Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-08-28 11:40 -0400 (Thu, 28 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4604 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4545 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4579 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-08-26 04:52:09 -0400 (Tue, 26 Aug 2025) |
EndedAt: 2025-08-26 05:01:38 -0400 (Tue, 26 Aug 2025) |
EllapsedTime: 568.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 RC (2025-06-05 r88288) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 52.519 1.808 55.738 corr_plot 50.342 1.737 53.204 FSmethod 50.127 1.760 53.107 pred_ensembel 24.920 0.398 23.391 enrichfindP 0.874 0.077 14.151 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.084115 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.440770 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.236437 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.029098 final value 91.896033 converged Fitting Repeat 5 # weights: 103 initial value 95.351816 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.984577 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.134504 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.054344 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 124.005558 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.283894 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.917419 iter 10 value 93.121112 iter 20 value 91.947378 iter 30 value 91.060935 iter 40 value 86.603939 iter 50 value 86.582833 iter 60 value 86.456226 final value 86.454546 converged Fitting Repeat 2 # weights: 507 initial value 101.256766 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 94.821521 final value 94.032967 converged Fitting Repeat 4 # weights: 507 initial value 120.556432 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 120.974615 iter 10 value 94.032967 iter 10 value 94.032967 iter 10 value 94.032967 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 104.481318 iter 10 value 93.864534 iter 20 value 86.454757 iter 30 value 85.361189 iter 40 value 85.100135 iter 50 value 83.822101 iter 60 value 83.537717 final value 83.530486 converged Fitting Repeat 2 # weights: 103 initial value 109.932528 iter 10 value 93.872305 iter 20 value 85.187211 iter 30 value 83.689462 iter 40 value 83.497126 final value 83.476142 converged Fitting Repeat 3 # weights: 103 initial value 98.139715 iter 10 value 94.095540 iter 20 value 94.005508 iter 30 value 91.536137 iter 40 value 87.597366 iter 50 value 83.923920 iter 60 value 83.639589 iter 70 value 83.488626 iter 80 value 83.451380 iter 90 value 83.384501 iter 100 value 83.250540 final value 83.250540 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.590665 iter 10 value 94.056607 iter 20 value 91.916906 iter 30 value 87.563016 iter 40 value 86.327897 iter 50 value 83.969797 iter 60 value 83.461948 iter 70 value 83.383943 iter 80 value 83.295995 iter 90 value 83.239733 final value 83.231912 converged Fitting Repeat 5 # weights: 103 initial value 100.591495 iter 10 value 94.035906 iter 20 value 93.615218 iter 30 value 88.224688 iter 40 value 85.469645 iter 50 value 83.026918 iter 60 value 82.334815 iter 70 value 82.193101 iter 80 value 82.079553 final value 82.079507 converged Fitting Repeat 1 # weights: 305 initial value 116.192461 iter 10 value 94.652373 iter 20 value 93.978376 iter 30 value 93.590848 iter 40 value 88.357329 iter 50 value 85.919860 iter 60 value 85.184499 iter 70 value 85.112242 iter 80 value 82.677038 iter 90 value 81.770854 iter 100 value 81.043873 final value 81.043873 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.670398 iter 10 value 94.186381 iter 20 value 85.786518 iter 30 value 84.619500 iter 40 value 83.829885 iter 50 value 83.583874 iter 60 value 82.868934 iter 70 value 81.370424 iter 80 value 81.117468 iter 90 value 81.031988 iter 100 value 80.926682 final value 80.926682 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.107449 iter 10 value 95.490952 iter 20 value 91.272438 iter 30 value 89.953585 iter 40 value 84.342006 iter 50 value 84.006866 iter 60 value 83.859981 iter 70 value 83.744945 iter 80 value 83.392697 iter 90 value 82.755460 iter 100 value 82.607979 final value 82.607979 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.911402 iter 10 value 94.694363 iter 20 value 84.055772 iter 30 value 83.816260 iter 40 value 83.705932 iter 50 value 83.564179 iter 60 value 83.521929 iter 70 value 83.423417 iter 80 value 83.238969 iter 90 value 82.515902 iter 100 value 81.298932 final value 81.298932 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.419028 iter 10 value 93.960928 iter 20 value 89.411056 iter 30 value 84.184785 iter 40 value 83.281145 iter 50 value 82.763196 iter 60 value 82.401114 iter 70 value 82.253244 iter 80 value 82.192907 iter 90 value 82.153615 iter 100 value 82.033852 final value 82.033852 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.357559 iter 10 value 94.283930 iter 20 value 88.420745 iter 30 value 84.595341 iter 40 value 83.098559 iter 50 value 82.794541 iter 60 value 82.715419 iter 70 value 82.665303 iter 80 value 81.985322 iter 90 value 81.164309 iter 100 value 80.534526 final value 80.534526 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.853032 iter 10 value 93.606691 iter 20 value 84.219392 iter 30 value 83.758478 iter 40 value 83.588535 iter 50 value 83.113985 iter 60 value 81.374855 iter 70 value 80.806996 iter 80 value 80.652420 iter 90 value 80.602180 iter 100 value 80.520082 final value 80.520082 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.518761 iter 10 value 94.048028 iter 20 value 86.649143 iter 30 value 83.936982 iter 40 value 83.478916 iter 50 value 81.901870 iter 60 value 80.904059 iter 70 value 80.827024 iter 80 value 80.690119 iter 90 value 80.323575 iter 100 value 80.265641 final value 80.265641 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.563966 iter 10 value 93.855204 iter 20 value 90.070970 iter 30 value 87.458097 iter 40 value 83.170448 iter 50 value 81.855651 iter 60 value 81.599720 iter 70 value 81.471664 iter 80 value 80.810300 iter 90 value 80.422294 iter 100 value 80.293833 final value 80.293833 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.458213 iter 10 value 95.714864 iter 20 value 82.949936 iter 30 value 81.498782 iter 40 value 81.268363 iter 50 value 80.974423 iter 60 value 80.711879 iter 70 value 80.588761 iter 80 value 80.269497 iter 90 value 80.151288 iter 100 value 80.133725 final value 80.133725 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.498132 final value 94.054615 converged Fitting Repeat 2 # weights: 103 initial value 94.364693 iter 10 value 94.027058 iter 20 value 87.887456 iter 30 value 83.734465 iter 40 value 83.734186 iter 50 value 83.732286 final value 83.732202 converged Fitting Repeat 3 # weights: 103 initial value 96.541552 final value 94.054640 converged Fitting Repeat 4 # weights: 103 initial value 94.637779 iter 10 value 84.900211 iter 20 value 84.657619 iter 30 value 84.655973 final value 84.655971 converged Fitting Repeat 5 # weights: 103 initial value 97.408816 final value 94.054372 converged Fitting Repeat 1 # weights: 305 initial value 101.868719 iter 10 value 94.059168 iter 20 value 94.054050 final value 94.053916 converged Fitting Repeat 2 # weights: 305 initial value 101.791156 iter 10 value 94.037746 iter 20 value 93.233991 iter 30 value 84.005092 iter 40 value 83.832506 iter 50 value 83.755848 iter 60 value 83.732184 iter 70 value 83.731175 iter 80 value 82.740833 iter 90 value 81.565753 iter 100 value 81.251611 final value 81.251611 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.766684 iter 10 value 94.057525 iter 20 value 94.033157 final value 94.033141 converged Fitting Repeat 4 # weights: 305 initial value 97.413088 iter 10 value 94.057809 iter 20 value 94.052962 final value 94.052948 converged Fitting Repeat 5 # weights: 305 initial value 109.192783 iter 10 value 94.058200 iter 20 value 94.052787 iter 30 value 93.171515 iter 40 value 87.125863 iter 50 value 85.433779 iter 60 value 84.165990 iter 70 value 82.737109 final value 82.737036 converged Fitting Repeat 1 # weights: 507 initial value 104.879669 iter 10 value 94.061003 iter 20 value 94.042287 iter 30 value 91.674563 iter 40 value 84.916579 iter 50 value 83.766510 iter 60 value 83.273763 iter 70 value 83.269472 iter 80 value 83.261682 iter 90 value 83.260026 iter 100 value 82.632333 final value 82.632333 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.428302 iter 10 value 94.061005 iter 20 value 94.023351 iter 30 value 93.604585 iter 40 value 93.594186 iter 50 value 88.971503 iter 60 value 87.031847 iter 70 value 86.943895 iter 80 value 86.875160 iter 90 value 82.732441 iter 100 value 80.803114 final value 80.803114 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.347938 iter 10 value 94.061364 iter 20 value 94.032051 iter 30 value 84.006346 iter 40 value 82.598048 final value 82.488038 converged Fitting Repeat 4 # weights: 507 initial value 103.802358 iter 10 value 85.593539 iter 20 value 83.752662 iter 30 value 83.739106 iter 40 value 83.706638 iter 50 value 82.736793 iter 60 value 81.438166 iter 70 value 80.171752 iter 80 value 80.135688 iter 90 value 80.133817 final value 80.132182 converged Fitting Repeat 5 # weights: 507 initial value 97.382640 iter 10 value 85.864905 iter 20 value 82.636160 iter 30 value 82.505359 iter 40 value 82.494319 iter 50 value 82.491255 iter 60 value 82.486633 iter 70 value 82.444481 iter 80 value 82.444202 final value 82.444125 converged Fitting Repeat 1 # weights: 103 initial value 102.219011 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.052155 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.169745 iter 10 value 94.392401 iter 20 value 93.991412 final value 93.991343 converged Fitting Repeat 4 # weights: 103 initial value 96.394449 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.956225 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.869488 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 113.918298 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.188975 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.272618 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 122.433560 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.261882 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 141.226497 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 94.620714 iter 10 value 89.366108 iter 20 value 86.130815 iter 30 value 86.129753 iter 40 value 85.778707 iter 50 value 85.748722 final value 85.748676 converged Fitting Repeat 4 # weights: 507 initial value 94.938611 iter 10 value 94.112904 iter 10 value 94.112903 iter 10 value 94.112903 final value 94.112903 converged Fitting Repeat 5 # weights: 507 initial value 97.261983 iter 10 value 93.863049 iter 20 value 93.814575 iter 30 value 93.814130 final value 93.814127 converged Fitting Repeat 1 # weights: 103 initial value 99.307728 iter 10 value 94.446829 iter 20 value 94.271353 iter 30 value 94.159730 iter 40 value 94.086860 iter 50 value 84.736807 iter 60 value 84.164307 iter 70 value 83.867524 iter 80 value 83.565261 iter 90 value 83.315124 iter 100 value 82.966815 final value 82.966815 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.161346 iter 10 value 94.488532 iter 20 value 88.816825 iter 30 value 84.019079 iter 40 value 82.829107 iter 50 value 82.731790 iter 60 value 82.617419 iter 70 value 82.599116 final value 82.599108 converged Fitting Repeat 3 # weights: 103 initial value 97.676898 iter 10 value 94.962914 iter 20 value 94.486447 iter 30 value 94.366451 iter 40 value 88.791170 iter 50 value 84.535221 iter 60 value 83.640037 iter 70 value 83.269959 iter 80 value 83.018711 iter 90 value 83.015502 iter 90 value 83.015502 iter 90 value 83.015502 final value 83.015502 converged Fitting Repeat 4 # weights: 103 initial value 106.824438 iter 10 value 94.477657 iter 20 value 94.167948 iter 30 value 94.085810 iter 40 value 93.980871 iter 50 value 91.396316 iter 60 value 86.859534 iter 70 value 84.750602 iter 80 value 82.213135 iter 90 value 81.139623 iter 100 value 80.673548 final value 80.673548 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.970478 iter 10 value 94.132586 iter 20 value 92.949536 iter 30 value 90.761122 iter 40 value 85.663254 iter 50 value 84.091133 iter 60 value 83.989328 iter 70 value 82.721586 iter 80 value 80.819127 iter 90 value 80.403011 iter 100 value 79.937409 final value 79.937409 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.894835 iter 10 value 94.473242 iter 20 value 94.007253 iter 30 value 92.043735 iter 40 value 85.165243 iter 50 value 83.328681 iter 60 value 82.502139 iter 70 value 81.743772 iter 80 value 80.990843 iter 90 value 80.667021 iter 100 value 80.240613 final value 80.240613 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.352028 iter 10 value 95.121798 iter 20 value 88.263695 iter 30 value 87.315118 iter 40 value 86.156932 iter 50 value 84.376516 iter 60 value 81.013448 iter 70 value 79.724895 iter 80 value 79.557678 iter 90 value 79.358200 iter 100 value 79.250375 final value 79.250375 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.260093 iter 10 value 94.388543 iter 20 value 91.130360 iter 30 value 88.802570 iter 40 value 87.151605 iter 50 value 84.462209 iter 60 value 81.380322 iter 70 value 80.477557 iter 80 value 80.233958 iter 90 value 79.809763 iter 100 value 79.495893 final value 79.495893 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.996158 iter 10 value 94.238121 iter 20 value 92.345765 iter 30 value 84.028423 iter 40 value 83.446694 iter 50 value 82.016252 iter 60 value 80.465412 iter 70 value 80.225716 iter 80 value 80.046869 iter 90 value 79.858890 iter 100 value 79.494017 final value 79.494017 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.295719 iter 10 value 97.192876 iter 20 value 91.299633 iter 30 value 86.788532 iter 40 value 82.281089 iter 50 value 81.254562 iter 60 value 80.588917 iter 70 value 80.190162 iter 80 value 79.928753 iter 90 value 79.761170 iter 100 value 79.469414 final value 79.469414 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.812142 iter 10 value 94.450754 iter 20 value 92.021777 iter 30 value 91.237743 iter 40 value 90.730102 iter 50 value 89.041998 iter 60 value 82.285364 iter 70 value 81.078379 iter 80 value 80.577132 iter 90 value 79.468689 iter 100 value 79.139078 final value 79.139078 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.764695 iter 10 value 95.078992 iter 20 value 90.851157 iter 30 value 84.993174 iter 40 value 83.928245 iter 50 value 83.245963 iter 60 value 82.001969 iter 70 value 81.414740 iter 80 value 81.216558 iter 90 value 80.493366 iter 100 value 80.093222 final value 80.093222 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.194120 iter 10 value 93.233084 iter 20 value 86.676222 iter 30 value 85.599676 iter 40 value 83.788806 iter 50 value 82.381413 iter 60 value 81.578075 iter 70 value 80.980620 iter 80 value 80.846963 iter 90 value 80.765367 iter 100 value 80.376274 final value 80.376274 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.666777 iter 10 value 94.503842 iter 20 value 88.058678 iter 30 value 84.853658 iter 40 value 84.125715 iter 50 value 83.171984 iter 60 value 81.270827 iter 70 value 80.396782 iter 80 value 80.246403 iter 90 value 79.778777 iter 100 value 79.343387 final value 79.343387 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.315950 iter 10 value 94.357141 iter 20 value 90.293267 iter 30 value 83.102101 iter 40 value 82.631175 iter 50 value 81.248484 iter 60 value 79.422774 iter 70 value 78.813793 iter 80 value 78.621739 iter 90 value 78.545301 iter 100 value 78.447488 final value 78.447488 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.280669 final value 94.485772 converged Fitting Repeat 2 # weights: 103 initial value 107.070417 final value 94.114882 converged Fitting Repeat 3 # weights: 103 initial value 100.492357 final value 94.485844 converged Fitting Repeat 4 # weights: 103 initial value 104.054493 final value 94.485981 converged Fitting Repeat 5 # weights: 103 initial value 102.798341 final value 94.485904 converged Fitting Repeat 1 # weights: 305 initial value 109.991765 iter 10 value 90.847326 iter 20 value 90.329372 iter 30 value 90.325874 iter 40 value 90.324123 iter 50 value 90.160859 iter 60 value 86.310816 iter 70 value 85.411743 iter 80 value 85.400765 iter 90 value 85.400343 iter 100 value 85.146647 final value 85.146647 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.360109 iter 10 value 94.403478 iter 20 value 93.392443 iter 30 value 93.212599 iter 40 value 92.811280 iter 50 value 92.742658 iter 60 value 92.741977 iter 70 value 87.932897 final value 87.318736 converged Fitting Repeat 3 # weights: 305 initial value 96.889389 iter 10 value 94.117897 iter 20 value 94.113939 iter 30 value 94.062505 final value 94.046392 converged Fitting Repeat 4 # weights: 305 initial value 99.628652 iter 10 value 94.488977 iter 20 value 94.424791 iter 30 value 88.207835 iter 40 value 81.515260 iter 50 value 81.053026 iter 60 value 80.839376 final value 80.839333 converged Fitting Repeat 5 # weights: 305 initial value 97.620809 iter 10 value 94.121851 iter 20 value 94.051989 iter 30 value 94.048237 iter 40 value 93.811220 iter 50 value 93.810102 final value 93.810094 converged Fitting Repeat 1 # weights: 507 initial value 118.200458 iter 10 value 94.492259 iter 20 value 94.484692 iter 30 value 94.437688 iter 40 value 94.025878 iter 50 value 86.417194 iter 60 value 81.293612 iter 70 value 79.820365 iter 80 value 79.633865 iter 90 value 79.174267 iter 100 value 78.563200 final value 78.563200 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.686139 iter 10 value 93.774490 iter 20 value 93.770905 iter 30 value 92.153490 iter 40 value 90.781947 iter 50 value 90.590131 iter 60 value 90.324013 iter 70 value 84.936808 iter 80 value 83.094408 iter 90 value 82.631342 iter 100 value 82.181795 final value 82.181795 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.690972 iter 10 value 88.275353 iter 20 value 86.477363 iter 30 value 86.295556 iter 40 value 86.280397 iter 50 value 86.262857 iter 60 value 86.257417 iter 70 value 81.576297 iter 80 value 79.491296 iter 90 value 78.927225 iter 100 value 78.218734 final value 78.218734 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.937157 iter 10 value 94.121305 iter 20 value 94.116895 iter 30 value 93.815237 iter 40 value 93.334822 iter 50 value 84.193395 iter 60 value 83.261039 iter 70 value 83.255954 iter 80 value 83.205731 iter 90 value 83.099405 iter 100 value 83.078932 final value 83.078932 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.151553 iter 10 value 94.491748 iter 20 value 94.231394 iter 30 value 89.633855 iter 40 value 89.632807 iter 50 value 84.948165 iter 60 value 84.323707 iter 70 value 84.316461 iter 80 value 84.030723 iter 90 value 83.984468 iter 100 value 83.977731 final value 83.977731 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.896423 final value 94.052911 converged Fitting Repeat 2 # weights: 103 initial value 96.301732 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.893582 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 104.949962 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.762091 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.313445 iter 10 value 94.053087 final value 94.052874 converged Fitting Repeat 2 # weights: 305 initial value 126.716799 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.530953 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.494407 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 118.241096 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 103.443331 iter 10 value 93.343368 final value 93.338302 converged Fitting Repeat 2 # weights: 507 initial value 128.610408 iter 10 value 93.582453 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 101.318939 iter 10 value 93.001884 iter 20 value 86.677715 iter 30 value 85.883641 iter 40 value 84.843424 iter 50 value 84.474883 iter 60 value 84.459853 final value 84.459452 converged Fitting Repeat 4 # weights: 507 initial value 100.181476 iter 10 value 93.566476 iter 20 value 90.122265 iter 30 value 88.676962 final value 88.455909 converged Fitting Repeat 5 # weights: 507 initial value 122.505637 iter 10 value 91.983274 iter 20 value 91.098418 final value 91.098362 converged Fitting Repeat 1 # weights: 103 initial value 96.902786 iter 10 value 94.056440 iter 20 value 93.687368 iter 30 value 93.647182 iter 40 value 89.079449 iter 50 value 88.672789 iter 60 value 88.528407 iter 70 value 85.798828 iter 80 value 85.268837 iter 90 value 84.970673 iter 100 value 84.939965 final value 84.939965 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.246921 iter 10 value 94.009044 iter 20 value 92.689569 iter 30 value 89.648534 iter 40 value 89.334472 iter 50 value 85.365148 iter 60 value 85.147840 iter 70 value 83.978967 iter 80 value 83.335522 iter 90 value 83.189686 iter 100 value 82.688699 final value 82.688699 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.521894 iter 10 value 94.049607 iter 20 value 89.123459 iter 30 value 86.384137 iter 40 value 85.897646 iter 50 value 85.701420 iter 60 value 85.690199 final value 85.690191 converged Fitting Repeat 4 # weights: 103 initial value 109.877480 iter 10 value 93.906378 iter 20 value 91.039077 iter 30 value 89.457350 iter 40 value 86.793241 iter 50 value 86.230115 iter 60 value 86.019888 iter 70 value 85.797084 iter 80 value 85.690779 iter 90 value 85.690192 iter 90 value 85.690192 iter 90 value 85.690192 final value 85.690192 converged Fitting Repeat 5 # weights: 103 initial value 101.372174 iter 10 value 94.053659 iter 20 value 93.863697 iter 30 value 93.806204 iter 40 value 93.789078 iter 50 value 93.090894 iter 60 value 88.817401 iter 70 value 86.580715 iter 80 value 84.714704 iter 90 value 83.788452 iter 100 value 83.296983 final value 83.296983 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.862864 iter 10 value 94.173489 iter 20 value 94.055311 iter 30 value 93.707840 iter 40 value 92.600318 iter 50 value 88.952983 iter 60 value 86.659247 iter 70 value 84.733373 iter 80 value 83.705695 iter 90 value 83.523403 iter 100 value 82.470861 final value 82.470861 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.569522 iter 10 value 93.569129 iter 20 value 87.545942 iter 30 value 86.244979 iter 40 value 85.970741 iter 50 value 85.763519 iter 60 value 85.608428 iter 70 value 85.344126 iter 80 value 84.583570 iter 90 value 83.862804 iter 100 value 83.599523 final value 83.599523 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.556755 iter 10 value 91.865066 iter 20 value 90.431036 iter 30 value 90.098036 iter 40 value 89.979784 iter 50 value 89.706575 iter 60 value 88.492230 iter 70 value 86.505764 iter 80 value 85.351126 iter 90 value 83.446915 iter 100 value 83.267709 final value 83.267709 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 126.434277 iter 10 value 94.430579 iter 20 value 88.384447 iter 30 value 84.948957 iter 40 value 83.213746 iter 50 value 82.705443 iter 60 value 82.598269 iter 70 value 82.533813 iter 80 value 82.428004 iter 90 value 82.357648 iter 100 value 81.896289 final value 81.896289 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.894193 iter 10 value 94.082385 iter 20 value 93.833346 iter 30 value 90.828115 iter 40 value 86.660049 iter 50 value 85.930118 iter 60 value 83.125857 iter 70 value 82.220718 iter 80 value 82.018079 iter 90 value 81.906007 iter 100 value 81.872108 final value 81.872108 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.135342 iter 10 value 94.131423 iter 20 value 92.484996 iter 30 value 87.811372 iter 40 value 84.335721 iter 50 value 83.345062 iter 60 value 82.859301 iter 70 value 82.574086 iter 80 value 82.183230 iter 90 value 82.102586 iter 100 value 82.009331 final value 82.009331 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.616303 iter 10 value 93.630080 iter 20 value 88.399825 iter 30 value 85.981073 iter 40 value 84.876492 iter 50 value 83.149715 iter 60 value 81.840558 iter 70 value 81.604100 iter 80 value 81.579595 iter 90 value 81.529751 iter 100 value 81.227838 final value 81.227838 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.972566 iter 10 value 94.036794 iter 20 value 93.689485 iter 30 value 92.061481 iter 40 value 89.243854 iter 50 value 87.611742 iter 60 value 84.864342 iter 70 value 83.982710 iter 80 value 83.020426 iter 90 value 82.576866 iter 100 value 82.549574 final value 82.549574 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.568691 iter 10 value 93.942539 iter 20 value 92.232716 iter 30 value 89.410453 iter 40 value 86.097734 iter 50 value 83.686152 iter 60 value 82.325435 iter 70 value 81.613647 iter 80 value 81.385518 iter 90 value 81.309064 iter 100 value 81.278118 final value 81.278118 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 130.500204 iter 10 value 94.094037 iter 20 value 89.692783 iter 30 value 87.887467 iter 40 value 85.968421 iter 50 value 84.994217 iter 60 value 84.934941 iter 70 value 84.598016 iter 80 value 82.739816 iter 90 value 82.227027 iter 100 value 81.775112 final value 81.775112 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.258847 final value 94.058258 converged Fitting Repeat 2 # weights: 103 initial value 97.487378 final value 94.054631 converged Fitting Repeat 3 # weights: 103 initial value 114.392945 final value 94.054443 converged Fitting Repeat 4 # weights: 103 initial value 101.220402 iter 10 value 89.816007 iter 20 value 89.618471 iter 30 value 89.495661 iter 40 value 89.495105 iter 50 value 89.383174 final value 89.354259 converged Fitting Repeat 5 # weights: 103 initial value 105.896416 final value 94.054577 converged Fitting Repeat 1 # weights: 305 initial value 96.913500 iter 10 value 93.626062 iter 20 value 93.586893 iter 30 value 90.793902 iter 40 value 85.426751 iter 50 value 84.782947 iter 60 value 84.578723 iter 70 value 84.578579 final value 84.578387 converged Fitting Repeat 2 # weights: 305 initial value 94.689068 iter 10 value 94.057753 iter 20 value 93.761987 iter 30 value 88.069932 iter 40 value 86.729747 iter 50 value 86.289879 iter 60 value 86.287122 iter 70 value 86.285458 iter 80 value 84.380143 iter 90 value 82.494721 iter 100 value 81.703631 final value 81.703631 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.949926 iter 10 value 94.057491 iter 20 value 91.137617 iter 30 value 87.697286 iter 40 value 86.881625 iter 50 value 86.475607 final value 86.471773 converged Fitting Repeat 4 # weights: 305 initial value 97.106394 iter 10 value 94.057861 iter 20 value 94.052978 iter 20 value 94.052977 iter 20 value 94.052977 final value 94.052977 converged Fitting Repeat 5 # weights: 305 initial value 103.058615 iter 10 value 93.806835 iter 20 value 92.662344 iter 30 value 90.160683 iter 40 value 90.112735 iter 50 value 90.061036 iter 60 value 90.057903 iter 70 value 89.409639 iter 80 value 89.122185 iter 90 value 88.898248 iter 100 value 88.897013 final value 88.897013 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.072967 iter 10 value 94.060513 iter 20 value 93.955218 iter 30 value 92.508405 iter 40 value 90.431743 iter 50 value 90.430838 iter 60 value 90.371390 iter 70 value 84.064148 iter 80 value 83.302616 iter 90 value 83.302351 iter 100 value 83.250790 final value 83.250790 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 93.826469 iter 10 value 91.427268 iter 20 value 91.418131 iter 30 value 91.338264 iter 40 value 91.333119 iter 50 value 91.296971 iter 60 value 91.294213 final value 91.294207 converged Fitting Repeat 3 # weights: 507 initial value 100.045952 iter 10 value 89.030380 iter 20 value 88.815614 iter 30 value 88.813927 iter 40 value 88.811049 iter 50 value 88.809121 iter 60 value 88.672714 iter 70 value 88.142151 iter 80 value 87.962079 iter 90 value 87.961236 iter 100 value 87.959832 final value 87.959832 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.636153 iter 10 value 94.060968 iter 20 value 93.773837 iter 30 value 91.099361 iter 40 value 91.066572 iter 50 value 91.066452 iter 60 value 90.832588 iter 70 value 89.612734 final value 89.612667 converged Fitting Repeat 5 # weights: 507 initial value 112.900336 iter 10 value 94.061615 iter 20 value 94.053476 iter 30 value 92.983691 iter 40 value 88.851073 iter 50 value 88.816041 iter 60 value 88.815789 iter 70 value 88.814381 iter 80 value 88.814249 iter 90 value 88.813891 final value 88.813802 converged Fitting Repeat 1 # weights: 103 initial value 97.922845 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.140166 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.617563 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.324103 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.582292 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 107.881003 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 102.228048 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.229383 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 117.705115 iter 10 value 94.304609 iter 10 value 94.304609 iter 10 value 94.304609 final value 94.304609 converged Fitting Repeat 5 # weights: 305 initial value 112.348495 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 123.883956 iter 10 value 94.662750 iter 20 value 92.104566 final value 91.651099 converged Fitting Repeat 2 # weights: 507 initial value 107.755464 final value 91.608212 converged Fitting Repeat 3 # weights: 507 initial value 95.166114 iter 10 value 94.461763 final value 94.461721 converged Fitting Repeat 4 # weights: 507 initial value 101.511334 iter 10 value 94.483809 iter 10 value 94.483809 iter 10 value 94.483809 final value 94.483809 converged Fitting Repeat 5 # weights: 507 initial value 109.817495 final value 94.313818 converged Fitting Repeat 1 # weights: 103 initial value 100.406864 iter 10 value 94.488550 iter 20 value 93.713020 iter 30 value 88.667044 iter 40 value 88.069839 iter 50 value 87.248964 iter 60 value 87.223002 iter 70 value 87.095013 iter 80 value 83.558849 iter 90 value 83.276143 iter 100 value 83.253814 final value 83.253814 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.536619 iter 10 value 94.489651 iter 20 value 94.353850 iter 30 value 89.845935 iter 40 value 88.463463 iter 50 value 85.599453 iter 60 value 84.908101 iter 70 value 83.871550 iter 80 value 83.349962 iter 90 value 82.168843 iter 100 value 81.497471 final value 81.497471 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.337325 iter 10 value 94.408713 iter 20 value 91.964763 iter 30 value 86.137789 iter 40 value 85.288681 iter 50 value 85.219499 iter 60 value 85.131415 iter 70 value 84.933010 iter 80 value 84.280854 iter 90 value 83.820506 final value 83.792293 converged Fitting Repeat 4 # weights: 103 initial value 101.917880 iter 10 value 94.565847 iter 20 value 94.487383 iter 30 value 94.340831 iter 40 value 87.727006 iter 50 value 86.990505 iter 60 value 86.371295 iter 70 value 85.950826 iter 80 value 85.067173 iter 90 value 84.469167 iter 100 value 84.402836 final value 84.402836 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.589706 iter 10 value 94.434480 iter 20 value 92.287359 iter 30 value 89.924306 iter 40 value 86.754672 iter 50 value 84.883670 iter 60 value 83.962068 iter 70 value 83.466848 iter 80 value 82.842992 iter 90 value 81.729667 iter 100 value 81.102576 final value 81.102576 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.632208 iter 10 value 94.503359 iter 20 value 85.476620 iter 30 value 85.192558 iter 40 value 85.121812 iter 50 value 84.729370 iter 60 value 84.207310 iter 70 value 83.972011 iter 80 value 83.740704 iter 90 value 83.474946 iter 100 value 82.099742 final value 82.099742 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.451964 iter 10 value 92.463108 iter 20 value 88.106350 iter 30 value 87.460987 iter 40 value 83.424838 iter 50 value 83.250101 iter 60 value 82.393283 iter 70 value 82.082750 iter 80 value 81.910359 iter 90 value 81.611171 iter 100 value 81.452511 final value 81.452511 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.083911 iter 10 value 94.487751 iter 20 value 93.408652 iter 30 value 86.743364 iter 40 value 84.691926 iter 50 value 83.601201 iter 60 value 83.512979 iter 70 value 82.341878 iter 80 value 81.886179 iter 90 value 81.693860 iter 100 value 81.597952 final value 81.597952 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.753759 iter 10 value 94.133386 iter 20 value 93.184424 iter 30 value 87.221312 iter 40 value 84.926016 iter 50 value 83.620939 iter 60 value 83.325054 iter 70 value 83.134121 iter 80 value 81.994292 iter 90 value 80.822287 iter 100 value 80.206111 final value 80.206111 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.271717 iter 10 value 94.485276 iter 20 value 91.503896 iter 30 value 87.580853 iter 40 value 82.175033 iter 50 value 81.629219 iter 60 value 81.128794 iter 70 value 80.569913 iter 80 value 80.401314 iter 90 value 80.179280 iter 100 value 79.744684 final value 79.744684 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.441518 iter 10 value 94.392548 iter 20 value 88.418041 iter 30 value 86.540981 iter 40 value 84.631415 iter 50 value 84.163609 iter 60 value 83.798856 iter 70 value 83.540704 iter 80 value 82.855776 iter 90 value 82.779112 iter 100 value 82.680559 final value 82.680559 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.513020 iter 10 value 97.429162 iter 20 value 86.420821 iter 30 value 84.328491 iter 40 value 83.824533 iter 50 value 83.458151 iter 60 value 82.758869 iter 70 value 81.036505 iter 80 value 80.705971 iter 90 value 80.185035 iter 100 value 79.891842 final value 79.891842 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.359584 iter 10 value 92.696468 iter 20 value 86.675794 iter 30 value 84.667410 iter 40 value 83.708112 iter 50 value 83.233508 iter 60 value 82.364132 iter 70 value 81.502775 iter 80 value 80.915332 iter 90 value 80.714079 iter 100 value 79.990262 final value 79.990262 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.367624 iter 10 value 98.349584 iter 20 value 94.492906 iter 30 value 87.824076 iter 40 value 85.856994 iter 50 value 82.123324 iter 60 value 80.890671 iter 70 value 80.282744 iter 80 value 79.845180 iter 90 value 79.658105 iter 100 value 79.592376 final value 79.592376 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.099370 iter 10 value 94.480068 iter 20 value 86.661094 iter 30 value 85.472037 iter 40 value 84.040294 iter 50 value 81.125874 iter 60 value 80.518524 iter 70 value 80.200899 iter 80 value 80.146582 iter 90 value 79.874455 iter 100 value 79.757584 final value 79.757584 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 110.487887 final value 94.485839 converged Fitting Repeat 2 # weights: 103 initial value 103.401447 final value 94.485899 converged Fitting Repeat 3 # weights: 103 initial value 101.874837 final value 94.485869 converged Fitting Repeat 4 # weights: 103 initial value 102.483180 final value 94.468563 converged Fitting Repeat 5 # weights: 103 initial value 100.090567 final value 94.485668 converged Fitting Repeat 1 # weights: 305 initial value 101.349903 iter 10 value 94.489327 iter 20 value 94.484635 iter 30 value 93.527599 iter 40 value 85.263139 iter 50 value 84.632735 iter 60 value 84.598087 final value 84.597566 converged Fitting Repeat 2 # weights: 305 initial value 95.130294 iter 10 value 94.489234 iter 20 value 90.774413 iter 30 value 84.889782 iter 40 value 83.343945 iter 50 value 83.342245 final value 83.342216 converged Fitting Repeat 3 # weights: 305 initial value 110.635422 iter 10 value 94.488965 iter 20 value 94.484247 iter 30 value 93.793644 iter 40 value 90.278664 iter 50 value 90.274476 iter 50 value 90.274476 iter 50 value 90.274476 final value 90.274476 converged Fitting Repeat 4 # weights: 305 initial value 115.056074 iter 10 value 94.488967 final value 94.488260 converged Fitting Repeat 5 # weights: 305 initial value 97.457028 iter 10 value 92.338037 iter 20 value 90.984308 iter 30 value 90.982630 iter 40 value 90.244574 iter 50 value 90.207312 final value 90.206805 converged Fitting Repeat 1 # weights: 507 initial value 111.274375 iter 10 value 94.492631 iter 20 value 94.461394 iter 30 value 86.709105 iter 40 value 79.607248 iter 50 value 78.991686 iter 60 value 78.579350 iter 70 value 78.415087 iter 80 value 78.407003 iter 90 value 78.373934 iter 100 value 78.358284 final value 78.358284 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.786382 iter 10 value 94.498002 iter 20 value 94.163856 iter 30 value 87.888670 iter 40 value 85.257611 iter 50 value 85.251442 iter 60 value 85.248693 iter 70 value 83.651059 iter 80 value 83.618201 iter 90 value 83.396419 iter 100 value 83.278807 final value 83.278807 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.934181 iter 10 value 90.728985 iter 20 value 83.994964 iter 30 value 83.976137 iter 40 value 83.594593 iter 50 value 83.414679 final value 83.411193 converged Fitting Repeat 4 # weights: 507 initial value 97.884032 iter 10 value 94.474564 iter 20 value 94.466935 iter 30 value 94.361456 iter 40 value 88.763731 iter 50 value 88.167141 iter 60 value 88.020849 iter 70 value 88.020789 iter 80 value 87.003263 iter 90 value 84.148852 iter 100 value 80.723914 final value 80.723914 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.807090 iter 10 value 94.451154 iter 20 value 94.448370 iter 30 value 94.443849 iter 40 value 94.443274 iter 50 value 94.440538 iter 60 value 89.732517 iter 70 value 89.246374 iter 80 value 84.012299 iter 90 value 80.319037 iter 100 value 80.254702 final value 80.254702 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.919737 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 112.799656 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.122329 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.596914 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.507988 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.774951 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 104.368544 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 116.681130 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.960952 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.016223 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.108712 final value 94.228783 converged Fitting Repeat 2 # weights: 507 initial value 108.718173 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 98.342382 iter 10 value 91.984076 iter 20 value 83.276827 iter 30 value 83.270502 iter 40 value 83.270288 iter 50 value 82.430284 final value 82.426095 converged Fitting Repeat 4 # weights: 507 initial value 105.021377 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 93.072305 iter 10 value 91.032769 iter 20 value 91.032279 final value 91.032263 converged Fitting Repeat 1 # weights: 103 initial value 105.698762 iter 10 value 94.559913 iter 20 value 94.488420 iter 30 value 90.078204 iter 40 value 85.779244 iter 50 value 85.489675 iter 60 value 83.550260 iter 70 value 82.873311 iter 80 value 82.836395 iter 90 value 82.526940 iter 100 value 82.255801 final value 82.255801 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.583884 iter 10 value 92.751507 iter 20 value 88.270335 iter 30 value 88.180252 iter 40 value 87.067156 iter 50 value 86.842803 iter 60 value 86.688206 iter 70 value 85.452502 iter 80 value 85.197374 iter 90 value 85.169524 iter 100 value 85.166404 final value 85.166404 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.942833 iter 10 value 94.610306 iter 20 value 94.331055 iter 30 value 93.424277 iter 40 value 86.807736 iter 50 value 86.281106 iter 60 value 85.672360 iter 70 value 85.374372 iter 80 value 85.199427 final value 85.199395 converged Fitting Repeat 4 # weights: 103 initial value 102.476465 iter 10 value 94.481851 iter 20 value 94.101228 iter 30 value 89.298828 iter 40 value 86.138967 iter 50 value 85.588627 iter 60 value 84.800530 final value 84.776944 converged Fitting Repeat 5 # weights: 103 initial value 102.549576 iter 10 value 94.488526 iter 20 value 94.283433 iter 30 value 90.195383 iter 40 value 87.968899 iter 50 value 87.540304 iter 60 value 86.902838 iter 70 value 86.241569 iter 80 value 85.228657 iter 90 value 84.777956 iter 100 value 84.776951 final value 84.776951 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.987048 iter 10 value 94.441035 iter 20 value 86.863862 iter 30 value 84.223082 iter 40 value 83.332221 iter 50 value 82.891479 iter 60 value 82.538170 iter 70 value 81.986659 iter 80 value 81.306731 iter 90 value 80.757142 iter 100 value 80.722762 final value 80.722762 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.854364 iter 10 value 96.230633 iter 20 value 90.609300 iter 30 value 87.270562 iter 40 value 85.366219 iter 50 value 84.472359 iter 60 value 82.446655 iter 70 value 81.952019 iter 80 value 81.324850 iter 90 value 81.113414 iter 100 value 81.037648 final value 81.037648 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.687893 iter 10 value 94.484677 iter 20 value 88.001817 iter 30 value 84.922562 iter 40 value 84.679849 iter 50 value 83.842625 iter 60 value 82.644363 iter 70 value 82.242789 iter 80 value 82.219277 iter 90 value 82.029943 iter 100 value 81.650385 final value 81.650385 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.433878 iter 10 value 94.577727 iter 20 value 88.205853 iter 30 value 86.202479 iter 40 value 85.597109 iter 50 value 84.893474 iter 60 value 84.776693 iter 70 value 83.124649 iter 80 value 82.645871 iter 90 value 82.240517 iter 100 value 81.674348 final value 81.674348 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.264235 iter 10 value 94.487144 iter 20 value 87.116877 iter 30 value 85.770794 iter 40 value 85.581448 iter 50 value 85.475510 final value 85.472546 converged Fitting Repeat 1 # weights: 507 initial value 118.169915 iter 10 value 100.043484 iter 20 value 93.471049 iter 30 value 91.783755 iter 40 value 86.788922 iter 50 value 85.729808 iter 60 value 85.312392 iter 70 value 83.540295 iter 80 value 82.951514 iter 90 value 82.447753 iter 100 value 81.883156 final value 81.883156 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.289034 iter 10 value 94.383348 iter 20 value 88.795321 iter 30 value 87.367354 iter 40 value 84.546187 iter 50 value 82.613514 iter 60 value 82.245855 iter 70 value 82.015489 iter 80 value 81.573810 iter 90 value 81.117052 iter 100 value 81.067748 final value 81.067748 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.156668 iter 10 value 94.425215 iter 20 value 93.352539 iter 30 value 89.543259 iter 40 value 86.951982 iter 50 value 81.873575 iter 60 value 80.985450 iter 70 value 80.432028 iter 80 value 80.363878 iter 90 value 80.274595 iter 100 value 80.108226 final value 80.108226 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.574792 iter 10 value 94.667018 iter 20 value 90.155174 iter 30 value 87.152317 iter 40 value 83.684685 iter 50 value 82.393932 iter 60 value 82.057332 iter 70 value 81.222822 iter 80 value 80.402457 iter 90 value 80.081488 iter 100 value 79.979623 final value 79.979623 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.232680 iter 10 value 90.304835 iter 20 value 86.282159 iter 30 value 85.689305 iter 40 value 84.989458 iter 50 value 82.949151 iter 60 value 82.732094 iter 70 value 82.404745 iter 80 value 81.882852 iter 90 value 81.153814 iter 100 value 80.958688 final value 80.958688 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.086590 final value 94.485774 converged Fitting Repeat 2 # weights: 103 initial value 95.234252 iter 10 value 94.485877 iter 20 value 94.484255 final value 94.484215 converged Fitting Repeat 3 # weights: 103 initial value 98.100786 iter 10 value 94.486085 iter 20 value 94.484266 iter 30 value 94.214465 iter 40 value 94.214352 final value 94.214343 converged Fitting Repeat 4 # weights: 103 initial value 97.433378 final value 94.468458 converged Fitting Repeat 5 # weights: 103 initial value 101.216208 iter 10 value 94.485947 iter 20 value 94.219823 iter 30 value 84.116175 iter 40 value 83.784341 iter 50 value 83.437873 iter 60 value 83.366710 iter 70 value 83.360349 iter 80 value 83.320616 iter 90 value 83.319381 iter 100 value 83.318954 final value 83.318954 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.545575 iter 10 value 94.488958 iter 20 value 94.432252 iter 30 value 92.648853 iter 40 value 92.629626 iter 50 value 91.330707 iter 60 value 91.323398 final value 91.323231 converged Fitting Repeat 2 # weights: 305 initial value 113.588188 iter 10 value 93.788624 iter 20 value 93.784190 final value 93.783994 converged Fitting Repeat 3 # weights: 305 initial value 102.507896 iter 10 value 94.488643 iter 20 value 94.381164 final value 93.784268 converged Fitting Repeat 4 # weights: 305 initial value 98.016376 iter 10 value 94.489117 iter 20 value 94.478861 iter 30 value 94.241294 iter 40 value 86.943976 iter 50 value 85.591902 final value 85.589846 converged Fitting Repeat 5 # weights: 305 initial value 110.388505 iter 10 value 94.488763 iter 20 value 94.256195 iter 30 value 94.133972 iter 40 value 94.112666 iter 50 value 87.176440 iter 60 value 86.269606 final value 86.268194 converged Fitting Repeat 1 # weights: 507 initial value 95.711109 iter 10 value 93.757750 iter 20 value 93.728113 iter 30 value 93.725978 iter 40 value 93.574353 iter 50 value 93.488372 iter 60 value 93.484973 iter 70 value 93.482209 iter 80 value 93.481275 iter 90 value 93.480686 iter 100 value 93.479050 final value 93.479050 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.630829 iter 10 value 94.490701 iter 20 value 94.471005 iter 30 value 93.402464 iter 40 value 85.996771 iter 50 value 85.276094 iter 60 value 83.354434 iter 70 value 81.362116 iter 80 value 80.133524 iter 90 value 79.826051 iter 100 value 79.609248 final value 79.609248 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.847335 iter 10 value 94.492663 iter 20 value 94.463961 iter 30 value 93.620284 iter 40 value 92.183398 iter 50 value 92.163078 iter 60 value 89.371336 iter 70 value 88.729081 iter 80 value 85.258532 iter 90 value 84.995332 iter 100 value 84.994023 final value 84.994023 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.628904 iter 10 value 93.605178 iter 20 value 93.585898 iter 30 value 92.840926 iter 40 value 88.327179 iter 50 value 88.269969 iter 60 value 86.005375 iter 70 value 84.808458 iter 80 value 84.631650 iter 90 value 84.630296 final value 84.630212 converged Fitting Repeat 5 # weights: 507 initial value 101.375776 iter 10 value 94.475464 iter 20 value 94.209870 iter 30 value 94.194200 iter 40 value 94.188887 iter 50 value 94.145809 iter 60 value 89.098283 iter 70 value 86.998920 iter 80 value 86.778165 iter 90 value 86.754584 iter 100 value 85.160026 final value 85.160026 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 144.907748 iter 10 value 116.169244 iter 20 value 109.215381 iter 30 value 107.700591 iter 40 value 105.487678 iter 50 value 104.336152 iter 60 value 103.490615 iter 70 value 101.470937 iter 80 value 101.161421 iter 90 value 101.108707 iter 100 value 100.993670 final value 100.993670 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 132.924527 iter 10 value 112.740744 iter 20 value 106.306401 iter 30 value 105.812118 iter 40 value 105.773704 iter 50 value 105.301133 iter 60 value 102.435830 iter 70 value 101.958987 iter 80 value 101.393062 iter 90 value 100.976205 iter 100 value 100.845213 final value 100.845213 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 171.406115 iter 10 value 117.901637 iter 20 value 115.936079 iter 30 value 112.972515 iter 40 value 108.106811 iter 50 value 104.928423 iter 60 value 102.190810 iter 70 value 101.721254 iter 80 value 101.187434 iter 90 value 100.976118 iter 100 value 100.869718 final value 100.869718 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 140.970292 iter 10 value 119.143289 iter 20 value 113.573796 iter 30 value 107.443109 iter 40 value 104.036027 iter 50 value 102.528857 iter 60 value 101.334377 iter 70 value 100.543654 iter 80 value 100.432331 iter 90 value 100.387779 iter 100 value 100.358028 final value 100.358028 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 130.900647 iter 10 value 117.825165 iter 20 value 113.144971 iter 30 value 107.529492 iter 40 value 106.237238 iter 50 value 102.594500 iter 60 value 101.687033 iter 70 value 101.431204 iter 80 value 101.359378 iter 90 value 101.102094 iter 100 value 100.964932 final value 100.964932 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Aug 26 05:01:24 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 77.318 2.163 171.972
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.127 | 1.760 | 53.107 | |
FreqInteractors | 0.459 | 0.020 | 0.484 | |
calculateAAC | 0.067 | 0.012 | 0.079 | |
calculateAutocor | 0.801 | 0.105 | 0.910 | |
calculateCTDC | 0.147 | 0.008 | 0.155 | |
calculateCTDD | 1.244 | 0.046 | 1.303 | |
calculateCTDT | 0.432 | 0.020 | 0.453 | |
calculateCTriad | 0.771 | 0.047 | 0.821 | |
calculateDC | 0.241 | 0.028 | 0.269 | |
calculateF | 0.696 | 0.017 | 0.721 | |
calculateKSAAP | 0.290 | 0.032 | 0.325 | |
calculateQD_Sm | 3.195 | 0.216 | 3.421 | |
calculateTC | 4.206 | 0.374 | 4.617 | |
calculateTC_Sm | 0.542 | 0.042 | 0.587 | |
corr_plot | 50.342 | 1.737 | 53.204 | |
enrichfindP | 0.874 | 0.077 | 14.151 | |
enrichfind_hp | 0.114 | 0.031 | 1.160 | |
enrichplot | 0.838 | 0.014 | 0.884 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.124 | 0.016 | 2.874 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.004 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.002 | 0.004 | |
plotPPI | 0.135 | 0.004 | 0.143 | |
pred_ensembel | 24.920 | 0.398 | 23.391 | |
var_imp | 52.519 | 1.808 | 55.738 | |