter  70 value 100.235332
iter  80 value 99.798012
iter  90 value 99.768122
iter 100 value 99.743547
final  value 99.743547 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 159.880799 
iter  10 value 117.898512
iter  20 value 117.891222
iter  30 value 108.974663
iter  40 value 107.008524
iter  50 value 107.007173
iter  60 value 105.398145
iter  70 value 103.325799
iter  80 value 100.800821
iter  90 value 100.746898
iter 100 value 100.131963
final  value 100.131963 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 123.890509 
iter  10 value 117.898394
iter  20 value 117.763951
iter  30 value 117.547920
iter  40 value 117.493398
iter  50 value 107.509663
final  value 107.008686 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Jan  3 02:42:25 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  38.29    1.42   54.20 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.77 1.8736.84
FreqInteractors0.280.070.42
calculateAAC0.060.010.13
calculateAutocor0.380.050.48
calculateCTDC0.070.010.10
calculateCTDD0.710.020.86
calculateCTDT0.260.000.26
calculateCTriad0.50.00.5
calculateDC0.160.000.16
calculateF0.420.000.42
calculateKSAAP0.090.000.09
calculateQD_Sm2.320.242.55
calculateTC1.480.111.59
calculateTC_Sm0.240.010.25
corr_plot31.59 1.5433.22
enrichfindP 0.65 0.0614.96
enrichfind_hp0.070.031.86
enrichplot0.330.010.39
filter_missing_values000
getFASTA0.000.071.95
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.100.010.11
pred_ensembel13.75 0.2713.55
var_imp34.96 1.3336.29