Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-07-16 11:40 -0400 (Tue, 16 Jul 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4677
palomino6Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4416
lconwaymacOS 12.7.1 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4444
kjohnson3macOS 13.6.5 Venturaarm644.4.1 (2024-06-14) -- "Race for Your Life" 4393
palomino8Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4373
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 963/2243HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.11.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-07-15 14:00 -0400 (Mon, 15 Jul 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 74e36f0
git_last_commit_date: 2024-04-30 11:37:16 -0400 (Tue, 30 Apr 2024)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino6Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.6.5 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  


CHECK results for HPiP on palomino6

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.11.0
Command: C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz
StartedAt: 2024-07-16 00:52:58 -0400 (Tue, 16 Jul 2024)
EndedAt: 2024-07-16 00:58:07 -0400 (Tue, 16 Jul 2024)
EllapsedTime: 309.2 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.1 (2024-06-14 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.11.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       35.76   1.29   37.24
FSmethod      34.83   1.59   33.95
corr_plot     34.41   1.88   33.15
pred_ensembel 18.63   1.99   16.79
enrichfindP    2.19   0.12   18.00
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'C:/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'C:/Users/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.602318 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.203963 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.122661 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.671502 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.066908 
iter  10 value 94.052976
final  value 94.052911 
converged
Fitting Repeat 1 

# weights:  305
initial  value 114.854202 
final  value 94.011429 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.078913 
iter  10 value 93.478227
iter  10 value 93.478227
iter  10 value 93.478227
final  value 93.478227 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.811806 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.804326 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.423782 
iter  10 value 85.636026
iter  20 value 83.472835
iter  30 value 83.233874
final  value 83.233861 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.803174 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.965909 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.495251 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 106.050990 
iter  10 value 93.839852
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.340091 
final  value 93.743590 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.992147 
iter  10 value 93.656501
iter  20 value 91.830907
iter  30 value 91.061209
iter  40 value 91.001742
iter  50 value 89.340176
iter  60 value 88.616675
iter  70 value 85.077787
iter  80 value 84.121773
iter  90 value 81.521044
iter 100 value 80.274958
final  value 80.274958 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.534263 
iter  10 value 94.054880
iter  20 value 93.731976
iter  30 value 93.441184
iter  40 value 93.346579
iter  50 value 91.666387
iter  60 value 83.843286
iter  70 value 80.724423
iter  80 value 80.160133
iter  90 value 79.699216
iter 100 value 79.553038
final  value 79.553038 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 100.052787 
iter  10 value 94.059332
iter  20 value 93.552111
iter  30 value 93.324504
iter  40 value 93.269013
iter  50 value 87.420942
iter  60 value 86.032844
iter  70 value 84.025236
iter  80 value 82.512253
iter  90 value 82.252734
iter 100 value 82.251952
final  value 82.251952 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.356212 
iter  10 value 93.970693
iter  20 value 93.408461
iter  30 value 93.379726
iter  40 value 92.911608
iter  50 value 86.987640
iter  60 value 86.879613
iter  70 value 86.823129
iter  80 value 86.822990
iter  90 value 86.766947
iter 100 value 84.424161
final  value 84.424161 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.053447 
iter  10 value 93.764290
iter  20 value 90.745415
iter  30 value 90.623979
iter  40 value 90.608214
final  value 90.608175 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.086326 
iter  10 value 94.416291
iter  20 value 92.695165
iter  30 value 87.464271
iter  40 value 83.567384
iter  50 value 82.223955
iter  60 value 82.009747
iter  70 value 81.581761
iter  80 value 80.605114
iter  90 value 79.885987
iter 100 value 79.722637
final  value 79.722637 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.117220 
iter  10 value 93.922008
iter  20 value 93.450248
iter  30 value 93.307408
iter  40 value 84.921416
iter  50 value 83.568729
iter  60 value 81.176021
iter  70 value 80.359076
iter  80 value 79.899033
iter  90 value 79.811102
iter 100 value 79.388959
final  value 79.388959 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.756926 
iter  10 value 93.160261
iter  20 value 84.611817
iter  30 value 81.818330
iter  40 value 80.763934
iter  50 value 80.071884
iter  60 value 79.308194
iter  70 value 78.393197
iter  80 value 78.259433
iter  90 value 78.224470
iter 100 value 78.205330
final  value 78.205330 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 114.687837 
iter  10 value 94.051376
iter  20 value 92.425271
iter  30 value 91.205629
iter  40 value 90.650365
iter  50 value 89.927612
iter  60 value 86.858898
iter  70 value 84.361424
iter  80 value 79.736083
iter  90 value 78.833609
iter 100 value 78.621956
final  value 78.621956 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.164781 
iter  10 value 93.397450
iter  20 value 84.107031
iter  30 value 83.632862
iter  40 value 81.832883
iter  50 value 81.304138
iter  60 value 81.146093
iter  70 value 80.151447
iter  80 value 79.014104
iter  90 value 78.637640
iter 100 value 78.348729
final  value 78.348729 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.338033 
iter  10 value 94.362791
iter  20 value 91.552901
iter  30 value 91.240797
iter  40 value 87.859990
iter  50 value 84.324024
iter  60 value 81.035267
iter  70 value 80.246102
iter  80 value 79.976191
iter  90 value 79.674801
iter 100 value 79.598841
final  value 79.598841 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 131.942923 
iter  10 value 97.946695
iter  20 value 94.304627
iter  30 value 93.889783
iter  40 value 82.089087
iter  50 value 81.125209
iter  60 value 80.880961
iter  70 value 80.703057
iter  80 value 79.936588
iter  90 value 79.467089
iter 100 value 79.355471
final  value 79.355471 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.416088 
iter  10 value 94.350971
iter  20 value 92.689975
iter  30 value 83.155036
iter  40 value 82.037214
iter  50 value 81.081915
iter  60 value 80.584898
iter  70 value 79.535086
iter  80 value 78.718034
iter  90 value 78.638171
iter 100 value 78.570212
final  value 78.570212 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.117890 
iter  10 value 95.356127
iter  20 value 86.602789
iter  30 value 85.921211
iter  40 value 83.280768
iter  50 value 83.117869
iter  60 value 83.012716
iter  70 value 82.906140
iter  80 value 82.620330
iter  90 value 82.245988
iter 100 value 81.057607
final  value 81.057607 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.531631 
iter  10 value 93.733446
iter  20 value 86.957017
iter  30 value 81.127689
iter  40 value 80.259908
iter  50 value 78.604400
iter  60 value 78.236615
iter  70 value 78.158536
iter  80 value 78.097966
iter  90 value 78.036771
iter 100 value 78.007722
final  value 78.007722 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.530403 
final  value 94.054818 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.154455 
final  value 94.054697 
converged
Fitting Repeat 3 

# weights:  103
initial  value 114.518289 
iter  10 value 94.054548
iter  20 value 94.009746
final  value 93.836197 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.362916 
final  value 94.054603 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.918556 
final  value 94.054493 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.641566 
iter  10 value 94.056358
iter  20 value 94.033422
iter  30 value 84.198090
iter  40 value 82.168774
final  value 82.168758 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.899346 
iter  10 value 93.865282
iter  20 value 93.863201
iter  30 value 93.806458
iter  40 value 93.788930
iter  50 value 93.784962
iter  60 value 82.741491
iter  70 value 82.737889
iter  80 value 82.168416
iter  80 value 82.168415
iter  80 value 82.168415
final  value 82.168415 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.765527 
iter  10 value 93.880660
iter  20 value 93.795376
iter  30 value 93.788861
iter  40 value 93.786272
iter  50 value 93.448982
iter  60 value 84.308494
iter  70 value 83.354390
iter  80 value 83.344761
iter  90 value 83.344544
iter  90 value 83.344544
iter  90 value 83.344544
final  value 83.344544 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.930605 
iter  10 value 94.053094
iter  20 value 86.861041
final  value 85.954488 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.506344 
iter  10 value 94.058135
iter  20 value 93.307220
final  value 93.111255 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.093447 
iter  10 value 94.061107
iter  20 value 94.002673
iter  30 value 84.838163
iter  40 value 82.235588
iter  50 value 81.732709
iter  60 value 81.546381
iter  70 value 81.495789
iter  80 value 81.322130
iter  90 value 81.320249
iter  90 value 81.320249
final  value 81.320249 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.779963 
iter  10 value 93.407815
iter  20 value 93.394218
iter  30 value 93.151432
iter  40 value 93.111470
iter  40 value 93.111470
iter  40 value 93.111470
final  value 93.111470 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.004962 
iter  10 value 93.844334
iter  20 value 88.086943
iter  30 value 83.998348
iter  40 value 83.997188
iter  50 value 82.129089
iter  60 value 82.126647
iter  70 value 82.126416
final  value 82.126336 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.030965 
iter  10 value 93.844495
iter  20 value 93.837602
iter  30 value 93.797427
iter  40 value 88.393177
iter  50 value 88.280597
iter  60 value 88.273710
iter  70 value 88.235744
iter  80 value 87.993934
iter  90 value 87.543795
iter 100 value 84.595315
final  value 84.595315 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.356468 
iter  10 value 93.844148
iter  20 value 93.837623
iter  30 value 88.560230
iter  40 value 84.063075
iter  50 value 82.269442
iter  60 value 80.803134
iter  70 value 80.744734
iter  80 value 80.680652
iter  90 value 80.596212
iter 100 value 80.594455
final  value 80.594455 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.781181 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.218383 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.012346 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.011429 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.533214 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 135.503693 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.806066 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.831281 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 121.061288 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 112.602623 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.474010 
iter  10 value 94.038251
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.769096 
final  value 94.027933 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.391040 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.858472 
iter  10 value 94.050978
iter  20 value 90.711246
iter  30 value 89.603160
final  value 89.518522 
converged
Fitting Repeat 5 

# weights:  507
initial  value 127.415032 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.441843 
iter  10 value 94.064860
iter  20 value 92.842548
iter  30 value 90.373196
iter  40 value 88.947475
iter  50 value 88.448255
iter  60 value 87.972895
iter  70 value 87.237744
iter  80 value 87.147042
final  value 87.141230 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.274185 
iter  10 value 89.721843
iter  20 value 89.059997
iter  30 value 88.620976
iter  40 value 88.482288
iter  50 value 88.479248
final  value 88.479009 
converged
Fitting Repeat 3 

# weights:  103
initial  value 108.938077 
iter  10 value 94.056771
iter  20 value 90.701884
iter  30 value 87.917767
iter  40 value 87.841132
iter  50 value 87.740187
iter  60 value 87.704995
final  value 87.704898 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.796335 
iter  10 value 93.595746
iter  20 value 87.392423
iter  30 value 86.700110
iter  40 value 86.538322
iter  50 value 86.411017
iter  60 value 86.334316
iter  70 value 86.314688
iter  80 value 86.204098
iter  90 value 85.322935
iter 100 value 85.111869
final  value 85.111869 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 109.481557 
iter  10 value 94.051584
iter  20 value 90.798266
iter  30 value 88.990020
iter  40 value 88.647466
iter  50 value 88.640009
iter  60 value 88.635247
final  value 88.635243 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.132762 
iter  10 value 94.093356
iter  20 value 93.916845
iter  30 value 90.876708
iter  40 value 88.302413
iter  50 value 86.495002
iter  60 value 85.817332
iter  70 value 85.561185
iter  80 value 85.360787
iter  90 value 85.205033
iter 100 value 85.173974
final  value 85.173974 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 109.451424 
iter  10 value 94.070645
iter  20 value 92.161821
iter  30 value 87.849394
iter  40 value 86.745693
iter  50 value 86.053981
iter  60 value 85.700952
iter  70 value 85.103835
iter  80 value 84.573031
iter  90 value 84.393047
iter 100 value 84.389401
final  value 84.389401 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.139198 
iter  10 value 94.043221
iter  20 value 91.661052
iter  30 value 89.202326
iter  40 value 88.324352
iter  50 value 87.695581
iter  60 value 85.133855
iter  70 value 83.901191
iter  80 value 83.674337
iter  90 value 83.436717
iter 100 value 83.409261
final  value 83.409261 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.902695 
iter  10 value 94.164512
iter  20 value 90.241057
iter  30 value 88.659796
iter  40 value 87.816106
iter  50 value 87.117578
iter  60 value 86.839351
iter  70 value 84.961212
iter  80 value 84.400458
iter  90 value 83.937063
iter 100 value 83.402651
final  value 83.402651 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.171651 
iter  10 value 94.288638
iter  20 value 94.021804
iter  30 value 91.818325
iter  40 value 90.089636
iter  50 value 88.654874
iter  60 value 88.445672
iter  70 value 88.348906
iter  80 value 87.869472
iter  90 value 86.406233
iter 100 value 85.968601
final  value 85.968601 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.588474 
iter  10 value 94.068094
iter  20 value 90.053498
iter  30 value 89.193781
iter  40 value 88.689764
iter  50 value 88.543885
iter  60 value 87.449940
iter  70 value 86.098857
iter  80 value 85.117887
iter  90 value 84.201426
iter 100 value 83.956087
final  value 83.956087 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 128.108993 
iter  10 value 94.142255
iter  20 value 94.030150
iter  30 value 91.882508
iter  40 value 89.862935
iter  50 value 88.718966
iter  60 value 85.644167
iter  70 value 84.974201
iter  80 value 83.337770
iter  90 value 83.150908
iter 100 value 83.064132
final  value 83.064132 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 130.650795 
iter  10 value 94.653455
iter  20 value 94.124804
iter  30 value 90.651555
iter  40 value 89.183898
iter  50 value 88.295815
iter  60 value 87.641505
iter  70 value 87.068975
iter  80 value 85.591822
iter  90 value 85.202531
iter 100 value 84.697747
final  value 84.697747 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.122540 
iter  10 value 94.365367
iter  20 value 89.345257
iter  30 value 88.940712
iter  40 value 88.778147
iter  50 value 87.775051
iter  60 value 86.434271
iter  70 value 85.885690
iter  80 value 85.353454
iter  90 value 84.459895
iter 100 value 84.230044
final  value 84.230044 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 117.757543 
iter  10 value 94.447451
iter  20 value 89.450480
iter  30 value 88.676810
iter  40 value 88.506897
iter  50 value 88.350493
iter  60 value 87.042687
iter  70 value 85.636192
iter  80 value 84.542737
iter  90 value 84.328181
iter 100 value 84.262542
final  value 84.262542 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.635776 
final  value 94.054833 
converged
Fitting Repeat 2 

# weights:  103
initial  value 107.334591 
final  value 94.054581 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.672136 
final  value 94.054544 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.979807 
iter  10 value 93.887917
iter  20 value 93.886951
iter  30 value 93.886206
final  value 93.886091 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.915602 
final  value 94.054520 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.959857 
iter  10 value 92.879814
iter  20 value 89.292465
iter  30 value 88.820462
iter  40 value 87.925772
final  value 87.921401 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.860169 
iter  10 value 88.047448
iter  20 value 88.044175
final  value 88.040823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.549521 
iter  10 value 94.056829
iter  20 value 93.831029
iter  30 value 91.208189
iter  40 value 91.207974
iter  40 value 91.207974
final  value 91.207972 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.061146 
iter  10 value 94.053326
final  value 94.052920 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.432315 
iter  10 value 94.057654
iter  20 value 93.981206
iter  30 value 89.863054
iter  40 value 87.167646
iter  50 value 87.086080
iter  60 value 87.074809
final  value 87.074623 
converged
Fitting Repeat 1 

# weights:  507
initial  value 127.930642 
iter  10 value 94.046656
iter  20 value 93.671607
iter  30 value 92.044625
iter  40 value 90.067423
iter  50 value 88.276553
final  value 88.270136 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.989573 
iter  10 value 94.028254
iter  20 value 94.023016
iter  30 value 93.788544
iter  40 value 93.787347
iter  50 value 93.781757
iter  60 value 93.532314
iter  70 value 93.340996
iter  80 value 93.333151
iter  90 value 93.328096
iter 100 value 93.058905
final  value 93.058905 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.943888 
iter  10 value 94.054325
iter  20 value 91.344254
iter  30 value 88.753663
iter  40 value 88.739087
iter  50 value 88.736433
iter  60 value 88.214086
iter  70 value 88.067982
iter  80 value 88.034226
final  value 88.034225 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.437187 
iter  10 value 93.946006
iter  20 value 93.903150
iter  30 value 93.885346
iter  40 value 93.878759
iter  50 value 93.877818
iter  60 value 93.046448
iter  70 value 89.365577
iter  80 value 88.812076
iter  90 value 88.011108
iter 100 value 86.920044
final  value 86.920044 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.648431 
iter  10 value 93.432839
iter  20 value 88.321176
iter  30 value 85.220308
iter  40 value 84.517613
iter  50 value 84.515070
iter  60 value 84.502997
iter  70 value 84.159143
iter  80 value 84.156974
final  value 84.155905 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.389940 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.871682 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.563354 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.368660 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.208784 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.000173 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.063937 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.209780 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.455899 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 115.839041 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.028961 
iter  10 value 84.709858
iter  20 value 84.588757
final  value 84.588745 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.986285 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.018715 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.157185 
iter  10 value 93.109891
iter  10 value 93.109890
iter  10 value 93.109890
final  value 93.109890 
converged
Fitting Repeat 5 

# weights:  507
initial  value 121.783074 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.700668 
iter  10 value 94.480826
iter  20 value 84.708634
iter  30 value 84.451201
iter  40 value 82.787784
iter  50 value 82.646647
final  value 82.646451 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.497734 
iter  10 value 94.420518
iter  20 value 90.687595
iter  30 value 88.133877
iter  40 value 84.068632
iter  50 value 82.896074
iter  60 value 82.662332
iter  70 value 82.646500
final  value 82.646451 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.656201 
iter  10 value 94.523404
iter  20 value 94.477357
iter  30 value 93.521802
iter  40 value 93.488912
iter  50 value 93.481573
iter  60 value 85.176797
iter  70 value 83.740239
iter  80 value 83.059507
iter  90 value 82.994652
iter 100 value 82.834323
final  value 82.834323 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.569177 
iter  10 value 94.437805
iter  20 value 87.838998
iter  30 value 86.468195
iter  40 value 86.246766
iter  50 value 85.097525
iter  60 value 84.599806
iter  70 value 82.843222
iter  80 value 82.152750
iter  90 value 81.781393
iter 100 value 81.635534
final  value 81.635534 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.914246 
iter  10 value 94.349127
iter  20 value 84.349564
iter  30 value 84.240058
iter  40 value 82.708454
iter  50 value 82.290105
iter  60 value 82.100664
iter  70 value 82.095643
iter  80 value 82.095047
iter  90 value 82.090045
iter 100 value 82.084896
final  value 82.084896 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.518658 
iter  10 value 94.255411
iter  20 value 85.357212
iter  30 value 84.241962
iter  40 value 82.163788
iter  50 value 80.455264
iter  60 value 79.902750
iter  70 value 79.659514
iter  80 value 79.630297
iter  90 value 79.623257
iter 100 value 79.620009
final  value 79.620009 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 119.158239 
iter  10 value 94.675643
iter  20 value 87.442377
iter  30 value 84.763479
iter  40 value 82.972762
iter  50 value 82.808735
iter  60 value 82.697083
iter  70 value 81.370571
iter  80 value 80.859914
iter  90 value 80.400954
iter 100 value 80.030677
final  value 80.030677 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 113.520777 
iter  10 value 94.545251
iter  20 value 94.491143
iter  30 value 91.732103
iter  40 value 86.546002
iter  50 value 86.054833
iter  60 value 85.542907
iter  70 value 85.280281
iter  80 value 82.475759
iter  90 value 81.813507
iter 100 value 81.098126
final  value 81.098126 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.028092 
iter  10 value 94.709867
iter  20 value 90.230691
iter  30 value 84.718835
iter  40 value 81.584026
iter  50 value 80.886422
iter  60 value 80.528676
iter  70 value 79.849817
iter  80 value 79.685566
iter  90 value 79.675422
iter 100 value 79.654691
final  value 79.654691 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.755851 
iter  10 value 94.506252
iter  20 value 91.565949
iter  30 value 85.991581
iter  40 value 84.031572
iter  50 value 82.363921
iter  60 value 82.212346
iter  70 value 81.926996
iter  80 value 81.642937
iter  90 value 81.553758
iter 100 value 81.281928
final  value 81.281928 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 133.568536 
iter  10 value 94.719577
iter  20 value 93.798596
iter  30 value 90.280023
iter  40 value 87.706267
iter  50 value 84.365659
iter  60 value 80.659453
iter  70 value 80.201415
iter  80 value 79.629300
iter  90 value 79.166987
iter 100 value 79.064709
final  value 79.064709 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.949364 
iter  10 value 90.769536
iter  20 value 86.778705
iter  30 value 85.877368
iter  40 value 84.355140
iter  50 value 82.615399
iter  60 value 82.117420
iter  70 value 80.744977
iter  80 value 80.221220
iter  90 value 80.113512
iter 100 value 79.989631
final  value 79.989631 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.655082 
iter  10 value 94.346539
iter  20 value 92.727672
iter  30 value 86.085657
iter  40 value 83.563521
iter  50 value 82.379547
iter  60 value 82.044956
iter  70 value 81.345766
iter  80 value 80.984139
iter  90 value 80.582544
iter 100 value 80.420738
final  value 80.420738 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.066678 
iter  10 value 93.994172
iter  20 value 90.980761
iter  30 value 87.634329
iter  40 value 84.099700
iter  50 value 81.846206
iter  60 value 80.853405
iter  70 value 80.601462
iter  80 value 80.391702
iter  90 value 80.129465
iter 100 value 79.789188
final  value 79.789188 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.104695 
iter  10 value 92.355113
iter  20 value 83.989618
iter  30 value 83.242335
iter  40 value 82.670372
iter  50 value 82.098509
iter  60 value 81.580846
iter  70 value 81.266525
iter  80 value 81.172604
iter  90 value 81.135198
iter 100 value 80.938626
final  value 80.938626 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.449729 
final  value 94.485793 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.692167 
final  value 94.485891 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.616668 
final  value 94.485909 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.197308 
final  value 94.356039 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.736593 
final  value 94.356185 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.436038 
iter  10 value 94.359367
iter  20 value 92.229612
iter  30 value 84.443618
iter  40 value 83.914902
final  value 83.912867 
converged
Fitting Repeat 2 

# weights:  305
initial  value 130.146792 
iter  10 value 94.489070
iter  20 value 94.484594
iter  30 value 94.372709
iter  40 value 94.154974
iter  50 value 94.152571
final  value 94.152568 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.781940 
iter  10 value 94.487505
iter  20 value 94.262902
iter  30 value 94.159571
iter  40 value 94.159284
final  value 94.159167 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.214094 
iter  10 value 94.487393
iter  20 value 94.114522
iter  30 value 84.179749
iter  40 value 84.093788
iter  50 value 83.594125
final  value 83.594033 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.521749 
iter  10 value 94.269947
iter  20 value 94.265467
iter  30 value 91.101750
final  value 91.089639 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.230677 
iter  10 value 84.767316
iter  20 value 83.299092
iter  30 value 83.284888
iter  40 value 83.282933
iter  50 value 83.280232
iter  60 value 83.279944
final  value 83.279507 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.489264 
iter  10 value 94.320026
iter  20 value 92.290464
iter  30 value 82.327389
iter  40 value 81.458610
iter  50 value 80.925468
iter  60 value 80.568620
iter  70 value 80.492788
iter  80 value 80.426302
iter  90 value 80.144606
iter 100 value 78.214182
final  value 78.214182 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 100.171361 
iter  10 value 94.492998
iter  20 value 89.785942
iter  30 value 85.676633
iter  40 value 85.163488
iter  50 value 85.158539
final  value 85.158518 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.340396 
iter  10 value 94.362249
iter  20 value 94.253904
iter  30 value 93.018551
iter  40 value 92.783657
iter  50 value 85.647055
iter  60 value 83.623281
iter  70 value 83.616736
final  value 83.616733 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.086049 
iter  10 value 90.935843
iter  20 value 88.905949
final  value 88.896210 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.343520 
final  value 94.443243 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.367743 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.674427 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.622015 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.689692 
iter  10 value 94.457505
final  value 94.449438 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.414565 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.861986 
iter  10 value 94.385017
iter  20 value 88.620273
iter  30 value 81.927243
iter  40 value 80.499329
iter  50 value 80.432190
final  value 80.432030 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.103162 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.159117 
iter  10 value 84.476199
iter  20 value 81.973235
iter  30 value 81.897727
final  value 81.897581 
converged
Fitting Repeat 5 

# weights:  305
initial  value 114.330332 
final  value 94.046703 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.177552 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.143515 
iter  10 value 94.306258
final  value 94.291327 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.500672 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.114614 
iter  10 value 94.129410
iter  20 value 93.783602
iter  30 value 86.483412
iter  40 value 82.590701
iter  50 value 82.286808
iter  60 value 82.095305
iter  70 value 79.302600
iter  80 value 79.162535
iter  90 value 79.160116
iter 100 value 79.160063
final  value 79.160063 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.082880 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.049901 
iter  10 value 94.500647
iter  20 value 94.328978
iter  30 value 88.388971
iter  40 value 81.710031
iter  50 value 80.863254
iter  60 value 80.770967
iter  70 value 80.724498
iter  80 value 80.703223
iter  90 value 79.755887
iter 100 value 79.147954
final  value 79.147954 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.866422 
iter  10 value 94.430135
iter  20 value 88.183455
iter  30 value 83.652782
iter  40 value 82.841064
iter  50 value 81.299710
iter  60 value 80.861743
iter  70 value 80.668892
iter  80 value 80.519872
final  value 80.493357 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.581814 
iter  10 value 94.512482
iter  20 value 94.488579
iter  30 value 85.486091
iter  40 value 82.199982
iter  50 value 81.655296
iter  60 value 81.084590
iter  70 value 80.772510
iter  80 value 80.670290
iter  90 value 80.630531
iter 100 value 80.520121
final  value 80.520121 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.588537 
iter  10 value 93.767509
iter  20 value 83.369662
iter  30 value 81.221490
iter  40 value 80.839629
iter  50 value 80.630795
iter  60 value 79.908762
iter  70 value 79.458683
iter  80 value 79.352720
iter  90 value 79.227541
iter 100 value 79.001980
final  value 79.001980 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 101.053946 
iter  10 value 94.487844
iter  20 value 94.425250
iter  30 value 90.652809
iter  40 value 85.792975
iter  50 value 82.869566
iter  60 value 82.572953
iter  70 value 81.579273
iter  80 value 80.849291
iter  90 value 80.656942
final  value 80.649355 
converged
Fitting Repeat 1 

# weights:  305
initial  value 120.745465 
iter  10 value 93.082600
iter  20 value 84.338699
iter  30 value 82.964898
iter  40 value 81.033390
iter  50 value 80.605046
iter  60 value 79.676040
iter  70 value 78.217333
iter  80 value 77.824782
iter  90 value 77.358816
iter 100 value 77.219414
final  value 77.219414 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.163921 
iter  10 value 94.532574
iter  20 value 94.059660
iter  30 value 84.900199
iter  40 value 84.038795
iter  50 value 82.572484
iter  60 value 80.084655
iter  70 value 78.512895
iter  80 value 78.272718
iter  90 value 78.057033
iter 100 value 77.980558
final  value 77.980558 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 118.459589 
iter  10 value 98.665500
iter  20 value 87.834333
iter  30 value 81.738232
iter  40 value 81.524578
iter  50 value 80.166378
iter  60 value 78.746262
iter  70 value 78.344068
iter  80 value 78.169382
iter  90 value 77.845521
iter 100 value 77.768625
final  value 77.768625 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 125.561130 
iter  10 value 94.385209
iter  20 value 90.045270
iter  30 value 88.497057
iter  40 value 84.386155
iter  50 value 82.836701
iter  60 value 81.630529
iter  70 value 80.106070
iter  80 value 79.541563
iter  90 value 78.789707
iter 100 value 78.221069
final  value 78.221069 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.599145 
iter  10 value 94.448689
iter  20 value 88.234889
iter  30 value 83.681866
iter  40 value 81.881702
iter  50 value 81.731763
iter  60 value 81.077241
iter  70 value 79.761064
iter  80 value 78.481697
iter  90 value 77.732800
iter 100 value 77.526357
final  value 77.526357 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 121.604971 
iter  10 value 96.377798
iter  20 value 90.057073
iter  30 value 81.594934
iter  40 value 79.772181
iter  50 value 79.581690
iter  60 value 78.858031
iter  70 value 78.641091
iter  80 value 78.494144
iter  90 value 78.383088
iter 100 value 78.228795
final  value 78.228795 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.104450 
iter  10 value 89.793853
iter  20 value 86.721729
iter  30 value 84.678481
iter  40 value 84.118524
iter  50 value 83.774449
iter  60 value 82.907586
iter  70 value 82.534238
iter  80 value 82.410397
iter  90 value 82.284538
iter 100 value 79.454412
final  value 79.454412 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 134.084538 
iter  10 value 94.609099
iter  20 value 93.356710
iter  30 value 91.809070
iter  40 value 86.575204
iter  50 value 83.454546
iter  60 value 82.602181
iter  70 value 80.496388
iter  80 value 78.921803
iter  90 value 78.380248
iter 100 value 78.130285
final  value 78.130285 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.363977 
iter  10 value 95.417347
iter  20 value 84.220925
iter  30 value 82.293882
iter  40 value 82.114947
iter  50 value 81.063303
iter  60 value 80.126033
iter  70 value 79.386863
iter  80 value 79.178864
iter  90 value 78.710136
iter 100 value 78.224198
final  value 78.224198 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.865100 
iter  10 value 94.409514
iter  20 value 91.873066
iter  30 value 91.373498
iter  40 value 90.669153
iter  50 value 88.959518
iter  60 value 81.133123
iter  70 value 80.041718
iter  80 value 79.406456
iter  90 value 78.604660
iter 100 value 78.121873
final  value 78.121873 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.845718 
iter  10 value 94.485694
iter  20 value 94.484259
final  value 94.484215 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.314778 
final  value 94.485760 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.754054 
final  value 94.486050 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.132257 
final  value 94.485795 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.176170 
final  value 94.485944 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.505784 
iter  10 value 94.489025
iter  20 value 94.484083
iter  30 value 92.980055
iter  40 value 84.430755
iter  50 value 84.403703
final  value 84.402858 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.373201 
iter  10 value 94.488805
iter  20 value 84.439928
iter  30 value 81.317467
final  value 81.307308 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.431006 
iter  10 value 94.488667
iter  20 value 83.686378
iter  30 value 83.474357
iter  40 value 82.697894
iter  50 value 82.030332
iter  60 value 82.029282
iter  70 value 81.469936
iter  80 value 79.623040
iter  90 value 78.101837
iter 100 value 77.089925
final  value 77.089925 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 95.868076 
iter  10 value 94.447985
iter  20 value 94.445854
final  value 94.445826 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.436182 
iter  10 value 94.489462
iter  20 value 94.433891
iter  30 value 92.690437
iter  40 value 85.290016
iter  50 value 84.944408
iter  60 value 84.038574
iter  70 value 84.031540
final  value 84.031068 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.830226 
iter  10 value 94.501132
iter  20 value 94.458202
iter  30 value 94.454045
iter  40 value 94.422272
iter  50 value 83.770771
iter  60 value 83.743059
iter  70 value 83.733276
iter  80 value 83.697900
iter  90 value 81.406083
iter 100 value 80.202673
final  value 80.202673 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 95.408121 
iter  10 value 94.450703
iter  20 value 94.236716
iter  30 value 94.231731
iter  40 value 86.345034
iter  50 value 86.003389
iter  60 value 84.484183
iter  70 value 80.359141
iter  80 value 80.358976
iter  90 value 79.998206
iter 100 value 79.609337
final  value 79.609337 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 97.553344 
iter  10 value 94.492396
iter  20 value 94.425053
iter  30 value 85.509204
iter  40 value 84.521300
final  value 84.520569 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.026505 
iter  10 value 84.704999
iter  20 value 83.884055
final  value 83.883993 
converged
Fitting Repeat 5 

# weights:  507
initial  value 122.265781 
iter  10 value 94.429379
iter  20 value 93.555694
iter  30 value 85.520083
iter  40 value 84.976278
iter  50 value 84.971675
iter  60 value 84.970603
final  value 84.970135 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.555825 
final  value 94.477594 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.568833 
iter  10 value 91.271455
iter  20 value 91.266260
final  value 91.265072 
converged
Fitting Repeat 3 

# weights:  103
initial  value 110.051450 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.392842 
final  value 93.637383 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.012532 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.529690 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 137.438634 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.638039 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.220498 
iter  10 value 93.630936
final  value 93.630886 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.551866 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 112.916611 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.735755 
iter  10 value 94.484137
iter  10 value 94.484137
iter  10 value 94.484137
final  value 94.484137 
converged
Fitting Repeat 3 

# weights:  507
initial  value 124.882842 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.337868 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.207332 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.659548 
iter  10 value 94.490319
iter  20 value 92.440847
iter  30 value 91.645811
iter  40 value 91.498034
iter  50 value 91.375424
iter  60 value 90.769140
iter  70 value 86.188078
iter  80 value 86.001142
iter  90 value 85.498466
iter 100 value 83.998442
final  value 83.998442 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.851459 
iter  10 value 94.130793
iter  20 value 90.786949
iter  30 value 85.766717
iter  40 value 84.944724
iter  50 value 84.689851
iter  60 value 84.619246
iter  70 value 82.760962
iter  80 value 82.566013
iter  90 value 82.465033
final  value 82.465032 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.326116 
iter  10 value 94.530149
iter  20 value 94.373163
iter  30 value 91.523617
iter  40 value 90.187908
iter  50 value 86.483971
iter  60 value 85.339315
iter  70 value 84.010945
iter  80 value 83.210170
iter  90 value 82.823924
iter 100 value 82.515491
final  value 82.515491 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.190361 
iter  10 value 94.489213
iter  20 value 94.472654
iter  30 value 92.484659
iter  40 value 85.608185
iter  50 value 85.183205
iter  60 value 85.046929
iter  70 value 84.896994
iter  80 value 84.341104
iter  90 value 84.324862
final  value 84.324848 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.906889 
iter  10 value 94.496346
iter  20 value 90.546623
iter  30 value 87.605437
iter  40 value 86.785005
iter  50 value 86.348287
iter  60 value 85.976964
iter  70 value 84.979432
iter  80 value 84.751428
iter  90 value 84.654781
iter 100 value 84.613341
final  value 84.613341 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 100.348281 
iter  10 value 94.317538
iter  20 value 93.765278
iter  30 value 91.603698
iter  40 value 86.668200
iter  50 value 85.739086
iter  60 value 83.483420
iter  70 value 82.073831
iter  80 value 81.527451
iter  90 value 81.429976
iter 100 value 81.398205
final  value 81.398205 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 113.074819 
iter  10 value 93.581417
iter  20 value 86.694346
iter  30 value 86.346729
iter  40 value 84.243081
iter  50 value 82.948468
iter  60 value 81.890416
iter  70 value 81.642114
iter  80 value 81.140013
iter  90 value 81.006669
iter 100 value 80.842337
final  value 80.842337 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.143559 
iter  10 value 94.411945
iter  20 value 93.032480
iter  30 value 87.342136
iter  40 value 86.332849
iter  50 value 84.984134
iter  60 value 81.664223
iter  70 value 81.295681
iter  80 value 81.118572
iter  90 value 81.005037
iter 100 value 80.942512
final  value 80.942512 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.990542 
iter  10 value 94.421655
iter  20 value 87.511518
iter  30 value 85.084809
iter  40 value 84.136512
iter  50 value 83.514114
iter  60 value 83.174294
iter  70 value 82.936272
iter  80 value 82.670433
iter  90 value 82.317133
iter 100 value 82.001590
final  value 82.001590 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.684745 
iter  10 value 94.552655
iter  20 value 89.108377
iter  30 value 85.015052
iter  40 value 84.298618
iter  50 value 83.950886
iter  60 value 83.722956
iter  70 value 82.695888
iter  80 value 81.751741
iter  90 value 81.146104
iter 100 value 80.968460
final  value 80.968460 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.782081 
iter  10 value 92.669229
iter  20 value 91.343264
iter  30 value 89.106211
iter  40 value 85.830587
iter  50 value 84.696525
iter  60 value 84.280519
iter  70 value 83.820661
iter  80 value 83.488367
iter  90 value 82.965654
iter 100 value 82.355861
final  value 82.355861 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.090768 
iter  10 value 94.435662
iter  20 value 87.626115
iter  30 value 86.913303
iter  40 value 86.016389
iter  50 value 85.165225
iter  60 value 82.957811
iter  70 value 81.871660
iter  80 value 81.686422
iter  90 value 81.509942
iter 100 value 81.423698
final  value 81.423698 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 130.436909 
iter  10 value 94.491874
iter  20 value 87.502520
iter  30 value 85.746360
iter  40 value 84.670436
iter  50 value 84.189209
iter  60 value 82.359240
iter  70 value 81.818587
iter  80 value 81.568094
iter  90 value 81.346324
iter 100 value 81.191234
final  value 81.191234 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.606954 
iter  10 value 95.309511
iter  20 value 87.778505
iter  30 value 84.864002
iter  40 value 84.469132
iter  50 value 84.068382
iter  60 value 83.806903
iter  70 value 83.785811
iter  80 value 83.693811
iter  90 value 83.135648
iter 100 value 81.867719
final  value 81.867719 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.514043 
iter  10 value 94.734063
iter  20 value 94.237985
iter  30 value 90.730202
iter  40 value 86.837146
iter  50 value 84.640040
iter  60 value 83.404477
iter  70 value 82.940903
iter  80 value 82.500061
iter  90 value 82.376566
iter 100 value 82.357154
final  value 82.357154 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.052825 
final  value 94.485726 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.312347 
final  value 94.485669 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.399158 
final  value 94.485875 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.420217 
final  value 94.485718 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.670440 
final  value 94.058950 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.617636 
iter  10 value 94.489550
iter  20 value 94.423571
iter  30 value 93.554904
iter  40 value 92.212741
iter  50 value 90.465572
iter  60 value 87.940036
final  value 87.938788 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.056271 
iter  10 value 93.642983
iter  20 value 93.634644
final  value 93.633383 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.560858 
iter  10 value 94.489154
iter  20 value 94.443988
iter  30 value 91.047018
iter  40 value 90.813819
iter  50 value 88.464733
iter  60 value 87.676136
iter  70 value 87.664473
iter  80 value 87.654422
iter  90 value 87.644076
iter 100 value 87.524121
final  value 87.524121 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 95.278929 
iter  10 value 94.031425
iter  20 value 94.024713
iter  30 value 93.988170
iter  40 value 93.617749
iter  50 value 93.614866
final  value 93.614851 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.976049 
iter  10 value 88.141933
iter  20 value 87.742346
iter  30 value 87.733008
iter  40 value 87.731432
iter  50 value 86.363073
iter  60 value 86.289638
iter  70 value 85.962707
iter  80 value 85.955665
iter  90 value 84.688910
iter 100 value 84.594860
final  value 84.594860 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 113.809829 
iter  10 value 94.492098
iter  20 value 94.472765
iter  30 value 87.374718
iter  40 value 85.846480
iter  50 value 85.764394
iter  60 value 84.863937
iter  70 value 84.614927
iter  80 value 84.571538
iter  90 value 82.758969
iter 100 value 82.707136
final  value 82.707136 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.492834 
iter  10 value 94.034707
iter  20 value 92.255602
iter  30 value 87.556934
iter  40 value 87.355222
final  value 87.355190 
converged
Fitting Repeat 3 

# weights:  507
initial  value 120.154028 
iter  10 value 94.490876
iter  20 value 94.054302
iter  30 value 87.255804
iter  40 value 86.250700
iter  50 value 85.659340
iter  60 value 84.701585
iter  70 value 83.023300
iter  80 value 80.629864
iter  90 value 79.778107
iter 100 value 79.741780
final  value 79.741780 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.232800 
iter  10 value 93.892937
iter  20 value 93.888589
iter  30 value 93.884101
iter  30 value 93.884101
final  value 93.884084 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.187996 
iter  10 value 94.491650
iter  20 value 94.484314
iter  30 value 92.756908
iter  40 value 84.465587
iter  50 value 83.394996
iter  60 value 82.830355
iter  70 value 82.619110
iter  80 value 82.616406
iter  90 value 82.609829
iter 100 value 82.609089
final  value 82.609089 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 124.416055 
iter  10 value 117.895085
iter  20 value 113.041912
final  value 110.229649 
converged
Fitting Repeat 2 

# weights:  305
initial  value 121.784401 
iter  10 value 110.880406
iter  20 value 110.844680
iter  30 value 108.467926
iter  40 value 108.398406
final  value 108.397662 
converged
Fitting Repeat 3 

# weights:  305
initial  value 119.525087 
iter  10 value 117.893745
iter  20 value 117.890349
final  value 117.890340 
converged
Fitting Repeat 4 

# weights:  305
initial  value 129.847355 
iter  10 value 116.813749
iter  20 value 116.404353
iter  30 value 110.001549
iter  40 value 108.913805
iter  50 value 104.285407
final  value 104.284283 
converged
Fitting Repeat 5 

# weights:  305
initial  value 120.879280 
iter  10 value 117.763963
iter  20 value 117.762445
iter  30 value 117.753178
iter  40 value 114.268788
iter  50 value 111.064900
iter  60 value 111.040322
iter  70 value 111.010863
iter  80 value 108.563154
iter  90 value 108.545780
iter 100 value 108.515463
final  value 108.515463 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Jul 16 00:57:54 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  45.57    6.03   56.34 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.83 1.5933.95
FreqInteractors0.190.040.21
calculateAAC0.050.000.05
calculateAutocor0.330.060.39
calculateCTDC0.060.010.08
calculateCTDD0.470.030.50
calculateCTDT0.190.020.20
calculateCTriad0.260.020.28
calculateDC0.080.000.08
calculateF0.250.030.28
calculateKSAAP0.10.00.1
calculateQD_Sm1.320.331.65
calculateTC1.360.181.55
calculateTC_Sm0.250.000.25
corr_plot34.41 1.8833.15
enrichfindP 2.19 0.1218.00
enrichfind_hp0.080.021.52
enrichplot0.280.030.31
filter_missing_values000
getFASTA0.030.032.90
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.060.000.07
pred_ensembel18.63 1.9916.79
var_imp35.76 1.2937.24