Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:06 -0500 (Wed, 20 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-19 23:03:06 -0500 (Tue, 19 Nov 2024) |
EndedAt: 2024-11-19 23:14:54 -0500 (Tue, 19 Nov 2024) |
EllapsedTime: 708.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 27.391 1.471 28.964 corr_plot 25.584 1.317 26.963 FSmethod 24.642 1.205 25.894 pred_ensembel 10.188 0.332 9.077 enrichfindP 0.339 0.051 39.727 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.817365 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.854401 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.794342 final value 94.473118 converged Fitting Repeat 4 # weights: 103 initial value 99.184686 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.343745 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.916740 iter 10 value 92.881201 iter 20 value 85.487413 iter 30 value 85.485293 final value 85.485236 converged Fitting Repeat 2 # weights: 305 initial value 104.136550 iter 10 value 90.874861 iter 20 value 86.954316 final value 86.952568 converged Fitting Repeat 3 # weights: 305 initial value 103.720695 iter 10 value 93.979306 iter 20 value 93.055902 iter 30 value 89.358234 final value 89.356077 converged Fitting Repeat 4 # weights: 305 initial value 100.770454 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 107.513055 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 122.458179 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 97.381366 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 99.920935 iter 10 value 93.213986 iter 10 value 93.213985 iter 10 value 93.213985 final value 93.213985 converged Fitting Repeat 4 # weights: 507 initial value 106.110500 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.169551 iter 10 value 93.895308 final value 93.895098 converged Fitting Repeat 1 # weights: 103 initial value 97.577971 iter 10 value 94.447413 iter 20 value 89.727637 iter 30 value 88.983518 iter 40 value 88.737229 iter 50 value 85.629459 iter 60 value 85.213470 iter 70 value 85.107712 iter 80 value 84.966869 final value 84.964852 converged Fitting Repeat 2 # weights: 103 initial value 97.326995 iter 10 value 94.490438 iter 20 value 94.318990 iter 30 value 88.822350 iter 40 value 83.718786 iter 50 value 81.611431 iter 60 value 80.661239 iter 70 value 79.917557 iter 80 value 79.722936 iter 90 value 79.450332 final value 79.442736 converged Fitting Repeat 3 # weights: 103 initial value 98.971636 iter 10 value 94.482942 iter 20 value 94.334852 iter 30 value 89.871942 iter 40 value 87.866293 iter 50 value 85.550688 iter 60 value 82.839575 iter 70 value 80.959663 iter 80 value 80.536236 iter 90 value 80.305480 iter 100 value 80.248967 final value 80.248967 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.123280 iter 10 value 94.490116 iter 20 value 94.233006 iter 30 value 88.135435 iter 40 value 86.768652 iter 50 value 86.258208 iter 60 value 85.829580 iter 70 value 83.714843 iter 80 value 83.428343 iter 90 value 80.719884 iter 100 value 80.275459 final value 80.275459 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 106.417092 iter 10 value 94.401760 iter 20 value 93.972455 iter 30 value 93.967292 iter 40 value 93.960828 iter 50 value 93.717076 iter 60 value 90.895649 iter 70 value 88.125586 iter 80 value 84.789713 iter 90 value 84.053003 iter 100 value 83.318938 final value 83.318938 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.215052 iter 10 value 94.241569 iter 20 value 89.665587 iter 30 value 86.834190 iter 40 value 84.878328 iter 50 value 83.919879 iter 60 value 83.531562 iter 70 value 83.184273 iter 80 value 82.765742 iter 90 value 81.718432 iter 100 value 79.525612 final value 79.525612 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.510236 iter 10 value 94.428134 iter 20 value 88.606069 iter 30 value 83.177017 iter 40 value 83.026123 iter 50 value 80.610516 iter 60 value 80.168078 iter 70 value 79.855332 iter 80 value 79.576788 iter 90 value 79.187416 iter 100 value 78.860856 final value 78.860856 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.398380 iter 10 value 93.497537 iter 20 value 86.106530 iter 30 value 84.733907 iter 40 value 84.408358 iter 50 value 84.254227 iter 60 value 83.049434 iter 70 value 80.041884 iter 80 value 79.060231 iter 90 value 78.785985 iter 100 value 78.666684 final value 78.666684 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.268184 iter 10 value 94.479757 iter 20 value 93.612455 iter 30 value 90.082146 iter 40 value 83.612390 iter 50 value 81.442409 iter 60 value 79.726936 iter 70 value 78.731727 iter 80 value 78.140866 iter 90 value 77.884479 iter 100 value 77.733957 final value 77.733957 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.677601 iter 10 value 94.347726 iter 20 value 93.985164 iter 30 value 93.967252 iter 40 value 93.929985 iter 50 value 91.247483 iter 60 value 88.471623 iter 70 value 87.355833 iter 80 value 85.227209 iter 90 value 84.596220 iter 100 value 83.432307 final value 83.432307 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.666097 iter 10 value 94.229991 iter 20 value 91.992502 iter 30 value 88.046419 iter 40 value 87.129923 iter 50 value 86.595565 iter 60 value 85.072348 iter 70 value 81.319136 iter 80 value 79.462618 iter 90 value 79.106509 iter 100 value 78.319465 final value 78.319465 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.993381 iter 10 value 94.546351 iter 20 value 94.468630 iter 30 value 94.013118 iter 40 value 93.213992 iter 50 value 85.623197 iter 60 value 84.521186 iter 70 value 83.679314 iter 80 value 81.643017 iter 90 value 80.080413 iter 100 value 79.022680 final value 79.022680 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.899827 iter 10 value 94.661494 iter 20 value 90.757931 iter 30 value 81.621201 iter 40 value 80.846468 iter 50 value 79.757426 iter 60 value 79.413280 iter 70 value 79.081795 iter 80 value 78.859010 iter 90 value 78.770293 iter 100 value 78.403859 final value 78.403859 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.333188 iter 10 value 94.292299 iter 20 value 90.278516 iter 30 value 85.473065 iter 40 value 84.207265 iter 50 value 83.548842 iter 60 value 83.355017 iter 70 value 83.039223 iter 80 value 82.799561 iter 90 value 82.450599 iter 100 value 80.014561 final value 80.014561 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.356494 iter 10 value 92.823624 iter 20 value 85.070964 iter 30 value 84.200437 iter 40 value 82.438144 iter 50 value 82.003010 iter 60 value 81.412048 iter 70 value 80.963499 iter 80 value 79.823785 iter 90 value 79.247295 iter 100 value 78.359184 final value 78.359184 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.679501 final value 94.485809 converged Fitting Repeat 2 # weights: 103 initial value 99.656371 iter 10 value 94.355773 iter 20 value 94.355565 iter 30 value 94.355011 final value 94.354554 converged Fitting Repeat 3 # weights: 103 initial value 97.924988 final value 94.485669 converged Fitting Repeat 4 # weights: 103 initial value 97.018191 final value 94.485884 converged Fitting Repeat 5 # weights: 103 initial value 107.361009 final value 94.485771 converged Fitting Repeat 1 # weights: 305 initial value 104.294974 iter 10 value 94.488939 iter 20 value 94.478560 iter 30 value 93.912094 iter 40 value 93.912059 iter 40 value 93.912059 iter 40 value 93.912059 final value 93.912059 converged Fitting Repeat 2 # weights: 305 initial value 96.784758 iter 10 value 94.359336 iter 20 value 94.354527 iter 30 value 94.354405 iter 40 value 92.923484 iter 50 value 82.103901 iter 60 value 82.102616 iter 70 value 79.376783 iter 80 value 78.829136 iter 90 value 78.828321 iter 100 value 78.827969 final value 78.827969 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.689631 iter 10 value 94.488768 iter 20 value 87.270782 iter 30 value 85.544308 iter 40 value 85.527677 iter 50 value 85.526360 iter 60 value 82.827880 iter 70 value 82.332818 iter 80 value 82.317394 iter 90 value 81.492959 final value 81.390105 converged Fitting Repeat 4 # weights: 305 initial value 100.015989 iter 10 value 94.488720 iter 20 value 94.482101 iter 30 value 83.919471 iter 40 value 83.028793 iter 50 value 83.027967 iter 60 value 82.443926 iter 70 value 82.443882 iter 70 value 82.443881 iter 70 value 82.443881 final value 82.443881 converged Fitting Repeat 5 # weights: 305 initial value 99.906033 iter 10 value 94.487775 iter 20 value 94.472772 iter 30 value 85.053198 iter 40 value 85.046829 iter 50 value 85.041184 iter 60 value 84.477713 iter 70 value 84.463366 iter 80 value 84.444535 iter 90 value 84.231952 final value 84.230752 converged Fitting Repeat 1 # weights: 507 initial value 103.073374 iter 10 value 94.492561 iter 20 value 94.475999 iter 30 value 85.285371 iter 40 value 84.044728 iter 50 value 82.509629 iter 60 value 81.027665 iter 70 value 81.021972 iter 80 value 80.445623 iter 90 value 79.867547 iter 100 value 79.801170 final value 79.801170 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.109365 iter 10 value 94.362491 iter 20 value 93.970497 iter 30 value 92.792139 iter 40 value 85.701924 iter 50 value 85.689425 iter 60 value 85.689251 final value 85.689232 converged Fitting Repeat 3 # weights: 507 initial value 98.843430 iter 10 value 94.362406 iter 20 value 93.147321 iter 30 value 85.274063 iter 40 value 85.251875 final value 85.251800 converged Fitting Repeat 4 # weights: 507 initial value 101.144096 iter 10 value 94.363152 iter 20 value 94.356244 iter 30 value 94.323305 iter 40 value 87.121946 iter 50 value 87.119269 iter 60 value 87.119019 iter 70 value 87.118756 iter 80 value 83.530676 iter 90 value 83.512560 iter 100 value 82.760029 final value 82.760029 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.177915 iter 10 value 94.492246 iter 20 value 93.706590 iter 30 value 90.353101 iter 40 value 89.760153 iter 50 value 86.508717 iter 60 value 86.493107 iter 70 value 86.492886 final value 86.492866 converged Fitting Repeat 1 # weights: 103 initial value 101.712721 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.100694 final value 94.053065 converged Fitting Repeat 3 # weights: 103 initial value 102.948152 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.050920 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.177439 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.316517 iter 10 value 91.718019 iter 20 value 91.570712 final value 91.489323 converged Fitting Repeat 2 # weights: 305 initial value 95.507599 iter 10 value 90.836366 iter 20 value 90.809719 iter 30 value 90.809663 final value 90.809637 converged Fitting Repeat 3 # weights: 305 initial value 101.406569 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 99.446916 iter 10 value 90.427494 iter 20 value 88.447124 iter 30 value 87.841400 iter 40 value 87.562802 final value 87.528305 converged Fitting Repeat 5 # weights: 305 initial value 101.276517 iter 10 value 92.287392 iter 20 value 92.281087 final value 92.281082 converged Fitting Repeat 1 # weights: 507 initial value 112.648403 iter 10 value 91.822956 iter 20 value 91.444115 iter 30 value 91.439936 final value 91.439926 converged Fitting Repeat 2 # weights: 507 initial value 134.354373 iter 10 value 93.265885 iter 20 value 92.362727 iter 30 value 92.031985 iter 40 value 92.029801 final value 92.029797 converged Fitting Repeat 3 # weights: 507 initial value 108.767932 iter 10 value 86.453343 iter 20 value 83.334216 iter 30 value 83.322415 final value 83.322348 converged Fitting Repeat 4 # weights: 507 initial value 95.673262 iter 10 value 92.551681 iter 20 value 92.037366 iter 30 value 92.019988 final value 92.019964 converged Fitting Repeat 5 # weights: 507 initial value 101.191728 iter 10 value 92.575693 final value 92.563128 converged Fitting Repeat 1 # weights: 103 initial value 103.221011 iter 10 value 93.598036 iter 20 value 92.102339 iter 30 value 84.175442 iter 40 value 83.032892 iter 50 value 81.992697 iter 60 value 80.537413 iter 70 value 80.114883 iter 80 value 80.108773 final value 80.108771 converged Fitting Repeat 2 # weights: 103 initial value 99.992128 iter 10 value 90.945664 iter 20 value 84.526622 iter 30 value 83.892368 iter 40 value 82.240458 iter 50 value 81.894885 iter 60 value 81.886722 final value 81.886545 converged Fitting Repeat 3 # weights: 103 initial value 96.123623 iter 10 value 94.056665 iter 20 value 93.414797 iter 30 value 93.029391 iter 40 value 89.917220 iter 50 value 84.142918 iter 60 value 82.777183 iter 70 value 81.331168 iter 80 value 81.147919 iter 90 value 80.128463 iter 100 value 79.990988 final value 79.990988 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.966390 iter 10 value 94.319188 iter 20 value 94.044390 iter 30 value 93.326855 iter 40 value 92.875796 iter 50 value 90.440565 iter 60 value 84.215759 iter 70 value 83.277330 iter 80 value 80.762238 iter 90 value 80.321276 iter 100 value 80.116344 final value 80.116344 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.315702 iter 10 value 94.051596 iter 20 value 92.688919 iter 30 value 84.491467 iter 40 value 82.986118 iter 50 value 81.105696 iter 60 value 80.897573 iter 70 value 80.425531 iter 80 value 80.111959 iter 90 value 80.108771 iter 90 value 80.108771 iter 90 value 80.108771 final value 80.108771 converged Fitting Repeat 1 # weights: 305 initial value 118.213961 iter 10 value 94.888235 iter 20 value 93.393170 iter 30 value 92.748098 iter 40 value 92.679456 iter 50 value 85.747271 iter 60 value 84.228049 iter 70 value 82.241694 iter 80 value 81.355372 iter 90 value 80.340475 iter 100 value 79.826448 final value 79.826448 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.308315 iter 10 value 93.922128 iter 20 value 85.987807 iter 30 value 85.155839 iter 40 value 83.577221 iter 50 value 82.630885 iter 60 value 82.007845 iter 70 value 81.009549 iter 80 value 80.805846 iter 90 value 80.439009 iter 100 value 79.982378 final value 79.982378 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.203405 iter 10 value 90.613105 iter 20 value 81.807978 iter 30 value 81.449055 iter 40 value 81.265772 iter 50 value 81.226099 iter 60 value 81.209430 iter 70 value 80.924347 iter 80 value 79.381080 iter 90 value 78.649006 iter 100 value 78.275578 final value 78.275578 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.406649 iter 10 value 93.674175 iter 20 value 88.948352 iter 30 value 83.983788 iter 40 value 81.763805 iter 50 value 80.145846 iter 60 value 79.858208 iter 70 value 79.721981 iter 80 value 79.505520 iter 90 value 79.064506 iter 100 value 78.657353 final value 78.657353 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.651390 iter 10 value 93.115248 iter 20 value 86.250244 iter 30 value 83.258397 iter 40 value 82.827928 iter 50 value 82.549953 iter 60 value 82.423542 iter 70 value 81.899219 iter 80 value 80.383626 iter 90 value 79.705757 iter 100 value 79.544433 final value 79.544433 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.254482 iter 10 value 93.589277 iter 20 value 90.850626 iter 30 value 88.343150 iter 40 value 87.567133 iter 50 value 84.981716 iter 60 value 80.416773 iter 70 value 79.067981 iter 80 value 78.478724 iter 90 value 78.294080 iter 100 value 78.240152 final value 78.240152 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.991990 iter 10 value 93.276479 iter 20 value 88.624447 iter 30 value 84.762735 iter 40 value 81.623059 iter 50 value 79.641361 iter 60 value 78.988162 iter 70 value 78.753411 iter 80 value 78.476266 iter 90 value 78.331217 iter 100 value 78.269577 final value 78.269577 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.677690 iter 10 value 94.490102 iter 20 value 84.362482 iter 30 value 83.642044 iter 40 value 82.381491 iter 50 value 81.562019 iter 60 value 81.202851 iter 70 value 80.933380 iter 80 value 80.845949 iter 90 value 80.809413 iter 100 value 80.694225 final value 80.694225 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.935170 iter 10 value 93.080920 iter 20 value 92.586773 iter 30 value 91.483977 iter 40 value 88.238249 iter 50 value 84.271112 iter 60 value 80.954837 iter 70 value 80.309349 iter 80 value 80.014111 iter 90 value 79.501361 iter 100 value 79.242824 final value 79.242824 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.332800 iter 10 value 93.984404 iter 20 value 85.044807 iter 30 value 83.421507 iter 40 value 82.832320 iter 50 value 82.038531 iter 60 value 80.132486 iter 70 value 78.794627 iter 80 value 78.512393 iter 90 value 78.471090 iter 100 value 78.373637 final value 78.373637 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.523648 final value 94.054491 converged Fitting Repeat 2 # weights: 103 initial value 97.706302 final value 94.054567 converged Fitting Repeat 3 # weights: 103 initial value 99.924214 final value 94.054554 converged Fitting Repeat 4 # weights: 103 initial value 99.187602 iter 10 value 94.047098 final value 94.023972 converged Fitting Repeat 5 # weights: 103 initial value 96.853199 iter 10 value 94.054908 iter 20 value 93.979081 iter 30 value 92.273568 iter 40 value 92.038094 final value 92.034823 converged Fitting Repeat 1 # weights: 305 initial value 96.968725 iter 10 value 94.057620 iter 20 value 94.052492 iter 30 value 92.362650 iter 40 value 92.344381 iter 50 value 90.046260 iter 60 value 89.102537 iter 70 value 89.094079 iter 80 value 89.015409 iter 90 value 88.954172 final value 88.953508 converged Fitting Repeat 2 # weights: 305 initial value 96.594163 iter 10 value 94.058070 iter 20 value 93.884383 iter 30 value 88.247912 iter 40 value 85.589814 iter 50 value 84.701462 final value 84.699300 converged Fitting Repeat 3 # weights: 305 initial value 97.970921 iter 10 value 94.078081 iter 20 value 93.728559 iter 30 value 89.982331 iter 40 value 89.941624 iter 50 value 89.296745 iter 60 value 88.651954 iter 70 value 88.622042 iter 80 value 88.614983 iter 90 value 88.610197 iter 100 value 88.119370 final value 88.119370 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.368007 iter 10 value 92.298101 iter 20 value 92.292078 iter 30 value 85.326542 iter 40 value 81.514139 iter 50 value 81.481479 iter 60 value 81.480930 iter 70 value 81.480559 final value 81.479488 converged Fitting Repeat 5 # weights: 305 initial value 95.682546 iter 10 value 92.296114 iter 20 value 92.292348 iter 30 value 92.288463 iter 40 value 92.063443 iter 50 value 87.817343 iter 60 value 86.402843 iter 70 value 85.128925 iter 80 value 82.218123 iter 90 value 77.140635 iter 100 value 76.908541 final value 76.908541 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 94.411272 iter 10 value 90.661850 iter 20 value 90.369316 iter 30 value 90.367217 iter 40 value 90.332239 iter 50 value 86.502928 iter 60 value 86.299872 iter 70 value 86.293038 iter 80 value 86.291508 iter 90 value 86.160301 iter 100 value 84.736358 final value 84.736358 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.720411 iter 10 value 92.297210 iter 20 value 92.293618 iter 30 value 92.100465 iter 40 value 92.038121 iter 50 value 92.036777 final value 92.035076 converged Fitting Repeat 3 # weights: 507 initial value 109.795680 iter 10 value 92.514932 iter 20 value 92.300428 iter 30 value 92.295590 iter 40 value 91.998605 iter 50 value 90.068840 iter 60 value 79.783683 iter 70 value 78.500989 iter 80 value 77.011190 iter 90 value 76.821239 iter 100 value 76.799697 final value 76.799697 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.076857 iter 10 value 92.300823 iter 20 value 92.294730 iter 30 value 91.973928 iter 40 value 91.589009 iter 50 value 81.900272 iter 60 value 81.681728 iter 70 value 81.660449 iter 80 value 81.575754 iter 90 value 81.574178 iter 100 value 81.569416 final value 81.569416 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.860286 iter 10 value 94.060854 iter 20 value 93.967839 iter 30 value 81.633130 iter 40 value 80.800206 iter 50 value 80.468458 iter 60 value 80.448500 iter 70 value 80.365208 iter 80 value 80.337791 iter 90 value 80.254834 iter 100 value 80.041409 final value 80.041409 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.198532 final value 94.466823 converged Fitting Repeat 2 # weights: 103 initial value 106.859285 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.359178 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.775572 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.631477 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.948332 final value 94.088889 converged Fitting Repeat 2 # weights: 305 initial value 95.582650 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.010790 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 94.897120 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.165500 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 95.403470 final value 93.903448 converged Fitting Repeat 2 # weights: 507 initial value 97.562355 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.860825 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 100.378075 iter 10 value 94.484496 iter 20 value 94.465271 iter 30 value 94.294443 final value 94.242065 converged Fitting Repeat 5 # weights: 507 initial value 109.515874 final value 94.466822 converged Fitting Repeat 1 # weights: 103 initial value 98.826871 iter 10 value 94.440448 iter 20 value 94.162539 iter 30 value 89.272877 iter 40 value 88.144434 iter 50 value 87.580357 final value 87.572789 converged Fitting Repeat 2 # weights: 103 initial value 98.302420 iter 10 value 94.485548 iter 20 value 92.023275 iter 30 value 87.612834 iter 40 value 86.641599 iter 50 value 86.383513 iter 60 value 85.723109 iter 70 value 85.629624 iter 80 value 85.609241 iter 90 value 85.514213 iter 100 value 85.460025 final value 85.460025 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.968656 iter 10 value 93.382237 iter 20 value 87.678741 iter 30 value 87.507880 iter 40 value 86.876273 iter 50 value 86.364143 iter 60 value 86.113370 iter 70 value 86.047901 iter 80 value 85.986758 final value 85.985119 converged Fitting Repeat 4 # weights: 103 initial value 97.238565 iter 10 value 94.488694 iter 20 value 92.055850 iter 30 value 88.282149 iter 40 value 86.798625 iter 50 value 86.555118 iter 60 value 85.897819 iter 70 value 85.103242 iter 80 value 84.517754 iter 90 value 84.317455 final value 84.315001 converged Fitting Repeat 5 # weights: 103 initial value 101.186639 iter 10 value 90.416785 iter 20 value 87.823381 iter 30 value 87.444114 iter 40 value 86.626884 iter 50 value 85.382251 iter 60 value 84.893545 iter 70 value 84.255351 iter 80 value 84.169131 iter 90 value 84.140089 final value 84.129548 converged Fitting Repeat 1 # weights: 305 initial value 104.047210 iter 10 value 94.513191 iter 20 value 93.494416 iter 30 value 92.703680 iter 40 value 91.209901 iter 50 value 90.196052 iter 60 value 84.782213 iter 70 value 84.293594 iter 80 value 83.828088 iter 90 value 83.597098 iter 100 value 83.372603 final value 83.372603 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 130.919394 iter 10 value 94.455988 iter 20 value 89.845296 iter 30 value 88.007840 iter 40 value 87.320136 iter 50 value 86.642595 iter 60 value 84.876512 iter 70 value 84.478291 iter 80 value 84.074724 iter 90 value 83.805158 iter 100 value 83.667789 final value 83.667789 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.813031 iter 10 value 94.126969 iter 20 value 89.358760 iter 30 value 86.494448 iter 40 value 86.332731 iter 50 value 86.195260 iter 60 value 85.771002 iter 70 value 85.413522 iter 80 value 85.062277 iter 90 value 84.872614 iter 100 value 84.334570 final value 84.334570 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.083866 iter 10 value 94.875599 iter 20 value 94.496443 iter 30 value 94.420952 iter 40 value 93.068322 iter 50 value 89.886179 iter 60 value 87.893010 iter 70 value 86.099228 iter 80 value 84.249240 iter 90 value 83.659256 iter 100 value 83.591316 final value 83.591316 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.746949 iter 10 value 92.685106 iter 20 value 91.178508 iter 30 value 87.842982 iter 40 value 86.563393 iter 50 value 85.509906 iter 60 value 84.028354 iter 70 value 83.296698 iter 80 value 83.225215 iter 90 value 83.054882 iter 100 value 82.857356 final value 82.857356 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.797484 iter 10 value 94.981113 iter 20 value 92.927514 iter 30 value 87.986050 iter 40 value 85.873207 iter 50 value 84.345364 iter 60 value 84.172370 iter 70 value 83.823294 iter 80 value 83.085219 iter 90 value 82.870299 iter 100 value 82.622771 final value 82.622771 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.028837 iter 10 value 94.697144 iter 20 value 89.189874 iter 30 value 86.653761 iter 40 value 85.780605 iter 50 value 85.349694 iter 60 value 85.117976 iter 70 value 84.477364 iter 80 value 83.960527 iter 90 value 83.655393 iter 100 value 83.455618 final value 83.455618 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.197320 iter 10 value 94.442153 iter 20 value 93.028524 iter 30 value 87.888126 iter 40 value 87.598551 iter 50 value 87.132403 iter 60 value 85.410449 iter 70 value 84.578615 iter 80 value 83.564947 iter 90 value 83.287472 iter 100 value 83.100584 final value 83.100584 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.014429 iter 10 value 95.037222 iter 20 value 94.071925 iter 30 value 88.621057 iter 40 value 88.138496 iter 50 value 85.993453 iter 60 value 85.127535 iter 70 value 84.154989 iter 80 value 83.602859 iter 90 value 83.277148 iter 100 value 82.814434 final value 82.814434 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 136.192807 iter 10 value 94.510941 iter 20 value 92.341834 iter 30 value 89.913047 iter 40 value 86.809047 iter 50 value 85.041061 iter 60 value 83.186012 iter 70 value 83.074829 iter 80 value 82.979885 iter 90 value 82.956066 iter 100 value 82.907849 final value 82.907849 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.583718 final value 94.485754 converged Fitting Repeat 2 # weights: 103 initial value 95.034091 final value 94.485743 converged Fitting Repeat 3 # weights: 103 initial value 111.161417 final value 94.485796 converged Fitting Repeat 4 # weights: 103 initial value 95.608508 iter 10 value 94.005297 iter 20 value 93.949402 iter 30 value 93.573162 iter 40 value 93.571040 final value 93.565965 converged Fitting Repeat 5 # weights: 103 initial value 95.664599 final value 94.485950 converged Fitting Repeat 1 # weights: 305 initial value 105.476148 iter 10 value 94.569938 iter 20 value 91.083546 iter 30 value 89.396122 iter 40 value 89.374042 iter 50 value 89.373212 iter 60 value 87.396866 iter 70 value 87.231687 iter 80 value 86.569738 iter 90 value 86.206873 iter 100 value 86.176838 final value 86.176838 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.878492 iter 10 value 88.437244 iter 20 value 87.358683 iter 30 value 87.356442 iter 40 value 87.337013 iter 50 value 87.336581 iter 60 value 87.265677 iter 70 value 87.166000 iter 80 value 87.156892 iter 90 value 87.147565 iter 100 value 87.147439 final value 87.147439 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.234258 iter 10 value 94.472345 iter 20 value 94.467269 iter 30 value 94.292815 final value 94.089661 converged Fitting Repeat 4 # weights: 305 initial value 100.425097 iter 10 value 94.101615 iter 20 value 94.083006 iter 30 value 94.082079 iter 40 value 94.080645 iter 50 value 94.080512 iter 60 value 93.169937 iter 70 value 87.281380 iter 80 value 86.575749 iter 90 value 86.514868 iter 100 value 86.513832 final value 86.513832 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.118659 iter 10 value 94.489545 iter 20 value 94.210885 iter 30 value 92.446314 iter 40 value 90.149429 iter 50 value 85.243960 iter 60 value 84.911748 iter 70 value 84.910728 iter 80 value 84.909067 iter 90 value 84.907388 iter 100 value 84.907098 final value 84.907098 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.772726 iter 10 value 94.473626 iter 20 value 94.461333 iter 30 value 89.521274 iter 40 value 87.688809 iter 50 value 86.037063 iter 60 value 84.987505 iter 70 value 84.588229 iter 80 value 84.433890 iter 90 value 83.819317 iter 100 value 82.667338 final value 82.667338 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.111247 iter 10 value 94.489946 iter 20 value 94.418366 iter 30 value 91.214447 iter 40 value 88.676776 iter 50 value 86.188856 iter 60 value 85.972172 iter 70 value 85.968883 iter 80 value 85.964166 iter 90 value 85.963751 iter 100 value 85.963283 final value 85.963283 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.662831 iter 10 value 94.475041 iter 20 value 94.469579 iter 30 value 94.279037 iter 40 value 94.080616 iter 50 value 93.731466 iter 60 value 87.039658 iter 70 value 85.783045 final value 85.780640 converged Fitting Repeat 4 # weights: 507 initial value 110.967905 iter 10 value 93.061572 iter 20 value 92.940405 iter 30 value 92.937264 iter 40 value 92.936827 iter 50 value 92.933232 iter 60 value 92.931273 iter 70 value 92.931240 iter 80 value 92.930822 iter 90 value 92.779734 iter 100 value 90.495310 final value 90.495310 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.931402 iter 10 value 94.475725 iter 20 value 94.468023 final value 94.467280 converged Fitting Repeat 1 # weights: 103 initial value 97.629239 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.965530 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.058124 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.749342 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 100.147398 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 112.979618 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.930401 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.983842 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 104.784615 iter 10 value 94.053153 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.076584 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 96.646825 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 106.909398 iter 10 value 93.549676 iter 20 value 93.429487 iter 20 value 93.429487 iter 20 value 93.429487 final value 93.429487 converged Fitting Repeat 3 # weights: 507 initial value 99.312594 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 114.409221 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 109.695087 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 98.384410 iter 10 value 94.046579 iter 20 value 85.839413 iter 30 value 84.950243 iter 40 value 84.869040 iter 50 value 84.737257 iter 60 value 84.338190 iter 70 value 84.108225 final value 84.103953 converged Fitting Repeat 2 # weights: 103 initial value 107.657291 iter 10 value 93.975565 iter 20 value 87.713634 iter 30 value 84.238684 iter 40 value 81.945763 iter 50 value 81.299104 iter 60 value 79.805773 iter 70 value 79.017515 iter 80 value 78.998490 final value 78.991188 converged Fitting Repeat 3 # weights: 103 initial value 116.929067 iter 10 value 94.048292 iter 20 value 93.703151 iter 30 value 85.233055 iter 40 value 82.089165 iter 50 value 80.998944 iter 60 value 80.513421 iter 70 value 80.506879 iter 80 value 79.810336 iter 90 value 79.658722 final value 79.658689 converged Fitting Repeat 4 # weights: 103 initial value 101.130798 iter 10 value 94.054373 iter 20 value 85.365018 iter 30 value 84.812876 iter 40 value 84.773279 iter 50 value 84.689982 iter 60 value 84.147190 final value 84.103953 converged Fitting Repeat 5 # weights: 103 initial value 109.196324 iter 10 value 94.054923 iter 20 value 93.933552 iter 30 value 93.675690 iter 40 value 90.052227 iter 50 value 87.194860 iter 60 value 86.370331 iter 70 value 85.531991 iter 80 value 81.016892 iter 90 value 79.920975 iter 100 value 79.041553 final value 79.041553 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.864253 iter 10 value 94.239459 iter 20 value 94.007703 iter 30 value 89.221261 iter 40 value 85.008520 iter 50 value 84.769324 iter 60 value 84.037740 iter 70 value 81.591305 iter 80 value 78.957431 iter 90 value 78.291765 iter 100 value 77.840916 final value 77.840916 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.710062 iter 10 value 92.947975 iter 20 value 87.772150 iter 30 value 85.344049 iter 40 value 81.658299 iter 50 value 81.428109 final value 81.426042 converged Fitting Repeat 3 # weights: 305 initial value 101.622558 iter 10 value 93.411198 iter 20 value 87.221427 iter 30 value 85.577805 iter 40 value 85.071062 iter 50 value 84.020649 iter 60 value 80.712119 iter 70 value 80.300216 iter 80 value 79.206265 iter 90 value 78.291237 iter 100 value 77.415023 final value 77.415023 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.527303 iter 10 value 93.994262 iter 20 value 87.342922 iter 30 value 84.740170 iter 40 value 84.276979 iter 50 value 84.029561 iter 60 value 84.005005 iter 70 value 83.823471 iter 80 value 82.125368 iter 90 value 78.691111 iter 100 value 78.032051 final value 78.032051 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.066775 iter 10 value 93.938805 iter 20 value 88.596005 iter 30 value 85.490369 iter 40 value 84.327294 iter 50 value 81.658863 iter 60 value 80.807616 iter 70 value 80.223869 iter 80 value 79.929280 iter 90 value 79.881250 iter 100 value 79.519586 final value 79.519586 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.197861 iter 10 value 94.347257 iter 20 value 86.966612 iter 30 value 84.886782 iter 40 value 83.012899 iter 50 value 80.765928 iter 60 value 80.198729 iter 70 value 79.146086 iter 80 value 78.528992 iter 90 value 78.261258 iter 100 value 77.551327 final value 77.551327 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.814279 iter 10 value 94.058970 iter 20 value 93.121826 iter 30 value 85.649856 iter 40 value 82.850303 iter 50 value 80.035043 iter 60 value 79.729987 iter 70 value 79.121516 iter 80 value 78.304975 iter 90 value 77.654799 iter 100 value 77.536789 final value 77.536789 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.642422 iter 10 value 94.094825 iter 20 value 93.692365 iter 30 value 92.460683 iter 40 value 91.555344 iter 50 value 86.903521 iter 60 value 81.846307 iter 70 value 80.475408 iter 80 value 79.917013 iter 90 value 79.549466 iter 100 value 79.417718 final value 79.417718 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.677813 iter 10 value 95.356384 iter 20 value 94.404966 iter 30 value 94.192166 iter 40 value 86.238926 iter 50 value 84.399590 iter 60 value 80.622101 iter 70 value 78.677645 iter 80 value 78.102200 iter 90 value 77.756572 iter 100 value 77.321165 final value 77.321165 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.320028 iter 10 value 94.250520 iter 20 value 91.358914 iter 30 value 86.571597 iter 40 value 84.590001 iter 50 value 79.565403 iter 60 value 78.953101 iter 70 value 77.901782 iter 80 value 77.345573 iter 90 value 77.122055 iter 100 value 76.960422 final value 76.960422 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.622200 final value 94.054627 converged Fitting Repeat 2 # weights: 103 initial value 98.736929 iter 10 value 94.034494 iter 20 value 90.281694 iter 30 value 89.320197 iter 40 value 89.316784 iter 50 value 88.367120 iter 60 value 87.758656 iter 70 value 84.463475 iter 80 value 81.791015 iter 90 value 81.639154 iter 100 value 81.632989 final value 81.632989 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.963902 iter 10 value 94.034735 iter 20 value 93.920639 iter 30 value 83.574871 iter 40 value 83.562469 iter 50 value 83.453992 iter 60 value 83.453090 iter 70 value 83.450974 iter 80 value 83.450678 iter 90 value 83.450593 final value 83.450589 converged Fitting Repeat 4 # weights: 103 initial value 98.051274 final value 94.054410 converged Fitting Repeat 5 # weights: 103 initial value 111.758627 iter 10 value 94.054821 iter 20 value 94.052922 iter 20 value 94.052922 iter 20 value 94.052921 final value 94.052921 converged Fitting Repeat 1 # weights: 305 initial value 98.815244 iter 10 value 93.506382 iter 20 value 92.757173 iter 30 value 92.755338 iter 30 value 92.755338 final value 92.755338 converged Fitting Repeat 2 # weights: 305 initial value 111.514247 iter 10 value 94.037614 iter 20 value 94.034557 final value 94.033822 converged Fitting Repeat 3 # weights: 305 initial value 118.303094 iter 10 value 94.057398 iter 20 value 94.044675 iter 30 value 87.958069 iter 40 value 85.830643 iter 50 value 85.370775 final value 85.370752 converged Fitting Repeat 4 # weights: 305 initial value 95.203997 iter 10 value 94.057288 iter 20 value 94.053034 final value 94.052745 converged Fitting Repeat 5 # weights: 305 initial value 95.186274 iter 10 value 94.057802 iter 20 value 94.052923 final value 94.052921 converged Fitting Repeat 1 # weights: 507 initial value 112.845630 iter 10 value 94.060182 iter 20 value 87.834263 iter 30 value 82.426775 iter 40 value 82.173607 iter 50 value 81.673576 iter 60 value 81.392419 iter 70 value 80.945389 iter 80 value 79.963105 iter 90 value 79.333784 iter 100 value 77.834429 final value 77.834429 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.295163 iter 10 value 93.888362 iter 20 value 93.882050 iter 30 value 93.876886 iter 40 value 87.031807 iter 50 value 83.158002 iter 60 value 83.147837 iter 70 value 83.145666 iter 80 value 82.596526 iter 90 value 81.746906 iter 100 value 81.742368 final value 81.742368 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.858711 iter 10 value 94.049731 iter 20 value 93.771745 iter 30 value 83.578065 iter 40 value 83.568090 iter 50 value 83.453370 iter 60 value 83.451413 iter 70 value 83.274163 iter 80 value 79.483920 iter 90 value 77.009433 iter 100 value 75.883992 final value 75.883992 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.179371 iter 10 value 94.025528 iter 20 value 93.959677 iter 30 value 88.050521 iter 40 value 82.163847 iter 50 value 81.628161 iter 60 value 81.621101 final value 81.621075 converged Fitting Repeat 5 # weights: 507 initial value 110.291723 iter 10 value 93.754666 iter 20 value 92.248103 iter 30 value 92.239020 iter 40 value 92.236187 iter 50 value 92.233772 iter 60 value 92.233159 iter 70 value 92.231254 iter 80 value 92.230679 iter 90 value 92.230146 iter 100 value 92.039763 final value 92.039763 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.061234 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 106.438865 final value 94.467391 converged Fitting Repeat 3 # weights: 103 initial value 98.867267 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.277530 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.146898 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.040292 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 126.863810 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 111.337877 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.234700 final value 94.322897 converged Fitting Repeat 5 # weights: 305 initial value 110.451790 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 104.212583 iter 10 value 92.228782 final value 92.227947 converged Fitting Repeat 2 # weights: 507 initial value 96.697879 final value 94.484210 converged Fitting Repeat 3 # weights: 507 initial value 96.659852 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 98.616495 iter 10 value 93.580112 iter 20 value 90.346132 iter 30 value 90.345747 final value 90.345709 converged Fitting Repeat 5 # weights: 507 initial value 130.142728 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.686074 iter 10 value 94.454911 iter 20 value 90.153269 iter 30 value 86.307293 iter 40 value 85.174117 iter 50 value 84.319325 iter 60 value 83.704058 iter 70 value 83.680728 iter 80 value 83.543058 iter 90 value 83.473523 final value 83.473238 converged Fitting Repeat 2 # weights: 103 initial value 104.133412 iter 10 value 94.458511 iter 20 value 92.403612 iter 30 value 91.222668 iter 40 value 86.929811 iter 50 value 84.847100 iter 60 value 84.212650 iter 70 value 82.791654 iter 80 value 82.152925 iter 90 value 81.997552 final value 81.989783 converged Fitting Repeat 3 # weights: 103 initial value 103.929654 iter 10 value 94.488590 iter 20 value 94.440839 iter 30 value 86.143575 iter 40 value 85.310247 iter 50 value 84.471189 iter 60 value 84.291913 iter 70 value 83.841620 iter 80 value 83.484606 iter 90 value 83.473247 final value 83.473239 converged Fitting Repeat 4 # weights: 103 initial value 101.497705 iter 10 value 94.488432 iter 20 value 94.177503 iter 30 value 89.400043 iter 40 value 88.121113 iter 50 value 87.983546 iter 60 value 87.682343 iter 70 value 86.727389 iter 80 value 85.444609 iter 90 value 83.338376 iter 100 value 83.151344 final value 83.151344 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.492450 iter 10 value 94.422394 iter 20 value 86.320247 iter 30 value 85.592578 iter 40 value 84.097933 iter 50 value 83.744204 iter 60 value 83.487641 final value 83.473238 converged Fitting Repeat 1 # weights: 305 initial value 108.420197 iter 10 value 94.489480 iter 20 value 87.037293 iter 30 value 86.513689 iter 40 value 85.925066 iter 50 value 82.610814 iter 60 value 81.461091 iter 70 value 80.990623 iter 80 value 80.803368 iter 90 value 80.668427 iter 100 value 80.594803 final value 80.594803 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.813058 iter 10 value 94.538623 iter 20 value 92.621303 iter 30 value 86.173271 iter 40 value 84.547260 iter 50 value 82.679645 iter 60 value 82.240274 iter 70 value 81.814145 iter 80 value 81.386993 iter 90 value 81.211630 iter 100 value 81.138987 final value 81.138987 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 123.082007 iter 10 value 92.938163 iter 20 value 84.839355 iter 30 value 83.451897 iter 40 value 82.539504 iter 50 value 81.746025 iter 60 value 81.244994 iter 70 value 80.921307 iter 80 value 80.885998 iter 90 value 80.871192 iter 100 value 80.826336 final value 80.826336 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.717440 iter 10 value 87.903646 iter 20 value 84.447847 iter 30 value 84.196455 iter 40 value 82.618296 iter 50 value 81.505638 iter 60 value 80.950712 iter 70 value 80.850301 iter 80 value 80.799489 iter 90 value 80.726518 iter 100 value 80.594118 final value 80.594118 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.481853 iter 10 value 94.295132 iter 20 value 92.589278 iter 30 value 85.660616 iter 40 value 84.618338 iter 50 value 82.903871 iter 60 value 82.365647 iter 70 value 81.567970 iter 80 value 81.313339 iter 90 value 81.270393 iter 100 value 81.102862 final value 81.102862 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.646434 iter 10 value 91.135174 iter 20 value 86.969230 iter 30 value 82.467328 iter 40 value 81.965556 iter 50 value 81.492811 iter 60 value 81.256400 iter 70 value 81.090421 iter 80 value 80.956658 iter 90 value 80.786729 iter 100 value 80.710946 final value 80.710946 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.732630 iter 10 value 94.508716 iter 20 value 92.814921 iter 30 value 85.705633 iter 40 value 84.939590 iter 50 value 83.900279 iter 60 value 83.350132 iter 70 value 82.582633 iter 80 value 82.303121 iter 90 value 82.026128 iter 100 value 81.514478 final value 81.514478 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.532705 iter 10 value 95.172350 iter 20 value 93.323749 iter 30 value 91.241412 iter 40 value 90.986470 iter 50 value 84.285425 iter 60 value 83.417316 iter 70 value 83.114354 iter 80 value 82.636138 iter 90 value 82.084652 iter 100 value 81.514585 final value 81.514585 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.379674 iter 10 value 94.551608 iter 20 value 87.235619 iter 30 value 86.199025 iter 40 value 84.932293 iter 50 value 82.043565 iter 60 value 81.380881 iter 70 value 81.047218 iter 80 value 80.892174 iter 90 value 80.705264 iter 100 value 80.620957 final value 80.620957 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.682830 iter 10 value 94.620413 iter 20 value 87.406833 iter 30 value 85.723633 iter 40 value 83.540860 iter 50 value 83.032297 iter 60 value 82.842498 iter 70 value 82.785438 iter 80 value 82.421289 iter 90 value 82.090927 iter 100 value 81.780609 final value 81.780609 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.198878 final value 94.485911 converged Fitting Repeat 2 # weights: 103 initial value 103.544465 final value 94.485686 converged Fitting Repeat 3 # weights: 103 initial value 101.063025 final value 94.485743 converged Fitting Repeat 4 # weights: 103 initial value 103.584294 final value 94.485727 converged Fitting Repeat 5 # weights: 103 initial value 101.301099 final value 94.473950 converged Fitting Repeat 1 # weights: 305 initial value 106.243247 iter 10 value 94.491506 iter 20 value 94.479956 iter 30 value 93.407439 iter 40 value 85.249014 iter 50 value 84.520777 iter 60 value 84.194383 iter 70 value 84.135278 iter 80 value 84.133456 iter 90 value 84.129820 iter 100 value 83.797628 final value 83.797628 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.221248 iter 10 value 94.488951 iter 20 value 94.478282 iter 30 value 86.751665 iter 40 value 83.070605 iter 50 value 82.600332 iter 60 value 82.094960 iter 70 value 82.052045 iter 80 value 82.049917 final value 82.049794 converged Fitting Repeat 3 # weights: 305 initial value 96.602096 iter 10 value 94.488748 iter 20 value 94.326505 iter 30 value 88.189254 iter 40 value 87.850280 iter 50 value 86.392455 iter 60 value 85.283568 iter 70 value 85.279447 final value 85.279377 converged Fitting Repeat 4 # weights: 305 initial value 97.921411 iter 10 value 94.472370 iter 20 value 94.468000 iter 30 value 90.525773 iter 40 value 85.211703 iter 50 value 85.165802 iter 60 value 85.164321 iter 70 value 85.164245 iter 70 value 85.164244 final value 85.164244 converged Fitting Repeat 5 # weights: 305 initial value 103.029266 iter 10 value 94.489526 iter 20 value 94.258641 iter 30 value 84.603018 iter 40 value 84.600555 iter 50 value 84.545678 iter 60 value 84.540792 iter 70 value 84.536840 iter 80 value 84.532448 iter 90 value 83.956331 iter 100 value 83.812268 final value 83.812268 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.670362 iter 10 value 94.492368 iter 20 value 94.484106 iter 30 value 92.329121 iter 40 value 90.693492 iter 50 value 82.891043 iter 60 value 81.328142 iter 70 value 80.913059 final value 80.912864 converged Fitting Repeat 2 # weights: 507 initial value 109.740570 iter 10 value 94.475517 iter 20 value 94.467620 iter 30 value 93.110351 iter 40 value 88.520227 iter 50 value 85.614577 iter 60 value 82.973898 iter 70 value 82.919181 iter 80 value 82.535342 iter 90 value 82.487849 iter 100 value 82.475344 final value 82.475344 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.024296 iter 10 value 94.450371 iter 20 value 94.439760 iter 30 value 92.352426 iter 40 value 90.987887 iter 50 value 90.967392 iter 60 value 81.668250 iter 70 value 81.444582 iter 80 value 81.444471 iter 90 value 81.444322 iter 100 value 81.335231 final value 81.335231 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.399497 iter 10 value 94.473578 iter 20 value 94.467867 iter 20 value 94.467866 iter 20 value 94.467866 final value 94.467866 converged Fitting Repeat 5 # weights: 507 initial value 102.252727 iter 10 value 94.492882 iter 20 value 94.140496 iter 30 value 86.525384 iter 40 value 84.910083 iter 50 value 84.774540 iter 60 value 84.773005 iter 70 value 84.772685 iter 80 value 84.772625 iter 90 value 84.771685 iter 100 value 82.247197 final value 82.247197 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.045096 iter 10 value 119.318337 iter 20 value 112.517704 iter 30 value 107.111858 iter 40 value 106.886431 iter 50 value 105.170324 iter 60 value 103.493373 iter 70 value 101.738473 iter 80 value 101.053764 iter 90 value 100.715306 iter 100 value 100.623824 final value 100.623824 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 132.310609 iter 10 value 117.688807 iter 20 value 113.806933 iter 30 value 108.709086 iter 40 value 107.232142 iter 50 value 105.868755 iter 60 value 105.407471 iter 70 value 105.059853 iter 80 value 104.442289 iter 90 value 103.541601 iter 100 value 103.286352 final value 103.286352 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.149584 iter 10 value 118.084674 iter 20 value 116.443514 iter 30 value 109.539637 iter 40 value 105.915938 iter 50 value 105.625930 iter 60 value 105.285221 iter 70 value 104.587349 iter 80 value 103.368274 iter 90 value 102.394141 iter 100 value 101.877655 final value 101.877655 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.842323 iter 10 value 117.837858 iter 20 value 115.952294 iter 30 value 106.537026 iter 40 value 102.365941 iter 50 value 101.909274 iter 60 value 101.301356 iter 70 value 100.816051 iter 80 value 100.564026 iter 90 value 100.399059 iter 100 value 100.323839 final value 100.323839 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 134.974967 iter 10 value 118.182237 iter 20 value 117.505432 iter 30 value 109.700323 iter 40 value 108.798836 iter 50 value 108.608025 iter 60 value 104.858658 iter 70 value 104.431303 iter 80 value 103.898754 iter 90 value 102.308565 iter 100 value 101.997607 final value 101.997607 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Nov 19 23:14:47 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 32.545 1.276 50.595
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 24.642 | 1.205 | 25.894 | |
FreqInteractors | 0.174 | 0.011 | 0.185 | |
calculateAAC | 0.028 | 0.007 | 0.034 | |
calculateAutocor | 0.281 | 0.056 | 0.338 | |
calculateCTDC | 0.057 | 0.006 | 0.063 | |
calculateCTDD | 0.419 | 0.017 | 0.438 | |
calculateCTDT | 0.171 | 0.013 | 0.185 | |
calculateCTriad | 0.302 | 0.023 | 0.325 | |
calculateDC | 0.075 | 0.008 | 0.084 | |
calculateF | 0.248 | 0.008 | 0.255 | |
calculateKSAAP | 0.074 | 0.007 | 0.081 | |
calculateQD_Sm | 1.316 | 0.111 | 1.431 | |
calculateTC | 1.258 | 0.125 | 1.387 | |
calculateTC_Sm | 0.192 | 0.012 | 0.205 | |
corr_plot | 25.584 | 1.317 | 26.963 | |
enrichfindP | 0.339 | 0.051 | 39.727 | |
enrichfind_hp | 0.055 | 0.030 | 1.040 | |
enrichplot | 0.282 | 0.009 | 0.292 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.050 | 0.008 | 3.758 | |
getHPI | 0.000 | 0.001 | 0.001 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.056 | 0.005 | 0.062 | |
pred_ensembel | 10.188 | 0.332 | 9.077 | |
var_imp | 27.391 | 1.471 | 28.964 | |