Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-12-23 12:06 -0500 (Mon, 23 Dec 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4744 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4515 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4467 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-12-20 04:42:51 -0500 (Fri, 20 Dec 2024) |
EndedAt: 2024-12-20 04:50:53 -0500 (Fri, 20 Dec 2024) |
EllapsedTime: 482.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 50.728 1.789 53.484 var_imp 50.438 1.806 56.596 FSmethod 50.424 1.749 53.421 pred_ensembel 24.848 0.395 22.598 calculateTC 4.682 0.465 5.205 enrichfindP 0.884 0.078 13.472 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 116.395420 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.382504 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.525450 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.960283 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.238841 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.800952 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 103.162827 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.773831 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.280273 final value 93.109890 converged Fitting Repeat 5 # weights: 305 initial value 98.239575 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 94.676265 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.881195 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.779088 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.701936 iter 10 value 86.749280 final value 86.733916 converged Fitting Repeat 5 # weights: 507 initial value 96.659366 iter 10 value 93.210840 iter 20 value 91.889294 iter 30 value 86.981343 iter 40 value 86.931896 iter 50 value 86.925942 iter 60 value 86.924305 final value 86.924254 converged Fitting Repeat 1 # weights: 103 initial value 98.560467 iter 10 value 92.267465 iter 20 value 90.940814 iter 30 value 84.966310 iter 40 value 82.336257 iter 50 value 81.481300 iter 60 value 81.028239 iter 70 value 80.982454 iter 80 value 79.988701 iter 90 value 79.856495 final value 79.855773 converged Fitting Repeat 2 # weights: 103 initial value 97.481727 iter 10 value 94.503622 iter 20 value 94.069687 iter 30 value 91.651292 iter 40 value 87.042718 iter 50 value 86.328503 iter 60 value 82.124682 iter 70 value 81.189552 iter 80 value 81.008234 iter 90 value 80.141312 iter 100 value 79.903445 final value 79.903445 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.091866 iter 10 value 94.426586 iter 20 value 93.348246 iter 30 value 92.491411 iter 40 value 88.054415 iter 50 value 86.412977 iter 60 value 85.055076 iter 70 value 82.768716 iter 80 value 81.717850 iter 90 value 80.607673 iter 100 value 80.072861 final value 80.072861 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.778112 iter 10 value 94.488342 iter 20 value 90.983693 iter 30 value 86.171251 iter 40 value 84.698970 iter 50 value 84.501961 iter 60 value 81.993826 iter 70 value 81.907932 iter 80 value 81.906612 final value 81.906595 converged Fitting Repeat 5 # weights: 103 initial value 102.166426 iter 10 value 93.729143 iter 20 value 85.692680 iter 30 value 84.515146 iter 40 value 82.733021 iter 50 value 82.658271 iter 60 value 82.042664 iter 70 value 81.981987 iter 80 value 81.981097 final value 81.981089 converged Fitting Repeat 1 # weights: 305 initial value 102.020781 iter 10 value 93.748574 iter 20 value 93.268624 iter 30 value 84.410356 iter 40 value 83.907457 iter 50 value 81.884676 iter 60 value 81.134162 iter 70 value 80.765108 iter 80 value 80.576989 iter 90 value 80.414441 iter 100 value 80.000000 final value 80.000000 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.802719 iter 10 value 94.503365 iter 20 value 94.409607 iter 30 value 94.222067 iter 40 value 94.038363 iter 50 value 86.246785 iter 60 value 85.558881 iter 70 value 82.735046 iter 80 value 80.528157 iter 90 value 80.047392 iter 100 value 79.511450 final value 79.511450 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.375909 iter 10 value 94.016567 iter 20 value 93.445055 iter 30 value 89.113073 iter 40 value 86.208102 iter 50 value 83.746579 iter 60 value 81.263541 iter 70 value 79.359040 iter 80 value 78.868323 iter 90 value 78.808467 iter 100 value 78.608265 final value 78.608265 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.600941 iter 10 value 95.987909 iter 20 value 94.121490 iter 30 value 90.291808 iter 40 value 86.917312 iter 50 value 86.169867 iter 60 value 83.148908 iter 70 value 79.729939 iter 80 value 78.978185 iter 90 value 78.689821 iter 100 value 78.445841 final value 78.445841 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.038404 iter 10 value 95.570962 iter 20 value 89.721231 iter 30 value 88.754968 iter 40 value 85.189561 iter 50 value 84.706804 iter 60 value 82.340585 iter 70 value 80.795265 iter 80 value 79.847190 iter 90 value 79.058033 iter 100 value 78.301287 final value 78.301287 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.898168 iter 10 value 94.569185 iter 20 value 88.697493 iter 30 value 83.931195 iter 40 value 82.373855 iter 50 value 80.554567 iter 60 value 79.743384 iter 70 value 79.451356 iter 80 value 79.312482 iter 90 value 79.207563 iter 100 value 79.122885 final value 79.122885 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.588537 iter 10 value 94.435559 iter 20 value 91.244154 iter 30 value 89.679868 iter 40 value 88.679589 iter 50 value 84.100667 iter 60 value 80.098259 iter 70 value 79.015089 iter 80 value 78.884691 iter 90 value 78.786302 iter 100 value 78.773500 final value 78.773500 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.507534 iter 10 value 94.331623 iter 20 value 85.316210 iter 30 value 83.220387 iter 40 value 81.379559 iter 50 value 80.597151 iter 60 value 80.074835 iter 70 value 79.212429 iter 80 value 78.640774 iter 90 value 78.227362 iter 100 value 78.065783 final value 78.065783 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.494934 iter 10 value 95.680464 iter 20 value 94.563782 iter 30 value 85.299276 iter 40 value 83.055379 iter 50 value 82.048932 iter 60 value 79.898956 iter 70 value 79.037773 iter 80 value 78.507758 iter 90 value 78.157227 iter 100 value 78.099719 final value 78.099719 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.664589 iter 10 value 94.360638 iter 20 value 88.084205 iter 30 value 86.069438 iter 40 value 81.031064 iter 50 value 80.123443 iter 60 value 79.923748 iter 70 value 79.468443 iter 80 value 78.861678 iter 90 value 78.445415 iter 100 value 78.191920 final value 78.191920 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.787554 final value 94.485765 converged Fitting Repeat 2 # weights: 103 initial value 101.791054 final value 94.485960 converged Fitting Repeat 3 # weights: 103 initial value 95.107676 final value 94.485848 converged Fitting Repeat 4 # weights: 103 initial value 101.604032 final value 94.485901 converged Fitting Repeat 5 # weights: 103 initial value 101.477274 iter 10 value 94.485843 iter 20 value 94.447240 iter 30 value 83.456528 iter 40 value 80.968885 iter 50 value 80.964077 final value 80.964013 converged Fitting Repeat 1 # weights: 305 initial value 106.070215 iter 10 value 94.031526 iter 20 value 94.027693 final value 94.027333 converged Fitting Repeat 2 # weights: 305 initial value 96.478382 iter 10 value 92.774762 iter 20 value 90.908268 final value 90.908166 converged Fitting Repeat 3 # weights: 305 initial value 100.180035 iter 10 value 94.488403 iter 20 value 94.018878 final value 93.294828 converged Fitting Repeat 4 # weights: 305 initial value 111.428744 iter 10 value 94.489444 iter 20 value 94.484253 iter 30 value 89.148899 iter 40 value 87.897032 iter 50 value 85.010077 iter 60 value 83.424922 iter 70 value 83.410956 iter 80 value 81.021705 iter 90 value 80.495416 iter 100 value 80.434215 final value 80.434215 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.566068 iter 10 value 94.031701 iter 20 value 93.991327 iter 30 value 93.978694 final value 93.977394 converged Fitting Repeat 1 # weights: 507 initial value 103.966974 iter 10 value 94.492447 iter 20 value 94.407636 iter 30 value 91.793031 iter 40 value 91.546980 iter 50 value 91.546638 iter 60 value 91.471717 iter 70 value 82.849277 iter 80 value 81.203807 iter 90 value 80.959815 iter 100 value 80.600963 final value 80.600963 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.356957 iter 10 value 94.492822 iter 20 value 94.269235 iter 30 value 91.270096 iter 40 value 91.257609 iter 50 value 91.256198 iter 60 value 90.680823 iter 70 value 89.438537 iter 80 value 89.436055 iter 90 value 89.305749 iter 100 value 89.225768 final value 89.225768 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.351843 iter 10 value 87.933950 iter 20 value 84.785465 iter 30 value 84.764954 iter 40 value 84.763976 iter 50 value 84.724394 iter 60 value 82.956157 iter 70 value 82.287652 iter 80 value 82.280527 iter 90 value 82.280383 iter 100 value 82.229241 final value 82.229241 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.664203 iter 10 value 94.492262 iter 20 value 94.483992 iter 30 value 93.567030 iter 40 value 93.293318 final value 93.290648 converged Fitting Repeat 5 # weights: 507 initial value 98.093776 iter 10 value 92.137366 iter 20 value 92.064379 iter 30 value 92.049472 iter 40 value 92.046012 iter 50 value 92.045458 final value 92.045422 converged Fitting Repeat 1 # weights: 103 initial value 96.130673 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.564467 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.136256 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.519839 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.959374 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.789736 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.105874 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 106.144020 iter 10 value 94.484207 iter 10 value 94.484207 iter 10 value 94.484207 final value 94.484207 converged Fitting Repeat 4 # weights: 305 initial value 107.285034 iter 10 value 94.484160 final value 94.484137 converged Fitting Repeat 5 # weights: 305 initial value 110.278060 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 103.451243 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.072315 iter 10 value 94.484137 iter 10 value 94.484137 iter 10 value 94.484137 final value 94.484137 converged Fitting Repeat 3 # weights: 507 initial value 108.140235 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.942614 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 110.264080 iter 10 value 93.072333 iter 20 value 92.647772 iter 30 value 92.647361 iter 40 value 92.646290 final value 92.646203 converged Fitting Repeat 1 # weights: 103 initial value 97.804008 iter 10 value 94.488066 iter 20 value 93.799588 iter 30 value 93.602545 iter 40 value 86.033243 iter 50 value 84.366089 iter 60 value 84.185106 iter 70 value 83.250352 iter 80 value 82.486685 iter 90 value 82.148172 iter 100 value 81.842161 final value 81.842161 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.583509 iter 10 value 94.467824 iter 20 value 94.095779 iter 30 value 88.090103 iter 40 value 85.575899 iter 50 value 84.321476 iter 60 value 83.875723 iter 70 value 83.484866 iter 80 value 83.435272 iter 90 value 83.433433 final value 83.432853 converged Fitting Repeat 3 # weights: 103 initial value 120.932321 iter 10 value 94.442811 iter 20 value 88.133553 iter 30 value 84.016272 iter 40 value 83.743879 iter 50 value 83.523577 iter 60 value 83.485886 iter 70 value 81.980445 iter 80 value 80.776001 iter 90 value 80.130696 iter 100 value 79.616591 final value 79.616591 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.742743 iter 10 value 94.488546 iter 20 value 85.967179 iter 30 value 84.421595 iter 40 value 84.216084 iter 50 value 82.743249 iter 60 value 82.049269 iter 70 value 81.957213 iter 80 value 81.890891 iter 90 value 81.840666 iter 90 value 81.840665 iter 90 value 81.840665 final value 81.840665 converged Fitting Repeat 5 # weights: 103 initial value 95.379662 iter 10 value 88.410718 iter 20 value 87.358579 iter 30 value 84.301246 iter 40 value 84.152373 iter 50 value 83.689492 iter 60 value 83.491015 iter 70 value 83.434033 final value 83.433280 converged Fitting Repeat 1 # weights: 305 initial value 108.789591 iter 10 value 94.675158 iter 20 value 92.224730 iter 30 value 84.746157 iter 40 value 84.543508 iter 50 value 83.830077 iter 60 value 80.809115 iter 70 value 79.092459 iter 80 value 78.755821 iter 90 value 78.530307 iter 100 value 78.363731 final value 78.363731 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.470643 iter 10 value 95.328259 iter 20 value 94.447063 iter 30 value 88.765311 iter 40 value 87.260250 iter 50 value 86.831093 iter 60 value 85.165491 iter 70 value 82.976067 iter 80 value 81.413113 iter 90 value 80.642730 iter 100 value 79.133371 final value 79.133371 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.495332 iter 10 value 94.408323 iter 20 value 88.343553 iter 30 value 83.360427 iter 40 value 81.258179 iter 50 value 79.717303 iter 60 value 79.016468 iter 70 value 78.717865 iter 80 value 78.159201 iter 90 value 78.113446 iter 100 value 78.103959 final value 78.103959 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.222893 iter 10 value 93.792685 iter 20 value 89.602612 iter 30 value 84.981399 iter 40 value 83.064689 iter 50 value 81.907191 iter 60 value 81.277074 iter 70 value 80.975570 iter 80 value 80.370527 iter 90 value 79.999437 iter 100 value 79.987308 final value 79.987308 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.573436 iter 10 value 94.257108 iter 20 value 87.628676 iter 30 value 86.204033 iter 40 value 82.929325 iter 50 value 81.864378 iter 60 value 81.166997 iter 70 value 80.979272 iter 80 value 80.688156 iter 90 value 80.636605 iter 100 value 80.342576 final value 80.342576 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.696937 iter 10 value 95.263175 iter 20 value 87.267094 iter 30 value 85.023540 iter 40 value 83.917986 iter 50 value 79.371886 iter 60 value 78.709891 iter 70 value 78.155999 iter 80 value 77.885269 iter 90 value 77.739957 iter 100 value 77.561410 final value 77.561410 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.764519 iter 10 value 94.800492 iter 20 value 88.976408 iter 30 value 83.253323 iter 40 value 80.389677 iter 50 value 78.605735 iter 60 value 78.200899 iter 70 value 77.954593 iter 80 value 77.839111 iter 90 value 77.736547 iter 100 value 77.700840 final value 77.700840 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 136.876301 iter 10 value 94.269570 iter 20 value 87.462980 iter 30 value 86.704976 iter 40 value 84.654812 iter 50 value 84.004278 iter 60 value 82.746001 iter 70 value 81.339456 iter 80 value 80.666544 iter 90 value 78.539458 iter 100 value 78.308272 final value 78.308272 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.390941 iter 10 value 94.709354 iter 20 value 94.108078 iter 30 value 89.005702 iter 40 value 83.823402 iter 50 value 82.940365 iter 60 value 81.500961 iter 70 value 80.857208 iter 80 value 80.466097 iter 90 value 80.378946 iter 100 value 79.424024 final value 79.424024 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.395095 iter 10 value 94.765752 iter 20 value 93.725523 iter 30 value 85.910000 iter 40 value 81.710441 iter 50 value 80.463972 iter 60 value 78.537494 iter 70 value 78.363871 iter 80 value 78.259118 iter 90 value 78.115140 iter 100 value 77.716407 final value 77.716407 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.021373 final value 94.485921 converged Fitting Repeat 2 # weights: 103 initial value 103.416441 iter 10 value 94.485817 final value 94.485459 converged Fitting Repeat 3 # weights: 103 initial value 104.800330 final value 94.485905 converged Fitting Repeat 4 # weights: 103 initial value 96.566852 final value 94.485521 converged Fitting Repeat 5 # weights: 103 initial value 98.004991 iter 10 value 94.330457 iter 20 value 94.206666 final value 94.047398 converged Fitting Repeat 1 # weights: 305 initial value 97.106124 iter 10 value 94.488499 iter 20 value 89.975388 iter 30 value 84.861407 iter 40 value 84.824294 iter 40 value 84.824293 iter 40 value 84.824293 final value 84.824293 converged Fitting Repeat 2 # weights: 305 initial value 102.907599 iter 10 value 94.489091 iter 20 value 94.484266 iter 30 value 84.892426 iter 40 value 84.865608 iter 50 value 83.337735 iter 60 value 83.065419 iter 70 value 83.060553 final value 83.060211 converged Fitting Repeat 3 # weights: 305 initial value 95.915524 iter 10 value 94.489170 iter 20 value 94.473457 iter 30 value 83.844279 iter 40 value 83.377591 iter 50 value 83.188587 iter 60 value 83.096733 iter 70 value 83.079996 iter 80 value 83.075911 iter 90 value 83.067817 iter 100 value 83.065981 final value 83.065981 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.507503 iter 10 value 94.012990 iter 20 value 93.899562 iter 30 value 92.945983 iter 40 value 92.633712 iter 50 value 92.633246 iter 60 value 91.955522 iter 70 value 91.953508 iter 80 value 91.952949 iter 90 value 91.926068 iter 100 value 91.890303 final value 91.890303 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 94.953096 iter 10 value 94.486502 iter 20 value 94.454973 iter 30 value 89.441141 iter 40 value 89.427986 iter 50 value 88.857658 iter 60 value 88.852251 iter 70 value 88.824841 iter 80 value 88.813579 iter 90 value 88.688701 iter 100 value 88.687232 final value 88.687232 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.905534 iter 10 value 94.363141 iter 20 value 94.264040 iter 30 value 88.545143 iter 40 value 86.711616 iter 50 value 82.634085 iter 60 value 77.212858 iter 70 value 76.089628 iter 80 value 75.994998 iter 90 value 75.974263 iter 100 value 75.964126 final value 75.964126 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.537292 iter 10 value 94.325593 iter 20 value 93.701912 iter 30 value 91.892928 iter 40 value 91.681225 final value 91.680111 converged Fitting Repeat 3 # weights: 507 initial value 116.641395 iter 10 value 94.492672 iter 20 value 94.381714 iter 30 value 93.507104 iter 40 value 93.035218 final value 93.029215 converged Fitting Repeat 4 # weights: 507 initial value 101.266129 iter 10 value 94.438682 iter 20 value 94.303682 iter 30 value 83.913504 iter 40 value 83.191583 iter 50 value 83.143416 iter 60 value 83.118495 iter 70 value 83.117044 final value 83.117013 converged Fitting Repeat 5 # weights: 507 initial value 97.297971 iter 10 value 94.362532 iter 20 value 94.355236 iter 30 value 94.221756 iter 40 value 92.936569 iter 50 value 84.993146 iter 60 value 79.944662 iter 70 value 79.754571 iter 80 value 79.746021 final value 79.746019 converged Fitting Repeat 1 # weights: 103 initial value 98.782446 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.845526 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.697055 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.702202 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.075470 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.739378 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 110.257339 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 115.019007 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 118.168388 iter 10 value 94.028252 final value 94.008696 converged Fitting Repeat 5 # weights: 305 initial value 124.727140 iter 10 value 93.678713 final value 93.678687 converged Fitting Repeat 1 # weights: 507 initial value 100.788821 iter 10 value 93.768812 iter 20 value 93.641276 iter 30 value 86.829405 final value 86.806626 converged Fitting Repeat 2 # weights: 507 initial value 100.095125 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.061663 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 106.548624 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 114.738351 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 101.816480 iter 10 value 94.057193 iter 20 value 94.041999 iter 30 value 92.663800 iter 40 value 91.605463 iter 50 value 91.446638 iter 60 value 88.461782 iter 70 value 85.868002 iter 80 value 84.989955 iter 90 value 84.532774 iter 100 value 84.229208 final value 84.229208 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.818401 iter 10 value 93.451317 iter 20 value 86.631131 iter 30 value 86.151788 iter 40 value 85.001417 iter 50 value 84.658003 iter 60 value 84.578830 iter 70 value 84.550972 iter 80 value 84.548341 final value 84.548340 converged Fitting Repeat 3 # weights: 103 initial value 99.458675 iter 10 value 94.056792 iter 20 value 92.957935 iter 30 value 86.210192 iter 40 value 85.937374 iter 50 value 85.558573 iter 60 value 85.363272 final value 85.356748 converged Fitting Repeat 4 # weights: 103 initial value 100.369526 iter 10 value 95.059113 iter 20 value 94.054900 iter 30 value 90.999820 iter 40 value 85.896377 iter 50 value 85.262931 iter 60 value 84.499284 iter 70 value 84.210189 iter 80 value 83.855951 iter 90 value 83.598464 iter 100 value 83.111099 final value 83.111099 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.968225 iter 10 value 94.055642 iter 20 value 94.001281 iter 30 value 90.010737 iter 40 value 88.663696 iter 50 value 88.240444 iter 60 value 85.946153 iter 70 value 85.242533 iter 80 value 84.583627 iter 90 value 84.571787 iter 100 value 84.566981 final value 84.566981 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.550211 iter 10 value 93.062236 iter 20 value 86.287221 iter 30 value 85.552367 iter 40 value 85.248118 iter 50 value 85.141388 iter 60 value 84.314742 iter 70 value 83.155710 iter 80 value 82.158886 iter 90 value 81.956111 iter 100 value 81.838310 final value 81.838310 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.400724 iter 10 value 94.043983 iter 20 value 86.835941 iter 30 value 86.065730 iter 40 value 85.749088 iter 50 value 85.573329 iter 60 value 85.130893 iter 70 value 84.730742 iter 80 value 84.415940 iter 90 value 84.318667 iter 100 value 84.140344 final value 84.140344 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.941331 iter 10 value 94.075228 iter 20 value 90.774948 iter 30 value 89.319221 iter 40 value 85.888161 iter 50 value 85.127930 iter 60 value 84.737754 iter 70 value 84.389670 iter 80 value 84.156072 iter 90 value 84.132203 iter 100 value 83.878562 final value 83.878562 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.683240 iter 10 value 93.971001 iter 20 value 91.698578 iter 30 value 86.198124 iter 40 value 84.868173 iter 50 value 84.755845 iter 60 value 84.543724 iter 70 value 84.396623 iter 80 value 84.385264 iter 90 value 84.358278 iter 100 value 83.800271 final value 83.800271 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.106142 iter 10 value 93.935695 iter 20 value 92.350394 iter 30 value 89.020867 iter 40 value 87.763059 iter 50 value 87.462364 iter 60 value 85.717912 iter 70 value 84.449427 iter 80 value 83.421152 iter 90 value 82.591024 iter 100 value 82.310420 final value 82.310420 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.543716 iter 10 value 97.799729 iter 20 value 86.811945 iter 30 value 85.981891 iter 40 value 84.983272 iter 50 value 84.290663 iter 60 value 84.171303 iter 70 value 83.876452 iter 80 value 83.321763 iter 90 value 82.027870 iter 100 value 81.851450 final value 81.851450 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.155864 iter 10 value 94.447635 iter 20 value 92.491020 iter 30 value 92.373854 iter 40 value 92.087157 iter 50 value 86.282668 iter 60 value 85.609868 iter 70 value 85.300103 iter 80 value 85.074738 iter 90 value 83.286847 iter 100 value 82.621218 final value 82.621218 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.605656 iter 10 value 94.819593 iter 20 value 89.613148 iter 30 value 86.150646 iter 40 value 85.814786 iter 50 value 84.367169 iter 60 value 83.270020 iter 70 value 82.726899 iter 80 value 82.285579 iter 90 value 82.054827 iter 100 value 82.034246 final value 82.034246 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.763606 iter 10 value 94.327099 iter 20 value 92.398888 iter 30 value 86.970476 iter 40 value 85.141282 iter 50 value 84.919884 iter 60 value 83.194815 iter 70 value 82.578513 iter 80 value 82.211634 iter 90 value 81.985988 iter 100 value 81.747094 final value 81.747094 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.379539 iter 10 value 93.379360 iter 20 value 89.240222 iter 30 value 88.284529 iter 40 value 88.136569 iter 50 value 85.373406 iter 60 value 84.100687 iter 70 value 82.664492 iter 80 value 82.235402 iter 90 value 81.901633 iter 100 value 81.756425 final value 81.756425 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.075863 final value 94.054539 converged Fitting Repeat 2 # weights: 103 initial value 96.496046 final value 94.054758 converged Fitting Repeat 3 # weights: 103 initial value 98.869191 final value 94.054992 converged Fitting Repeat 4 # weights: 103 initial value 102.272827 iter 10 value 94.054596 iter 20 value 94.052467 iter 30 value 85.848794 final value 85.847159 converged Fitting Repeat 5 # weights: 103 initial value 99.286003 final value 94.054488 converged Fitting Repeat 1 # weights: 305 initial value 96.837842 iter 10 value 88.078609 iter 20 value 87.471099 iter 30 value 87.414937 final value 87.414427 converged Fitting Repeat 2 # weights: 305 initial value 94.537157 iter 10 value 94.054982 iter 20 value 94.001927 iter 30 value 86.372870 iter 40 value 85.789665 iter 50 value 85.788697 iter 60 value 84.072106 iter 70 value 83.486763 iter 80 value 82.934840 iter 90 value 82.934275 iter 100 value 82.931844 final value 82.931844 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.511819 iter 10 value 93.926606 iter 20 value 93.880742 iter 30 value 93.808920 iter 40 value 92.203718 iter 50 value 84.397094 iter 60 value 84.150412 iter 70 value 84.150005 iter 80 value 84.121254 iter 90 value 82.986422 iter 100 value 82.460959 final value 82.460959 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.472530 iter 10 value 94.057836 iter 20 value 93.957454 iter 30 value 91.999197 iter 40 value 86.984531 iter 50 value 84.425849 iter 60 value 83.463790 final value 83.436939 converged Fitting Repeat 5 # weights: 305 initial value 100.380255 iter 10 value 93.916594 iter 20 value 93.728654 iter 30 value 93.727679 iter 40 value 93.722832 iter 50 value 89.568192 final value 88.213842 converged Fitting Repeat 1 # weights: 507 initial value 106.149549 iter 10 value 94.016210 iter 20 value 94.014287 iter 30 value 93.853294 iter 40 value 90.574070 iter 50 value 88.553371 iter 60 value 87.711687 iter 70 value 86.649914 iter 80 value 86.512477 iter 90 value 86.511978 iter 100 value 86.511891 final value 86.511891 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.607328 iter 10 value 94.061210 iter 20 value 94.052947 iter 30 value 85.517795 iter 40 value 85.387363 final value 85.387360 converged Fitting Repeat 3 # weights: 507 initial value 107.656606 iter 10 value 93.819117 iter 20 value 93.816189 iter 30 value 93.813505 iter 40 value 93.807343 iter 50 value 93.801006 iter 60 value 92.552595 iter 70 value 87.650382 iter 80 value 87.298051 iter 90 value 85.219825 iter 100 value 84.190362 final value 84.190362 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.498988 iter 10 value 94.016646 iter 20 value 93.882962 iter 30 value 87.625875 iter 40 value 85.620292 iter 50 value 84.386618 iter 60 value 83.974344 iter 70 value 83.776201 iter 80 value 83.684721 final value 83.684656 converged Fitting Repeat 5 # weights: 507 initial value 106.940632 iter 10 value 94.062327 iter 20 value 94.050185 iter 30 value 93.687978 iter 40 value 89.880632 iter 50 value 88.212570 iter 60 value 87.342918 iter 70 value 86.499409 iter 80 value 86.149654 iter 90 value 86.148936 final value 86.148926 converged Fitting Repeat 1 # weights: 103 initial value 98.066310 iter 10 value 92.748755 iter 20 value 92.686764 iter 30 value 92.686713 iter 30 value 92.686712 iter 30 value 92.686712 final value 92.686712 converged Fitting Repeat 2 # weights: 103 initial value 98.477506 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.285227 iter 10 value 86.496940 iter 20 value 86.496700 iter 30 value 86.312632 iter 40 value 85.232806 iter 50 value 85.196639 final value 85.196216 converged Fitting Repeat 4 # weights: 103 initial value 99.655089 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.161767 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.189143 final value 94.008696 converged Fitting Repeat 2 # weights: 305 initial value 102.121915 iter 10 value 93.292468 final value 93.288889 converged Fitting Repeat 3 # weights: 305 initial value 100.711522 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.121353 final value 94.008695 converged Fitting Repeat 5 # weights: 305 initial value 96.878418 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.424533 final value 93.257143 converged Fitting Repeat 2 # weights: 507 initial value 104.625020 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 109.683080 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 116.912108 iter 10 value 93.518803 iter 20 value 91.380207 iter 30 value 91.378271 final value 91.378268 converged Fitting Repeat 5 # weights: 507 initial value 99.264198 iter 10 value 93.978716 final value 93.912644 converged Fitting Repeat 1 # weights: 103 initial value 108.847164 iter 10 value 93.755784 iter 20 value 85.810232 iter 30 value 85.598920 iter 40 value 85.490984 iter 50 value 85.137943 iter 60 value 84.435744 final value 84.429369 converged Fitting Repeat 2 # weights: 103 initial value 101.194587 iter 10 value 94.204204 iter 20 value 94.031454 iter 30 value 93.831609 iter 40 value 93.157151 iter 50 value 85.860697 iter 60 value 82.432971 iter 70 value 82.211120 iter 80 value 81.278760 iter 90 value 81.066728 iter 100 value 80.960461 final value 80.960461 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.921604 iter 10 value 94.055046 iter 20 value 90.984665 iter 30 value 85.512444 iter 40 value 83.698532 iter 50 value 83.240523 iter 60 value 81.645886 iter 70 value 81.250541 iter 80 value 81.165506 iter 90 value 81.137799 final value 81.137297 converged Fitting Repeat 4 # weights: 103 initial value 105.094413 iter 10 value 93.889868 iter 20 value 90.753673 iter 30 value 89.489336 iter 40 value 83.260864 iter 50 value 82.196169 iter 60 value 81.408509 iter 70 value 81.361687 iter 80 value 81.273332 iter 90 value 81.155990 iter 100 value 81.137297 final value 81.137297 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.079240 iter 10 value 88.649459 iter 20 value 86.413067 iter 30 value 85.637031 iter 40 value 85.215740 iter 50 value 83.987139 iter 60 value 83.239401 iter 70 value 83.194133 iter 80 value 83.190833 iter 90 value 83.189825 final value 83.189822 converged Fitting Repeat 1 # weights: 305 initial value 100.715312 iter 10 value 94.079030 iter 20 value 86.436275 iter 30 value 85.271705 iter 40 value 84.551841 iter 50 value 84.335762 iter 60 value 81.877243 iter 70 value 81.462362 iter 80 value 81.279625 iter 90 value 81.252430 iter 100 value 81.157499 final value 81.157499 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.057277 iter 10 value 92.649087 iter 20 value 92.042498 iter 30 value 88.940867 iter 40 value 86.984328 iter 50 value 84.240621 iter 60 value 82.405759 iter 70 value 81.729130 iter 80 value 81.563888 iter 90 value 81.461825 iter 100 value 81.301133 final value 81.301133 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.749525 iter 10 value 94.086207 iter 20 value 93.297729 iter 30 value 91.483644 iter 40 value 90.986837 iter 50 value 90.882028 iter 60 value 90.736884 iter 70 value 84.813574 iter 80 value 82.650390 iter 90 value 82.606052 iter 100 value 82.576540 final value 82.576540 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.870841 iter 10 value 93.933566 iter 20 value 86.947542 iter 30 value 86.275917 iter 40 value 85.842381 iter 50 value 83.913187 iter 60 value 83.192728 iter 70 value 82.330256 iter 80 value 81.878295 iter 90 value 81.768952 iter 100 value 81.680865 final value 81.680865 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.910052 iter 10 value 93.978807 iter 20 value 84.925558 iter 30 value 82.247044 iter 40 value 81.904426 iter 50 value 80.933284 iter 60 value 80.425167 iter 70 value 80.198473 iter 80 value 80.068124 iter 90 value 79.894990 iter 100 value 79.642571 final value 79.642571 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.023486 iter 10 value 94.097582 iter 20 value 91.689922 iter 30 value 85.329876 iter 40 value 84.758895 iter 50 value 83.556840 iter 60 value 81.592058 iter 70 value 81.336291 iter 80 value 81.089098 iter 90 value 81.047820 iter 100 value 80.979083 final value 80.979083 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.715213 iter 10 value 94.471846 iter 20 value 88.354616 iter 30 value 85.755823 iter 40 value 83.711699 iter 50 value 83.365104 iter 60 value 83.296378 iter 70 value 82.473926 iter 80 value 81.761516 iter 90 value 81.551790 iter 100 value 80.573552 final value 80.573552 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.311874 iter 10 value 94.813939 iter 20 value 92.926079 iter 30 value 86.694908 iter 40 value 82.647294 iter 50 value 81.844177 iter 60 value 81.059481 iter 70 value 80.253316 iter 80 value 80.079359 iter 90 value 79.627502 iter 100 value 79.342619 final value 79.342619 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.816780 iter 10 value 94.735294 iter 20 value 94.003228 iter 30 value 93.212971 iter 40 value 88.801052 iter 50 value 84.467332 iter 60 value 82.517396 iter 70 value 81.983863 iter 80 value 81.807070 iter 90 value 81.696121 iter 100 value 81.274890 final value 81.274890 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 131.852991 iter 10 value 94.898072 iter 20 value 93.426246 iter 30 value 85.199410 iter 40 value 84.143741 iter 50 value 82.337699 iter 60 value 81.882422 iter 70 value 81.746017 iter 80 value 80.614270 iter 90 value 79.661877 iter 100 value 79.353546 final value 79.353546 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.981771 final value 94.054414 converged Fitting Repeat 2 # weights: 103 initial value 97.527837 final value 94.010467 converged Fitting Repeat 3 # weights: 103 initial value 108.356843 iter 10 value 94.010295 iter 10 value 94.010294 iter 10 value 94.010294 final value 94.010294 converged Fitting Repeat 4 # weights: 103 initial value 100.602029 final value 94.054518 converged Fitting Repeat 5 # weights: 103 initial value 102.898772 final value 94.054462 converged Fitting Repeat 1 # weights: 305 initial value 104.326755 iter 10 value 93.865327 iter 20 value 93.817367 iter 30 value 83.805904 final value 83.660552 converged Fitting Repeat 2 # weights: 305 initial value 100.072976 iter 10 value 94.057852 iter 20 value 86.650276 iter 30 value 85.471638 iter 40 value 84.917446 final value 84.917444 converged Fitting Repeat 3 # weights: 305 initial value 108.370425 iter 10 value 93.719088 iter 20 value 85.432731 iter 30 value 84.313803 iter 40 value 82.838109 iter 50 value 82.767669 iter 60 value 82.763067 final value 82.762489 converged Fitting Repeat 4 # weights: 305 initial value 103.426118 iter 10 value 94.057722 iter 20 value 93.786080 iter 30 value 85.500810 iter 40 value 84.545998 iter 50 value 82.614207 iter 60 value 82.611000 iter 70 value 82.609227 iter 70 value 82.609226 final value 82.609226 converged Fitting Repeat 5 # weights: 305 initial value 98.940974 iter 10 value 94.057511 iter 20 value 94.052941 iter 20 value 94.052940 iter 20 value 94.052940 final value 94.052940 converged Fitting Repeat 1 # weights: 507 initial value 98.027833 iter 10 value 94.053705 final value 94.052932 converged Fitting Repeat 2 # weights: 507 initial value 99.507460 iter 10 value 93.813153 iter 20 value 93.143305 iter 30 value 85.355193 iter 40 value 85.325535 iter 50 value 83.513896 iter 60 value 83.049786 iter 70 value 82.438174 iter 80 value 82.435810 final value 82.434429 converged Fitting Repeat 3 # weights: 507 initial value 100.100413 iter 10 value 94.016500 iter 20 value 94.009342 iter 30 value 93.915808 iter 40 value 88.518696 iter 50 value 86.326600 iter 60 value 83.470579 iter 70 value 82.810418 iter 80 value 82.697280 iter 90 value 82.667094 iter 100 value 82.586650 final value 82.586650 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.630333 iter 10 value 94.017208 iter 20 value 94.011313 iter 30 value 93.393079 iter 40 value 89.901291 iter 50 value 89.900662 iter 60 value 89.508119 iter 70 value 88.656620 iter 80 value 88.656234 iter 90 value 87.987282 iter 100 value 85.188202 final value 85.188202 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.043202 iter 10 value 94.017677 iter 20 value 94.009126 iter 30 value 93.633416 iter 40 value 85.440184 iter 50 value 85.415151 iter 60 value 85.414628 iter 70 value 85.412173 iter 80 value 85.405431 iter 90 value 85.405367 final value 85.405276 converged Fitting Repeat 1 # weights: 103 initial value 97.547475 final value 94.446632 converged Fitting Repeat 2 # weights: 103 initial value 97.432748 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.621615 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.238752 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.779227 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.893852 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.660946 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.322000 iter 10 value 94.416667 iter 10 value 94.416667 iter 10 value 94.416667 final value 94.416667 converged Fitting Repeat 4 # weights: 305 initial value 96.445040 iter 10 value 91.343429 iter 20 value 89.989395 iter 30 value 89.981749 final value 89.981741 converged Fitting Repeat 5 # weights: 305 initial value 104.133451 final value 94.088889 converged Fitting Repeat 1 # weights: 507 initial value 115.511311 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 106.746902 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 111.560090 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 95.697482 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 106.741785 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 108.667813 iter 10 value 94.480669 iter 20 value 90.544021 iter 30 value 87.189938 iter 40 value 86.486665 iter 50 value 84.737948 iter 60 value 83.835946 iter 70 value 83.665701 iter 80 value 83.646600 iter 90 value 83.387442 final value 83.365314 converged Fitting Repeat 2 # weights: 103 initial value 102.813612 iter 10 value 94.486417 iter 20 value 91.461454 iter 30 value 90.701323 iter 40 value 90.404647 iter 50 value 89.754631 iter 60 value 89.455591 iter 70 value 89.453159 final value 89.453129 converged Fitting Repeat 3 # weights: 103 initial value 105.502928 iter 10 value 94.400370 iter 20 value 87.472927 iter 30 value 85.415560 iter 40 value 85.345286 iter 50 value 84.824005 iter 60 value 84.366341 iter 70 value 83.283856 iter 80 value 83.146047 iter 90 value 82.992013 iter 100 value 82.827681 final value 82.827681 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.007984 iter 10 value 94.492832 iter 20 value 94.477395 iter 30 value 91.329836 iter 40 value 90.546985 iter 50 value 90.477306 iter 60 value 89.934554 iter 70 value 89.455722 iter 80 value 89.453152 final value 89.453129 converged Fitting Repeat 5 # weights: 103 initial value 96.886422 iter 10 value 94.470808 iter 20 value 93.936910 iter 30 value 90.393004 iter 40 value 89.895305 iter 50 value 86.909755 iter 60 value 86.029429 final value 86.029111 converged Fitting Repeat 1 # weights: 305 initial value 110.112429 iter 10 value 94.884376 iter 20 value 92.207329 iter 30 value 90.925293 iter 40 value 86.309370 iter 50 value 84.978819 iter 60 value 84.590153 iter 70 value 84.041017 iter 80 value 83.663563 iter 90 value 83.405476 iter 100 value 83.215211 final value 83.215211 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.027530 iter 10 value 94.491079 iter 20 value 93.650546 iter 30 value 93.243038 iter 40 value 92.597560 iter 50 value 87.738546 iter 60 value 86.042146 iter 70 value 83.869416 iter 80 value 83.626767 iter 90 value 83.445381 iter 100 value 83.340319 final value 83.340319 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.448799 iter 10 value 91.136538 iter 20 value 84.442221 iter 30 value 84.029983 iter 40 value 83.841060 iter 50 value 83.726446 iter 60 value 83.497405 iter 70 value 83.247644 iter 80 value 83.205141 iter 90 value 83.027589 iter 100 value 82.260609 final value 82.260609 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.033466 iter 10 value 94.379294 iter 20 value 86.733866 iter 30 value 85.563200 iter 40 value 85.338392 iter 50 value 84.926396 iter 60 value 83.692719 iter 70 value 83.259001 iter 80 value 82.910697 iter 90 value 82.520907 iter 100 value 81.780951 final value 81.780951 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.509371 iter 10 value 94.576903 iter 20 value 85.387005 iter 30 value 85.286303 iter 40 value 85.164204 iter 50 value 85.056725 iter 60 value 84.602688 iter 70 value 83.351048 iter 80 value 82.449814 iter 90 value 82.126693 iter 100 value 82.057864 final value 82.057864 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.659246 iter 10 value 102.285698 iter 20 value 90.781729 iter 30 value 90.228037 iter 40 value 88.366402 iter 50 value 85.281454 iter 60 value 83.513694 iter 70 value 83.322405 iter 80 value 83.186684 iter 90 value 82.427211 iter 100 value 81.749045 final value 81.749045 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.379547 iter 10 value 93.825377 iter 20 value 90.344501 iter 30 value 90.134401 iter 40 value 88.088685 iter 50 value 86.113892 iter 60 value 85.665709 iter 70 value 84.889687 iter 80 value 84.671047 iter 90 value 83.201229 iter 100 value 82.815441 final value 82.815441 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.728874 iter 10 value 94.780445 iter 20 value 92.738168 iter 30 value 91.827566 iter 40 value 89.704303 iter 50 value 88.889760 iter 60 value 86.264570 iter 70 value 85.040051 iter 80 value 84.349413 iter 90 value 83.125676 iter 100 value 82.863834 final value 82.863834 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.406955 iter 10 value 93.902398 iter 20 value 93.730492 iter 30 value 90.889676 iter 40 value 89.637129 iter 50 value 84.913023 iter 60 value 83.591163 iter 70 value 83.370676 iter 80 value 83.223283 iter 90 value 83.166172 iter 100 value 83.082428 final value 83.082428 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.511884 iter 10 value 94.924442 iter 20 value 91.820759 iter 30 value 86.784891 iter 40 value 85.889834 iter 50 value 85.044778 iter 60 value 84.914732 iter 70 value 83.596448 iter 80 value 83.289375 iter 90 value 83.006477 iter 100 value 82.472262 final value 82.472262 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.786233 final value 94.485991 converged Fitting Repeat 2 # weights: 103 initial value 118.055778 iter 10 value 94.484647 final value 94.484215 converged Fitting Repeat 3 # weights: 103 initial value 97.524077 final value 94.468285 converged Fitting Repeat 4 # weights: 103 initial value 98.847848 final value 94.485648 converged Fitting Repeat 5 # weights: 103 initial value 98.666814 final value 94.485824 converged Fitting Repeat 1 # weights: 305 initial value 106.098110 iter 10 value 92.462680 iter 20 value 84.966169 iter 30 value 84.597318 iter 40 value 84.503270 iter 50 value 84.500561 iter 60 value 84.500150 iter 70 value 84.499708 iter 80 value 84.497194 iter 90 value 84.496901 final value 84.496470 converged Fitting Repeat 2 # weights: 305 initial value 95.144413 iter 10 value 94.488945 iter 20 value 93.024233 iter 30 value 87.433514 iter 40 value 85.544882 iter 50 value 84.568550 iter 60 value 83.179252 iter 70 value 82.431157 iter 80 value 81.673846 iter 90 value 81.670142 iter 100 value 81.559057 final value 81.559057 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.796813 iter 10 value 94.488410 iter 20 value 94.484222 final value 94.484220 converged Fitting Repeat 4 # weights: 305 initial value 95.344403 iter 10 value 94.488898 iter 20 value 93.437102 iter 30 value 92.455054 iter 40 value 86.152969 iter 50 value 86.151509 iter 60 value 86.140459 iter 70 value 86.139674 final value 86.139532 converged Fitting Repeat 5 # weights: 305 initial value 106.469596 iter 10 value 94.325117 iter 20 value 94.089590 iter 30 value 94.078797 final value 94.078757 converged Fitting Repeat 1 # weights: 507 initial value 98.090238 iter 10 value 94.479928 iter 20 value 94.473956 iter 30 value 94.466937 iter 40 value 94.359735 iter 50 value 90.634821 iter 60 value 90.262042 final value 90.261902 converged Fitting Repeat 2 # weights: 507 initial value 100.068746 iter 10 value 94.474803 iter 20 value 94.195158 iter 30 value 90.149864 iter 40 value 90.137762 iter 50 value 90.055866 iter 60 value 89.973769 iter 70 value 89.955328 iter 80 value 86.385550 iter 90 value 85.938310 iter 100 value 85.926723 final value 85.926723 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.059589 iter 10 value 94.491522 iter 20 value 93.697605 iter 30 value 93.196438 iter 30 value 93.196438 final value 93.196430 converged Fitting Repeat 4 # weights: 507 initial value 95.461506 iter 10 value 94.475027 iter 20 value 94.467738 final value 94.467246 converged Fitting Repeat 5 # weights: 507 initial value 103.987038 iter 10 value 92.519061 iter 20 value 89.197491 iter 30 value 89.005069 iter 40 value 88.301119 iter 50 value 84.753274 iter 60 value 84.685187 iter 70 value 83.247401 iter 80 value 83.239473 iter 90 value 83.236338 iter 100 value 83.234554 final value 83.234554 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.898562 iter 10 value 117.893226 iter 20 value 117.774426 final value 109.491524 converged Fitting Repeat 2 # weights: 305 initial value 118.998142 iter 10 value 117.871082 iter 20 value 117.843613 iter 30 value 117.518358 iter 40 value 105.445644 iter 50 value 105.364766 iter 60 value 105.358401 final value 105.358389 converged Fitting Repeat 3 # weights: 305 initial value 124.567351 iter 10 value 117.895413 iter 20 value 117.869692 iter 30 value 117.549947 final value 117.549835 converged Fitting Repeat 4 # weights: 305 initial value 134.566186 iter 10 value 117.895309 iter 20 value 117.890460 iter 30 value 117.545263 iter 40 value 109.388895 iter 50 value 107.840861 iter 60 value 107.828650 iter 70 value 107.141798 iter 80 value 107.050467 iter 90 value 107.048768 iter 100 value 107.047528 final value 107.047528 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 137.366185 iter 10 value 117.894860 iter 20 value 117.890299 iter 30 value 117.745496 iter 40 value 117.608143 iter 50 value 117.511748 final value 117.511685 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Dec 20 04:50:37 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 74.416 2.066 85.767
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.424 | 1.749 | 53.421 | |
FreqInteractors | 0.484 | 0.023 | 0.541 | |
calculateAAC | 0.070 | 0.013 | 0.083 | |
calculateAutocor | 0.843 | 0.107 | 0.957 | |
calculateCTDC | 0.145 | 0.008 | 0.154 | |
calculateCTDD | 1.220 | 0.030 | 1.254 | |
calculateCTDT | 0.440 | 0.017 | 0.468 | |
calculateCTriad | 0.800 | 0.052 | 0.887 | |
calculateDC | 0.258 | 0.032 | 0.305 | |
calculateF | 0.685 | 0.025 | 0.723 | |
calculateKSAAP | 0.298 | 0.025 | 0.356 | |
calculateQD_Sm | 3.597 | 0.187 | 4.017 | |
calculateTC | 4.682 | 0.465 | 5.205 | |
calculateTC_Sm | 0.530 | 0.033 | 0.566 | |
corr_plot | 50.728 | 1.789 | 53.484 | |
enrichfindP | 0.884 | 0.078 | 13.472 | |
enrichfind_hp | 0.135 | 0.033 | 1.126 | |
enrichplot | 0.813 | 0.012 | 0.845 | |
filter_missing_values | 0.002 | 0.001 | 0.004 | |
getFASTA | 0.123 | 0.016 | 3.341 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.001 | 0.004 | |
plotPPI | 0.136 | 0.003 | 0.140 | |
pred_ensembel | 24.848 | 0.395 | 22.598 | |
var_imp | 50.438 | 1.806 | 56.596 | |