Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-09 21:31 -0500 (Sat, 09 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4505 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4506 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4538 |
kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4486 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-09 04:39:18 -0500 (Sat, 09 Nov 2024) |
EndedAt: 2024-11-09 04:48:49 -0500 (Sat, 09 Nov 2024) |
EllapsedTime: 571.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.6.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 15.541 0.391 15.934 var_imp 15.414 0.452 15.865 corr_plot 15.106 0.393 15.508 enrichfindP 0.128 0.022 10.686 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.549834 final value 94.477594 converged Fitting Repeat 2 # weights: 103 initial value 101.698007 final value 94.026542 converged Fitting Repeat 3 # weights: 103 initial value 105.864213 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.771719 iter 10 value 94.480785 final value 94.477626 converged Fitting Repeat 5 # weights: 103 initial value 104.360039 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.082743 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 102.148729 final value 94.428839 converged Fitting Repeat 3 # weights: 305 initial value 109.762878 iter 10 value 93.792175 iter 20 value 93.788088 final value 93.788077 converged Fitting Repeat 4 # weights: 305 initial value 95.885912 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 114.218863 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.080935 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 112.824974 iter 10 value 94.428839 iter 10 value 94.428839 iter 10 value 94.428839 final value 94.428839 converged Fitting Repeat 3 # weights: 507 initial value 99.850654 iter 10 value 92.007986 iter 20 value 91.603929 final value 91.603811 converged Fitting Repeat 4 # weights: 507 initial value 104.301683 iter 10 value 93.668813 final value 93.668704 converged Fitting Repeat 5 # weights: 507 initial value 106.024790 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.839443 iter 10 value 93.961816 iter 20 value 84.666325 iter 30 value 84.027912 iter 40 value 83.896913 iter 50 value 81.139888 iter 60 value 80.023094 iter 70 value 79.766798 iter 80 value 79.756198 iter 90 value 79.386948 iter 100 value 79.303014 final value 79.303014 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.503375 iter 10 value 87.024007 iter 20 value 86.075383 iter 30 value 84.800531 iter 40 value 84.094198 iter 50 value 84.005075 iter 60 value 83.442116 iter 70 value 83.040078 iter 80 value 83.008085 final value 83.008032 converged Fitting Repeat 3 # weights: 103 initial value 98.950812 iter 10 value 94.129625 iter 20 value 88.885640 iter 30 value 83.709661 iter 40 value 83.196587 iter 50 value 82.301830 iter 60 value 80.364864 iter 70 value 79.413998 iter 80 value 79.349137 iter 90 value 79.308752 iter 100 value 79.299647 final value 79.299647 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.017215 iter 10 value 94.472926 iter 20 value 88.222466 iter 30 value 87.302250 iter 40 value 86.974660 iter 50 value 86.256075 iter 60 value 86.054366 iter 60 value 86.054366 final value 86.054366 converged Fitting Repeat 5 # weights: 103 initial value 101.001363 iter 10 value 94.501758 iter 20 value 84.620922 iter 30 value 82.816734 iter 40 value 82.031081 iter 50 value 81.855768 iter 60 value 80.461958 iter 70 value 79.365102 iter 80 value 79.306152 iter 90 value 79.289222 final value 79.289219 converged Fitting Repeat 1 # weights: 305 initial value 108.380961 iter 10 value 94.074638 iter 20 value 88.888619 iter 30 value 84.194045 iter 40 value 83.255441 iter 50 value 82.271413 iter 60 value 80.748019 iter 70 value 79.509302 iter 80 value 78.668325 iter 90 value 78.434228 iter 100 value 78.350328 final value 78.350328 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.550448 iter 10 value 95.135423 iter 20 value 83.510300 iter 30 value 82.271688 iter 40 value 81.648527 iter 50 value 80.105762 iter 60 value 79.581493 iter 70 value 79.401516 iter 80 value 79.148381 iter 90 value 79.089417 iter 100 value 79.070950 final value 79.070950 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.292998 iter 10 value 94.023409 iter 20 value 89.794775 iter 30 value 85.820953 iter 40 value 81.195214 iter 50 value 79.830467 iter 60 value 79.733151 iter 70 value 78.628742 iter 80 value 78.276313 iter 90 value 78.053406 iter 100 value 77.826091 final value 77.826091 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.885065 iter 10 value 88.135110 iter 20 value 83.534195 iter 30 value 83.110102 iter 40 value 82.992207 iter 50 value 82.612372 iter 60 value 80.751907 iter 70 value 79.354412 iter 80 value 79.077957 iter 90 value 78.959400 iter 100 value 78.878794 final value 78.878794 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.975434 iter 10 value 94.532011 iter 20 value 94.162176 iter 30 value 93.901298 iter 40 value 91.554448 iter 50 value 86.583169 iter 60 value 85.323301 iter 70 value 84.371611 iter 80 value 83.872479 iter 90 value 83.331549 iter 100 value 82.972384 final value 82.972384 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.733612 iter 10 value 93.663570 iter 20 value 92.456746 iter 30 value 89.698938 iter 40 value 85.513055 iter 50 value 83.392563 iter 60 value 80.301986 iter 70 value 79.724480 iter 80 value 79.675780 iter 90 value 79.498297 iter 100 value 79.066711 final value 79.066711 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.215507 iter 10 value 95.844079 iter 20 value 94.210679 iter 30 value 92.172856 iter 40 value 90.981781 iter 50 value 87.080337 iter 60 value 83.934985 iter 70 value 81.011723 iter 80 value 78.734485 iter 90 value 78.065771 iter 100 value 77.952238 final value 77.952238 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.708773 iter 10 value 94.582035 iter 20 value 93.402995 iter 30 value 87.214123 iter 40 value 82.654380 iter 50 value 80.063904 iter 60 value 79.376805 iter 70 value 78.810290 iter 80 value 78.377971 iter 90 value 78.331301 iter 100 value 78.196858 final value 78.196858 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.147674 iter 10 value 94.370065 iter 20 value 86.831347 iter 30 value 85.697116 iter 40 value 84.379096 iter 50 value 83.650559 iter 60 value 83.215226 iter 70 value 82.855272 iter 80 value 81.224752 iter 90 value 80.757143 iter 100 value 80.011363 final value 80.011363 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.789038 iter 10 value 94.958131 iter 20 value 89.954079 iter 30 value 84.593013 iter 40 value 83.457794 iter 50 value 81.943293 iter 60 value 79.172655 iter 70 value 78.514543 iter 80 value 78.310587 iter 90 value 77.815454 iter 100 value 77.718266 final value 77.718266 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.630045 final value 94.485677 converged Fitting Repeat 2 # weights: 103 initial value 96.774871 final value 94.470631 converged Fitting Repeat 3 # weights: 103 initial value 97.329501 final value 94.486174 converged Fitting Repeat 4 # weights: 103 initial value 101.353018 iter 10 value 94.028359 iter 20 value 94.026957 final value 94.026704 converged Fitting Repeat 5 # weights: 103 initial value 112.156003 final value 94.485977 converged Fitting Repeat 1 # weights: 305 initial value 121.315279 iter 10 value 94.485948 iter 20 value 82.830481 iter 30 value 79.266560 iter 40 value 77.010851 iter 50 value 76.671937 iter 60 value 76.453382 iter 70 value 76.421384 iter 80 value 76.419470 iter 90 value 76.413488 iter 100 value 76.411420 final value 76.411420 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.039013 iter 10 value 94.093790 iter 20 value 91.783634 iter 30 value 83.833398 iter 40 value 83.646979 iter 50 value 83.628796 final value 83.628629 converged Fitting Repeat 3 # weights: 305 initial value 100.591979 iter 10 value 93.981956 iter 20 value 93.620741 iter 30 value 87.067709 iter 40 value 86.130584 iter 50 value 86.120966 iter 60 value 85.493435 iter 70 value 85.353191 iter 80 value 85.349515 iter 90 value 85.347055 iter 100 value 85.345785 final value 85.345785 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.801275 iter 10 value 91.988355 iter 20 value 84.980536 iter 30 value 83.667863 iter 40 value 83.484609 iter 50 value 82.343797 iter 60 value 80.289861 iter 70 value 79.690025 iter 80 value 79.689508 iter 90 value 79.451320 final value 79.450188 converged Fitting Repeat 5 # weights: 305 initial value 94.981392 iter 10 value 94.488812 iter 20 value 94.482921 iter 30 value 94.027647 iter 40 value 94.026958 iter 50 value 92.726128 iter 60 value 84.283063 iter 70 value 84.154541 iter 80 value 84.023464 iter 90 value 83.806626 iter 100 value 83.806104 final value 83.806104 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 94.632182 iter 10 value 93.629072 iter 20 value 93.558071 iter 30 value 93.553003 iter 40 value 93.262311 iter 50 value 90.116710 iter 60 value 84.015142 iter 70 value 78.625951 iter 80 value 78.044138 iter 90 value 78.014811 iter 100 value 77.969586 final value 77.969586 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.046295 iter 10 value 94.037436 iter 20 value 94.031987 iter 30 value 93.957612 iter 40 value 93.942569 iter 50 value 93.940970 final value 93.939444 converged Fitting Repeat 3 # weights: 507 initial value 106.252733 iter 10 value 94.035154 iter 20 value 93.744399 iter 30 value 90.663930 iter 40 value 90.337966 iter 50 value 90.336884 iter 60 value 87.305123 iter 70 value 87.256988 iter 80 value 87.255743 iter 90 value 87.138505 iter 100 value 87.133628 final value 87.133628 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.020434 iter 10 value 94.035112 iter 20 value 93.253779 iter 30 value 85.105724 iter 40 value 79.586560 iter 50 value 79.379804 iter 60 value 79.139333 iter 70 value 79.128457 iter 80 value 79.108281 final value 79.108238 converged Fitting Repeat 5 # weights: 507 initial value 95.493408 iter 10 value 94.491298 iter 20 value 94.313310 iter 30 value 85.279744 iter 40 value 85.211421 iter 50 value 84.871270 iter 60 value 84.669691 iter 70 value 84.668477 iter 80 value 84.665094 iter 90 value 83.604995 iter 100 value 81.491258 final value 81.491258 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.763501 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 106.764704 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 109.185422 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.344867 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 107.318537 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.738700 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 110.197831 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 96.205082 iter 10 value 94.322897 iter 10 value 94.322897 iter 10 value 94.322897 final value 94.322897 converged Fitting Repeat 4 # weights: 305 initial value 96.324800 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.465502 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 104.582521 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 108.606436 iter 10 value 93.159468 iter 20 value 87.082990 iter 30 value 86.451452 iter 40 value 85.752648 iter 50 value 85.524228 final value 85.523080 converged Fitting Repeat 3 # weights: 507 initial value 96.110496 iter 10 value 86.582496 iter 20 value 84.438048 iter 30 value 84.437367 iter 40 value 84.431557 iter 50 value 84.407264 final value 84.407143 converged Fitting Repeat 4 # weights: 507 initial value 99.627779 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 120.553417 iter 10 value 92.519179 iter 20 value 84.155620 iter 30 value 83.829712 iter 40 value 83.829353 iter 50 value 83.732876 final value 83.674441 converged Fitting Repeat 1 # weights: 103 initial value 101.523968 iter 10 value 94.487297 iter 20 value 94.486662 iter 30 value 92.803527 iter 40 value 87.007663 iter 50 value 85.597591 iter 60 value 85.343124 iter 70 value 84.917389 iter 80 value 84.706998 iter 90 value 84.684198 final value 84.680077 converged Fitting Repeat 2 # weights: 103 initial value 108.628899 iter 10 value 94.465163 iter 20 value 92.341870 iter 30 value 90.891264 iter 40 value 88.279255 iter 50 value 84.719000 iter 60 value 82.901026 iter 70 value 82.248285 iter 80 value 82.145921 iter 90 value 82.009405 final value 82.008704 converged Fitting Repeat 3 # weights: 103 initial value 96.726389 iter 10 value 94.488676 iter 20 value 92.007730 iter 30 value 89.971137 iter 40 value 87.343346 iter 50 value 83.838104 iter 60 value 82.569353 iter 70 value 82.168217 iter 80 value 82.105955 iter 90 value 81.937920 iter 100 value 81.904607 final value 81.904607 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.753474 iter 10 value 94.494658 iter 20 value 94.410003 iter 30 value 90.757683 iter 40 value 89.302181 iter 50 value 87.512777 iter 60 value 85.864417 iter 70 value 84.442940 iter 80 value 84.373542 iter 90 value 84.324885 iter 100 value 84.318032 final value 84.318032 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.680604 iter 10 value 94.486695 iter 10 value 94.486694 iter 20 value 94.377485 iter 30 value 91.782088 iter 40 value 88.853140 iter 50 value 86.396895 iter 60 value 83.575808 iter 70 value 82.939572 iter 80 value 82.580026 iter 90 value 82.318380 iter 100 value 82.021093 final value 82.021093 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.717881 iter 10 value 94.464129 iter 20 value 88.953435 iter 30 value 85.166022 iter 40 value 84.194239 iter 50 value 83.391135 iter 60 value 82.675197 iter 70 value 82.564300 iter 80 value 81.403743 iter 90 value 81.212461 iter 100 value 80.985747 final value 80.985747 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.921605 iter 10 value 94.471090 iter 20 value 94.328308 iter 30 value 94.306877 iter 40 value 86.894593 iter 50 value 85.254077 iter 60 value 83.996555 iter 70 value 83.083615 iter 80 value 82.812308 iter 90 value 82.251299 iter 100 value 81.276907 final value 81.276907 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.175804 iter 10 value 94.139607 iter 20 value 86.391908 iter 30 value 85.591497 iter 40 value 85.071215 iter 50 value 82.366858 iter 60 value 81.430945 iter 70 value 81.203983 iter 80 value 80.774899 iter 90 value 80.618579 iter 100 value 80.500720 final value 80.500720 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.228980 iter 10 value 94.443348 iter 20 value 93.679118 iter 30 value 91.671379 iter 40 value 90.897971 iter 50 value 90.616773 iter 60 value 83.781470 iter 70 value 82.432963 iter 80 value 82.217279 iter 90 value 82.060992 iter 100 value 81.443710 final value 81.443710 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.715786 iter 10 value 91.694859 iter 20 value 89.281456 iter 30 value 87.157151 iter 40 value 85.408539 iter 50 value 84.804200 iter 60 value 83.372838 iter 70 value 82.729091 iter 80 value 82.514915 iter 90 value 82.056511 iter 100 value 81.550601 final value 81.550601 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.734742 iter 10 value 94.534632 iter 20 value 92.286795 iter 30 value 91.628157 iter 40 value 91.240826 iter 50 value 90.796754 iter 60 value 90.616894 iter 70 value 90.463677 iter 80 value 89.913159 iter 90 value 85.543399 iter 100 value 84.362472 final value 84.362472 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 136.073525 iter 10 value 94.510468 iter 20 value 94.318741 iter 30 value 93.319751 iter 40 value 88.527029 iter 50 value 85.956425 iter 60 value 82.285874 iter 70 value 81.717570 iter 80 value 81.339116 iter 90 value 80.921013 iter 100 value 80.685403 final value 80.685403 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.763316 iter 10 value 96.636560 iter 20 value 92.058670 iter 30 value 90.068113 iter 40 value 83.819520 iter 50 value 81.510350 iter 60 value 81.264594 iter 70 value 81.095357 iter 80 value 80.852495 iter 90 value 80.709637 iter 100 value 80.662111 final value 80.662111 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.391901 iter 10 value 92.764927 iter 20 value 85.550436 iter 30 value 85.153261 iter 40 value 84.487259 iter 50 value 82.948005 iter 60 value 81.870042 iter 70 value 81.156532 iter 80 value 80.935803 iter 90 value 80.777838 iter 100 value 80.651191 final value 80.651191 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.796744 iter 10 value 93.507805 iter 20 value 85.831743 iter 30 value 85.464038 iter 40 value 84.495118 iter 50 value 84.023229 iter 60 value 83.902544 iter 70 value 83.385730 iter 80 value 82.633656 iter 90 value 81.671891 iter 100 value 80.697710 final value 80.697710 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.097254 final value 94.485738 converged Fitting Repeat 2 # weights: 103 initial value 98.786747 final value 94.485731 converged Fitting Repeat 3 # weights: 103 initial value 99.404005 final value 94.485858 converged Fitting Repeat 4 # weights: 103 initial value 99.546495 final value 94.485761 converged Fitting Repeat 5 # weights: 103 initial value 103.970011 final value 94.485892 converged Fitting Repeat 1 # weights: 305 initial value 101.994813 iter 10 value 94.489221 iter 20 value 94.444504 iter 30 value 92.168210 iter 40 value 90.673004 iter 50 value 90.400567 iter 60 value 90.395924 iter 70 value 90.395794 final value 90.395177 converged Fitting Repeat 2 # weights: 305 initial value 95.763365 iter 10 value 94.488682 iter 20 value 94.414899 final value 94.275469 converged Fitting Repeat 3 # weights: 305 initial value 101.050612 iter 10 value 94.489044 iter 20 value 93.018794 iter 30 value 90.177508 iter 40 value 89.712712 iter 50 value 89.591195 iter 60 value 89.591054 iter 60 value 89.591054 iter 60 value 89.591054 final value 89.591054 converged Fitting Repeat 4 # weights: 305 initial value 94.765622 iter 10 value 94.487394 iter 20 value 92.888654 iter 30 value 92.503002 iter 40 value 91.668734 iter 50 value 91.640353 final value 91.640293 converged Fitting Repeat 5 # weights: 305 initial value 97.756044 iter 10 value 94.488056 iter 20 value 94.420070 iter 30 value 91.515050 iter 40 value 91.381679 iter 50 value 91.381335 iter 60 value 91.380564 iter 70 value 91.380379 iter 80 value 91.374840 iter 90 value 90.218535 iter 100 value 89.994078 final value 89.994078 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.984816 iter 10 value 94.283734 iter 20 value 94.281493 iter 30 value 94.279837 iter 40 value 94.002175 iter 50 value 88.112512 iter 60 value 87.291965 iter 70 value 87.224780 iter 80 value 84.018342 iter 90 value 81.460536 iter 100 value 79.703042 final value 79.703042 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.016033 iter 10 value 94.492070 iter 20 value 94.484356 iter 30 value 92.127272 iter 40 value 85.101821 iter 50 value 85.039765 iter 60 value 82.439937 iter 70 value 80.974294 iter 80 value 80.867133 iter 90 value 80.850870 final value 80.850118 converged Fitting Repeat 3 # weights: 507 initial value 97.202438 iter 10 value 94.451060 iter 20 value 93.769358 iter 30 value 90.761675 iter 40 value 89.055303 iter 50 value 89.054579 iter 60 value 88.864324 iter 70 value 88.714483 final value 88.714475 converged Fitting Repeat 4 # weights: 507 initial value 101.107129 iter 10 value 94.194871 iter 20 value 94.088012 iter 30 value 94.081250 iter 40 value 94.080546 iter 50 value 94.077389 iter 60 value 94.077074 iter 70 value 94.057321 iter 80 value 90.468234 iter 90 value 87.568706 iter 100 value 83.473187 final value 83.473187 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.116057 iter 10 value 94.493094 iter 20 value 94.475783 iter 30 value 93.886097 iter 40 value 90.167492 iter 50 value 89.991917 iter 60 value 89.988998 iter 70 value 86.186569 iter 80 value 83.341458 iter 90 value 82.773371 iter 100 value 82.468333 final value 82.468333 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.512643 final value 93.943841 converged Fitting Repeat 2 # weights: 103 initial value 94.700284 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.563032 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.262641 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.382067 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 104.256778 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 107.697475 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 106.542716 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.942273 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.745072 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 97.551712 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 107.276650 final value 94.032967 converged Fitting Repeat 3 # weights: 507 initial value 101.754983 iter 10 value 93.808316 final value 93.808310 converged Fitting Repeat 4 # weights: 507 initial value 109.120980 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 100.413848 iter 10 value 92.909260 iter 20 value 92.274256 final value 92.274075 converged Fitting Repeat 1 # weights: 103 initial value 103.177091 iter 10 value 94.258936 iter 20 value 94.038842 iter 30 value 93.460491 iter 40 value 93.151781 iter 50 value 90.534067 iter 60 value 88.804750 iter 70 value 86.320779 iter 80 value 86.021506 iter 90 value 85.618774 iter 100 value 85.588015 final value 85.588015 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.158587 iter 10 value 93.891385 iter 20 value 91.839983 iter 30 value 86.400555 iter 40 value 85.811537 iter 50 value 85.682686 iter 60 value 85.633731 iter 70 value 85.589808 final value 85.588011 converged Fitting Repeat 3 # weights: 103 initial value 107.725756 iter 10 value 94.054849 iter 20 value 90.987855 iter 30 value 88.246389 iter 40 value 88.172580 iter 50 value 86.304602 iter 60 value 85.851861 iter 70 value 85.779896 iter 80 value 85.683710 iter 90 value 85.633112 iter 100 value 85.588016 final value 85.588016 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.420920 iter 10 value 94.371676 iter 20 value 94.042955 iter 30 value 93.866352 iter 40 value 92.242407 iter 50 value 91.143862 iter 60 value 87.185142 iter 70 value 86.137049 iter 80 value 85.728288 iter 90 value 85.569209 iter 100 value 85.522540 final value 85.522540 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.500999 iter 10 value 94.028247 iter 20 value 90.302833 iter 30 value 89.702022 iter 40 value 89.425678 iter 50 value 89.396407 iter 60 value 87.181604 iter 70 value 85.510600 iter 80 value 85.262035 iter 90 value 85.237733 final value 85.237717 converged Fitting Repeat 1 # weights: 305 initial value 102.860198 iter 10 value 94.062188 iter 20 value 93.274935 iter 30 value 87.299230 iter 40 value 86.291273 iter 50 value 86.162918 iter 60 value 84.970012 iter 70 value 82.388617 iter 80 value 81.795224 iter 90 value 81.695429 iter 100 value 81.674622 final value 81.674622 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 119.128451 iter 10 value 94.049029 iter 20 value 90.222366 iter 30 value 87.879947 iter 40 value 86.984536 iter 50 value 86.017870 iter 60 value 84.094120 iter 70 value 82.622397 iter 80 value 82.427698 iter 90 value 82.058113 iter 100 value 81.869113 final value 81.869113 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.321940 iter 10 value 93.849003 iter 20 value 89.203389 iter 30 value 87.445292 iter 40 value 86.310120 iter 50 value 83.969876 iter 60 value 82.973927 iter 70 value 82.631709 iter 80 value 82.548950 iter 90 value 82.219904 iter 100 value 81.974415 final value 81.974415 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.081819 iter 10 value 94.129453 iter 20 value 93.859950 iter 30 value 89.572124 iter 40 value 88.678957 iter 50 value 86.207598 iter 60 value 85.638399 iter 70 value 85.476116 iter 80 value 85.333806 iter 90 value 85.171979 iter 100 value 84.480683 final value 84.480683 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.660983 iter 10 value 94.133577 iter 20 value 92.604002 iter 30 value 91.707512 iter 40 value 88.418261 iter 50 value 87.916499 iter 60 value 86.789932 iter 70 value 84.104178 iter 80 value 83.656861 iter 90 value 83.536733 iter 100 value 83.156420 final value 83.156420 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.324007 iter 10 value 94.019256 iter 20 value 91.108277 iter 30 value 86.259793 iter 40 value 84.980735 iter 50 value 83.604851 iter 60 value 82.303841 iter 70 value 81.889982 iter 80 value 81.680021 iter 90 value 81.636417 iter 100 value 81.518433 final value 81.518433 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.656479 iter 10 value 94.434549 iter 20 value 90.534188 iter 30 value 86.777796 iter 40 value 86.532769 iter 50 value 86.016986 iter 60 value 85.140912 iter 70 value 84.664802 iter 80 value 84.361283 iter 90 value 83.607643 iter 100 value 82.985366 final value 82.985366 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.577863 iter 10 value 89.552477 iter 20 value 86.536852 iter 30 value 86.303839 iter 40 value 85.395993 iter 50 value 85.057951 iter 60 value 84.871957 iter 70 value 84.477588 iter 80 value 83.794786 iter 90 value 83.710194 iter 100 value 83.457542 final value 83.457542 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.598502 iter 10 value 97.604287 iter 20 value 89.835002 iter 30 value 89.091279 iter 40 value 88.065315 iter 50 value 85.231864 iter 60 value 84.613893 iter 70 value 83.594495 iter 80 value 83.196935 iter 90 value 83.007265 iter 100 value 82.388417 final value 82.388417 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.097246 iter 10 value 94.514748 iter 20 value 92.576539 iter 30 value 88.026420 iter 40 value 86.459068 iter 50 value 85.523061 iter 60 value 85.167551 iter 70 value 84.026602 iter 80 value 84.001867 iter 90 value 83.918309 iter 100 value 83.517365 final value 83.517365 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.187543 final value 94.054600 converged Fitting Repeat 2 # weights: 103 initial value 106.823222 iter 10 value 93.418650 iter 20 value 93.323474 iter 30 value 93.323307 iter 40 value 93.084096 iter 40 value 93.084095 iter 40 value 93.084095 final value 93.084095 converged Fitting Repeat 3 # weights: 103 initial value 98.137247 final value 94.054622 converged Fitting Repeat 4 # weights: 103 initial value 106.829951 final value 94.043575 converged Fitting Repeat 5 # weights: 103 initial value 97.178084 iter 10 value 94.054396 iter 20 value 94.049860 iter 30 value 87.440847 iter 40 value 86.331992 final value 86.331822 converged Fitting Repeat 1 # weights: 305 initial value 101.128233 iter 10 value 93.071305 iter 20 value 89.981580 iter 30 value 85.600799 iter 40 value 85.445630 iter 50 value 84.763188 iter 60 value 84.557392 iter 70 value 84.411629 iter 80 value 84.365865 iter 90 value 84.364659 iter 100 value 84.194846 final value 84.194846 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.027617 iter 10 value 94.057798 iter 20 value 92.586137 iter 30 value 86.735237 iter 40 value 86.009487 iter 50 value 85.480984 iter 60 value 83.397288 iter 70 value 82.019864 iter 80 value 81.888640 iter 90 value 81.787343 iter 100 value 81.735682 final value 81.735682 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.421241 iter 10 value 94.055598 iter 20 value 91.993899 iter 30 value 85.854883 iter 40 value 85.194988 iter 50 value 85.184156 final value 85.184111 converged Fitting Repeat 4 # weights: 305 initial value 110.854583 iter 10 value 92.707016 iter 20 value 92.705272 iter 30 value 92.702125 final value 92.701977 converged Fitting Repeat 5 # weights: 305 initial value 117.307190 iter 10 value 94.058471 iter 20 value 91.538110 iter 30 value 85.738215 iter 40 value 85.540756 final value 85.536763 converged Fitting Repeat 1 # weights: 507 initial value 96.277491 iter 10 value 88.215366 iter 20 value 85.161278 iter 30 value 85.153038 iter 40 value 85.142338 iter 50 value 85.095678 iter 60 value 84.709747 iter 70 value 84.661258 iter 80 value 84.590000 iter 90 value 84.132394 iter 100 value 84.048469 final value 84.048469 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.265244 iter 10 value 93.573434 iter 20 value 93.540564 iter 30 value 92.925141 iter 40 value 92.896030 iter 50 value 92.892929 iter 60 value 88.345459 iter 70 value 85.247144 iter 80 value 85.170359 iter 90 value 85.168367 final value 85.168202 converged Fitting Repeat 3 # weights: 507 initial value 100.518658 iter 10 value 94.040543 iter 20 value 94.039363 iter 30 value 94.038360 iter 40 value 93.893354 iter 50 value 91.415847 iter 60 value 89.431646 iter 70 value 87.220825 iter 80 value 84.357453 iter 90 value 83.836795 iter 100 value 83.833882 final value 83.833882 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.637298 iter 10 value 94.052889 iter 20 value 94.044546 iter 30 value 91.433528 iter 40 value 85.271149 iter 50 value 83.835665 iter 60 value 83.492009 iter 70 value 82.750481 iter 80 value 82.249455 iter 90 value 82.243890 iter 100 value 82.242675 final value 82.242675 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.159417 iter 10 value 94.060723 iter 20 value 93.972088 iter 30 value 87.601864 iter 40 value 84.974299 iter 50 value 84.886546 iter 60 value 84.494957 iter 70 value 83.203304 iter 80 value 83.042930 iter 90 value 81.343101 iter 100 value 80.409503 final value 80.409503 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.947943 final value 94.354396 converged Fitting Repeat 2 # weights: 103 initial value 95.109669 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.874195 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 113.611034 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.795590 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.978498 iter 10 value 93.645257 final value 93.643491 converged Fitting Repeat 2 # weights: 305 initial value 96.306893 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 110.058756 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 108.110972 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 106.529871 iter 10 value 92.776778 iter 20 value 86.029012 iter 30 value 82.798580 iter 40 value 82.789208 iter 50 value 82.788232 iter 60 value 82.787994 iter 70 value 82.769898 iter 80 value 82.663410 final value 82.663181 converged Fitting Repeat 1 # weights: 507 initial value 110.152037 iter 10 value 90.513790 iter 20 value 86.106880 iter 30 value 85.647642 iter 40 value 85.633713 iter 50 value 85.442400 iter 60 value 85.304768 iter 70 value 85.296457 iter 80 value 85.293677 final value 85.291026 converged Fitting Repeat 2 # weights: 507 initial value 100.238772 iter 10 value 93.665025 final value 93.623583 converged Fitting Repeat 3 # weights: 507 initial value 97.585687 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.459140 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 96.636414 iter 10 value 94.359148 iter 20 value 94.354397 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 99.603103 iter 10 value 94.424091 iter 20 value 86.441476 iter 30 value 83.845438 iter 40 value 83.510255 iter 50 value 83.344648 iter 60 value 83.303630 iter 70 value 83.302743 final value 83.302686 converged Fitting Repeat 2 # weights: 103 initial value 97.899719 iter 10 value 94.526808 iter 20 value 94.488214 iter 30 value 93.767682 iter 40 value 93.742983 iter 50 value 93.675945 iter 60 value 91.196215 iter 70 value 84.473778 iter 80 value 84.299262 iter 90 value 84.059695 iter 100 value 83.987604 final value 83.987604 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.399122 iter 10 value 94.488825 iter 20 value 94.155975 iter 30 value 91.880979 iter 40 value 91.527889 iter 50 value 86.587726 iter 60 value 83.851939 iter 70 value 83.834209 iter 80 value 83.778286 iter 90 value 83.749240 iter 100 value 83.721907 final value 83.721907 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.654823 iter 10 value 94.242481 iter 20 value 93.743073 iter 30 value 93.672656 iter 40 value 92.100568 iter 50 value 91.091184 iter 60 value 88.517976 iter 70 value 86.613950 iter 80 value 82.781486 iter 90 value 82.045294 iter 100 value 81.916132 final value 81.916132 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.279500 iter 10 value 90.642562 iter 20 value 86.396781 iter 30 value 84.257498 iter 40 value 83.403893 iter 50 value 83.368615 iter 60 value 83.365585 iter 70 value 83.362344 iter 80 value 83.310872 final value 83.302572 converged Fitting Repeat 1 # weights: 305 initial value 103.581838 iter 10 value 94.531324 iter 20 value 94.344909 iter 30 value 86.643853 iter 40 value 85.911402 iter 50 value 84.152060 iter 60 value 83.346170 iter 70 value 81.809796 iter 80 value 81.235799 iter 90 value 81.003296 iter 100 value 80.988563 final value 80.988563 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.323791 iter 10 value 95.387866 iter 20 value 93.731212 iter 30 value 91.573343 iter 40 value 86.263370 iter 50 value 85.418836 iter 60 value 83.783727 iter 70 value 82.104471 iter 80 value 81.504364 iter 90 value 81.439685 iter 100 value 81.373696 final value 81.373696 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.011772 iter 10 value 94.529217 iter 20 value 84.689016 iter 30 value 84.062774 iter 40 value 83.629110 iter 50 value 81.555659 iter 60 value 80.500612 iter 70 value 80.342993 iter 80 value 80.113511 iter 90 value 79.938401 iter 100 value 79.759668 final value 79.759668 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.059653 iter 10 value 94.538781 iter 20 value 87.524585 iter 30 value 86.779088 iter 40 value 86.198730 iter 50 value 86.007050 iter 60 value 84.796566 iter 70 value 82.615559 iter 80 value 82.157129 iter 90 value 81.955859 iter 100 value 81.846636 final value 81.846636 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.805167 iter 10 value 94.513552 iter 20 value 93.454988 iter 30 value 86.963729 iter 40 value 83.268246 iter 50 value 83.074994 iter 60 value 82.778888 iter 70 value 82.289515 iter 80 value 82.092942 iter 90 value 81.425742 iter 100 value 80.976061 final value 80.976061 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.319201 iter 10 value 94.304214 iter 20 value 85.864107 iter 30 value 82.545359 iter 40 value 82.046850 iter 50 value 81.530321 iter 60 value 80.844185 iter 70 value 80.553170 iter 80 value 80.441614 iter 90 value 80.418795 iter 100 value 80.366445 final value 80.366445 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.052641 iter 10 value 93.920158 iter 20 value 85.888962 iter 30 value 84.334673 iter 40 value 83.589786 iter 50 value 83.386354 iter 60 value 82.458102 iter 70 value 81.849173 iter 80 value 81.015484 iter 90 value 80.259431 iter 100 value 79.839026 final value 79.839026 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.764021 iter 10 value 94.508759 iter 20 value 93.626214 iter 30 value 92.533675 iter 40 value 83.902764 iter 50 value 82.325868 iter 60 value 80.880081 iter 70 value 80.070905 iter 80 value 79.916726 iter 90 value 79.777706 iter 100 value 79.635937 final value 79.635937 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.576930 iter 10 value 94.847375 iter 20 value 87.947842 iter 30 value 84.675402 iter 40 value 83.554948 iter 50 value 83.294673 iter 60 value 82.854305 iter 70 value 81.723544 iter 80 value 81.243102 iter 90 value 81.057107 iter 100 value 80.811319 final value 80.811319 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.406360 iter 10 value 94.439795 iter 20 value 89.033180 iter 30 value 86.816805 iter 40 value 86.187398 iter 50 value 85.334435 iter 60 value 83.008227 iter 70 value 81.364750 iter 80 value 81.079875 iter 90 value 80.673763 iter 100 value 80.186243 final value 80.186243 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.302844 final value 94.485836 converged Fitting Repeat 2 # weights: 103 initial value 102.982252 final value 94.485911 converged Fitting Repeat 3 # weights: 103 initial value 101.239953 final value 94.355918 converged Fitting Repeat 4 # weights: 103 initial value 98.207497 final value 94.486319 converged Fitting Repeat 5 # weights: 103 initial value 96.074735 final value 94.485990 converged Fitting Repeat 1 # weights: 305 initial value 98.089567 iter 10 value 94.488736 iter 20 value 94.484252 final value 94.484242 converged Fitting Repeat 2 # weights: 305 initial value 96.470914 iter 10 value 93.815118 iter 20 value 89.871447 iter 30 value 88.148412 iter 40 value 88.021560 iter 50 value 87.931053 final value 87.907499 converged Fitting Repeat 3 # weights: 305 initial value 112.077984 iter 10 value 94.359236 iter 20 value 94.356119 iter 30 value 94.354571 final value 94.354562 converged Fitting Repeat 4 # weights: 305 initial value 99.865777 iter 10 value 94.489088 iter 20 value 93.814662 iter 30 value 93.312703 iter 40 value 93.308947 iter 50 value 84.075908 iter 60 value 83.455332 iter 70 value 83.450708 iter 80 value 82.019478 iter 90 value 81.543750 iter 100 value 81.330772 final value 81.330772 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.028950 iter 10 value 94.097833 iter 20 value 93.814678 iter 30 value 93.700738 iter 40 value 93.643856 final value 93.643854 converged Fitting Repeat 1 # weights: 507 initial value 100.641037 iter 10 value 93.709968 iter 20 value 93.628190 iter 30 value 91.220188 iter 40 value 83.282625 iter 50 value 82.917299 iter 60 value 82.827772 final value 82.827443 converged Fitting Repeat 2 # weights: 507 initial value 108.431715 iter 10 value 94.492291 iter 20 value 94.484212 iter 30 value 93.921210 iter 40 value 93.595444 final value 93.590832 converged Fitting Repeat 3 # weights: 507 initial value 100.169086 iter 10 value 94.316424 iter 20 value 94.289920 iter 30 value 84.349472 iter 40 value 81.535381 iter 50 value 81.527839 iter 60 value 81.466239 iter 70 value 81.164236 iter 80 value 79.648559 iter 90 value 79.383549 iter 100 value 79.351754 final value 79.351754 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.176016 iter 10 value 94.492602 iter 20 value 93.665307 iter 30 value 87.571378 iter 40 value 82.900149 iter 50 value 82.767191 iter 60 value 82.722435 iter 70 value 82.721785 iter 80 value 82.720900 final value 82.720895 converged Fitting Repeat 5 # weights: 507 initial value 99.387901 iter 10 value 93.070966 iter 20 value 87.394184 iter 30 value 85.644765 iter 40 value 85.641459 iter 50 value 85.640492 final value 85.640467 converged Fitting Repeat 1 # weights: 103 initial value 107.978959 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.524742 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.832820 final value 93.671508 converged Fitting Repeat 4 # weights: 103 initial value 114.032171 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.851874 iter 10 value 90.527847 iter 20 value 85.621384 iter 30 value 84.747505 final value 84.747127 converged Fitting Repeat 1 # weights: 305 initial value 106.817665 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.997263 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.080735 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 112.468790 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.709858 final value 93.551913 converged Fitting Repeat 1 # weights: 507 initial value 111.764452 iter 10 value 93.606492 iter 20 value 93.590871 final value 93.590851 converged Fitting Repeat 2 # weights: 507 initial value 102.468247 iter 10 value 93.314188 final value 93.309302 converged Fitting Repeat 3 # weights: 507 initial value 105.821747 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 96.878399 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 100.844117 final value 93.722222 converged Fitting Repeat 1 # weights: 103 initial value 95.860740 iter 10 value 93.639745 iter 20 value 85.937480 iter 30 value 85.109992 iter 40 value 83.399797 iter 50 value 83.340191 iter 60 value 82.917143 iter 70 value 82.386562 iter 80 value 82.279735 final value 82.276922 converged Fitting Repeat 2 # weights: 103 initial value 104.193956 iter 10 value 94.056691 iter 20 value 89.176205 iter 30 value 85.247623 iter 40 value 82.743274 iter 50 value 82.443506 iter 60 value 82.168413 iter 70 value 81.951140 iter 80 value 81.912176 final value 81.911852 converged Fitting Repeat 3 # weights: 103 initial value 98.798707 iter 10 value 93.638332 iter 20 value 85.226975 iter 30 value 82.408747 iter 40 value 81.702562 iter 50 value 81.514165 iter 60 value 81.464564 iter 70 value 81.297698 iter 80 value 80.953002 iter 90 value 80.411361 iter 100 value 80.363613 final value 80.363613 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.740793 iter 10 value 93.862315 iter 20 value 87.642104 iter 30 value 83.557425 iter 40 value 82.956204 iter 50 value 82.503679 iter 60 value 82.321913 iter 70 value 81.148404 iter 80 value 80.693909 iter 90 value 80.673067 iter 100 value 80.631958 final value 80.631958 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 116.846397 iter 10 value 93.715237 iter 20 value 85.168599 iter 30 value 83.126009 iter 40 value 82.677876 iter 50 value 82.497082 iter 60 value 82.290612 iter 70 value 82.276923 final value 82.276922 converged Fitting Repeat 1 # weights: 305 initial value 99.099908 iter 10 value 94.059232 iter 20 value 91.281484 iter 30 value 86.237044 iter 40 value 83.224296 iter 50 value 82.990115 iter 60 value 82.456252 iter 70 value 82.153761 iter 80 value 81.965129 iter 90 value 81.864072 iter 100 value 81.420958 final value 81.420958 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.979476 iter 10 value 95.130660 iter 20 value 91.339683 iter 30 value 85.384055 iter 40 value 84.347654 iter 50 value 83.005512 iter 60 value 82.100917 iter 70 value 81.552125 iter 80 value 79.881219 iter 90 value 79.400199 iter 100 value 79.065075 final value 79.065075 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.496999 iter 10 value 93.252559 iter 20 value 82.973288 iter 30 value 81.494810 iter 40 value 81.251886 iter 50 value 80.695216 iter 60 value 79.657509 iter 70 value 79.304670 iter 80 value 78.936316 iter 90 value 78.840751 iter 100 value 78.812452 final value 78.812452 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.475894 iter 10 value 96.341234 iter 20 value 94.408812 iter 30 value 94.012914 iter 40 value 87.304982 iter 50 value 86.160512 iter 60 value 85.294447 iter 70 value 82.443391 iter 80 value 81.437677 iter 90 value 80.946279 iter 100 value 80.774682 final value 80.774682 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.525665 iter 10 value 94.184647 iter 20 value 93.050550 iter 30 value 90.285733 iter 40 value 84.668365 iter 50 value 83.887543 iter 60 value 83.721082 iter 70 value 83.186855 iter 80 value 82.418774 iter 90 value 82.182940 iter 100 value 81.920535 final value 81.920535 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.232062 iter 10 value 94.018855 iter 20 value 85.071617 iter 30 value 83.915060 iter 40 value 83.437642 iter 50 value 82.297011 iter 60 value 80.125531 iter 70 value 79.876000 iter 80 value 79.757517 iter 90 value 79.518312 iter 100 value 79.294230 final value 79.294230 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 145.007031 iter 10 value 97.321498 iter 20 value 90.371766 iter 30 value 84.732234 iter 40 value 83.487002 iter 50 value 82.098663 iter 60 value 80.583828 iter 70 value 79.707086 iter 80 value 79.426760 iter 90 value 78.892972 iter 100 value 78.778963 final value 78.778963 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.204433 iter 10 value 95.750545 iter 20 value 95.253313 iter 30 value 86.538988 iter 40 value 84.695493 iter 50 value 82.906545 iter 60 value 81.725601 iter 70 value 80.548697 iter 80 value 80.385961 iter 90 value 80.271729 iter 100 value 80.269167 final value 80.269167 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.957358 iter 10 value 93.906291 iter 20 value 92.207912 iter 30 value 86.877087 iter 40 value 84.820874 iter 50 value 84.417610 iter 60 value 83.600135 iter 70 value 82.033036 iter 80 value 81.483460 iter 90 value 79.960084 iter 100 value 79.430393 final value 79.430393 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.213897 iter 10 value 94.399805 iter 20 value 85.483443 iter 30 value 84.155167 iter 40 value 83.762965 iter 50 value 82.548797 iter 60 value 81.455259 iter 70 value 80.607010 iter 80 value 79.790029 iter 90 value 79.537536 iter 100 value 79.268746 final value 79.268746 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.946706 iter 10 value 94.054340 iter 20 value 94.052948 final value 94.052915 converged Fitting Repeat 2 # weights: 103 initial value 99.227807 final value 94.044872 converged Fitting Repeat 3 # weights: 103 initial value 99.189798 final value 94.054441 converged Fitting Repeat 4 # weights: 103 initial value 95.183399 final value 94.054439 converged Fitting Repeat 5 # weights: 103 initial value 108.342104 final value 94.054493 converged Fitting Repeat 1 # weights: 305 initial value 100.786928 iter 10 value 94.058109 iter 20 value 94.031718 iter 30 value 92.463562 iter 40 value 86.878541 iter 50 value 83.142069 iter 60 value 80.769386 iter 70 value 79.979596 iter 80 value 79.961095 iter 90 value 79.892309 iter 100 value 79.522848 final value 79.522848 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.778683 iter 10 value 93.556851 iter 20 value 93.552423 iter 30 value 89.115023 iter 40 value 85.021564 iter 50 value 84.108037 iter 60 value 82.566406 iter 70 value 82.522743 final value 82.522638 converged Fitting Repeat 3 # weights: 305 initial value 94.468593 iter 10 value 85.507766 iter 20 value 84.735422 iter 30 value 84.686337 iter 40 value 83.810219 iter 50 value 83.487869 iter 60 value 83.487083 final value 83.484182 converged Fitting Repeat 4 # weights: 305 initial value 101.390118 iter 10 value 93.547844 iter 20 value 93.498087 iter 30 value 93.495756 iter 40 value 92.801024 iter 50 value 90.121579 iter 60 value 90.087456 iter 70 value 90.086743 iter 80 value 90.086520 iter 90 value 89.485186 iter 100 value 89.039407 final value 89.039407 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.051876 iter 10 value 93.740856 iter 20 value 92.772955 iter 30 value 92.770073 iter 40 value 92.177171 iter 50 value 92.110563 iter 60 value 92.087043 iter 70 value 92.061767 iter 80 value 92.059976 iter 90 value 91.095885 final value 91.095786 converged Fitting Repeat 1 # weights: 507 initial value 94.487269 iter 10 value 93.685092 iter 20 value 86.896957 iter 30 value 86.688745 iter 40 value 85.174462 iter 50 value 83.762471 iter 60 value 83.740387 iter 70 value 83.737542 iter 80 value 83.673585 iter 90 value 83.364665 iter 100 value 81.976880 final value 81.976880 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.798315 iter 10 value 93.335233 iter 20 value 93.330694 iter 30 value 85.274979 iter 40 value 82.659922 iter 50 value 79.942696 iter 60 value 79.419159 iter 70 value 78.709116 iter 80 value 78.397946 iter 90 value 78.206669 iter 100 value 78.001059 final value 78.001059 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.468134 iter 10 value 84.557806 iter 20 value 82.543892 iter 30 value 82.186363 iter 40 value 82.141871 iter 50 value 81.470966 iter 60 value 81.371858 iter 70 value 81.270363 iter 80 value 81.268597 iter 90 value 81.266930 final value 81.266096 converged Fitting Repeat 4 # weights: 507 initial value 95.961945 iter 10 value 94.051258 iter 20 value 94.043559 iter 30 value 92.930193 iter 40 value 84.882510 iter 50 value 84.879729 iter 60 value 84.879249 iter 70 value 81.474081 iter 80 value 81.180375 iter 80 value 81.180375 final value 81.180375 converged Fitting Repeat 5 # weights: 507 initial value 94.343893 iter 10 value 84.771158 iter 20 value 84.763074 iter 30 value 84.067349 iter 40 value 83.889492 iter 50 value 82.793667 iter 60 value 82.244043 iter 70 value 82.200954 iter 80 value 82.111689 iter 90 value 79.705835 iter 100 value 79.687014 final value 79.687014 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.032709 iter 10 value 117.897411 iter 20 value 117.828399 iter 30 value 108.394686 iter 40 value 106.557218 iter 50 value 106.552812 iter 60 value 106.533815 iter 70 value 106.524182 iter 80 value 106.523042 iter 90 value 106.518729 iter 100 value 106.518045 final value 106.518045 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.321294 iter 10 value 115.151256 iter 20 value 114.205184 iter 30 value 112.773675 iter 40 value 112.640118 iter 50 value 111.592047 iter 60 value 111.462024 iter 70 value 111.452188 iter 80 value 111.306345 iter 90 value 108.211519 iter 100 value 105.516109 final value 105.516109 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 154.868601 iter 10 value 117.901115 iter 20 value 117.819486 iter 30 value 110.190279 iter 40 value 105.670155 iter 50 value 104.814104 iter 60 value 104.813320 iter 70 value 104.719522 final value 104.689521 converged Fitting Repeat 4 # weights: 507 initial value 119.972547 iter 10 value 117.557815 iter 20 value 109.509941 iter 30 value 109.488812 final value 109.488111 converged Fitting Repeat 5 # weights: 507 initial value 119.566015 iter 10 value 110.673539 iter 20 value 107.966485 iter 30 value 107.062452 iter 40 value 106.959692 iter 50 value 106.945852 iter 60 value 106.941450 iter 70 value 106.937018 iter 80 value 105.107819 iter 90 value 104.343322 iter 100 value 104.304189 final value 104.304189 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sat Nov 9 04:48:46 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 15.441 0.506 25.256
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 15.541 | 0.391 | 15.934 | |
FreqInteractors | 0.071 | 0.003 | 0.075 | |
calculateAAC | 0.013 | 0.002 | 0.015 | |
calculateAutocor | 0.135 | 0.025 | 0.160 | |
calculateCTDC | 0.022 | 0.001 | 0.024 | |
calculateCTDD | 0.156 | 0.008 | 0.165 | |
calculateCTDT | 0.072 | 0.004 | 0.075 | |
calculateCTriad | 0.126 | 0.014 | 0.141 | |
calculateDC | 0.028 | 0.002 | 0.030 | |
calculateF | 0.082 | 0.004 | 0.086 | |
calculateKSAAP | 0.028 | 0.002 | 0.030 | |
calculateQD_Sm | 0.516 | 0.033 | 0.549 | |
calculateTC | 0.485 | 0.044 | 0.529 | |
calculateTC_Sm | 0.085 | 0.003 | 0.088 | |
corr_plot | 15.106 | 0.393 | 15.508 | |
enrichfindP | 0.128 | 0.022 | 10.686 | |
enrichfind_hp | 0.021 | 0.003 | 0.979 | |
enrichplot | 0.101 | 0.002 | 0.103 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.026 | 0.004 | 2.818 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0.001 | 0.000 | 0.000 | |
impute_missing_data | 0.000 | 0.000 | 0.001 | |
plotPPI | 0.021 | 0.001 | 0.022 | |
pred_ensembel | 4.859 | 0.121 | 4.306 | |
var_imp | 15.414 | 0.452 | 15.865 | |