Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-09 12:06 -0500 (Thu, 09 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4744 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4515 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4467 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4358 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | ERROR | skipped | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-03 02:37:23 -0500 (Fri, 03 Jan 2025) |
EndedAt: 2025-01-03 02:42:41 -0500 (Fri, 03 Jan 2025) |
EllapsedTime: 317.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.2 (2024-10-31 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 34.77 1.87 36.84 var_imp 34.96 1.33 36.29 corr_plot 31.59 1.54 33.22 pred_ensembel 13.75 0.27 13.55 enrichfindP 0.65 0.06 14.96 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.448696 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.646069 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.149338 iter 10 value 94.228678 iter 10 value 94.228678 iter 10 value 94.228678 final value 94.228678 converged Fitting Repeat 4 # weights: 103 initial value 100.163525 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.650185 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.126085 iter 10 value 94.411959 iter 20 value 90.253926 iter 30 value 89.404105 iter 40 value 88.508413 iter 50 value 88.490150 final value 88.489561 converged Fitting Repeat 2 # weights: 305 initial value 98.002585 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.808478 final value 94.252920 converged Fitting Repeat 4 # weights: 305 initial value 106.202782 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.728143 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.367117 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 99.943104 final value 94.275362 converged Fitting Repeat 3 # weights: 507 initial value 113.555504 iter 10 value 94.058705 final value 94.057229 converged Fitting Repeat 4 # weights: 507 initial value 99.840217 iter 10 value 91.186453 iter 20 value 86.803431 iter 30 value 84.148769 iter 40 value 82.601496 iter 50 value 82.567532 iter 60 value 82.295102 iter 70 value 81.886139 final value 81.869472 converged Fitting Repeat 5 # weights: 507 initial value 123.849858 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.687840 iter 10 value 94.422626 iter 20 value 91.426700 iter 30 value 87.444390 iter 40 value 87.111904 iter 50 value 86.411865 iter 60 value 85.797287 iter 70 value 85.461182 iter 80 value 85.448715 iter 90 value 85.412043 final value 85.409951 converged Fitting Repeat 2 # weights: 103 initial value 101.253008 iter 10 value 94.495478 iter 20 value 94.345343 iter 30 value 94.327314 iter 40 value 94.267186 iter 50 value 94.076709 iter 60 value 94.015531 iter 70 value 91.704788 iter 80 value 87.718711 iter 90 value 87.422847 iter 100 value 85.611540 final value 85.611540 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.277699 iter 10 value 94.449800 iter 20 value 91.900413 iter 30 value 88.544324 iter 40 value 88.281364 iter 50 value 88.105994 iter 60 value 87.154679 iter 70 value 86.745059 iter 80 value 86.487639 iter 90 value 86.350725 final value 86.349068 converged Fitting Repeat 4 # weights: 103 initial value 97.746867 iter 10 value 94.474538 iter 20 value 94.242085 iter 30 value 94.127775 iter 40 value 94.118252 iter 50 value 94.117478 iter 60 value 94.116386 iter 70 value 93.660677 iter 80 value 91.122980 iter 90 value 90.405164 iter 100 value 90.345640 final value 90.345640 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.722380 iter 10 value 94.474457 iter 20 value 93.042316 iter 30 value 91.498373 iter 40 value 91.349182 iter 50 value 89.898992 iter 60 value 87.840791 iter 70 value 87.501353 iter 80 value 87.137858 iter 90 value 85.548547 iter 100 value 84.925122 final value 84.925122 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 128.121393 iter 10 value 104.691860 iter 20 value 99.921783 iter 30 value 86.696556 iter 40 value 86.111534 iter 50 value 85.437012 iter 60 value 85.376359 iter 70 value 85.160126 iter 80 value 84.531137 iter 90 value 83.515008 iter 100 value 83.319628 final value 83.319628 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.963561 iter 10 value 95.114766 iter 20 value 89.050240 iter 30 value 85.671975 iter 40 value 85.466277 iter 50 value 85.147150 iter 60 value 85.124303 iter 70 value 84.933921 iter 80 value 83.324359 iter 90 value 82.491590 iter 100 value 82.406024 final value 82.406024 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.766559 iter 10 value 93.725460 iter 20 value 87.782560 iter 30 value 87.230140 iter 40 value 85.173996 iter 50 value 84.762359 iter 60 value 84.296732 iter 70 value 83.385233 iter 80 value 82.666641 iter 90 value 82.159268 iter 100 value 82.026089 final value 82.026089 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.867391 iter 10 value 95.247746 iter 20 value 94.665754 iter 30 value 94.320971 iter 40 value 93.377245 iter 50 value 89.041724 iter 60 value 88.063443 iter 70 value 84.615019 iter 80 value 83.803850 iter 90 value 83.227883 iter 100 value 82.948861 final value 82.948861 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.075956 iter 10 value 94.357187 iter 20 value 89.006050 iter 30 value 85.951236 iter 40 value 84.451221 iter 50 value 84.021301 iter 60 value 82.700759 iter 70 value 82.103554 iter 80 value 81.802393 iter 90 value 81.559851 iter 100 value 81.471803 final value 81.471803 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.137148 iter 10 value 94.236962 iter 20 value 91.846435 iter 30 value 86.460093 iter 40 value 86.069122 iter 50 value 85.258348 iter 60 value 84.634010 iter 70 value 83.227784 iter 80 value 82.940841 iter 90 value 82.627895 iter 100 value 82.311868 final value 82.311868 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.303803 iter 10 value 94.813639 iter 20 value 88.682089 iter 30 value 84.668727 iter 40 value 84.599266 iter 50 value 83.839645 iter 60 value 83.160793 iter 70 value 82.763530 iter 80 value 82.488862 iter 90 value 82.117281 iter 100 value 81.838403 final value 81.838403 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.865516 iter 10 value 95.452266 iter 20 value 94.412738 iter 30 value 91.506723 iter 40 value 88.761858 iter 50 value 86.282268 iter 60 value 83.984018 iter 70 value 83.294126 iter 80 value 82.976170 iter 90 value 82.858291 iter 100 value 82.559415 final value 82.559415 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.785607 iter 10 value 95.673501 iter 20 value 94.220866 iter 30 value 91.865695 iter 40 value 89.469125 iter 50 value 88.216284 iter 60 value 87.119315 iter 70 value 84.965556 iter 80 value 83.661285 iter 90 value 82.762016 iter 100 value 82.305977 final value 82.305977 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.989849 iter 10 value 94.388416 iter 20 value 94.089200 iter 30 value 92.365607 iter 40 value 87.463052 iter 50 value 85.294980 iter 60 value 84.783551 iter 70 value 84.473844 iter 80 value 84.349167 iter 90 value 84.078941 iter 100 value 83.853207 final value 83.853207 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.125026 iter 10 value 94.277310 iter 20 value 94.260547 iter 30 value 94.087174 iter 40 value 94.083938 iter 50 value 94.083904 final value 94.083901 converged Fitting Repeat 2 # weights: 103 initial value 95.400212 final value 94.485769 converged Fitting Repeat 3 # weights: 103 initial value 96.228425 iter 10 value 94.277433 iter 20 value 94.248161 iter 30 value 94.229025 final value 94.228879 converged Fitting Repeat 4 # weights: 103 initial value 97.274329 iter 10 value 94.485960 final value 94.484218 converged Fitting Repeat 5 # weights: 103 initial value 101.386303 iter 10 value 94.485764 iter 20 value 94.484218 final value 94.484213 converged Fitting Repeat 1 # weights: 305 initial value 94.814947 iter 10 value 94.486694 iter 20 value 94.112790 final value 94.050234 converged Fitting Repeat 2 # weights: 305 initial value 112.806153 iter 10 value 94.489369 iter 20 value 94.433487 iter 30 value 92.782857 iter 40 value 91.755178 iter 50 value 91.662264 iter 60 value 91.640252 iter 70 value 88.644419 iter 80 value 87.208308 iter 90 value 87.084498 iter 100 value 87.081872 final value 87.081872 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.048748 iter 10 value 94.489542 iter 20 value 94.481399 iter 30 value 90.210004 final value 87.652549 converged Fitting Repeat 4 # weights: 305 initial value 101.478608 iter 10 value 94.280432 iter 20 value 94.276104 final value 94.275662 converged Fitting Repeat 5 # weights: 305 initial value 99.208306 iter 10 value 93.970212 iter 20 value 93.901957 final value 93.873431 converged Fitting Repeat 1 # weights: 507 initial value 97.412893 iter 10 value 94.093679 iter 20 value 94.062552 iter 30 value 94.057035 final value 94.053769 converged Fitting Repeat 2 # weights: 507 initial value 169.801965 iter 10 value 92.109394 iter 20 value 87.447112 iter 30 value 87.442068 iter 40 value 87.438694 iter 50 value 86.733960 iter 60 value 84.002759 iter 70 value 81.914710 iter 80 value 80.256373 iter 90 value 80.104919 iter 100 value 80.102621 final value 80.102621 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.710766 iter 10 value 94.485175 iter 20 value 94.192450 iter 30 value 94.100501 final value 94.084339 converged Fitting Repeat 4 # weights: 507 initial value 97.434203 iter 10 value 94.283464 iter 20 value 94.276321 iter 30 value 93.585549 iter 40 value 90.335805 iter 50 value 85.843375 iter 60 value 85.364003 iter 70 value 85.029272 iter 80 value 83.964812 iter 90 value 83.391100 final value 83.390740 converged Fitting Repeat 5 # weights: 507 initial value 125.963086 iter 10 value 94.283818 iter 20 value 94.279275 iter 30 value 94.153568 iter 40 value 88.223228 iter 50 value 88.213569 iter 60 value 87.354500 iter 70 value 85.752932 iter 80 value 85.675178 iter 90 value 85.675094 iter 100 value 85.674353 final value 85.674353 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.582769 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.113879 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.160474 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 116.221375 final value 94.052911 converged Fitting Repeat 5 # weights: 103 initial value 100.240065 iter 10 value 92.838625 iter 20 value 92.830891 iter 30 value 91.944690 iter 40 value 91.857360 iter 50 value 91.270036 iter 60 value 91.250774 final value 91.250752 converged Fitting Repeat 1 # weights: 305 initial value 95.643712 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 105.201989 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 93.889071 iter 10 value 92.720275 final value 92.720270 converged Fitting Repeat 4 # weights: 305 initial value 107.472985 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 105.852032 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.907243 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 109.560317 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 94.853244 iter 10 value 90.960765 iter 20 value 81.255827 iter 30 value 81.158387 final value 81.158121 converged Fitting Repeat 4 # weights: 507 initial value 107.168397 final value 93.628453 converged Fitting Repeat 5 # weights: 507 initial value 123.485612 final value 94.038251 converged Fitting Repeat 1 # weights: 103 initial value 96.397888 iter 10 value 94.063428 iter 20 value 88.861215 iter 30 value 85.404049 iter 40 value 84.679211 iter 50 value 84.428012 iter 60 value 84.221424 iter 70 value 84.081299 iter 80 value 83.791853 final value 83.776320 converged Fitting Repeat 2 # weights: 103 initial value 99.352829 iter 10 value 93.613245 iter 20 value 85.195535 iter 30 value 84.622601 iter 40 value 84.410299 iter 50 value 84.318872 iter 60 value 83.816846 final value 83.776320 converged Fitting Repeat 3 # weights: 103 initial value 122.112912 iter 10 value 93.937564 iter 20 value 91.568668 iter 30 value 91.310459 iter 40 value 91.297576 iter 50 value 91.032355 iter 60 value 86.702282 iter 70 value 82.983705 iter 80 value 82.693455 iter 90 value 82.596808 iter 100 value 82.549072 final value 82.549072 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.185122 iter 10 value 94.057424 iter 20 value 91.540140 iter 30 value 89.691810 iter 40 value 89.471870 iter 50 value 88.732055 iter 60 value 87.891924 iter 70 value 86.203417 iter 80 value 84.249251 iter 90 value 84.153947 iter 100 value 84.046330 final value 84.046330 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 112.311199 iter 10 value 94.219668 iter 20 value 93.572702 iter 30 value 87.232426 iter 40 value 86.038330 iter 50 value 84.639534 iter 60 value 84.192219 iter 70 value 83.895086 iter 80 value 83.776320 iter 80 value 83.776320 iter 80 value 83.776320 final value 83.776320 converged Fitting Repeat 1 # weights: 305 initial value 103.934080 iter 10 value 94.439262 iter 20 value 90.984467 iter 30 value 84.006963 iter 40 value 83.329962 iter 50 value 82.679236 iter 60 value 82.399874 iter 70 value 81.643219 iter 80 value 80.792596 iter 90 value 79.791855 iter 100 value 79.413890 final value 79.413890 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.846823 iter 10 value 93.985222 iter 20 value 87.799655 iter 30 value 86.698609 iter 40 value 85.775100 iter 50 value 84.497984 iter 60 value 81.813491 iter 70 value 81.293235 iter 80 value 79.906419 iter 90 value 79.751964 iter 100 value 79.662567 final value 79.662567 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.087614 iter 10 value 92.513511 iter 20 value 85.660382 iter 30 value 83.790620 iter 40 value 82.257678 iter 50 value 80.963350 iter 60 value 80.392610 iter 70 value 80.076966 iter 80 value 79.982247 iter 90 value 79.809577 iter 100 value 79.562490 final value 79.562490 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.841635 iter 10 value 94.080922 iter 20 value 90.135509 iter 30 value 85.417127 iter 40 value 85.193202 iter 50 value 84.184042 iter 60 value 82.026126 iter 70 value 80.860907 iter 80 value 80.241838 iter 90 value 80.142557 iter 100 value 80.090736 final value 80.090736 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 129.990044 iter 10 value 93.868801 iter 20 value 92.798523 iter 30 value 88.484751 iter 40 value 83.746194 iter 50 value 82.285763 iter 60 value 81.242603 iter 70 value 80.527176 iter 80 value 79.869485 iter 90 value 79.513109 iter 100 value 79.336449 final value 79.336449 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.276850 iter 10 value 94.233713 iter 20 value 88.112920 iter 30 value 86.365912 iter 40 value 84.840277 iter 50 value 83.948732 iter 60 value 83.740193 iter 70 value 82.129083 iter 80 value 81.314046 iter 90 value 80.620066 iter 100 value 80.206810 final value 80.206810 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.489698 iter 10 value 94.153915 iter 20 value 94.061144 iter 30 value 92.165892 iter 40 value 85.139350 iter 50 value 84.215795 iter 60 value 81.149093 iter 70 value 80.375373 iter 80 value 79.869444 iter 90 value 79.719911 iter 100 value 79.502638 final value 79.502638 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.259290 iter 10 value 94.021173 iter 20 value 93.047135 iter 30 value 84.883351 iter 40 value 84.119897 iter 50 value 81.533321 iter 60 value 80.861306 iter 70 value 80.478672 iter 80 value 80.113288 iter 90 value 79.942527 iter 100 value 79.704827 final value 79.704827 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.264398 iter 10 value 94.591192 iter 20 value 87.375958 iter 30 value 86.496949 iter 40 value 83.255170 iter 50 value 81.479790 iter 60 value 81.103704 iter 70 value 80.100448 iter 80 value 79.598173 iter 90 value 79.247440 iter 100 value 79.146938 final value 79.146938 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.758657 iter 10 value 94.578750 iter 20 value 94.011600 iter 30 value 93.316680 iter 40 value 88.364880 iter 50 value 84.629110 iter 60 value 82.280940 iter 70 value 81.186952 iter 80 value 80.775247 iter 90 value 80.379298 iter 100 value 80.260455 final value 80.260455 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.648510 final value 94.039847 converged Fitting Repeat 2 # weights: 103 initial value 102.495400 final value 94.054541 converged Fitting Repeat 3 # weights: 103 initial value 98.931710 final value 94.054522 converged Fitting Repeat 4 # weights: 103 initial value 111.956051 iter 10 value 94.054558 iter 20 value 94.052973 final value 94.052916 converged Fitting Repeat 5 # weights: 103 initial value 96.165085 final value 94.039663 converged Fitting Repeat 1 # weights: 305 initial value 113.332445 iter 10 value 94.057319 iter 20 value 94.041039 iter 30 value 93.785045 iter 40 value 83.786382 iter 50 value 81.750135 iter 60 value 81.427762 iter 70 value 81.386706 iter 80 value 81.386410 final value 81.386401 converged Fitting Repeat 2 # weights: 305 initial value 97.054828 iter 10 value 94.058248 iter 20 value 93.932459 iter 30 value 89.605793 iter 40 value 88.650931 iter 50 value 88.529484 iter 60 value 88.390613 iter 70 value 88.189531 iter 80 value 84.894730 iter 90 value 84.839318 iter 100 value 83.535172 final value 83.535172 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.250007 iter 10 value 94.057904 iter 20 value 93.481956 iter 30 value 87.137968 iter 40 value 87.062223 iter 50 value 85.330453 iter 60 value 84.311827 iter 70 value 84.294723 iter 80 value 83.279966 iter 90 value 83.067711 iter 100 value 83.067426 final value 83.067426 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.523684 iter 10 value 94.057911 iter 20 value 94.048467 iter 30 value 90.983787 iter 40 value 83.224462 iter 50 value 82.880415 iter 60 value 81.849660 iter 70 value 81.631980 iter 80 value 81.428469 iter 90 value 81.389912 iter 100 value 81.389528 final value 81.389528 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.512667 iter 10 value 91.784813 iter 20 value 84.577117 iter 30 value 84.018586 iter 40 value 83.713098 iter 50 value 83.712395 iter 60 value 83.711758 final value 83.710938 converged Fitting Repeat 1 # weights: 507 initial value 94.472671 iter 10 value 94.057446 iter 20 value 90.500730 iter 30 value 85.453305 iter 40 value 85.226042 final value 85.129947 converged Fitting Repeat 2 # weights: 507 initial value 98.311665 iter 10 value 93.966528 iter 20 value 91.077244 iter 30 value 90.802949 iter 40 value 90.798911 iter 50 value 90.255608 iter 60 value 90.100228 iter 70 value 90.098956 iter 80 value 90.068882 iter 90 value 90.008829 iter 100 value 90.006400 final value 90.006400 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 94.506495 iter 10 value 93.270970 iter 20 value 93.266034 iter 30 value 91.206979 iter 40 value 90.846610 iter 50 value 81.687481 final value 81.672892 converged Fitting Repeat 4 # weights: 507 initial value 117.517568 iter 10 value 94.046653 iter 20 value 94.036355 iter 30 value 94.009287 iter 40 value 87.011579 iter 50 value 86.899631 iter 60 value 80.147060 iter 70 value 79.238468 iter 80 value 78.870883 iter 90 value 78.865995 iter 100 value 78.806286 final value 78.806286 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.451572 iter 10 value 89.089480 iter 20 value 85.038665 iter 30 value 82.234636 iter 40 value 80.561291 iter 50 value 80.513030 iter 60 value 80.330403 iter 70 value 80.032205 iter 80 value 79.803286 iter 90 value 79.789357 iter 100 value 79.788951 final value 79.788951 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.492769 iter 10 value 93.320229 final value 93.320225 converged Fitting Repeat 2 # weights: 103 initial value 96.861887 iter 10 value 91.934041 iter 20 value 91.930427 iter 30 value 91.786273 iter 40 value 91.725299 iter 50 value 89.124206 iter 60 value 88.854635 iter 70 value 88.850853 final value 88.850842 converged Fitting Repeat 3 # weights: 103 initial value 94.800185 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.300761 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.276791 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.078261 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.396407 iter 10 value 92.579686 final value 92.579683 converged Fitting Repeat 3 # weights: 305 initial value 102.737601 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 95.703825 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 113.860453 final value 94.467391 converged Fitting Repeat 1 # weights: 507 initial value 100.884083 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 118.514332 iter 10 value 94.467553 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 111.752195 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 108.884636 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 131.585351 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 106.596357 iter 10 value 94.848454 iter 20 value 94.471816 iter 30 value 83.843252 iter 40 value 82.808450 iter 50 value 82.495880 iter 60 value 82.258640 iter 70 value 81.884826 iter 80 value 81.873233 final value 81.873104 converged Fitting Repeat 2 # weights: 103 initial value 110.414111 iter 10 value 94.486456 iter 20 value 94.259865 iter 30 value 93.248813 iter 40 value 92.707508 iter 50 value 83.830334 iter 60 value 82.767150 iter 70 value 82.534571 iter 80 value 82.440267 iter 90 value 82.300777 final value 82.297439 converged Fitting Repeat 3 # weights: 103 initial value 96.774791 iter 10 value 94.488524 iter 20 value 93.512655 iter 30 value 93.473573 final value 93.472503 converged Fitting Repeat 4 # weights: 103 initial value 100.606803 iter 10 value 94.648530 iter 20 value 94.459040 iter 30 value 89.172404 iter 40 value 85.636546 iter 50 value 83.710802 iter 60 value 82.760347 iter 70 value 82.542513 iter 80 value 82.508707 final value 82.508685 converged Fitting Repeat 5 # weights: 103 initial value 99.091166 iter 10 value 94.439349 iter 20 value 93.690073 iter 30 value 93.490562 iter 40 value 93.481565 iter 50 value 83.943925 iter 60 value 82.756836 iter 70 value 81.697363 iter 80 value 79.950515 iter 90 value 79.767976 iter 100 value 79.756196 final value 79.756196 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.581243 iter 10 value 92.965386 iter 20 value 92.760600 iter 30 value 87.607250 iter 40 value 82.883811 iter 50 value 82.308606 iter 60 value 81.940823 iter 70 value 80.272219 iter 80 value 79.799699 iter 90 value 79.273474 iter 100 value 78.830163 final value 78.830163 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 128.978238 iter 10 value 94.894558 iter 20 value 94.589110 iter 30 value 88.429955 iter 40 value 87.154448 iter 50 value 86.388813 iter 60 value 86.190463 iter 70 value 86.002699 iter 80 value 85.670320 iter 90 value 85.257156 iter 100 value 85.136661 final value 85.136661 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.166368 iter 10 value 93.907299 iter 20 value 89.715189 iter 30 value 85.828492 iter 40 value 84.493187 iter 50 value 83.333337 iter 60 value 80.739363 iter 70 value 80.291949 iter 80 value 80.166791 iter 90 value 79.666615 iter 100 value 78.992864 final value 78.992864 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.786864 iter 10 value 89.610322 iter 20 value 82.797230 iter 30 value 82.347166 iter 40 value 82.229961 iter 50 value 81.238596 iter 60 value 79.780341 iter 70 value 78.795321 iter 80 value 78.622050 iter 90 value 78.357170 iter 100 value 78.113065 final value 78.113065 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.051629 iter 10 value 94.430318 iter 20 value 93.114499 iter 30 value 93.018134 iter 40 value 91.046813 iter 50 value 89.916388 iter 60 value 84.884245 iter 70 value 83.054496 iter 80 value 81.822903 iter 90 value 80.941635 iter 100 value 80.738338 final value 80.738338 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.505890 iter 10 value 94.231030 iter 20 value 87.743376 iter 30 value 84.692777 iter 40 value 81.333676 iter 50 value 80.052342 iter 60 value 79.252794 iter 70 value 78.895182 iter 80 value 78.402151 iter 90 value 78.214238 iter 100 value 78.188343 final value 78.188343 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.582898 iter 10 value 93.756964 iter 20 value 84.408638 iter 30 value 82.745856 iter 40 value 82.461318 iter 50 value 81.048676 iter 60 value 80.322052 iter 70 value 79.233466 iter 80 value 78.714653 iter 90 value 78.596742 iter 100 value 78.492429 final value 78.492429 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.920642 iter 10 value 94.440501 iter 20 value 91.426520 iter 30 value 86.370386 iter 40 value 84.069444 iter 50 value 80.397495 iter 60 value 78.836893 iter 70 value 78.309426 iter 80 value 78.147233 iter 90 value 77.753474 iter 100 value 77.583714 final value 77.583714 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.905747 iter 10 value 93.914136 iter 20 value 83.670376 iter 30 value 82.319346 iter 40 value 81.983103 iter 50 value 81.910906 iter 60 value 81.803997 iter 70 value 81.477066 iter 80 value 80.017347 iter 90 value 79.697516 iter 100 value 79.568879 final value 79.568879 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.492402 iter 10 value 94.506456 iter 20 value 93.630896 iter 30 value 83.291601 iter 40 value 82.268638 iter 50 value 81.798793 iter 60 value 81.558745 iter 70 value 80.984352 iter 80 value 80.388546 iter 90 value 80.166431 iter 100 value 79.715219 final value 79.715219 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.062346 iter 10 value 94.468927 iter 20 value 94.301999 iter 30 value 91.381132 iter 40 value 90.474177 iter 50 value 82.681844 iter 60 value 82.580595 iter 70 value 82.453129 iter 80 value 82.431194 final value 82.431158 converged Fitting Repeat 2 # weights: 103 initial value 95.238616 final value 94.485795 converged Fitting Repeat 3 # weights: 103 initial value 97.647153 final value 94.485981 converged Fitting Repeat 4 # weights: 103 initial value 104.261396 iter 10 value 93.322315 iter 20 value 93.320708 iter 30 value 92.982679 iter 40 value 85.175610 final value 85.175434 converged Fitting Repeat 5 # weights: 103 initial value 102.011834 iter 10 value 94.486004 iter 20 value 94.484274 iter 30 value 94.343889 final value 93.322557 converged Fitting Repeat 1 # weights: 305 initial value 100.057595 iter 10 value 94.466234 iter 20 value 87.743340 iter 30 value 84.144869 iter 40 value 83.958791 iter 50 value 83.955740 iter 60 value 83.890760 iter 70 value 81.071871 iter 80 value 80.942984 iter 90 value 80.913934 iter 100 value 80.475393 final value 80.475393 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.405636 iter 10 value 94.481860 iter 20 value 94.478090 iter 30 value 94.477862 final value 94.477849 converged Fitting Repeat 3 # weights: 305 initial value 96.455021 iter 10 value 94.472802 iter 20 value 94.232038 iter 30 value 93.902071 iter 40 value 93.898776 iter 50 value 92.840858 iter 60 value 92.748201 iter 70 value 92.743513 final value 92.743392 converged Fitting Repeat 4 # weights: 305 initial value 109.782458 iter 10 value 94.489018 iter 20 value 94.484326 iter 30 value 93.321486 iter 40 value 92.937489 iter 50 value 90.134405 iter 60 value 85.774749 iter 70 value 83.283771 iter 80 value 81.891971 iter 90 value 81.602947 iter 100 value 80.958037 final value 80.958037 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.780028 iter 10 value 94.488647 iter 20 value 94.399670 iter 30 value 93.275145 iter 40 value 91.505680 iter 50 value 91.470556 iter 60 value 91.470262 iter 70 value 90.055530 iter 80 value 89.936063 iter 90 value 89.935626 final value 89.935614 converged Fitting Repeat 1 # weights: 507 initial value 106.362893 iter 10 value 94.469508 iter 20 value 94.395328 iter 30 value 87.399047 iter 40 value 85.170832 iter 50 value 85.167168 iter 60 value 84.499857 iter 70 value 84.468640 iter 80 value 82.024362 iter 90 value 80.833882 iter 100 value 80.778668 final value 80.778668 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.053470 iter 10 value 93.822380 iter 20 value 93.584646 iter 30 value 93.317700 iter 40 value 93.316921 iter 50 value 93.312642 iter 60 value 92.042209 iter 70 value 85.590421 iter 80 value 84.726584 iter 90 value 84.631176 final value 84.630939 converged Fitting Repeat 3 # weights: 507 initial value 101.451059 iter 10 value 94.492955 iter 20 value 94.484704 iter 30 value 94.484566 final value 94.484522 converged Fitting Repeat 4 # weights: 507 initial value 94.500958 iter 10 value 94.486155 iter 20 value 86.429478 iter 30 value 83.950460 iter 40 value 83.788787 iter 50 value 83.619167 iter 60 value 83.611588 iter 70 value 81.431650 iter 80 value 81.197658 iter 90 value 81.010291 final value 81.010271 converged Fitting Repeat 5 # weights: 507 initial value 101.716859 iter 10 value 94.491657 iter 20 value 93.243881 final value 92.614685 converged Fitting Repeat 1 # weights: 103 initial value 111.820602 iter 10 value 94.047268 final value 94.026542 converged Fitting Repeat 2 # weights: 103 initial value 100.107347 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.862484 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.041678 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.009552 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.111255 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.018232 final value 94.026542 converged Fitting Repeat 3 # weights: 305 initial value 112.519313 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.638542 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.142194 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 116.953788 iter 10 value 93.847480 final value 93.793007 converged Fitting Repeat 2 # weights: 507 initial value 105.769797 final value 93.300000 converged Fitting Repeat 3 # weights: 507 initial value 111.549291 iter 10 value 94.052244 iter 20 value 87.999023 iter 30 value 87.943236 iter 30 value 87.943236 iter 30 value 87.943236 final value 87.943236 converged Fitting Repeat 4 # weights: 507 initial value 98.004005 iter 10 value 94.484624 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.272233 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 96.910616 iter 10 value 94.459470 iter 20 value 94.134190 iter 30 value 93.586929 iter 40 value 91.827031 iter 50 value 84.311214 iter 60 value 82.632317 iter 70 value 82.566495 iter 80 value 82.034054 iter 90 value 81.595676 iter 100 value 81.297716 final value 81.297716 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 104.277801 iter 10 value 91.419741 iter 20 value 83.934758 iter 30 value 82.229533 iter 40 value 81.650137 iter 50 value 80.962406 iter 60 value 80.477127 iter 70 value 80.176626 iter 80 value 80.145551 final value 80.142573 converged Fitting Repeat 3 # weights: 103 initial value 102.807554 iter 10 value 94.879939 iter 20 value 94.467227 iter 30 value 91.583083 iter 40 value 90.880328 iter 50 value 88.401101 iter 60 value 82.370708 iter 70 value 82.217351 iter 80 value 81.989682 iter 90 value 81.968057 iter 100 value 81.954009 final value 81.954009 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 115.047118 iter 10 value 94.461493 iter 20 value 89.490415 iter 30 value 87.900057 iter 40 value 85.307517 iter 50 value 82.701773 iter 60 value 82.028268 iter 70 value 80.771356 iter 80 value 80.241124 iter 90 value 80.154012 iter 100 value 80.145574 final value 80.145574 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.415174 iter 10 value 91.066229 iter 20 value 85.992043 iter 30 value 83.738080 iter 40 value 83.057181 iter 50 value 82.883994 iter 60 value 82.496458 iter 70 value 82.336226 final value 82.335144 converged Fitting Repeat 1 # weights: 305 initial value 105.597472 iter 10 value 94.325339 iter 20 value 85.995091 iter 30 value 82.306452 iter 40 value 81.997651 iter 50 value 80.665867 iter 60 value 79.902452 iter 70 value 79.400825 iter 80 value 79.324031 iter 90 value 79.206328 iter 100 value 78.911045 final value 78.911045 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.624202 iter 10 value 91.223332 iter 20 value 84.301026 iter 30 value 83.811382 iter 40 value 82.059374 iter 50 value 81.820735 iter 60 value 80.742404 iter 70 value 80.505229 iter 80 value 80.331311 iter 90 value 79.692969 iter 100 value 79.334319 final value 79.334319 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.457006 iter 10 value 93.739096 iter 20 value 83.968934 iter 30 value 82.944656 iter 40 value 82.384773 iter 50 value 82.250484 iter 60 value 81.916888 iter 70 value 81.869523 iter 80 value 81.782839 iter 90 value 80.724648 iter 100 value 80.288489 final value 80.288489 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.260256 iter 10 value 93.094876 iter 20 value 83.468334 iter 30 value 83.199318 iter 40 value 82.911652 iter 50 value 82.517853 iter 60 value 82.352182 iter 70 value 82.203133 iter 80 value 82.140027 iter 90 value 82.096138 iter 100 value 82.067026 final value 82.067026 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.656306 iter 10 value 94.514542 iter 20 value 91.199654 iter 30 value 83.894876 iter 40 value 83.403188 iter 50 value 81.239461 iter 60 value 80.757120 iter 70 value 80.648002 iter 80 value 79.822034 iter 90 value 79.443046 iter 100 value 79.041013 final value 79.041013 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.199154 iter 10 value 96.689918 iter 20 value 93.658041 iter 30 value 93.456030 iter 40 value 92.257271 iter 50 value 89.082285 iter 60 value 85.602947 iter 70 value 84.821290 iter 80 value 83.704125 iter 90 value 83.136598 iter 100 value 82.389238 final value 82.389238 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.770608 iter 10 value 94.046747 iter 20 value 92.079953 iter 30 value 84.165762 iter 40 value 82.748833 iter 50 value 81.711683 iter 60 value 79.996901 iter 70 value 79.399178 iter 80 value 79.024773 iter 90 value 78.862283 iter 100 value 78.588033 final value 78.588033 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.024623 iter 10 value 93.936182 iter 20 value 88.483156 iter 30 value 84.695171 iter 40 value 84.157139 iter 50 value 81.004548 iter 60 value 80.107397 iter 70 value 79.893387 iter 80 value 79.480590 iter 90 value 79.070590 iter 100 value 79.019339 final value 79.019339 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.796525 iter 10 value 94.918953 iter 20 value 94.522202 iter 30 value 93.750966 iter 40 value 88.777685 iter 50 value 87.695066 iter 60 value 87.319815 iter 70 value 86.715236 iter 80 value 83.218897 iter 90 value 80.029635 iter 100 value 79.609960 final value 79.609960 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.983411 iter 10 value 93.543107 iter 20 value 83.266214 iter 30 value 82.729817 iter 40 value 82.589889 iter 50 value 81.912202 iter 60 value 81.435250 iter 70 value 81.031193 iter 80 value 80.398540 iter 90 value 79.553402 iter 100 value 79.296857 final value 79.296857 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.512228 iter 10 value 94.485853 iter 20 value 94.484303 final value 94.484219 converged Fitting Repeat 2 # weights: 103 initial value 105.691361 final value 94.485974 converged Fitting Repeat 3 # weights: 103 initial value 95.242281 iter 10 value 91.813062 iter 20 value 86.957112 iter 30 value 86.956012 iter 40 value 86.955099 final value 86.955093 converged Fitting Repeat 4 # weights: 103 initial value 99.259445 final value 94.411169 converged Fitting Repeat 5 # weights: 103 initial value 115.101671 iter 10 value 90.755938 iter 20 value 90.724496 iter 30 value 90.723704 iter 40 value 90.658793 final value 90.623745 converged Fitting Repeat 1 # weights: 305 initial value 100.865388 iter 10 value 94.488856 iter 20 value 94.471059 iter 30 value 83.558208 iter 40 value 83.341334 iter 50 value 82.323445 iter 60 value 81.509417 iter 70 value 81.335864 final value 81.333449 converged Fitting Repeat 2 # weights: 305 initial value 104.431153 iter 10 value 94.034828 iter 20 value 94.030420 final value 94.029894 converged Fitting Repeat 3 # weights: 305 initial value 112.058383 iter 10 value 94.489351 iter 20 value 94.484767 iter 30 value 94.370391 iter 40 value 94.180671 iter 50 value 86.599903 iter 60 value 85.651693 iter 70 value 85.197594 iter 80 value 80.955315 iter 90 value 80.952145 final value 80.952024 converged Fitting Repeat 4 # weights: 305 initial value 109.206316 iter 10 value 94.489016 iter 20 value 93.545312 iter 30 value 88.307894 iter 40 value 87.285516 iter 50 value 87.263064 iter 60 value 87.262486 final value 87.262089 converged Fitting Repeat 5 # weights: 305 initial value 110.460777 iter 10 value 94.489828 iter 20 value 94.076196 final value 94.027281 converged Fitting Repeat 1 # weights: 507 initial value 95.162552 iter 10 value 94.035441 iter 20 value 91.661730 iter 30 value 87.771716 iter 40 value 84.452892 iter 50 value 83.147317 iter 60 value 83.142367 iter 70 value 82.164260 iter 80 value 81.932276 iter 90 value 81.926132 iter 100 value 81.676594 final value 81.676594 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.844816 iter 10 value 94.035882 iter 20 value 94.032558 iter 30 value 85.208055 iter 40 value 83.097158 iter 50 value 82.686849 iter 60 value 81.834954 iter 70 value 81.336667 iter 80 value 81.335079 iter 90 value 81.326947 iter 100 value 81.319820 final value 81.319820 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.484664 iter 10 value 93.303214 iter 20 value 87.614924 iter 30 value 82.359835 iter 40 value 82.122608 iter 50 value 82.002961 iter 60 value 81.602864 iter 70 value 81.025834 iter 80 value 80.619254 iter 90 value 80.530434 iter 100 value 80.529642 final value 80.529642 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.232140 iter 10 value 94.489998 iter 20 value 92.254284 iter 30 value 84.218257 iter 40 value 83.406559 iter 50 value 83.404582 iter 60 value 83.090216 iter 70 value 82.977287 iter 80 value 82.957000 final value 82.942899 converged Fitting Repeat 5 # weights: 507 initial value 101.925156 iter 10 value 94.035234 iter 20 value 93.842347 final value 93.809822 converged Fitting Repeat 1 # weights: 103 initial value 94.898995 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 113.399571 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.103929 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.436532 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.832396 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 107.850461 iter 10 value 93.469980 final value 93.460693 converged Fitting Repeat 2 # weights: 305 initial value 116.946663 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 3 # weights: 305 initial value 95.469979 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.277413 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 128.544550 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.708004 final value 94.052908 converged Fitting Repeat 2 # weights: 507 initial value 95.168627 iter 10 value 93.479840 final value 93.460693 converged Fitting Repeat 3 # weights: 507 initial value 95.871375 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 133.753354 final value 93.904720 converged Fitting Repeat 5 # weights: 507 initial value 128.840927 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 106.790676 iter 10 value 94.054988 iter 20 value 93.851392 iter 30 value 93.684525 iter 40 value 93.393385 iter 50 value 88.680944 iter 60 value 88.074055 iter 70 value 87.678067 iter 80 value 86.852701 iter 90 value 83.598233 iter 100 value 82.568649 final value 82.568649 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.867419 iter 10 value 94.054915 iter 20 value 93.211597 iter 30 value 88.439441 iter 40 value 85.024077 iter 50 value 84.731508 iter 60 value 84.228514 iter 70 value 83.651242 iter 80 value 83.517893 final value 83.517611 converged Fitting Repeat 3 # weights: 103 initial value 102.694042 iter 10 value 93.755901 iter 20 value 92.177697 iter 30 value 91.657139 iter 40 value 91.331452 iter 50 value 91.310609 final value 91.310597 converged Fitting Repeat 4 # weights: 103 initial value 96.574518 iter 10 value 94.056754 iter 20 value 85.822265 iter 30 value 85.056123 iter 40 value 84.395459 iter 50 value 83.430458 iter 60 value 83.365545 iter 70 value 83.325721 iter 80 value 83.275896 final value 83.275796 converged Fitting Repeat 5 # weights: 103 initial value 102.586334 iter 10 value 93.764328 iter 20 value 93.686586 iter 30 value 93.685418 iter 40 value 93.482691 iter 50 value 91.070296 iter 60 value 87.910547 iter 70 value 87.872801 iter 80 value 87.817543 iter 90 value 87.289926 iter 100 value 85.510811 final value 85.510811 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.176734 iter 10 value 93.592918 iter 20 value 87.704324 iter 30 value 86.564774 iter 40 value 83.329454 iter 50 value 82.193214 iter 60 value 81.709349 iter 70 value 81.478897 iter 80 value 81.262962 iter 90 value 81.195600 iter 100 value 81.174168 final value 81.174168 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.823723 iter 10 value 92.516358 iter 20 value 86.251207 iter 30 value 85.325033 iter 40 value 82.523816 iter 50 value 81.454440 iter 60 value 81.232384 iter 70 value 81.075181 iter 80 value 80.894726 iter 90 value 80.824056 iter 100 value 80.740958 final value 80.740958 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.177786 iter 10 value 93.625650 iter 20 value 84.668882 iter 30 value 83.235265 iter 40 value 81.851738 iter 50 value 81.640212 iter 60 value 81.083092 iter 70 value 80.675062 iter 80 value 80.621551 iter 90 value 80.572027 iter 100 value 80.522626 final value 80.522626 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.826315 iter 10 value 94.212935 iter 20 value 93.553743 iter 30 value 93.457608 iter 40 value 92.961335 iter 50 value 88.358729 iter 60 value 86.872090 iter 70 value 84.940740 iter 80 value 82.530180 iter 90 value 81.470962 iter 100 value 80.683445 final value 80.683445 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.611791 iter 10 value 94.048573 iter 20 value 87.232099 iter 30 value 84.745585 iter 40 value 83.059079 iter 50 value 82.896311 iter 60 value 82.369696 iter 70 value 82.040414 iter 80 value 81.709496 iter 90 value 81.590463 iter 100 value 81.133589 final value 81.133589 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.545490 iter 10 value 93.558590 iter 20 value 88.257611 iter 30 value 85.737160 iter 40 value 84.180802 iter 50 value 83.840433 iter 60 value 83.565411 iter 70 value 83.056579 iter 80 value 82.606789 iter 90 value 82.004227 iter 100 value 81.273587 final value 81.273587 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.993431 iter 10 value 94.213694 iter 20 value 88.449228 iter 30 value 85.876049 iter 40 value 82.275977 iter 50 value 81.833838 iter 60 value 81.483562 iter 70 value 80.873764 iter 80 value 80.781208 iter 90 value 80.638419 iter 100 value 80.595070 final value 80.595070 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.341647 iter 10 value 93.821275 iter 20 value 93.315058 iter 30 value 87.322931 iter 40 value 85.494628 iter 50 value 83.973088 iter 60 value 83.742633 iter 70 value 83.716116 iter 80 value 83.396303 iter 90 value 82.026027 iter 100 value 81.025827 final value 81.025827 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.453270 iter 10 value 93.541121 iter 20 value 91.377948 iter 30 value 84.895872 iter 40 value 83.006749 iter 50 value 82.036437 iter 60 value 81.722566 iter 70 value 81.630570 iter 80 value 81.456928 iter 90 value 81.428662 iter 100 value 81.075589 final value 81.075589 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.315190 iter 10 value 94.140053 iter 20 value 89.250369 iter 30 value 85.478411 iter 40 value 84.817905 iter 50 value 83.935994 iter 60 value 83.076529 iter 70 value 83.026724 iter 80 value 82.849023 iter 90 value 82.573979 iter 100 value 82.400227 final value 82.400227 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.494544 final value 93.584263 converged Fitting Repeat 2 # weights: 103 initial value 104.141988 iter 10 value 94.054714 final value 94.052913 converged Fitting Repeat 3 # weights: 103 initial value 94.716676 final value 94.054691 converged Fitting Repeat 4 # weights: 103 initial value 127.768803 final value 94.054377 converged Fitting Repeat 5 # weights: 103 initial value 95.350322 final value 94.054705 converged Fitting Repeat 1 # weights: 305 initial value 109.332730 iter 10 value 94.057653 iter 20 value 94.053077 final value 94.053070 converged Fitting Repeat 2 # weights: 305 initial value 111.141345 iter 10 value 94.057978 iter 20 value 93.801564 final value 93.582648 converged Fitting Repeat 3 # weights: 305 initial value 118.679303 iter 10 value 94.058453 iter 20 value 94.053887 iter 30 value 93.584329 final value 93.583757 converged Fitting Repeat 4 # weights: 305 initial value 99.950390 iter 10 value 94.058032 iter 20 value 94.053240 iter 30 value 93.628950 iter 40 value 86.428313 iter 50 value 86.272456 iter 60 value 86.271951 iter 70 value 86.271708 iter 80 value 86.271334 iter 90 value 86.270087 iter 100 value 83.592052 final value 83.592052 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.051428 iter 10 value 93.710823 iter 20 value 93.586937 iter 30 value 93.349368 iter 40 value 93.345694 iter 50 value 93.240544 iter 60 value 90.920762 iter 70 value 90.641871 final value 90.615479 converged Fitting Repeat 1 # weights: 507 initial value 99.602205 iter 10 value 94.059539 iter 20 value 87.670578 iter 30 value 87.489395 iter 40 value 87.488953 iter 40 value 87.488952 iter 40 value 87.488952 final value 87.488952 converged Fitting Repeat 2 # weights: 507 initial value 105.109954 iter 10 value 93.590526 iter 20 value 93.264767 iter 30 value 89.102344 iter 40 value 88.678339 iter 50 value 87.805178 iter 60 value 87.803505 final value 87.803343 converged Fitting Repeat 3 # weights: 507 initial value 95.664384 iter 10 value 94.038995 iter 20 value 93.590477 iter 30 value 93.586775 iter 40 value 91.506066 iter 50 value 88.494560 iter 60 value 88.334729 iter 70 value 88.330385 final value 88.330313 converged Fitting Repeat 4 # weights: 507 initial value 101.331524 iter 10 value 93.590933 iter 20 value 92.554952 iter 30 value 89.509741 iter 40 value 89.349670 iter 50 value 89.138523 iter 60 value 83.933595 iter 70 value 83.551531 iter 80 value 81.865065 iter 90 value 81.819738 iter 90 value 81.819737 final value 81.819737 converged Fitting Repeat 5 # weights: 507 initial value 100.005646 iter 10 value 94.030747 iter 20 value 91.937867 iter 30 value 91.263590 iter 40 value 86.301740 iter 50 value 86.274795 iter 60 value 86.269915 iter 70 value 85.317125 iter 80 value 83.771193 iter 90 value 83.019616 iter 100 value 83.013106 final value 83.013106 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.027430 iter 10 value 116.903799 iter 20 value 116.883546 iter 30 value 116.811405 iter 40 value 116.661412 iter 50 value 116.621647 iter 60 value 116.619191 iter 70 value 116.613018 iter 80 value 116.612355 iter 90 value 116.588987 iter 100 value 107.684335 final value 107.684335 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.585479 iter 10 value 110.245736 iter 20 value 107.011928 iter 30 value 106.785716 iter 40 value 106.784145 iter 50 value 105.607336 iter 60 value 104.937340 iter 70 value 104.834164 iter 80 value 104.228826 iter 90 value 103.754571 iter 100 value 103.753792 final value 103.753792 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.824808 iter 10 value 117.766749 iter 20 value 117.759629 iter 30 value 110.988636 iter 40 value 106.123857 iter 50 value 102.964051 iter 60 value 100.438159 iter 70 value 100.235332 iter 80 value 99.798012 iter 90 value 99.768122 iter 100 value 99.743547 final value 99.743547 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 159.880799 iter 10 value 117.898512 iter 20 value 117.891222 iter 30 value 108.974663 iter 40 value 107.008524 iter 50 value 107.007173 iter 60 value 105.398145 iter 70 value 103.325799 iter 80 value 100.800821 iter 90 value 100.746898 iter 100 value 100.131963 final value 100.131963 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.890509 iter 10 value 117.898394 iter 20 value 117.763951 iter 30 value 117.547920 iter 40 value 117.493398 iter 50 value 107.509663 final value 107.008686 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 3 02:42:25 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 38.29 1.42 54.20
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.77 | 1.87 | 36.84 | |
FreqInteractors | 0.28 | 0.07 | 0.42 | |
calculateAAC | 0.06 | 0.01 | 0.13 | |
calculateAutocor | 0.38 | 0.05 | 0.48 | |
calculateCTDC | 0.07 | 0.01 | 0.10 | |
calculateCTDD | 0.71 | 0.02 | 0.86 | |
calculateCTDT | 0.26 | 0.00 | 0.26 | |
calculateCTriad | 0.5 | 0.0 | 0.5 | |
calculateDC | 0.16 | 0.00 | 0.16 | |
calculateF | 0.42 | 0.00 | 0.42 | |
calculateKSAAP | 0.09 | 0.00 | 0.09 | |
calculateQD_Sm | 2.32 | 0.24 | 2.55 | |
calculateTC | 1.48 | 0.11 | 1.59 | |
calculateTC_Sm | 0.24 | 0.01 | 0.25 | |
corr_plot | 31.59 | 1.54 | 33.22 | |
enrichfindP | 0.65 | 0.06 | 14.96 | |
enrichfind_hp | 0.07 | 0.03 | 1.86 | |
enrichplot | 0.33 | 0.01 | 0.39 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.00 | 0.07 | 1.95 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.10 | 0.01 | 0.11 | |
pred_ensembel | 13.75 | 0.27 | 13.55 | |
var_imp | 34.96 | 1.33 | 36.29 | |