Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-07-16 11:40 -0400 (Tue, 16 Jul 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4677 |
palomino6 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4416 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4444 |
kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4393 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4373 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 963/2243 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.11.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino6 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.11.0 |
Command: C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz |
StartedAt: 2024-07-16 00:52:58 -0400 (Tue, 16 Jul 2024) |
EndedAt: 2024-07-16 00:58:07 -0400 (Tue, 16 Jul 2024) |
EllapsedTime: 309.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=C:\Users\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.1 (2024-06-14 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.2.0 GNU Fortran (GCC) 13.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.11.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.76 1.29 37.24 FSmethod 34.83 1.59 33.95 corr_plot 34.41 1.88 33.15 pred_ensembel 18.63 1.99 16.79 enrichfindP 2.19 0.12 18.00 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'C:/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'C:/Users/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.602318 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.203963 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.122661 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.671502 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.066908 iter 10 value 94.052976 final value 94.052911 converged Fitting Repeat 1 # weights: 305 initial value 114.854202 final value 94.011429 converged Fitting Repeat 2 # weights: 305 initial value 105.078913 iter 10 value 93.478227 iter 10 value 93.478227 iter 10 value 93.478227 final value 93.478227 converged Fitting Repeat 3 # weights: 305 initial value 100.811806 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 107.804326 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 103.423782 iter 10 value 85.636026 iter 20 value 83.472835 iter 30 value 83.233874 final value 83.233861 converged Fitting Repeat 1 # weights: 507 initial value 95.803174 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 100.965909 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 100.495251 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 106.050990 iter 10 value 93.839852 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 103.340091 final value 93.743590 converged Fitting Repeat 1 # weights: 103 initial value 107.992147 iter 10 value 93.656501 iter 20 value 91.830907 iter 30 value 91.061209 iter 40 value 91.001742 iter 50 value 89.340176 iter 60 value 88.616675 iter 70 value 85.077787 iter 80 value 84.121773 iter 90 value 81.521044 iter 100 value 80.274958 final value 80.274958 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.534263 iter 10 value 94.054880 iter 20 value 93.731976 iter 30 value 93.441184 iter 40 value 93.346579 iter 50 value 91.666387 iter 60 value 83.843286 iter 70 value 80.724423 iter 80 value 80.160133 iter 90 value 79.699216 iter 100 value 79.553038 final value 79.553038 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.052787 iter 10 value 94.059332 iter 20 value 93.552111 iter 30 value 93.324504 iter 40 value 93.269013 iter 50 value 87.420942 iter 60 value 86.032844 iter 70 value 84.025236 iter 80 value 82.512253 iter 90 value 82.252734 iter 100 value 82.251952 final value 82.251952 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.356212 iter 10 value 93.970693 iter 20 value 93.408461 iter 30 value 93.379726 iter 40 value 92.911608 iter 50 value 86.987640 iter 60 value 86.879613 iter 70 value 86.823129 iter 80 value 86.822990 iter 90 value 86.766947 iter 100 value 84.424161 final value 84.424161 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.053447 iter 10 value 93.764290 iter 20 value 90.745415 iter 30 value 90.623979 iter 40 value 90.608214 final value 90.608175 converged Fitting Repeat 1 # weights: 305 initial value 107.086326 iter 10 value 94.416291 iter 20 value 92.695165 iter 30 value 87.464271 iter 40 value 83.567384 iter 50 value 82.223955 iter 60 value 82.009747 iter 70 value 81.581761 iter 80 value 80.605114 iter 90 value 79.885987 iter 100 value 79.722637 final value 79.722637 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.117220 iter 10 value 93.922008 iter 20 value 93.450248 iter 30 value 93.307408 iter 40 value 84.921416 iter 50 value 83.568729 iter 60 value 81.176021 iter 70 value 80.359076 iter 80 value 79.899033 iter 90 value 79.811102 iter 100 value 79.388959 final value 79.388959 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.756926 iter 10 value 93.160261 iter 20 value 84.611817 iter 30 value 81.818330 iter 40 value 80.763934 iter 50 value 80.071884 iter 60 value 79.308194 iter 70 value 78.393197 iter 80 value 78.259433 iter 90 value 78.224470 iter 100 value 78.205330 final value 78.205330 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.687837 iter 10 value 94.051376 iter 20 value 92.425271 iter 30 value 91.205629 iter 40 value 90.650365 iter 50 value 89.927612 iter 60 value 86.858898 iter 70 value 84.361424 iter 80 value 79.736083 iter 90 value 78.833609 iter 100 value 78.621956 final value 78.621956 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.164781 iter 10 value 93.397450 iter 20 value 84.107031 iter 30 value 83.632862 iter 40 value 81.832883 iter 50 value 81.304138 iter 60 value 81.146093 iter 70 value 80.151447 iter 80 value 79.014104 iter 90 value 78.637640 iter 100 value 78.348729 final value 78.348729 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.338033 iter 10 value 94.362791 iter 20 value 91.552901 iter 30 value 91.240797 iter 40 value 87.859990 iter 50 value 84.324024 iter 60 value 81.035267 iter 70 value 80.246102 iter 80 value 79.976191 iter 90 value 79.674801 iter 100 value 79.598841 final value 79.598841 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 131.942923 iter 10 value 97.946695 iter 20 value 94.304627 iter 30 value 93.889783 iter 40 value 82.089087 iter 50 value 81.125209 iter 60 value 80.880961 iter 70 value 80.703057 iter 80 value 79.936588 iter 90 value 79.467089 iter 100 value 79.355471 final value 79.355471 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.416088 iter 10 value 94.350971 iter 20 value 92.689975 iter 30 value 83.155036 iter 40 value 82.037214 iter 50 value 81.081915 iter 60 value 80.584898 iter 70 value 79.535086 iter 80 value 78.718034 iter 90 value 78.638171 iter 100 value 78.570212 final value 78.570212 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.117890 iter 10 value 95.356127 iter 20 value 86.602789 iter 30 value 85.921211 iter 40 value 83.280768 iter 50 value 83.117869 iter 60 value 83.012716 iter 70 value 82.906140 iter 80 value 82.620330 iter 90 value 82.245988 iter 100 value 81.057607 final value 81.057607 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.531631 iter 10 value 93.733446 iter 20 value 86.957017 iter 30 value 81.127689 iter 40 value 80.259908 iter 50 value 78.604400 iter 60 value 78.236615 iter 70 value 78.158536 iter 80 value 78.097966 iter 90 value 78.036771 iter 100 value 78.007722 final value 78.007722 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.530403 final value 94.054818 converged Fitting Repeat 2 # weights: 103 initial value 101.154455 final value 94.054697 converged Fitting Repeat 3 # weights: 103 initial value 114.518289 iter 10 value 94.054548 iter 20 value 94.009746 final value 93.836197 converged Fitting Repeat 4 # weights: 103 initial value 98.362916 final value 94.054603 converged Fitting Repeat 5 # weights: 103 initial value 106.918556 final value 94.054493 converged Fitting Repeat 1 # weights: 305 initial value 94.641566 iter 10 value 94.056358 iter 20 value 94.033422 iter 30 value 84.198090 iter 40 value 82.168774 final value 82.168758 converged Fitting Repeat 2 # weights: 305 initial value 95.899346 iter 10 value 93.865282 iter 20 value 93.863201 iter 30 value 93.806458 iter 40 value 93.788930 iter 50 value 93.784962 iter 60 value 82.741491 iter 70 value 82.737889 iter 80 value 82.168416 iter 80 value 82.168415 iter 80 value 82.168415 final value 82.168415 converged Fitting Repeat 3 # weights: 305 initial value 101.765527 iter 10 value 93.880660 iter 20 value 93.795376 iter 30 value 93.788861 iter 40 value 93.786272 iter 50 value 93.448982 iter 60 value 84.308494 iter 70 value 83.354390 iter 80 value 83.344761 iter 90 value 83.344544 iter 90 value 83.344544 iter 90 value 83.344544 final value 83.344544 converged Fitting Repeat 4 # weights: 305 initial value 99.930605 iter 10 value 94.053094 iter 20 value 86.861041 final value 85.954488 converged Fitting Repeat 5 # weights: 305 initial value 105.506344 iter 10 value 94.058135 iter 20 value 93.307220 final value 93.111255 converged Fitting Repeat 1 # weights: 507 initial value 106.093447 iter 10 value 94.061107 iter 20 value 94.002673 iter 30 value 84.838163 iter 40 value 82.235588 iter 50 value 81.732709 iter 60 value 81.546381 iter 70 value 81.495789 iter 80 value 81.322130 iter 90 value 81.320249 iter 90 value 81.320249 final value 81.320249 converged Fitting Repeat 2 # weights: 507 initial value 110.779963 iter 10 value 93.407815 iter 20 value 93.394218 iter 30 value 93.151432 iter 40 value 93.111470 iter 40 value 93.111470 iter 40 value 93.111470 final value 93.111470 converged Fitting Repeat 3 # weights: 507 initial value 96.004962 iter 10 value 93.844334 iter 20 value 88.086943 iter 30 value 83.998348 iter 40 value 83.997188 iter 50 value 82.129089 iter 60 value 82.126647 iter 70 value 82.126416 final value 82.126336 converged Fitting Repeat 4 # weights: 507 initial value 102.030965 iter 10 value 93.844495 iter 20 value 93.837602 iter 30 value 93.797427 iter 40 value 88.393177 iter 50 value 88.280597 iter 60 value 88.273710 iter 70 value 88.235744 iter 80 value 87.993934 iter 90 value 87.543795 iter 100 value 84.595315 final value 84.595315 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.356468 iter 10 value 93.844148 iter 20 value 93.837623 iter 30 value 88.560230 iter 40 value 84.063075 iter 50 value 82.269442 iter 60 value 80.803134 iter 70 value 80.744734 iter 80 value 80.680652 iter 90 value 80.596212 iter 100 value 80.594455 final value 80.594455 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.781181 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.218383 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.012346 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.011429 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.533214 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 135.503693 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.806066 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 94.831281 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 121.061288 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 112.602623 final value 94.038251 converged Fitting Repeat 1 # weights: 507 initial value 104.474010 iter 10 value 94.038251 iter 10 value 94.038251 iter 10 value 94.038251 final value 94.038251 converged Fitting Repeat 2 # weights: 507 initial value 98.769096 final value 94.027933 converged Fitting Repeat 3 # weights: 507 initial value 98.391040 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 105.858472 iter 10 value 94.050978 iter 20 value 90.711246 iter 30 value 89.603160 final value 89.518522 converged Fitting Repeat 5 # weights: 507 initial value 127.415032 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.441843 iter 10 value 94.064860 iter 20 value 92.842548 iter 30 value 90.373196 iter 40 value 88.947475 iter 50 value 88.448255 iter 60 value 87.972895 iter 70 value 87.237744 iter 80 value 87.147042 final value 87.141230 converged Fitting Repeat 2 # weights: 103 initial value 96.274185 iter 10 value 89.721843 iter 20 value 89.059997 iter 30 value 88.620976 iter 40 value 88.482288 iter 50 value 88.479248 final value 88.479009 converged Fitting Repeat 3 # weights: 103 initial value 108.938077 iter 10 value 94.056771 iter 20 value 90.701884 iter 30 value 87.917767 iter 40 value 87.841132 iter 50 value 87.740187 iter 60 value 87.704995 final value 87.704898 converged Fitting Repeat 4 # weights: 103 initial value 103.796335 iter 10 value 93.595746 iter 20 value 87.392423 iter 30 value 86.700110 iter 40 value 86.538322 iter 50 value 86.411017 iter 60 value 86.334316 iter 70 value 86.314688 iter 80 value 86.204098 iter 90 value 85.322935 iter 100 value 85.111869 final value 85.111869 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 109.481557 iter 10 value 94.051584 iter 20 value 90.798266 iter 30 value 88.990020 iter 40 value 88.647466 iter 50 value 88.640009 iter 60 value 88.635247 final value 88.635243 converged Fitting Repeat 1 # weights: 305 initial value 110.132762 iter 10 value 94.093356 iter 20 value 93.916845 iter 30 value 90.876708 iter 40 value 88.302413 iter 50 value 86.495002 iter 60 value 85.817332 iter 70 value 85.561185 iter 80 value 85.360787 iter 90 value 85.205033 iter 100 value 85.173974 final value 85.173974 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.451424 iter 10 value 94.070645 iter 20 value 92.161821 iter 30 value 87.849394 iter 40 value 86.745693 iter 50 value 86.053981 iter 60 value 85.700952 iter 70 value 85.103835 iter 80 value 84.573031 iter 90 value 84.393047 iter 100 value 84.389401 final value 84.389401 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.139198 iter 10 value 94.043221 iter 20 value 91.661052 iter 30 value 89.202326 iter 40 value 88.324352 iter 50 value 87.695581 iter 60 value 85.133855 iter 70 value 83.901191 iter 80 value 83.674337 iter 90 value 83.436717 iter 100 value 83.409261 final value 83.409261 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.902695 iter 10 value 94.164512 iter 20 value 90.241057 iter 30 value 88.659796 iter 40 value 87.816106 iter 50 value 87.117578 iter 60 value 86.839351 iter 70 value 84.961212 iter 80 value 84.400458 iter 90 value 83.937063 iter 100 value 83.402651 final value 83.402651 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.171651 iter 10 value 94.288638 iter 20 value 94.021804 iter 30 value 91.818325 iter 40 value 90.089636 iter 50 value 88.654874 iter 60 value 88.445672 iter 70 value 88.348906 iter 80 value 87.869472 iter 90 value 86.406233 iter 100 value 85.968601 final value 85.968601 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.588474 iter 10 value 94.068094 iter 20 value 90.053498 iter 30 value 89.193781 iter 40 value 88.689764 iter 50 value 88.543885 iter 60 value 87.449940 iter 70 value 86.098857 iter 80 value 85.117887 iter 90 value 84.201426 iter 100 value 83.956087 final value 83.956087 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.108993 iter 10 value 94.142255 iter 20 value 94.030150 iter 30 value 91.882508 iter 40 value 89.862935 iter 50 value 88.718966 iter 60 value 85.644167 iter 70 value 84.974201 iter 80 value 83.337770 iter 90 value 83.150908 iter 100 value 83.064132 final value 83.064132 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.650795 iter 10 value 94.653455 iter 20 value 94.124804 iter 30 value 90.651555 iter 40 value 89.183898 iter 50 value 88.295815 iter 60 value 87.641505 iter 70 value 87.068975 iter 80 value 85.591822 iter 90 value 85.202531 iter 100 value 84.697747 final value 84.697747 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.122540 iter 10 value 94.365367 iter 20 value 89.345257 iter 30 value 88.940712 iter 40 value 88.778147 iter 50 value 87.775051 iter 60 value 86.434271 iter 70 value 85.885690 iter 80 value 85.353454 iter 90 value 84.459895 iter 100 value 84.230044 final value 84.230044 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.757543 iter 10 value 94.447451 iter 20 value 89.450480 iter 30 value 88.676810 iter 40 value 88.506897 iter 50 value 88.350493 iter 60 value 87.042687 iter 70 value 85.636192 iter 80 value 84.542737 iter 90 value 84.328181 iter 100 value 84.262542 final value 84.262542 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.635776 final value 94.054833 converged Fitting Repeat 2 # weights: 103 initial value 107.334591 final value 94.054581 converged Fitting Repeat 3 # weights: 103 initial value 95.672136 final value 94.054544 converged Fitting Repeat 4 # weights: 103 initial value 97.979807 iter 10 value 93.887917 iter 20 value 93.886951 iter 30 value 93.886206 final value 93.886091 converged Fitting Repeat 5 # weights: 103 initial value 100.915602 final value 94.054520 converged Fitting Repeat 1 # weights: 305 initial value 98.959857 iter 10 value 92.879814 iter 20 value 89.292465 iter 30 value 88.820462 iter 40 value 87.925772 final value 87.921401 converged Fitting Repeat 2 # weights: 305 initial value 94.860169 iter 10 value 88.047448 iter 20 value 88.044175 final value 88.040823 converged Fitting Repeat 3 # weights: 305 initial value 109.549521 iter 10 value 94.056829 iter 20 value 93.831029 iter 30 value 91.208189 iter 40 value 91.207974 iter 40 value 91.207974 final value 91.207972 converged Fitting Repeat 4 # weights: 305 initial value 94.061146 iter 10 value 94.053326 final value 94.052920 converged Fitting Repeat 5 # weights: 305 initial value 96.432315 iter 10 value 94.057654 iter 20 value 93.981206 iter 30 value 89.863054 iter 40 value 87.167646 iter 50 value 87.086080 iter 60 value 87.074809 final value 87.074623 converged Fitting Repeat 1 # weights: 507 initial value 127.930642 iter 10 value 94.046656 iter 20 value 93.671607 iter 30 value 92.044625 iter 40 value 90.067423 iter 50 value 88.276553 final value 88.270136 converged Fitting Repeat 2 # weights: 507 initial value 100.989573 iter 10 value 94.028254 iter 20 value 94.023016 iter 30 value 93.788544 iter 40 value 93.787347 iter 50 value 93.781757 iter 60 value 93.532314 iter 70 value 93.340996 iter 80 value 93.333151 iter 90 value 93.328096 iter 100 value 93.058905 final value 93.058905 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.943888 iter 10 value 94.054325 iter 20 value 91.344254 iter 30 value 88.753663 iter 40 value 88.739087 iter 50 value 88.736433 iter 60 value 88.214086 iter 70 value 88.067982 iter 80 value 88.034226 final value 88.034225 converged Fitting Repeat 4 # weights: 507 initial value 99.437187 iter 10 value 93.946006 iter 20 value 93.903150 iter 30 value 93.885346 iter 40 value 93.878759 iter 50 value 93.877818 iter 60 value 93.046448 iter 70 value 89.365577 iter 80 value 88.812076 iter 90 value 88.011108 iter 100 value 86.920044 final value 86.920044 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.648431 iter 10 value 93.432839 iter 20 value 88.321176 iter 30 value 85.220308 iter 40 value 84.517613 iter 50 value 84.515070 iter 60 value 84.502997 iter 70 value 84.159143 iter 80 value 84.156974 final value 84.155905 converged Fitting Repeat 1 # weights: 103 initial value 103.389940 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.871682 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.563354 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.368660 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.208784 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 110.000173 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.063937 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 109.209780 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.455899 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 115.839041 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.028961 iter 10 value 84.709858 iter 20 value 84.588757 final value 84.588745 converged Fitting Repeat 2 # weights: 507 initial value 97.986285 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 108.018715 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 104.157185 iter 10 value 93.109891 iter 10 value 93.109890 iter 10 value 93.109890 final value 93.109890 converged Fitting Repeat 5 # weights: 507 initial value 121.783074 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.700668 iter 10 value 94.480826 iter 20 value 84.708634 iter 30 value 84.451201 iter 40 value 82.787784 iter 50 value 82.646647 final value 82.646451 converged Fitting Repeat 2 # weights: 103 initial value 106.497734 iter 10 value 94.420518 iter 20 value 90.687595 iter 30 value 88.133877 iter 40 value 84.068632 iter 50 value 82.896074 iter 60 value 82.662332 iter 70 value 82.646500 final value 82.646451 converged Fitting Repeat 3 # weights: 103 initial value 103.656201 iter 10 value 94.523404 iter 20 value 94.477357 iter 30 value 93.521802 iter 40 value 93.488912 iter 50 value 93.481573 iter 60 value 85.176797 iter 70 value 83.740239 iter 80 value 83.059507 iter 90 value 82.994652 iter 100 value 82.834323 final value 82.834323 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.569177 iter 10 value 94.437805 iter 20 value 87.838998 iter 30 value 86.468195 iter 40 value 86.246766 iter 50 value 85.097525 iter 60 value 84.599806 iter 70 value 82.843222 iter 80 value 82.152750 iter 90 value 81.781393 iter 100 value 81.635534 final value 81.635534 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.914246 iter 10 value 94.349127 iter 20 value 84.349564 iter 30 value 84.240058 iter 40 value 82.708454 iter 50 value 82.290105 iter 60 value 82.100664 iter 70 value 82.095643 iter 80 value 82.095047 iter 90 value 82.090045 iter 100 value 82.084896 final value 82.084896 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.518658 iter 10 value 94.255411 iter 20 value 85.357212 iter 30 value 84.241962 iter 40 value 82.163788 iter 50 value 80.455264 iter 60 value 79.902750 iter 70 value 79.659514 iter 80 value 79.630297 iter 90 value 79.623257 iter 100 value 79.620009 final value 79.620009 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 119.158239 iter 10 value 94.675643 iter 20 value 87.442377 iter 30 value 84.763479 iter 40 value 82.972762 iter 50 value 82.808735 iter 60 value 82.697083 iter 70 value 81.370571 iter 80 value 80.859914 iter 90 value 80.400954 iter 100 value 80.030677 final value 80.030677 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.520777 iter 10 value 94.545251 iter 20 value 94.491143 iter 30 value 91.732103 iter 40 value 86.546002 iter 50 value 86.054833 iter 60 value 85.542907 iter 70 value 85.280281 iter 80 value 82.475759 iter 90 value 81.813507 iter 100 value 81.098126 final value 81.098126 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.028092 iter 10 value 94.709867 iter 20 value 90.230691 iter 30 value 84.718835 iter 40 value 81.584026 iter 50 value 80.886422 iter 60 value 80.528676 iter 70 value 79.849817 iter 80 value 79.685566 iter 90 value 79.675422 iter 100 value 79.654691 final value 79.654691 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.755851 iter 10 value 94.506252 iter 20 value 91.565949 iter 30 value 85.991581 iter 40 value 84.031572 iter 50 value 82.363921 iter 60 value 82.212346 iter 70 value 81.926996 iter 80 value 81.642937 iter 90 value 81.553758 iter 100 value 81.281928 final value 81.281928 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 133.568536 iter 10 value 94.719577 iter 20 value 93.798596 iter 30 value 90.280023 iter 40 value 87.706267 iter 50 value 84.365659 iter 60 value 80.659453 iter 70 value 80.201415 iter 80 value 79.629300 iter 90 value 79.166987 iter 100 value 79.064709 final value 79.064709 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.949364 iter 10 value 90.769536 iter 20 value 86.778705 iter 30 value 85.877368 iter 40 value 84.355140 iter 50 value 82.615399 iter 60 value 82.117420 iter 70 value 80.744977 iter 80 value 80.221220 iter 90 value 80.113512 iter 100 value 79.989631 final value 79.989631 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.655082 iter 10 value 94.346539 iter 20 value 92.727672 iter 30 value 86.085657 iter 40 value 83.563521 iter 50 value 82.379547 iter 60 value 82.044956 iter 70 value 81.345766 iter 80 value 80.984139 iter 90 value 80.582544 iter 100 value 80.420738 final value 80.420738 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.066678 iter 10 value 93.994172 iter 20 value 90.980761 iter 30 value 87.634329 iter 40 value 84.099700 iter 50 value 81.846206 iter 60 value 80.853405 iter 70 value 80.601462 iter 80 value 80.391702 iter 90 value 80.129465 iter 100 value 79.789188 final value 79.789188 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.104695 iter 10 value 92.355113 iter 20 value 83.989618 iter 30 value 83.242335 iter 40 value 82.670372 iter 50 value 82.098509 iter 60 value 81.580846 iter 70 value 81.266525 iter 80 value 81.172604 iter 90 value 81.135198 iter 100 value 80.938626 final value 80.938626 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.449729 final value 94.485793 converged Fitting Repeat 2 # weights: 103 initial value 97.692167 final value 94.485891 converged Fitting Repeat 3 # weights: 103 initial value 97.616668 final value 94.485909 converged Fitting Repeat 4 # weights: 103 initial value 96.197308 final value 94.356039 converged Fitting Repeat 5 # weights: 103 initial value 104.736593 final value 94.356185 converged Fitting Repeat 1 # weights: 305 initial value 96.436038 iter 10 value 94.359367 iter 20 value 92.229612 iter 30 value 84.443618 iter 40 value 83.914902 final value 83.912867 converged Fitting Repeat 2 # weights: 305 initial value 130.146792 iter 10 value 94.489070 iter 20 value 94.484594 iter 30 value 94.372709 iter 40 value 94.154974 iter 50 value 94.152571 final value 94.152568 converged Fitting Repeat 3 # weights: 305 initial value 97.781940 iter 10 value 94.487505 iter 20 value 94.262902 iter 30 value 94.159571 iter 40 value 94.159284 final value 94.159167 converged Fitting Repeat 4 # weights: 305 initial value 100.214094 iter 10 value 94.487393 iter 20 value 94.114522 iter 30 value 84.179749 iter 40 value 84.093788 iter 50 value 83.594125 final value 83.594033 converged Fitting Repeat 5 # weights: 305 initial value 102.521749 iter 10 value 94.269947 iter 20 value 94.265467 iter 30 value 91.101750 final value 91.089639 converged Fitting Repeat 1 # weights: 507 initial value 97.230677 iter 10 value 84.767316 iter 20 value 83.299092 iter 30 value 83.284888 iter 40 value 83.282933 iter 50 value 83.280232 iter 60 value 83.279944 final value 83.279507 converged Fitting Repeat 2 # weights: 507 initial value 95.489264 iter 10 value 94.320026 iter 20 value 92.290464 iter 30 value 82.327389 iter 40 value 81.458610 iter 50 value 80.925468 iter 60 value 80.568620 iter 70 value 80.492788 iter 80 value 80.426302 iter 90 value 80.144606 iter 100 value 78.214182 final value 78.214182 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.171361 iter 10 value 94.492998 iter 20 value 89.785942 iter 30 value 85.676633 iter 40 value 85.163488 iter 50 value 85.158539 final value 85.158518 converged Fitting Repeat 4 # weights: 507 initial value 99.340396 iter 10 value 94.362249 iter 20 value 94.253904 iter 30 value 93.018551 iter 40 value 92.783657 iter 50 value 85.647055 iter 60 value 83.623281 iter 70 value 83.616736 final value 83.616733 converged Fitting Repeat 5 # weights: 507 initial value 104.086049 iter 10 value 90.935843 iter 20 value 88.905949 final value 88.896210 converged Fitting Repeat 1 # weights: 103 initial value 99.343520 final value 94.443243 converged Fitting Repeat 2 # weights: 103 initial value 106.367743 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.674427 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.622015 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.689692 iter 10 value 94.457505 final value 94.449438 converged Fitting Repeat 1 # weights: 305 initial value 96.414565 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.861986 iter 10 value 94.385017 iter 20 value 88.620273 iter 30 value 81.927243 iter 40 value 80.499329 iter 50 value 80.432190 final value 80.432030 converged Fitting Repeat 3 # weights: 305 initial value 96.103162 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.159117 iter 10 value 84.476199 iter 20 value 81.973235 iter 30 value 81.897727 final value 81.897581 converged Fitting Repeat 5 # weights: 305 initial value 114.330332 final value 94.046703 converged Fitting Repeat 1 # weights: 507 initial value 110.177552 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 107.143515 iter 10 value 94.306258 final value 94.291327 converged Fitting Repeat 3 # weights: 507 initial value 104.500672 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.114614 iter 10 value 94.129410 iter 20 value 93.783602 iter 30 value 86.483412 iter 40 value 82.590701 iter 50 value 82.286808 iter 60 value 82.095305 iter 70 value 79.302600 iter 80 value 79.162535 iter 90 value 79.160116 iter 100 value 79.160063 final value 79.160063 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.082880 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.049901 iter 10 value 94.500647 iter 20 value 94.328978 iter 30 value 88.388971 iter 40 value 81.710031 iter 50 value 80.863254 iter 60 value 80.770967 iter 70 value 80.724498 iter 80 value 80.703223 iter 90 value 79.755887 iter 100 value 79.147954 final value 79.147954 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.866422 iter 10 value 94.430135 iter 20 value 88.183455 iter 30 value 83.652782 iter 40 value 82.841064 iter 50 value 81.299710 iter 60 value 80.861743 iter 70 value 80.668892 iter 80 value 80.519872 final value 80.493357 converged Fitting Repeat 3 # weights: 103 initial value 97.581814 iter 10 value 94.512482 iter 20 value 94.488579 iter 30 value 85.486091 iter 40 value 82.199982 iter 50 value 81.655296 iter 60 value 81.084590 iter 70 value 80.772510 iter 80 value 80.670290 iter 90 value 80.630531 iter 100 value 80.520121 final value 80.520121 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.588537 iter 10 value 93.767509 iter 20 value 83.369662 iter 30 value 81.221490 iter 40 value 80.839629 iter 50 value 80.630795 iter 60 value 79.908762 iter 70 value 79.458683 iter 80 value 79.352720 iter 90 value 79.227541 iter 100 value 79.001980 final value 79.001980 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.053946 iter 10 value 94.487844 iter 20 value 94.425250 iter 30 value 90.652809 iter 40 value 85.792975 iter 50 value 82.869566 iter 60 value 82.572953 iter 70 value 81.579273 iter 80 value 80.849291 iter 90 value 80.656942 final value 80.649355 converged Fitting Repeat 1 # weights: 305 initial value 120.745465 iter 10 value 93.082600 iter 20 value 84.338699 iter 30 value 82.964898 iter 40 value 81.033390 iter 50 value 80.605046 iter 60 value 79.676040 iter 70 value 78.217333 iter 80 value 77.824782 iter 90 value 77.358816 iter 100 value 77.219414 final value 77.219414 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.163921 iter 10 value 94.532574 iter 20 value 94.059660 iter 30 value 84.900199 iter 40 value 84.038795 iter 50 value 82.572484 iter 60 value 80.084655 iter 70 value 78.512895 iter 80 value 78.272718 iter 90 value 78.057033 iter 100 value 77.980558 final value 77.980558 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.459589 iter 10 value 98.665500 iter 20 value 87.834333 iter 30 value 81.738232 iter 40 value 81.524578 iter 50 value 80.166378 iter 60 value 78.746262 iter 70 value 78.344068 iter 80 value 78.169382 iter 90 value 77.845521 iter 100 value 77.768625 final value 77.768625 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 125.561130 iter 10 value 94.385209 iter 20 value 90.045270 iter 30 value 88.497057 iter 40 value 84.386155 iter 50 value 82.836701 iter 60 value 81.630529 iter 70 value 80.106070 iter 80 value 79.541563 iter 90 value 78.789707 iter 100 value 78.221069 final value 78.221069 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.599145 iter 10 value 94.448689 iter 20 value 88.234889 iter 30 value 83.681866 iter 40 value 81.881702 iter 50 value 81.731763 iter 60 value 81.077241 iter 70 value 79.761064 iter 80 value 78.481697 iter 90 value 77.732800 iter 100 value 77.526357 final value 77.526357 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.604971 iter 10 value 96.377798 iter 20 value 90.057073 iter 30 value 81.594934 iter 40 value 79.772181 iter 50 value 79.581690 iter 60 value 78.858031 iter 70 value 78.641091 iter 80 value 78.494144 iter 90 value 78.383088 iter 100 value 78.228795 final value 78.228795 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.104450 iter 10 value 89.793853 iter 20 value 86.721729 iter 30 value 84.678481 iter 40 value 84.118524 iter 50 value 83.774449 iter 60 value 82.907586 iter 70 value 82.534238 iter 80 value 82.410397 iter 90 value 82.284538 iter 100 value 79.454412 final value 79.454412 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.084538 iter 10 value 94.609099 iter 20 value 93.356710 iter 30 value 91.809070 iter 40 value 86.575204 iter 50 value 83.454546 iter 60 value 82.602181 iter 70 value 80.496388 iter 80 value 78.921803 iter 90 value 78.380248 iter 100 value 78.130285 final value 78.130285 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.363977 iter 10 value 95.417347 iter 20 value 84.220925 iter 30 value 82.293882 iter 40 value 82.114947 iter 50 value 81.063303 iter 60 value 80.126033 iter 70 value 79.386863 iter 80 value 79.178864 iter 90 value 78.710136 iter 100 value 78.224198 final value 78.224198 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.865100 iter 10 value 94.409514 iter 20 value 91.873066 iter 30 value 91.373498 iter 40 value 90.669153 iter 50 value 88.959518 iter 60 value 81.133123 iter 70 value 80.041718 iter 80 value 79.406456 iter 90 value 78.604660 iter 100 value 78.121873 final value 78.121873 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.845718 iter 10 value 94.485694 iter 20 value 94.484259 final value 94.484215 converged Fitting Repeat 2 # weights: 103 initial value 97.314778 final value 94.485760 converged Fitting Repeat 3 # weights: 103 initial value 96.754054 final value 94.486050 converged Fitting Repeat 4 # weights: 103 initial value 99.132257 final value 94.485795 converged Fitting Repeat 5 # weights: 103 initial value 98.176170 final value 94.485944 converged Fitting Repeat 1 # weights: 305 initial value 95.505784 iter 10 value 94.489025 iter 20 value 94.484083 iter 30 value 92.980055 iter 40 value 84.430755 iter 50 value 84.403703 final value 84.402858 converged Fitting Repeat 2 # weights: 305 initial value 104.373201 iter 10 value 94.488805 iter 20 value 84.439928 iter 30 value 81.317467 final value 81.307308 converged Fitting Repeat 3 # weights: 305 initial value 102.431006 iter 10 value 94.488667 iter 20 value 83.686378 iter 30 value 83.474357 iter 40 value 82.697894 iter 50 value 82.030332 iter 60 value 82.029282 iter 70 value 81.469936 iter 80 value 79.623040 iter 90 value 78.101837 iter 100 value 77.089925 final value 77.089925 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.868076 iter 10 value 94.447985 iter 20 value 94.445854 final value 94.445826 converged Fitting Repeat 5 # weights: 305 initial value 97.436182 iter 10 value 94.489462 iter 20 value 94.433891 iter 30 value 92.690437 iter 40 value 85.290016 iter 50 value 84.944408 iter 60 value 84.038574 iter 70 value 84.031540 final value 84.031068 converged Fitting Repeat 1 # weights: 507 initial value 97.830226 iter 10 value 94.501132 iter 20 value 94.458202 iter 30 value 94.454045 iter 40 value 94.422272 iter 50 value 83.770771 iter 60 value 83.743059 iter 70 value 83.733276 iter 80 value 83.697900 iter 90 value 81.406083 iter 100 value 80.202673 final value 80.202673 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.408121 iter 10 value 94.450703 iter 20 value 94.236716 iter 30 value 94.231731 iter 40 value 86.345034 iter 50 value 86.003389 iter 60 value 84.484183 iter 70 value 80.359141 iter 80 value 80.358976 iter 90 value 79.998206 iter 100 value 79.609337 final value 79.609337 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.553344 iter 10 value 94.492396 iter 20 value 94.425053 iter 30 value 85.509204 iter 40 value 84.521300 final value 84.520569 converged Fitting Repeat 4 # weights: 507 initial value 97.026505 iter 10 value 84.704999 iter 20 value 83.884055 final value 83.883993 converged Fitting Repeat 5 # weights: 507 initial value 122.265781 iter 10 value 94.429379 iter 20 value 93.555694 iter 30 value 85.520083 iter 40 value 84.976278 iter 50 value 84.971675 iter 60 value 84.970603 final value 84.970135 converged Fitting Repeat 1 # weights: 103 initial value 98.555825 final value 94.477594 converged Fitting Repeat 2 # weights: 103 initial value 99.568833 iter 10 value 91.271455 iter 20 value 91.266260 final value 91.265072 converged Fitting Repeat 3 # weights: 103 initial value 110.051450 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.392842 final value 93.637383 converged Fitting Repeat 5 # weights: 103 initial value 102.012532 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.529690 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 137.438634 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.638039 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.220498 iter 10 value 93.630936 final value 93.630886 converged Fitting Repeat 5 # weights: 305 initial value 111.551866 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 112.916611 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 101.735755 iter 10 value 94.484137 iter 10 value 94.484137 iter 10 value 94.484137 final value 94.484137 converged Fitting Repeat 3 # weights: 507 initial value 124.882842 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 98.337868 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.207332 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.659548 iter 10 value 94.490319 iter 20 value 92.440847 iter 30 value 91.645811 iter 40 value 91.498034 iter 50 value 91.375424 iter 60 value 90.769140 iter 70 value 86.188078 iter 80 value 86.001142 iter 90 value 85.498466 iter 100 value 83.998442 final value 83.998442 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.851459 iter 10 value 94.130793 iter 20 value 90.786949 iter 30 value 85.766717 iter 40 value 84.944724 iter 50 value 84.689851 iter 60 value 84.619246 iter 70 value 82.760962 iter 80 value 82.566013 iter 90 value 82.465033 final value 82.465032 converged Fitting Repeat 3 # weights: 103 initial value 98.326116 iter 10 value 94.530149 iter 20 value 94.373163 iter 30 value 91.523617 iter 40 value 90.187908 iter 50 value 86.483971 iter 60 value 85.339315 iter 70 value 84.010945 iter 80 value 83.210170 iter 90 value 82.823924 iter 100 value 82.515491 final value 82.515491 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.190361 iter 10 value 94.489213 iter 20 value 94.472654 iter 30 value 92.484659 iter 40 value 85.608185 iter 50 value 85.183205 iter 60 value 85.046929 iter 70 value 84.896994 iter 80 value 84.341104 iter 90 value 84.324862 final value 84.324848 converged Fitting Repeat 5 # weights: 103 initial value 100.906889 iter 10 value 94.496346 iter 20 value 90.546623 iter 30 value 87.605437 iter 40 value 86.785005 iter 50 value 86.348287 iter 60 value 85.976964 iter 70 value 84.979432 iter 80 value 84.751428 iter 90 value 84.654781 iter 100 value 84.613341 final value 84.613341 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.348281 iter 10 value 94.317538 iter 20 value 93.765278 iter 30 value 91.603698 iter 40 value 86.668200 iter 50 value 85.739086 iter 60 value 83.483420 iter 70 value 82.073831 iter 80 value 81.527451 iter 90 value 81.429976 iter 100 value 81.398205 final value 81.398205 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.074819 iter 10 value 93.581417 iter 20 value 86.694346 iter 30 value 86.346729 iter 40 value 84.243081 iter 50 value 82.948468 iter 60 value 81.890416 iter 70 value 81.642114 iter 80 value 81.140013 iter 90 value 81.006669 iter 100 value 80.842337 final value 80.842337 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.143559 iter 10 value 94.411945 iter 20 value 93.032480 iter 30 value 87.342136 iter 40 value 86.332849 iter 50 value 84.984134 iter 60 value 81.664223 iter 70 value 81.295681 iter 80 value 81.118572 iter 90 value 81.005037 iter 100 value 80.942512 final value 80.942512 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.990542 iter 10 value 94.421655 iter 20 value 87.511518 iter 30 value 85.084809 iter 40 value 84.136512 iter 50 value 83.514114 iter 60 value 83.174294 iter 70 value 82.936272 iter 80 value 82.670433 iter 90 value 82.317133 iter 100 value 82.001590 final value 82.001590 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.684745 iter 10 value 94.552655 iter 20 value 89.108377 iter 30 value 85.015052 iter 40 value 84.298618 iter 50 value 83.950886 iter 60 value 83.722956 iter 70 value 82.695888 iter 80 value 81.751741 iter 90 value 81.146104 iter 100 value 80.968460 final value 80.968460 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.782081 iter 10 value 92.669229 iter 20 value 91.343264 iter 30 value 89.106211 iter 40 value 85.830587 iter 50 value 84.696525 iter 60 value 84.280519 iter 70 value 83.820661 iter 80 value 83.488367 iter 90 value 82.965654 iter 100 value 82.355861 final value 82.355861 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.090768 iter 10 value 94.435662 iter 20 value 87.626115 iter 30 value 86.913303 iter 40 value 86.016389 iter 50 value 85.165225 iter 60 value 82.957811 iter 70 value 81.871660 iter 80 value 81.686422 iter 90 value 81.509942 iter 100 value 81.423698 final value 81.423698 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.436909 iter 10 value 94.491874 iter 20 value 87.502520 iter 30 value 85.746360 iter 40 value 84.670436 iter 50 value 84.189209 iter 60 value 82.359240 iter 70 value 81.818587 iter 80 value 81.568094 iter 90 value 81.346324 iter 100 value 81.191234 final value 81.191234 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.606954 iter 10 value 95.309511 iter 20 value 87.778505 iter 30 value 84.864002 iter 40 value 84.469132 iter 50 value 84.068382 iter 60 value 83.806903 iter 70 value 83.785811 iter 80 value 83.693811 iter 90 value 83.135648 iter 100 value 81.867719 final value 81.867719 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.514043 iter 10 value 94.734063 iter 20 value 94.237985 iter 30 value 90.730202 iter 40 value 86.837146 iter 50 value 84.640040 iter 60 value 83.404477 iter 70 value 82.940903 iter 80 value 82.500061 iter 90 value 82.376566 iter 100 value 82.357154 final value 82.357154 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.052825 final value 94.485726 converged Fitting Repeat 2 # weights: 103 initial value 101.312347 final value 94.485669 converged Fitting Repeat 3 # weights: 103 initial value 106.399158 final value 94.485875 converged Fitting Repeat 4 # weights: 103 initial value 101.420217 final value 94.485718 converged Fitting Repeat 5 # weights: 103 initial value 99.670440 final value 94.058950 converged Fitting Repeat 1 # weights: 305 initial value 98.617636 iter 10 value 94.489550 iter 20 value 94.423571 iter 30 value 93.554904 iter 40 value 92.212741 iter 50 value 90.465572 iter 60 value 87.940036 final value 87.938788 converged Fitting Repeat 2 # weights: 305 initial value 96.056271 iter 10 value 93.642983 iter 20 value 93.634644 final value 93.633383 converged Fitting Repeat 3 # weights: 305 initial value 103.560858 iter 10 value 94.489154 iter 20 value 94.443988 iter 30 value 91.047018 iter 40 value 90.813819 iter 50 value 88.464733 iter 60 value 87.676136 iter 70 value 87.664473 iter 80 value 87.654422 iter 90 value 87.644076 iter 100 value 87.524121 final value 87.524121 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.278929 iter 10 value 94.031425 iter 20 value 94.024713 iter 30 value 93.988170 iter 40 value 93.617749 iter 50 value 93.614866 final value 93.614851 converged Fitting Repeat 5 # weights: 305 initial value 97.976049 iter 10 value 88.141933 iter 20 value 87.742346 iter 30 value 87.733008 iter 40 value 87.731432 iter 50 value 86.363073 iter 60 value 86.289638 iter 70 value 85.962707 iter 80 value 85.955665 iter 90 value 84.688910 iter 100 value 84.594860 final value 84.594860 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.809829 iter 10 value 94.492098 iter 20 value 94.472765 iter 30 value 87.374718 iter 40 value 85.846480 iter 50 value 85.764394 iter 60 value 84.863937 iter 70 value 84.614927 iter 80 value 84.571538 iter 90 value 82.758969 iter 100 value 82.707136 final value 82.707136 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.492834 iter 10 value 94.034707 iter 20 value 92.255602 iter 30 value 87.556934 iter 40 value 87.355222 final value 87.355190 converged Fitting Repeat 3 # weights: 507 initial value 120.154028 iter 10 value 94.490876 iter 20 value 94.054302 iter 30 value 87.255804 iter 40 value 86.250700 iter 50 value 85.659340 iter 60 value 84.701585 iter 70 value 83.023300 iter 80 value 80.629864 iter 90 value 79.778107 iter 100 value 79.741780 final value 79.741780 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.232800 iter 10 value 93.892937 iter 20 value 93.888589 iter 30 value 93.884101 iter 30 value 93.884101 final value 93.884084 converged Fitting Repeat 5 # weights: 507 initial value 100.187996 iter 10 value 94.491650 iter 20 value 94.484314 iter 30 value 92.756908 iter 40 value 84.465587 iter 50 value 83.394996 iter 60 value 82.830355 iter 70 value 82.619110 iter 80 value 82.616406 iter 90 value 82.609829 iter 100 value 82.609089 final value 82.609089 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 124.416055 iter 10 value 117.895085 iter 20 value 113.041912 final value 110.229649 converged Fitting Repeat 2 # weights: 305 initial value 121.784401 iter 10 value 110.880406 iter 20 value 110.844680 iter 30 value 108.467926 iter 40 value 108.398406 final value 108.397662 converged Fitting Repeat 3 # weights: 305 initial value 119.525087 iter 10 value 117.893745 iter 20 value 117.890349 final value 117.890340 converged Fitting Repeat 4 # weights: 305 initial value 129.847355 iter 10 value 116.813749 iter 20 value 116.404353 iter 30 value 110.001549 iter 40 value 108.913805 iter 50 value 104.285407 final value 104.284283 converged Fitting Repeat 5 # weights: 305 initial value 120.879280 iter 10 value 117.763963 iter 20 value 117.762445 iter 30 value 117.753178 iter 40 value 114.268788 iter 50 value 111.064900 iter 60 value 111.040322 iter 70 value 111.010863 iter 80 value 108.563154 iter 90 value 108.545780 iter 100 value 108.515463 final value 108.515463 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Jul 16 00:57:54 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 45.57 6.03 56.34
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.83 | 1.59 | 33.95 | |
FreqInteractors | 0.19 | 0.04 | 0.21 | |
calculateAAC | 0.05 | 0.00 | 0.05 | |
calculateAutocor | 0.33 | 0.06 | 0.39 | |
calculateCTDC | 0.06 | 0.01 | 0.08 | |
calculateCTDD | 0.47 | 0.03 | 0.50 | |
calculateCTDT | 0.19 | 0.02 | 0.20 | |
calculateCTriad | 0.26 | 0.02 | 0.28 | |
calculateDC | 0.08 | 0.00 | 0.08 | |
calculateF | 0.25 | 0.03 | 0.28 | |
calculateKSAAP | 0.1 | 0.0 | 0.1 | |
calculateQD_Sm | 1.32 | 0.33 | 1.65 | |
calculateTC | 1.36 | 0.18 | 1.55 | |
calculateTC_Sm | 0.25 | 0.00 | 0.25 | |
corr_plot | 34.41 | 1.88 | 33.15 | |
enrichfindP | 2.19 | 0.12 | 18.00 | |
enrichfind_hp | 0.08 | 0.02 | 1.52 | |
enrichplot | 0.28 | 0.03 | 0.31 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.03 | 0.03 | 2.90 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.06 | 0.00 | 0.07 | |
pred_ensembel | 18.63 | 1.99 | 16.79 | |
var_imp | 35.76 | 1.29 | 37.24 | |