Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-23 12:08 -0500 (Thu, 23 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4493 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4394 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-21 05:14:52 -0500 (Tue, 21 Jan 2025) |
EndedAt: 2025-01-21 05:24:06 -0500 (Tue, 21 Jan 2025) |
EllapsedTime: 553.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 51.373 1.861 58.932 corr_plot 50.941 1.843 55.496 FSmethod 50.548 1.816 54.207 pred_ensembel 24.977 0.406 23.808 calculateTC 4.668 0.443 5.362 enrichfindP 0.882 0.082 13.657 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 106.555657 iter 10 value 92.945386 final value 92.945355 converged Fitting Repeat 2 # weights: 103 initial value 96.322053 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.010043 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.618772 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.741344 iter 10 value 88.155744 iter 20 value 82.871988 iter 30 value 82.738264 final value 82.737855 converged Fitting Repeat 1 # weights: 305 initial value 98.859680 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 131.035381 iter 10 value 92.945357 final value 92.945355 converged Fitting Repeat 3 # weights: 305 initial value 108.436333 iter 10 value 92.915115 iter 10 value 92.915115 iter 10 value 92.915115 final value 92.915115 converged Fitting Repeat 4 # weights: 305 initial value 102.397824 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 110.932685 iter 10 value 92.945372 final value 92.945355 converged Fitting Repeat 1 # weights: 507 initial value 102.271185 iter 10 value 93.522920 iter 20 value 92.908947 final value 92.908838 converged Fitting Repeat 2 # weights: 507 initial value 115.931174 final value 94.025289 converged Fitting Repeat 3 # weights: 507 initial value 111.438079 final value 94.052911 converged Fitting Repeat 4 # weights: 507 initial value 118.813758 iter 10 value 93.731345 final value 92.945357 converged Fitting Repeat 5 # weights: 507 initial value 102.864577 iter 10 value 92.945357 iter 10 value 92.945356 iter 10 value 92.945356 final value 92.945356 converged Fitting Repeat 1 # weights: 103 initial value 103.142364 iter 10 value 93.695589 iter 20 value 85.834541 iter 30 value 85.356414 iter 40 value 84.597074 iter 50 value 80.975560 iter 60 value 79.894635 iter 70 value 78.680368 final value 78.670022 converged Fitting Repeat 2 # weights: 103 initial value 98.669872 iter 10 value 93.217647 iter 20 value 92.446689 iter 30 value 89.403632 iter 40 value 88.300687 iter 50 value 85.415510 iter 60 value 84.907802 iter 70 value 83.188970 iter 80 value 82.876283 iter 90 value 82.873625 final value 82.873623 converged Fitting Repeat 3 # weights: 103 initial value 94.996053 iter 10 value 92.646656 iter 20 value 92.449834 iter 30 value 86.573148 iter 40 value 85.590907 iter 50 value 85.538574 iter 60 value 84.278089 iter 70 value 84.222610 iter 80 value 80.284866 iter 90 value 80.008615 iter 100 value 78.644820 final value 78.644820 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.640361 iter 10 value 93.430471 iter 20 value 90.424633 iter 30 value 83.818420 iter 40 value 83.112761 iter 50 value 82.944241 iter 60 value 82.875667 final value 82.873627 converged Fitting Repeat 5 # weights: 103 initial value 101.759056 iter 10 value 93.331798 iter 20 value 88.098551 iter 30 value 85.516353 iter 40 value 84.188161 iter 50 value 83.822670 iter 60 value 82.491624 iter 70 value 82.110194 iter 80 value 82.081642 final value 82.073735 converged Fitting Repeat 1 # weights: 305 initial value 111.794255 iter 10 value 93.966129 iter 20 value 85.002031 iter 30 value 84.679337 iter 40 value 84.513334 iter 50 value 83.236090 iter 60 value 78.731497 iter 70 value 77.199524 iter 80 value 76.813319 iter 90 value 76.682942 iter 100 value 76.610085 final value 76.610085 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.440579 iter 10 value 94.152717 iter 20 value 93.918714 iter 30 value 91.050076 iter 40 value 87.228473 iter 50 value 81.868635 iter 60 value 81.234852 iter 70 value 80.840842 iter 80 value 80.556038 iter 90 value 78.426755 iter 100 value 77.986978 final value 77.986978 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.194858 iter 10 value 93.224927 iter 20 value 84.166892 iter 30 value 81.770030 iter 40 value 81.651222 iter 50 value 81.279502 iter 60 value 81.157801 iter 70 value 80.562236 iter 80 value 78.020205 iter 90 value 77.396887 iter 100 value 77.173044 final value 77.173044 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.697656 iter 10 value 97.770077 iter 20 value 95.916119 iter 30 value 91.691218 iter 40 value 90.713901 iter 50 value 90.068573 iter 60 value 86.557643 iter 70 value 82.206466 iter 80 value 81.390231 iter 90 value 80.890613 iter 100 value 79.751581 final value 79.751581 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.200238 iter 10 value 94.975296 iter 20 value 93.766830 iter 30 value 92.849801 iter 40 value 91.757568 iter 50 value 91.407333 iter 60 value 84.128657 iter 70 value 82.985265 iter 80 value 80.693112 iter 90 value 79.610860 iter 100 value 77.331491 final value 77.331491 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.893603 iter 10 value 94.137090 iter 20 value 86.762875 iter 30 value 85.271301 iter 40 value 83.544376 iter 50 value 81.798496 iter 60 value 79.201288 iter 70 value 78.725019 iter 80 value 78.513828 iter 90 value 77.987235 iter 100 value 77.548094 final value 77.548094 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.424130 iter 10 value 93.181167 iter 20 value 87.314382 iter 30 value 82.905740 iter 40 value 81.206670 iter 50 value 80.272459 iter 60 value 79.484495 iter 70 value 79.129413 iter 80 value 78.456836 iter 90 value 77.712944 iter 100 value 77.603209 final value 77.603209 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.282032 iter 10 value 92.634348 iter 20 value 91.366624 iter 30 value 85.981860 iter 40 value 83.085663 iter 50 value 81.777916 iter 60 value 80.900355 iter 70 value 78.948992 iter 80 value 77.725982 iter 90 value 77.125472 iter 100 value 76.851446 final value 76.851446 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.537194 iter 10 value 94.225257 iter 20 value 87.987737 iter 30 value 84.350734 iter 40 value 83.335445 iter 50 value 83.101357 iter 60 value 82.609615 iter 70 value 78.589614 iter 80 value 77.893460 iter 90 value 77.509840 iter 100 value 77.347691 final value 77.347691 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.295129 iter 10 value 92.472010 iter 20 value 84.009739 iter 30 value 82.915898 iter 40 value 80.814522 iter 50 value 79.335509 iter 60 value 78.928746 iter 70 value 78.460569 iter 80 value 77.713940 iter 90 value 77.618961 iter 100 value 77.575304 final value 77.575304 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.837406 final value 94.054569 converged Fitting Repeat 2 # weights: 103 initial value 96.337543 final value 94.054316 converged Fitting Repeat 3 # weights: 103 initial value 100.319192 iter 10 value 94.054642 iter 20 value 94.052977 final value 94.052915 converged Fitting Repeat 4 # weights: 103 initial value 98.142574 final value 94.054683 converged Fitting Repeat 5 # weights: 103 initial value 100.339218 iter 10 value 94.054526 iter 20 value 94.053020 iter 30 value 89.052897 iter 40 value 83.296730 iter 50 value 80.804535 iter 60 value 80.716047 iter 70 value 80.649632 iter 80 value 80.644530 iter 90 value 80.644236 final value 80.644219 converged Fitting Repeat 1 # weights: 305 initial value 113.153072 iter 10 value 92.950634 iter 20 value 92.274041 iter 30 value 92.170735 iter 40 value 92.168445 iter 50 value 92.167240 iter 60 value 92.166810 iter 70 value 92.053229 final value 92.052841 converged Fitting Repeat 2 # weights: 305 initial value 113.520289 iter 10 value 92.184529 iter 20 value 92.163250 final value 92.059196 converged Fitting Repeat 3 # weights: 305 initial value 99.691263 iter 10 value 92.950527 iter 20 value 92.947871 iter 30 value 84.961818 iter 40 value 82.623020 final value 82.602337 converged Fitting Repeat 4 # weights: 305 initial value 94.795197 iter 10 value 92.218397 iter 20 value 92.170889 iter 30 value 92.170332 iter 40 value 88.319732 iter 50 value 82.734710 iter 60 value 78.442717 iter 70 value 76.792735 iter 80 value 75.212307 iter 90 value 75.001157 iter 100 value 74.622428 final value 74.622428 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.394526 iter 10 value 92.950445 iter 20 value 92.946518 final value 92.945787 converged Fitting Repeat 1 # weights: 507 initial value 95.096662 iter 10 value 92.231592 iter 20 value 92.175757 iter 30 value 92.157065 iter 40 value 92.022424 iter 50 value 92.018379 iter 60 value 92.018278 iter 70 value 92.017975 iter 80 value 92.017723 final value 92.017700 converged Fitting Repeat 2 # weights: 507 initial value 98.528433 iter 10 value 92.954214 iter 20 value 92.950034 iter 30 value 92.294547 iter 40 value 91.918957 iter 50 value 90.155764 iter 60 value 81.311837 iter 70 value 80.792866 iter 80 value 80.788978 iter 90 value 80.788709 iter 100 value 80.719772 final value 80.719772 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.597477 iter 10 value 92.180616 iter 20 value 92.173446 iter 30 value 92.167229 iter 40 value 92.165967 iter 40 value 92.165967 final value 92.165967 converged Fitting Repeat 4 # weights: 507 initial value 105.412829 iter 10 value 94.061066 iter 20 value 94.052991 iter 30 value 91.502378 iter 40 value 85.712444 iter 50 value 82.808610 iter 60 value 79.205891 iter 70 value 78.432864 iter 80 value 77.814179 iter 90 value 77.462182 iter 100 value 77.446480 final value 77.446480 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.853178 iter 10 value 94.060792 iter 20 value 93.998633 iter 30 value 92.947152 iter 40 value 84.036536 iter 50 value 83.722841 iter 60 value 83.717224 iter 70 value 83.707568 iter 80 value 83.672681 iter 90 value 81.442117 iter 100 value 81.440781 final value 81.440781 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.959974 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 118.878612 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.301392 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.505543 final value 94.467391 converged Fitting Repeat 5 # weights: 103 initial value 95.375843 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.060306 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.457856 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.289775 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.513118 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.496193 iter 10 value 84.575504 iter 20 value 83.148723 iter 30 value 83.006341 iter 40 value 83.005707 iter 40 value 83.005707 iter 40 value 83.005707 final value 83.005707 converged Fitting Repeat 1 # weights: 507 initial value 97.295962 final value 94.484210 converged Fitting Repeat 2 # weights: 507 initial value 105.757896 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 114.601213 iter 10 value 94.484486 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 118.924854 iter 10 value 91.343908 iter 20 value 91.321665 final value 91.321637 converged Fitting Repeat 5 # weights: 507 initial value 99.801438 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 97.209688 iter 10 value 94.399248 iter 20 value 86.312602 iter 30 value 84.035441 iter 40 value 83.725735 iter 50 value 83.556903 iter 60 value 83.466039 final value 83.462210 converged Fitting Repeat 2 # weights: 103 initial value 106.938393 iter 10 value 94.393619 iter 20 value 90.232660 iter 30 value 88.607111 iter 40 value 88.253717 iter 50 value 85.486428 iter 60 value 84.255487 iter 70 value 84.096151 iter 80 value 83.397557 iter 90 value 83.346029 iter 100 value 83.293787 final value 83.293787 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.503857 iter 10 value 94.442112 iter 20 value 84.478968 iter 30 value 83.722067 iter 40 value 83.404844 iter 50 value 83.133151 final value 83.114469 converged Fitting Repeat 4 # weights: 103 initial value 96.800060 iter 10 value 94.454477 iter 20 value 88.284209 iter 30 value 87.361457 iter 40 value 83.865355 iter 50 value 83.558665 iter 60 value 83.338059 iter 70 value 83.231731 iter 80 value 83.208514 final value 83.206288 converged Fitting Repeat 5 # weights: 103 initial value 104.464318 iter 10 value 94.486124 iter 20 value 91.338341 iter 30 value 84.275429 iter 40 value 83.985767 iter 50 value 83.437854 iter 60 value 83.311172 final value 83.310730 converged Fitting Repeat 1 # weights: 305 initial value 107.903118 iter 10 value 94.385596 iter 20 value 85.705797 iter 30 value 83.538969 iter 40 value 82.226145 iter 50 value 81.392078 iter 60 value 81.069143 iter 70 value 80.747756 iter 80 value 80.630535 iter 90 value 80.558577 iter 100 value 80.198030 final value 80.198030 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.440973 iter 10 value 95.846250 iter 20 value 87.569953 iter 30 value 85.341149 iter 40 value 83.784510 iter 50 value 81.317824 iter 60 value 80.107828 iter 70 value 79.950428 iter 80 value 79.825713 iter 90 value 79.734013 iter 100 value 79.689743 final value 79.689743 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.539245 iter 10 value 94.192802 iter 20 value 87.394499 iter 30 value 86.548591 iter 40 value 86.361086 iter 50 value 85.551796 iter 60 value 84.312190 iter 70 value 83.015291 iter 80 value 81.681457 iter 90 value 81.404224 iter 100 value 80.625621 final value 80.625621 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 122.793603 iter 10 value 94.513185 iter 20 value 88.536980 iter 30 value 84.233180 iter 40 value 83.738095 iter 50 value 83.103761 iter 60 value 82.956243 iter 70 value 81.838666 iter 80 value 81.302863 iter 90 value 80.595000 iter 100 value 80.218219 final value 80.218219 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.182515 iter 10 value 94.117769 iter 20 value 87.014078 iter 30 value 85.554756 iter 40 value 83.140363 iter 50 value 81.735895 iter 60 value 81.156676 iter 70 value 80.084269 iter 80 value 79.931384 iter 90 value 79.822511 iter 100 value 79.780300 final value 79.780300 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.874374 iter 10 value 93.276908 iter 20 value 90.552303 iter 30 value 86.585166 iter 40 value 85.080414 iter 50 value 83.563831 iter 60 value 83.186315 iter 70 value 82.817111 iter 80 value 81.481171 iter 90 value 80.908016 iter 100 value 80.528945 final value 80.528945 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.152339 iter 10 value 94.641284 iter 20 value 88.433684 iter 30 value 85.889430 iter 40 value 84.304495 iter 50 value 83.708294 iter 60 value 81.450812 iter 70 value 81.109832 iter 80 value 79.894363 iter 90 value 79.753241 iter 100 value 79.624169 final value 79.624169 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.013599 iter 10 value 94.956606 iter 20 value 89.660309 iter 30 value 84.428905 iter 40 value 83.631744 iter 50 value 82.767383 iter 60 value 82.504253 iter 70 value 81.553037 iter 80 value 80.472100 iter 90 value 80.194905 iter 100 value 79.877901 final value 79.877901 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.734477 iter 10 value 94.573463 iter 20 value 89.432868 iter 30 value 85.859459 iter 40 value 85.401668 iter 50 value 84.308482 iter 60 value 82.623105 iter 70 value 82.378034 iter 80 value 82.046935 iter 90 value 81.727975 iter 100 value 81.449586 final value 81.449586 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.111575 iter 10 value 94.469944 iter 20 value 93.268195 iter 30 value 85.045279 iter 40 value 84.121777 iter 50 value 83.324249 iter 60 value 81.125380 iter 70 value 80.547779 iter 80 value 80.265168 iter 90 value 80.184896 iter 100 value 80.099219 final value 80.099219 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.405666 final value 94.485713 converged Fitting Repeat 2 # weights: 103 initial value 92.093510 iter 10 value 89.915682 iter 20 value 89.908196 final value 89.908065 converged Fitting Repeat 3 # weights: 103 initial value 96.591506 final value 94.485985 converged Fitting Repeat 4 # weights: 103 initial value 101.627842 final value 94.484474 converged Fitting Repeat 5 # weights: 103 initial value 97.349151 final value 94.468945 converged Fitting Repeat 1 # weights: 305 initial value 97.558992 iter 10 value 94.489629 iter 20 value 94.441145 iter 30 value 91.989215 iter 40 value 91.952169 iter 50 value 90.794423 iter 60 value 90.792279 iter 70 value 90.791863 iter 80 value 90.271221 iter 90 value 89.872277 iter 100 value 85.299596 final value 85.299596 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.578754 iter 10 value 94.472348 iter 20 value 94.467512 final value 94.467408 converged Fitting Repeat 3 # weights: 305 initial value 109.698726 iter 10 value 94.488831 iter 20 value 94.484379 iter 30 value 91.077242 iter 40 value 85.244557 iter 50 value 84.887172 iter 60 value 83.580742 iter 70 value 83.345695 iter 80 value 83.344455 iter 90 value 83.049003 iter 100 value 81.417829 final value 81.417829 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.796195 iter 10 value 94.472755 iter 20 value 94.468725 iter 30 value 94.467439 iter 40 value 90.658114 iter 50 value 90.652087 final value 90.652085 converged Fitting Repeat 5 # weights: 305 initial value 100.613137 iter 10 value 94.488483 iter 20 value 88.393554 iter 30 value 83.533491 iter 40 value 83.507765 iter 50 value 83.506418 iter 60 value 83.095288 final value 83.088876 converged Fitting Repeat 1 # weights: 507 initial value 111.920494 iter 10 value 94.156614 iter 20 value 94.153048 iter 30 value 93.784046 iter 40 value 91.187354 iter 50 value 90.864507 iter 60 value 90.712671 iter 70 value 90.623126 iter 80 value 90.622232 iter 90 value 90.613097 iter 100 value 90.573896 final value 90.573896 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.932773 iter 10 value 94.492218 final value 94.492043 converged Fitting Repeat 3 # weights: 507 initial value 95.036569 iter 10 value 94.491159 iter 20 value 94.468863 iter 30 value 83.350552 iter 40 value 82.060139 iter 50 value 81.102626 iter 60 value 80.353899 iter 70 value 79.861041 iter 80 value 79.860036 iter 90 value 79.661499 iter 100 value 79.554167 final value 79.554167 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.457598 iter 10 value 94.492293 iter 20 value 94.260880 iter 30 value 87.081674 iter 40 value 85.150038 iter 50 value 85.085107 final value 85.084308 converged Fitting Repeat 5 # weights: 507 initial value 102.133308 iter 10 value 93.693797 iter 20 value 93.680319 iter 30 value 93.675877 iter 40 value 93.432053 iter 50 value 90.135808 iter 60 value 90.012678 iter 70 value 87.940355 final value 87.927792 converged Fitting Repeat 1 # weights: 103 initial value 100.376244 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.642706 final value 94.275362 converged Fitting Repeat 3 # weights: 103 initial value 102.498815 iter 10 value 93.944413 iter 20 value 92.534535 iter 30 value 90.966498 iter 40 value 90.954002 iter 50 value 90.953730 final value 90.953716 converged Fitting Repeat 4 # weights: 103 initial value 97.062683 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.731035 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 116.959004 iter 10 value 94.266823 iter 20 value 83.713518 iter 30 value 82.543298 iter 40 value 82.541218 iter 40 value 82.541218 iter 40 value 82.541218 final value 82.541218 converged Fitting Repeat 2 # weights: 305 initial value 103.130498 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.847775 final value 94.275362 converged Fitting Repeat 4 # weights: 305 initial value 102.474725 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 117.381194 final value 94.428839 converged Fitting Repeat 1 # weights: 507 initial value 99.702067 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 100.555799 final value 94.470285 converged Fitting Repeat 3 # weights: 507 initial value 106.228813 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.238598 final value 94.484212 converged Fitting Repeat 5 # weights: 507 initial value 108.425745 iter 10 value 94.263888 final value 94.248062 converged Fitting Repeat 1 # weights: 103 initial value 97.269397 iter 10 value 94.474847 iter 20 value 92.880999 iter 30 value 86.506393 iter 40 value 85.394720 iter 50 value 83.810949 iter 60 value 83.510500 final value 83.495949 converged Fitting Repeat 2 # weights: 103 initial value 104.475363 iter 10 value 91.491309 iter 20 value 90.756645 iter 30 value 90.213071 iter 40 value 90.148002 iter 50 value 87.090674 iter 60 value 81.373713 iter 70 value 79.860836 iter 80 value 79.537538 iter 90 value 79.386824 iter 100 value 79.179198 final value 79.179198 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.298586 iter 10 value 94.456912 iter 20 value 92.658505 iter 30 value 84.943956 iter 40 value 84.003130 iter 50 value 83.058783 iter 60 value 82.513395 iter 70 value 81.729067 iter 80 value 81.514428 final value 81.514380 converged Fitting Repeat 4 # weights: 103 initial value 101.238739 iter 10 value 94.488597 iter 20 value 93.732541 iter 30 value 83.964431 iter 40 value 82.779137 iter 50 value 81.896903 iter 60 value 81.515492 final value 81.514380 converged Fitting Repeat 5 # weights: 103 initial value 96.979381 iter 10 value 94.469092 iter 20 value 87.211052 iter 30 value 83.991057 iter 40 value 83.333340 iter 50 value 82.850858 iter 60 value 80.185500 iter 70 value 79.476568 iter 80 value 79.279943 iter 90 value 78.986427 iter 100 value 78.851038 final value 78.851038 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.311321 iter 10 value 90.954736 iter 20 value 83.713859 iter 30 value 82.210436 iter 40 value 82.178812 iter 50 value 81.656262 iter 60 value 80.404726 iter 70 value 79.513182 iter 80 value 78.372809 iter 90 value 78.129637 iter 100 value 78.022535 final value 78.022535 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.131055 iter 10 value 94.550671 iter 20 value 94.239388 iter 30 value 89.934306 iter 40 value 87.795463 iter 50 value 81.812819 iter 60 value 81.090606 iter 70 value 79.479253 iter 80 value 78.092442 iter 90 value 77.781022 iter 100 value 77.649013 final value 77.649013 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.030966 iter 10 value 94.503717 iter 20 value 89.348147 iter 30 value 83.236077 iter 40 value 81.589086 iter 50 value 81.475553 iter 60 value 81.147979 iter 70 value 79.768745 iter 80 value 78.994799 iter 90 value 78.117307 iter 100 value 77.847823 final value 77.847823 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.854697 iter 10 value 94.642286 iter 20 value 94.116158 iter 30 value 84.119436 iter 40 value 82.816749 iter 50 value 81.772341 iter 60 value 81.575058 iter 70 value 81.527289 iter 80 value 81.460581 iter 90 value 80.599716 iter 100 value 79.780533 final value 79.780533 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.364157 iter 10 value 95.908481 iter 20 value 93.671749 iter 30 value 82.843324 iter 40 value 81.392086 iter 50 value 79.915090 iter 60 value 79.491657 iter 70 value 79.152499 iter 80 value 79.075354 iter 90 value 78.951739 iter 100 value 78.515470 final value 78.515470 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.643254 iter 10 value 94.526329 iter 20 value 85.790889 iter 30 value 81.243468 iter 40 value 79.619198 iter 50 value 78.715946 iter 60 value 78.237770 iter 70 value 78.120706 iter 80 value 78.087620 iter 90 value 77.876716 iter 100 value 77.567247 final value 77.567247 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.534579 iter 10 value 94.371332 iter 20 value 85.197165 iter 30 value 79.720799 iter 40 value 79.300473 iter 50 value 78.533366 iter 60 value 78.207755 iter 70 value 77.953297 iter 80 value 77.807196 iter 90 value 77.746946 iter 100 value 77.696220 final value 77.696220 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.346011 iter 10 value 94.557684 iter 20 value 91.179410 iter 30 value 83.542953 iter 40 value 83.061689 iter 50 value 79.606779 iter 60 value 78.682221 iter 70 value 78.436175 iter 80 value 77.980000 iter 90 value 77.780932 iter 100 value 77.459848 final value 77.459848 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.905584 iter 10 value 94.488674 iter 20 value 88.407755 iter 30 value 83.939384 iter 40 value 81.790626 iter 50 value 80.865365 iter 60 value 78.842163 iter 70 value 77.775808 iter 80 value 77.476976 iter 90 value 77.379721 iter 100 value 77.341802 final value 77.341802 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.065900 iter 10 value 94.354721 iter 20 value 91.140798 iter 30 value 89.292538 iter 40 value 81.658606 iter 50 value 80.565327 iter 60 value 79.640080 iter 70 value 79.374715 iter 80 value 78.931981 iter 90 value 78.778217 iter 100 value 78.405576 final value 78.405576 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.852466 final value 94.485975 converged Fitting Repeat 2 # weights: 103 initial value 117.715988 iter 10 value 94.486098 iter 20 value 94.484254 iter 30 value 93.919171 iter 40 value 86.737352 iter 50 value 86.315283 iter 60 value 84.667784 iter 70 value 82.879332 iter 80 value 82.860824 iter 90 value 82.859127 iter 100 value 82.857217 final value 82.857217 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.086072 final value 94.485978 converged Fitting Repeat 4 # weights: 103 initial value 97.889285 final value 94.485635 converged Fitting Repeat 5 # weights: 103 initial value 97.020856 iter 10 value 93.923952 iter 20 value 93.922757 iter 30 value 85.936765 iter 40 value 85.934247 iter 50 value 84.180362 iter 60 value 84.174316 iter 70 value 84.172252 iter 80 value 82.267315 final value 82.267306 converged Fitting Repeat 1 # weights: 305 initial value 97.046138 iter 10 value 94.280415 iter 20 value 93.904098 iter 30 value 88.388569 iter 40 value 85.232813 iter 50 value 83.175908 iter 60 value 83.120297 iter 70 value 83.118357 final value 83.118049 converged Fitting Repeat 2 # weights: 305 initial value 101.389142 iter 10 value 84.672187 iter 20 value 83.147134 iter 30 value 83.034887 final value 83.034414 converged Fitting Repeat 3 # weights: 305 initial value 122.967228 iter 10 value 94.489474 iter 20 value 94.447295 iter 30 value 93.207889 iter 40 value 86.114099 iter 50 value 86.109904 iter 60 value 86.109798 iter 70 value 84.268907 iter 80 value 77.528867 iter 90 value 76.715575 iter 100 value 76.711889 final value 76.711889 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.340687 iter 10 value 94.472210 iter 20 value 93.424457 iter 30 value 82.870592 iter 40 value 82.559873 iter 50 value 82.558652 iter 60 value 82.558209 iter 70 value 82.557672 iter 80 value 82.067356 iter 90 value 78.714823 iter 100 value 78.281531 final value 78.281531 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.979310 iter 10 value 94.293971 iter 20 value 94.280233 iter 30 value 94.276246 iter 40 value 94.275621 iter 50 value 91.102702 iter 60 value 90.974260 iter 70 value 90.939900 iter 80 value 90.755566 final value 90.715691 converged Fitting Repeat 1 # weights: 507 initial value 110.155207 iter 10 value 94.283984 iter 20 value 94.275982 iter 30 value 93.954162 iter 40 value 90.232614 iter 50 value 85.191765 iter 60 value 84.793470 iter 70 value 84.792632 iter 80 value 84.792484 final value 84.792474 converged Fitting Repeat 2 # weights: 507 initial value 107.822407 iter 10 value 94.492916 iter 20 value 93.664411 final value 87.592676 converged Fitting Repeat 3 # weights: 507 initial value 98.972873 iter 10 value 94.283655 iter 20 value 93.929167 iter 30 value 93.923751 final value 93.923673 converged Fitting Repeat 4 # weights: 507 initial value 106.292301 iter 10 value 94.485807 iter 20 value 85.069785 iter 30 value 82.393666 iter 40 value 82.029511 iter 50 value 82.028433 final value 82.028074 converged Fitting Repeat 5 # weights: 507 initial value 110.021057 iter 10 value 94.283080 iter 20 value 94.051197 iter 30 value 88.522793 iter 40 value 85.873814 iter 50 value 85.873542 final value 85.870152 converged Fitting Repeat 1 # weights: 103 initial value 96.258394 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.084504 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.719919 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.213635 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.467663 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.262566 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 108.156436 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 109.886850 iter 10 value 94.430344 iter 20 value 94.427937 final value 94.427934 converged Fitting Repeat 4 # weights: 305 initial value 109.442183 iter 10 value 94.457434 iter 20 value 92.263929 iter 30 value 91.830692 iter 40 value 91.829031 final value 91.828930 converged Fitting Repeat 5 # weights: 305 initial value 98.017985 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 110.713661 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 99.739188 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.091412 iter 10 value 94.467397 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 100.565774 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 95.416913 final value 94.342012 converged Fitting Repeat 1 # weights: 103 initial value 104.394487 iter 10 value 94.214113 iter 20 value 91.012925 iter 30 value 90.579132 iter 40 value 90.119684 iter 50 value 89.754295 iter 60 value 89.552817 iter 70 value 89.550756 final value 89.550749 converged Fitting Repeat 2 # weights: 103 initial value 99.255505 iter 10 value 94.487732 iter 20 value 94.433507 iter 30 value 92.854478 iter 40 value 92.099132 iter 50 value 90.770741 iter 60 value 88.761592 iter 70 value 88.471448 iter 80 value 88.272636 iter 90 value 87.944125 iter 100 value 87.409284 final value 87.409284 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.168697 iter 10 value 94.352608 iter 20 value 91.809768 iter 30 value 91.117813 iter 40 value 90.343413 iter 50 value 90.080480 iter 60 value 89.728784 iter 70 value 89.621119 iter 80 value 89.538355 final value 89.537737 converged Fitting Repeat 4 # weights: 103 initial value 97.083525 iter 10 value 94.593418 iter 20 value 94.031272 iter 30 value 93.683939 iter 40 value 88.523521 iter 50 value 88.308237 iter 60 value 88.248469 iter 70 value 88.128921 iter 80 value 87.617853 iter 90 value 87.367059 iter 100 value 87.365933 final value 87.365933 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.051380 iter 10 value 94.486436 iter 20 value 94.399454 iter 30 value 89.507335 iter 40 value 88.452527 iter 50 value 88.398212 iter 60 value 88.071074 iter 70 value 87.794267 iter 80 value 87.755492 final value 87.755489 converged Fitting Repeat 1 # weights: 305 initial value 105.594782 iter 10 value 94.492104 iter 20 value 92.811557 iter 30 value 89.640311 iter 40 value 88.727453 iter 50 value 88.074187 iter 60 value 86.769658 iter 70 value 86.174588 iter 80 value 86.067484 iter 90 value 85.920004 iter 100 value 85.726609 final value 85.726609 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.584095 iter 10 value 94.555793 iter 20 value 94.475990 iter 30 value 89.213403 iter 40 value 88.521771 iter 50 value 88.399066 iter 60 value 87.530948 iter 70 value 86.819726 iter 80 value 86.498337 iter 90 value 86.392993 iter 100 value 85.977871 final value 85.977871 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.798357 iter 10 value 94.728494 iter 20 value 89.443507 iter 30 value 89.089912 iter 40 value 87.523995 iter 50 value 87.293795 iter 60 value 87.209399 iter 70 value 87.200947 iter 80 value 87.147975 iter 90 value 87.002343 iter 100 value 86.192809 final value 86.192809 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.295297 iter 10 value 94.289651 iter 20 value 92.859168 iter 30 value 88.558409 iter 40 value 88.450683 iter 50 value 88.355672 iter 60 value 87.834604 iter 70 value 87.654810 iter 80 value 86.958391 iter 90 value 86.195635 iter 100 value 86.038484 final value 86.038484 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.525527 iter 10 value 94.524028 iter 20 value 93.307596 iter 30 value 89.856251 iter 40 value 87.882017 iter 50 value 86.507839 iter 60 value 86.077265 iter 70 value 85.878669 iter 80 value 85.857277 iter 90 value 85.847264 iter 100 value 85.804801 final value 85.804801 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.902671 iter 10 value 100.336684 iter 20 value 94.123819 iter 30 value 88.021514 iter 40 value 87.012355 iter 50 value 86.524361 iter 60 value 86.164061 iter 70 value 86.097548 iter 80 value 86.017981 iter 90 value 85.825906 iter 100 value 85.750716 final value 85.750716 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.991996 iter 10 value 94.497593 iter 20 value 93.205992 iter 30 value 89.353740 iter 40 value 88.576711 iter 50 value 86.960618 iter 60 value 86.408557 iter 70 value 85.821698 iter 80 value 85.651243 iter 90 value 85.592720 iter 100 value 85.420128 final value 85.420128 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.436657 iter 10 value 94.823556 iter 20 value 88.922933 iter 30 value 86.938028 iter 40 value 86.584509 iter 50 value 86.479004 iter 60 value 86.357565 iter 70 value 86.120144 iter 80 value 86.004822 iter 90 value 85.782508 iter 100 value 85.655537 final value 85.655537 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.005182 iter 10 value 94.705720 iter 20 value 93.567962 iter 30 value 89.166234 iter 40 value 87.965476 iter 50 value 86.619024 iter 60 value 86.223632 iter 70 value 86.108953 iter 80 value 86.046049 iter 90 value 86.030989 iter 100 value 85.914177 final value 85.914177 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.221108 iter 10 value 95.794097 iter 20 value 94.868013 iter 30 value 94.041992 iter 40 value 92.109081 iter 50 value 89.630906 iter 60 value 87.268602 iter 70 value 86.922514 iter 80 value 86.854222 iter 90 value 86.619326 iter 100 value 86.241731 final value 86.241731 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.809339 final value 94.469105 converged Fitting Repeat 2 # weights: 103 initial value 99.891603 final value 94.468878 converged Fitting Repeat 3 # weights: 103 initial value 95.899040 final value 94.486061 converged Fitting Repeat 4 # weights: 103 initial value 95.770255 final value 94.486090 converged Fitting Repeat 5 # weights: 103 initial value 101.412789 final value 94.487364 converged Fitting Repeat 1 # weights: 305 initial value 106.940250 iter 10 value 94.489126 iter 20 value 94.079674 iter 30 value 90.913331 iter 40 value 89.017773 iter 50 value 88.892578 iter 60 value 88.780536 iter 70 value 88.740151 iter 80 value 88.738085 final value 88.738074 converged Fitting Repeat 2 # weights: 305 initial value 99.995103 iter 10 value 94.489881 iter 20 value 94.484065 iter 30 value 94.470016 iter 40 value 89.294610 iter 50 value 89.277179 iter 60 value 89.221449 final value 89.221447 converged Fitting Repeat 3 # weights: 305 initial value 106.965887 iter 10 value 94.488947 iter 20 value 94.484332 iter 30 value 93.974272 iter 40 value 89.552780 iter 50 value 87.921800 iter 60 value 87.813505 iter 70 value 87.812105 final value 87.811981 converged Fitting Repeat 4 # weights: 305 initial value 97.007551 iter 10 value 94.327736 iter 20 value 94.308082 iter 30 value 93.920422 iter 40 value 93.851313 iter 50 value 93.849856 iter 60 value 93.848316 iter 70 value 93.847071 iter 80 value 93.844832 final value 93.844421 converged Fitting Repeat 5 # weights: 305 initial value 97.473478 iter 10 value 94.488867 iter 20 value 94.434436 final value 94.354324 converged Fitting Repeat 1 # weights: 507 initial value 111.330034 iter 10 value 94.474973 iter 20 value 94.467666 iter 30 value 94.024463 iter 40 value 89.283307 iter 50 value 87.902250 iter 60 value 87.247524 iter 70 value 87.246141 iter 80 value 87.221206 iter 90 value 86.405122 iter 100 value 86.298421 final value 86.298421 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.121257 iter 10 value 94.475610 iter 20 value 94.467541 iter 30 value 90.453759 iter 40 value 87.875767 iter 50 value 87.869140 iter 60 value 87.581684 iter 70 value 87.036656 iter 80 value 87.035439 iter 90 value 87.034785 final value 87.034512 converged Fitting Repeat 3 # weights: 507 initial value 112.229205 iter 10 value 94.492425 iter 20 value 94.458641 iter 30 value 93.934452 iter 40 value 93.786619 final value 93.786576 converged Fitting Repeat 4 # weights: 507 initial value 128.833493 iter 10 value 94.492759 iter 20 value 94.474892 final value 94.467495 converged Fitting Repeat 5 # weights: 507 initial value 114.943170 iter 10 value 94.492842 iter 20 value 94.346141 iter 30 value 93.541054 iter 40 value 90.265050 iter 50 value 90.078754 final value 90.078426 converged Fitting Repeat 1 # weights: 103 initial value 97.145904 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 115.618793 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.585943 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 100.583756 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.277772 final value 93.869755 converged Fitting Repeat 1 # weights: 305 initial value 110.900880 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 106.306209 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 99.980644 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.366001 iter 10 value 92.701774 final value 92.701662 converged Fitting Repeat 5 # weights: 305 initial value 103.679758 iter 10 value 92.907224 final value 92.838591 converged Fitting Repeat 1 # weights: 507 initial value 107.484513 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.030397 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 103.346921 iter 10 value 92.129798 iter 20 value 90.183386 iter 30 value 90.116487 iter 40 value 89.837346 iter 50 value 89.829438 final value 89.829297 converged Fitting Repeat 4 # weights: 507 initial value 103.405272 iter 10 value 93.870855 iter 20 value 93.853603 iter 30 value 93.793770 iter 40 value 93.792215 iter 50 value 93.788221 final value 93.788212 converged Fitting Repeat 5 # weights: 507 initial value 133.681408 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.962994 iter 10 value 94.111699 iter 20 value 94.056167 iter 30 value 89.644880 iter 40 value 86.945711 iter 50 value 86.908587 iter 60 value 86.449021 iter 70 value 86.325088 iter 80 value 86.000006 iter 90 value 85.916025 final value 85.915764 converged Fitting Repeat 2 # weights: 103 initial value 98.970407 iter 10 value 90.791692 iter 20 value 88.513918 iter 30 value 86.304107 iter 40 value 85.915981 final value 85.915764 converged Fitting Repeat 3 # weights: 103 initial value 101.844451 iter 10 value 94.056577 iter 20 value 94.002647 iter 30 value 93.878209 iter 40 value 93.869050 iter 50 value 93.785680 iter 60 value 91.150053 iter 70 value 86.555070 iter 80 value 85.980912 iter 90 value 85.915798 final value 85.915764 converged Fitting Repeat 4 # weights: 103 initial value 101.264333 iter 10 value 94.055222 iter 20 value 94.002826 iter 30 value 93.871517 iter 40 value 93.531354 iter 50 value 88.371249 iter 60 value 87.310287 iter 70 value 80.721086 iter 80 value 80.337018 iter 90 value 79.618530 iter 100 value 79.446052 final value 79.446052 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.858741 iter 10 value 93.857074 iter 20 value 93.265523 iter 30 value 89.219071 iter 40 value 85.827917 iter 50 value 85.124668 iter 60 value 84.826303 iter 70 value 82.350950 iter 80 value 82.151631 iter 90 value 82.116518 final value 82.116513 converged Fitting Repeat 1 # weights: 305 initial value 109.299956 iter 10 value 94.183516 iter 20 value 89.692655 iter 30 value 89.173472 iter 40 value 86.879211 iter 50 value 84.002743 iter 60 value 81.889122 iter 70 value 80.359197 iter 80 value 79.209676 iter 90 value 78.878992 iter 100 value 78.800849 final value 78.800849 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.133284 iter 10 value 93.887707 iter 20 value 90.634575 iter 30 value 82.630093 iter 40 value 80.939766 iter 50 value 79.224582 iter 60 value 79.055047 iter 70 value 78.809822 iter 80 value 78.353303 iter 90 value 77.913225 iter 100 value 77.804031 final value 77.804031 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.487401 iter 10 value 94.121083 iter 20 value 87.383706 iter 30 value 84.181059 iter 40 value 83.444787 iter 50 value 81.390723 iter 60 value 80.301643 iter 70 value 80.013820 iter 80 value 79.974616 iter 90 value 79.919825 iter 100 value 79.615376 final value 79.615376 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.845346 iter 10 value 93.720249 iter 20 value 87.550173 iter 30 value 84.309531 iter 40 value 83.998926 iter 50 value 82.306499 iter 60 value 81.356535 iter 70 value 81.089456 iter 80 value 80.656213 iter 90 value 79.284314 iter 100 value 78.801576 final value 78.801576 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.332841 iter 10 value 94.053594 iter 20 value 90.251304 iter 30 value 87.498103 iter 40 value 84.492194 iter 50 value 83.471157 iter 60 value 83.297546 iter 70 value 82.998630 iter 80 value 82.948705 iter 90 value 82.884388 iter 100 value 82.197168 final value 82.197168 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.270159 iter 10 value 92.578657 iter 20 value 88.275788 iter 30 value 87.634010 iter 40 value 83.718790 iter 50 value 83.410382 iter 60 value 83.292069 iter 70 value 82.871958 iter 80 value 81.484195 iter 90 value 80.709836 iter 100 value 80.106961 final value 80.106961 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.118418 iter 10 value 94.911801 iter 20 value 93.675011 iter 30 value 92.956958 iter 40 value 86.509534 iter 50 value 81.952572 iter 60 value 80.632635 iter 70 value 79.414855 iter 80 value 78.965861 iter 90 value 78.915856 iter 100 value 78.843319 final value 78.843319 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.194678 iter 10 value 93.526928 iter 20 value 88.178299 iter 30 value 82.719414 iter 40 value 79.510825 iter 50 value 79.061073 iter 60 value 78.810368 iter 70 value 78.598878 iter 80 value 78.310000 iter 90 value 78.221012 iter 100 value 78.073992 final value 78.073992 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.631685 iter 10 value 94.384102 iter 20 value 93.851240 iter 30 value 89.672893 iter 40 value 88.187858 iter 50 value 83.258998 iter 60 value 82.226019 iter 70 value 82.094711 iter 80 value 79.902758 iter 90 value 79.411921 iter 100 value 78.845287 final value 78.845287 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.357065 iter 10 value 93.926132 iter 20 value 87.256776 iter 30 value 84.293179 iter 40 value 81.167064 iter 50 value 80.438968 iter 60 value 79.660012 iter 70 value 79.168770 iter 80 value 78.866472 iter 90 value 78.734354 iter 100 value 78.621727 final value 78.621727 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.649745 final value 93.917194 converged Fitting Repeat 2 # weights: 103 initial value 101.603384 final value 93.917491 converged Fitting Repeat 3 # weights: 103 initial value 101.005218 final value 94.054653 converged Fitting Repeat 4 # weights: 103 initial value 97.495780 final value 94.054575 converged Fitting Repeat 5 # weights: 103 initial value 101.632271 final value 94.054388 converged Fitting Repeat 1 # weights: 305 initial value 99.450526 iter 10 value 93.374637 iter 20 value 88.597625 iter 30 value 88.595061 iter 40 value 86.164565 final value 85.126234 converged Fitting Repeat 2 # weights: 305 initial value 99.146813 iter 10 value 94.054206 iter 20 value 94.052577 iter 30 value 91.826362 iter 40 value 90.474968 iter 50 value 90.474645 iter 50 value 90.474645 iter 50 value 90.474645 final value 90.474645 converged Fitting Repeat 3 # weights: 305 initial value 116.423038 iter 10 value 94.057742 iter 20 value 94.052920 iter 20 value 94.052919 final value 94.052919 converged Fitting Repeat 4 # weights: 305 initial value 123.473236 iter 10 value 94.057495 iter 20 value 93.719648 iter 30 value 92.706129 iter 40 value 92.703306 final value 92.703303 converged Fitting Repeat 5 # weights: 305 initial value 116.822045 iter 10 value 94.057455 iter 20 value 94.052844 iter 30 value 89.765213 iter 40 value 85.834273 iter 50 value 80.143295 iter 60 value 78.587871 iter 70 value 78.477584 iter 80 value 78.369936 iter 90 value 78.211630 iter 100 value 78.177528 final value 78.177528 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 151.473069 iter 10 value 94.062563 iter 20 value 93.540402 iter 30 value 89.833044 iter 40 value 82.934873 iter 50 value 82.432502 iter 60 value 80.536657 iter 70 value 79.461065 iter 80 value 79.134686 iter 90 value 79.024658 iter 100 value 78.996213 final value 78.996213 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.457710 iter 10 value 93.923889 iter 20 value 93.915581 iter 30 value 93.464331 iter 40 value 85.691772 iter 50 value 80.405990 iter 60 value 80.265297 iter 70 value 80.256497 iter 80 value 80.013505 iter 90 value 78.901137 iter 100 value 78.252543 final value 78.252543 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.708685 iter 10 value 94.061394 iter 20 value 94.004246 iter 30 value 86.452183 iter 40 value 86.144515 iter 50 value 86.138325 iter 60 value 86.137339 iter 70 value 84.205315 iter 80 value 83.567255 final value 83.564739 converged Fitting Repeat 4 # weights: 507 initial value 105.924758 iter 10 value 93.925790 iter 20 value 93.923712 iter 30 value 93.919792 iter 40 value 93.919508 iter 50 value 93.915896 iter 60 value 92.364227 iter 70 value 86.526111 iter 80 value 86.190465 final value 86.165578 converged Fitting Repeat 5 # weights: 507 initial value 94.313955 iter 10 value 94.053990 iter 20 value 84.676072 iter 30 value 84.638343 iter 40 value 84.482199 iter 50 value 84.481070 iter 60 value 83.955763 iter 70 value 80.494597 iter 80 value 79.467058 iter 90 value 79.407483 final value 79.406691 converged Fitting Repeat 1 # weights: 507 initial value 123.590177 iter 10 value 105.354039 iter 20 value 105.347185 iter 30 value 105.151639 final value 105.141656 converged Fitting Repeat 2 # weights: 507 initial value 125.293405 iter 10 value 117.767023 iter 20 value 117.617235 iter 30 value 117.219110 iter 40 value 107.995068 iter 50 value 104.773900 iter 60 value 100.770372 iter 70 value 99.854379 iter 80 value 99.442219 iter 90 value 99.293769 iter 100 value 99.248911 final value 99.248911 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.289040 iter 10 value 114.822610 iter 20 value 114.537570 iter 30 value 114.534569 iter 40 value 114.532019 iter 50 value 114.272944 iter 60 value 114.246120 final value 114.245274 converged Fitting Repeat 4 # weights: 507 initial value 119.345799 iter 10 value 117.874041 iter 20 value 117.866166 iter 30 value 117.865491 iter 40 value 116.479099 iter 50 value 103.747267 iter 60 value 103.126140 iter 70 value 102.946072 iter 80 value 102.512484 iter 90 value 101.603789 iter 100 value 101.558365 final value 101.558365 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.642388 iter 10 value 117.897958 iter 20 value 117.760472 final value 117.759094 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Jan 21 05:23:51 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 75.577 2.035 146.732
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.548 | 1.816 | 54.207 | |
FreqInteractors | 0.486 | 0.028 | 0.536 | |
calculateAAC | 0.073 | 0.012 | 0.085 | |
calculateAutocor | 0.849 | 0.107 | 0.986 | |
calculateCTDC | 0.152 | 0.006 | 0.160 | |
calculateCTDD | 1.240 | 0.040 | 1.354 | |
calculateCTDT | 0.444 | 0.016 | 0.484 | |
calculateCTriad | 0.796 | 0.049 | 1.022 | |
calculateDC | 0.258 | 0.027 | 0.308 | |
calculateF | 0.702 | 0.019 | 0.750 | |
calculateKSAAP | 0.285 | 0.025 | 0.320 | |
calculateQD_Sm | 3.536 | 0.200 | 3.951 | |
calculateTC | 4.668 | 0.443 | 5.362 | |
calculateTC_Sm | 0.536 | 0.028 | 0.582 | |
corr_plot | 50.941 | 1.843 | 55.496 | |
enrichfindP | 0.882 | 0.082 | 13.657 | |
enrichfind_hp | 0.128 | 0.036 | 1.103 | |
enrichplot | 0.810 | 0.012 | 0.826 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.121 | 0.018 | 2.914 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.004 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.003 | 0.001 | 0.004 | |
plotPPI | 0.137 | 0.003 | 0.143 | |
pred_ensembel | 24.977 | 0.406 | 23.808 | |
var_imp | 51.373 | 1.861 | 58.932 | |