Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-15 12:06 -0400 (Fri, 15 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4818
palomino8Windows Server 2022 Datacenterx644.5.1 (2025-06-13 ucrt) -- "Great Square Root" 4554
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4595
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4537
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4535
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 987/2317HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.15.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-08-14 13:45 -0400 (Thu, 14 Aug 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: b0c624c
git_last_commit_date: 2025-04-15 12:38:30 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.15.0
Command: F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz
StartedAt: 2025-08-15 04:12:19 -0400 (Fri, 15 Aug 2025)
EndedAt: 2025-08-15 04:19:05 -0400 (Fri, 15 Aug 2025)
EllapsedTime: 406.7 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck'
* using R version 4.5.1 (2025-06-13 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.15.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       36.14   1.57   37.81
FSmethod      34.87   1.89   36.97
corr_plot     34.95   1.77   36.73
pred_ensembel 13.50   0.47   14.15
enrichfindP    0.63   0.12   13.83
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.22-bioc/R/library'
* installing *source* package 'HPiP' ...
** this is package 'HPiP' version '1.15.0'
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.088264 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.295848 
iter  10 value 90.369269
iter  20 value 89.575007
iter  30 value 88.993590
iter  40 value 88.968861
iter  50 value 88.968777
final  value 88.968765 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.438282 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.490735 
final  value 93.810010 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.293505 
iter  10 value 93.847410
final  value 93.836068 
converged
Fitting Repeat 1 

# weights:  305
initial  value 129.600932 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.090849 
iter  10 value 93.836196
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.388836 
iter  10 value 94.053794
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 116.108790 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.383428 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.956911 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.195376 
final  value 93.903448 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.815799 
iter  10 value 94.037174
iter  20 value 94.035090
final  value 94.035088 
converged
Fitting Repeat 4 

# weights:  507
initial  value 111.558107 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.391728 
final  value 93.812866 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.988383 
iter  10 value 94.072157
iter  20 value 93.932723
iter  30 value 93.891373
iter  40 value 92.183481
iter  50 value 85.910512
iter  60 value 85.687957
iter  70 value 84.466035
iter  80 value 84.305057
iter  90 value 83.993812
iter 100 value 82.858117
final  value 82.858117 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 105.022090 
iter  10 value 94.055940
iter  20 value 85.781747
iter  30 value 84.591829
iter  40 value 83.774094
iter  50 value 83.255491
iter  60 value 83.227070
final  value 83.227059 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.488056 
iter  10 value 94.057889
iter  20 value 93.994978
iter  30 value 93.911120
iter  40 value 93.896351
iter  50 value 93.851374
iter  60 value 89.080214
iter  70 value 87.126935
iter  80 value 86.015690
iter  90 value 84.295440
iter 100 value 83.746404
final  value 83.746404 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 107.189462 
iter  10 value 93.451324
iter  20 value 86.961206
iter  30 value 86.563153
iter  40 value 86.556180
iter  50 value 85.673346
iter  60 value 85.211430
iter  70 value 85.034605
iter  80 value 83.028312
iter  90 value 82.914391
iter 100 value 82.838713
final  value 82.838713 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.961845 
iter  10 value 94.080537
iter  20 value 93.958348
iter  30 value 93.840821
iter  40 value 93.840338
final  value 93.840336 
converged
Fitting Repeat 1 

# weights:  305
initial  value 114.707322 
iter  10 value 90.127752
iter  20 value 85.781974
iter  30 value 84.148870
iter  40 value 83.347767
iter  50 value 83.087330
iter  60 value 82.009047
iter  70 value 81.671200
iter  80 value 81.616420
iter  90 value 81.532341
iter 100 value 81.477491
final  value 81.477491 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.465594 
iter  10 value 93.780093
iter  20 value 89.979707
iter  30 value 86.747520
iter  40 value 86.659690
iter  50 value 84.422146
iter  60 value 83.242670
iter  70 value 82.787596
iter  80 value 82.711403
iter  90 value 82.589227
iter 100 value 82.514755
final  value 82.514755 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.551649 
iter  10 value 88.217143
iter  20 value 84.801652
iter  30 value 84.447161
iter  40 value 83.999495
iter  50 value 83.249083
iter  60 value 82.863041
iter  70 value 82.805869
iter  80 value 82.790475
iter  90 value 82.544411
iter 100 value 81.848549
final  value 81.848549 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 113.803423 
iter  10 value 94.064513
iter  20 value 93.881058
iter  30 value 93.763807
iter  40 value 85.023657
iter  50 value 84.586659
iter  60 value 84.212181
iter  70 value 83.667657
iter  80 value 82.727582
iter  90 value 81.914079
iter 100 value 81.269558
final  value 81.269558 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.085905 
iter  10 value 95.140579
iter  20 value 94.161125
iter  30 value 85.418537
iter  40 value 84.207055
iter  50 value 82.907175
iter  60 value 81.887755
iter  70 value 81.657590
iter  80 value 81.560770
iter  90 value 81.499412
iter 100 value 81.404930
final  value 81.404930 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 111.072852 
iter  10 value 94.151329
iter  20 value 93.208855
iter  30 value 91.204987
iter  40 value 87.788414
iter  50 value 85.204026
iter  60 value 83.459186
iter  70 value 82.055175
iter  80 value 81.559551
iter  90 value 81.124994
iter 100 value 80.880034
final  value 80.880034 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.253813 
iter  10 value 94.241984
iter  20 value 88.477395
iter  30 value 84.938081
iter  40 value 84.389341
iter  50 value 83.275090
iter  60 value 82.636558
iter  70 value 81.985983
iter  80 value 81.265428
iter  90 value 80.978471
iter 100 value 80.579570
final  value 80.579570 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.351481 
iter  10 value 95.946760
iter  20 value 87.750484
iter  30 value 83.471552
iter  40 value 82.384198
iter  50 value 81.900884
iter  60 value 81.631153
iter  70 value 81.473697
iter  80 value 81.379904
iter  90 value 81.278595
iter 100 value 81.165544
final  value 81.165544 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.842404 
iter  10 value 94.225815
iter  20 value 93.917161
iter  30 value 93.513632
iter  40 value 86.042128
iter  50 value 84.795030
iter  60 value 84.596470
iter  70 value 84.529654
iter  80 value 83.576468
iter  90 value 82.953900
iter 100 value 82.197902
final  value 82.197902 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.240814 
iter  10 value 92.791104
iter  20 value 86.988772
iter  30 value 86.107731
iter  40 value 85.571114
iter  50 value 85.222096
iter  60 value 84.804876
iter  70 value 83.429600
iter  80 value 83.100367
iter  90 value 82.903889
iter 100 value 82.028368
final  value 82.028368 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.365623 
final  value 93.837715 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.923691 
final  value 94.054567 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.794677 
iter  10 value 93.092982
iter  20 value 93.092326
final  value 93.092307 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.315911 
iter  10 value 93.837884
iter  20 value 93.836721
iter  30 value 93.656013
iter  40 value 86.643822
final  value 86.643770 
converged
Fitting Repeat 5 

# weights:  103
initial  value 116.741273 
final  value 94.054811 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.881335 
iter  10 value 94.058408
iter  20 value 94.052937
iter  30 value 86.740638
iter  40 value 85.106781
iter  50 value 85.103258
iter  60 value 85.102579
iter  70 value 85.097149
final  value 85.096022 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.693845 
iter  10 value 94.056859
iter  20 value 94.052916
iter  30 value 92.159225
iter  40 value 88.612035
iter  50 value 88.603007
iter  60 value 88.562972
iter  70 value 88.561991
iter  80 value 88.558554
iter  90 value 85.045275
iter 100 value 84.014331
final  value 84.014331 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 95.178314 
iter  10 value 94.007740
iter  20 value 93.960201
iter  30 value 93.935795
iter  40 value 90.109589
iter  50 value 87.299573
iter  60 value 87.299006
iter  70 value 85.663030
iter  80 value 83.820736
iter  90 value 83.705004
final  value 83.704739 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.269170 
iter  10 value 94.057730
iter  20 value 93.704818
iter  30 value 86.251233
iter  40 value 86.181028
iter  50 value 86.161638
iter  60 value 84.409785
iter  70 value 84.362175
iter  80 value 83.004221
iter  90 value 82.922616
iter 100 value 82.921832
final  value 82.921832 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.297599 
iter  10 value 88.700109
iter  20 value 87.543883
iter  30 value 86.397802
iter  40 value 86.214615
iter  50 value 86.207978
iter  60 value 86.206458
iter  70 value 86.204141
final  value 86.203633 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.667417 
iter  10 value 93.297288
iter  20 value 93.290371
iter  30 value 93.289720
iter  40 value 93.289572
iter  50 value 93.253730
final  value 93.238660 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.425767 
iter  10 value 90.325067
iter  20 value 89.122512
iter  30 value 85.034782
iter  40 value 84.884152
iter  50 value 84.263174
iter  60 value 83.411311
iter  70 value 83.375977
iter  80 value 83.373797
iter  90 value 83.211436
iter 100 value 83.161070
final  value 83.161070 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.792930 
iter  10 value 94.060721
iter  20 value 93.895090
iter  30 value 84.199581
iter  40 value 84.005292
iter  50 value 83.136426
iter  60 value 83.135345
iter  70 value 83.134527
iter  80 value 83.132606
iter  90 value 83.132473
iter 100 value 83.132213
final  value 83.132213 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.261305 
iter  10 value 93.112686
iter  20 value 93.110820
iter  30 value 93.064399
iter  40 value 93.064196
iter  50 value 93.062812
iter  60 value 92.871256
iter  70 value 86.246870
iter  80 value 83.318262
iter  90 value 82.164528
iter 100 value 80.435494
final  value 80.435494 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.724491 
iter  10 value 93.843773
iter  20 value 93.767650
iter  30 value 86.772934
iter  40 value 86.306803
iter  50 value 86.305759
final  value 86.305621 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.997719 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.439697 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.679719 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.754538 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.964133 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.210420 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.943043 
iter  10 value 91.869827
iter  20 value 91.298889
iter  30 value 91.295018
final  value 91.294975 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.612210 
final  value 94.477594 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.671735 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.338982 
iter  10 value 93.599514
iter  20 value 83.017186
iter  30 value 81.555022
iter  40 value 81.418796
final  value 81.418264 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.411465 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.859585 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.103157 
iter  10 value 92.983918
final  value 92.849997 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.344688 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  507
initial  value 116.233107 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.886603 
iter  10 value 94.343655
iter  20 value 87.749705
iter  30 value 86.237783
iter  40 value 84.387502
iter  50 value 83.729648
iter  60 value 83.540203
final  value 83.512413 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.691409 
iter  10 value 92.643877
iter  20 value 84.719020
iter  30 value 84.030196
iter  40 value 83.903552
iter  50 value 83.586155
iter  60 value 83.092947
iter  70 value 83.088187
iter  70 value 83.088187
iter  70 value 83.088187
final  value 83.088187 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.109715 
iter  10 value 94.486851
iter  20 value 90.743046
iter  30 value 86.085005
iter  40 value 83.648433
iter  50 value 82.964074
iter  60 value 82.484669
iter  70 value 82.431913
iter  80 value 82.068570
iter  90 value 81.135603
iter 100 value 80.728027
final  value 80.728027 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 98.487475 
iter  10 value 94.491488
iter  20 value 92.950058
iter  30 value 91.801333
iter  40 value 91.224612
iter  50 value 91.204917
iter  60 value 91.191517
iter  70 value 91.189922
iter  80 value 91.164350
iter  90 value 91.094612
iter 100 value 84.951016
final  value 84.951016 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.749159 
iter  10 value 94.569449
iter  20 value 94.488599
iter  30 value 94.219356
iter  40 value 94.104714
iter  50 value 88.409397
iter  60 value 82.626337
iter  70 value 82.370605
iter  80 value 81.984034
iter  90 value 81.304267
iter 100 value 80.905258
final  value 80.905258 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.832693 
iter  10 value 94.328332
iter  20 value 90.752438
iter  30 value 83.844550
iter  40 value 82.528431
iter  50 value 80.870197
iter  60 value 80.076302
iter  70 value 79.197945
iter  80 value 79.144823
iter  90 value 78.979628
iter 100 value 78.907372
final  value 78.907372 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.389784 
iter  10 value 94.424820
iter  20 value 85.323401
iter  30 value 84.573785
iter  40 value 83.942702
iter  50 value 82.487336
iter  60 value 80.238612
iter  70 value 79.884616
iter  80 value 79.528220
iter  90 value 79.049332
iter 100 value 78.949641
final  value 78.949641 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.493168 
iter  10 value 94.485866
iter  20 value 91.232932
iter  30 value 87.318283
iter  40 value 85.128276
iter  50 value 82.743639
iter  60 value 82.139851
iter  70 value 80.505720
iter  80 value 80.138339
iter  90 value 79.992777
iter 100 value 79.865698
final  value 79.865698 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.922633 
iter  10 value 94.566589
iter  20 value 83.504453
iter  30 value 82.150015
iter  40 value 81.812902
iter  50 value 81.092910
iter  60 value 80.780021
iter  70 value 80.122572
iter  80 value 79.615748
iter  90 value 79.484758
iter 100 value 79.426974
final  value 79.426974 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 121.973093 
iter  10 value 91.091440
iter  20 value 86.717077
iter  30 value 85.116752
iter  40 value 81.061380
iter  50 value 80.516635
iter  60 value 80.196994
iter  70 value 80.105338
iter  80 value 79.984046
iter  90 value 79.324505
iter 100 value 78.989065
final  value 78.989065 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.793030 
iter  10 value 94.677417
iter  20 value 94.246702
iter  30 value 86.742114
iter  40 value 81.741721
iter  50 value 80.943072
iter  60 value 80.350076
iter  70 value 79.950271
iter  80 value 79.734585
iter  90 value 79.360176
iter 100 value 78.983416
final  value 78.983416 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 110.296593 
iter  10 value 91.198041
iter  20 value 87.178711
iter  30 value 84.373676
iter  40 value 83.991350
iter  50 value 83.780563
iter  60 value 83.589671
iter  70 value 83.224588
iter  80 value 83.163288
iter  90 value 83.126270
iter 100 value 82.880315
final  value 82.880315 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.119521 
iter  10 value 94.532272
iter  20 value 92.294435
iter  30 value 82.910383
iter  40 value 81.319547
iter  50 value 81.047833
iter  60 value 80.213776
iter  70 value 79.991993
iter  80 value 79.661497
iter  90 value 79.314451
iter 100 value 78.915604
final  value 78.915604 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.117130 
iter  10 value 94.309004
iter  20 value 87.286104
iter  30 value 82.177200
iter  40 value 80.563864
iter  50 value 79.994846
iter  60 value 79.617544
iter  70 value 79.313102
iter  80 value 79.065351
iter  90 value 78.949391
iter 100 value 78.894297
final  value 78.894297 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.540903 
iter  10 value 93.371389
iter  20 value 84.023388
iter  30 value 83.577121
iter  40 value 83.273666
iter  50 value 81.921505
iter  60 value 81.009607
iter  70 value 80.864529
iter  80 value 80.724662
iter  90 value 80.579789
iter 100 value 80.216963
final  value 80.216963 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.791416 
final  value 94.485864 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.017226 
final  value 94.485704 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.621368 
final  value 94.485644 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.542877 
final  value 94.486027 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.487820 
final  value 94.486034 
converged
Fitting Repeat 1 

# weights:  305
initial  value 115.410170 
iter  10 value 94.489411
iter  20 value 94.483652
iter  30 value 84.635063
iter  40 value 84.379501
final  value 84.281317 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.502562 
iter  10 value 94.489166
iter  20 value 85.656422
iter  30 value 85.652398
iter  40 value 85.247718
final  value 85.247483 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.212311 
iter  10 value 94.349701
iter  20 value 94.346670
final  value 94.345858 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.881549 
iter  10 value 94.503153
iter  20 value 94.497326
iter  30 value 92.550225
iter  40 value 91.539998
iter  50 value 91.536098
iter  60 value 91.528156
iter  70 value 90.007435
iter  80 value 80.780209
iter  90 value 80.754678
iter 100 value 80.746576
final  value 80.746576 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.230225 
iter  10 value 94.489145
iter  20 value 94.370092
iter  30 value 86.129785
iter  40 value 85.999145
iter  50 value 85.192317
iter  60 value 84.321023
iter  70 value 83.759202
iter  80 value 83.555903
iter  90 value 83.255807
iter 100 value 83.254441
final  value 83.254441 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 100.279998 
iter  10 value 94.485439
iter  20 value 94.117444
iter  30 value 92.369417
iter  40 value 90.547737
iter  50 value 90.531165
iter  60 value 90.530115
final  value 90.529363 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.165135 
iter  10 value 94.492316
iter  20 value 94.337476
iter  30 value 87.886145
iter  40 value 82.651177
iter  50 value 82.362736
final  value 82.306492 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.422522 
iter  10 value 88.823923
iter  20 value 84.394447
iter  30 value 84.264560
iter  40 value 83.269427
iter  50 value 83.258939
final  value 83.253926 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.468126 
iter  10 value 94.362381
iter  20 value 94.107203
iter  30 value 84.453225
iter  40 value 83.045942
iter  50 value 81.998138
iter  60 value 81.200252
iter  70 value 80.232724
iter  80 value 79.827973
iter  90 value 79.482192
iter 100 value 78.100131
final  value 78.100131 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.881663 
iter  10 value 94.362979
iter  20 value 94.355259
final  value 94.345708 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.616200 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.994266 
iter  10 value 93.836066
iter  10 value 93.836066
iter  10 value 93.836066
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.164925 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.831187 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.889708 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.109379 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.773707 
final  value 94.052911 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.190223 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 114.220503 
iter  10 value 93.836078
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.112631 
iter  10 value 89.772367
final  value 89.757988 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.244308 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.107885 
iter  10 value 93.895409
iter  20 value 93.771264
iter  30 value 91.614821
iter  40 value 90.482658
iter  50 value 90.470761
iter  60 value 90.468556
final  value 90.468542 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.056652 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.021031 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.290433 
iter  10 value 93.293794
iter  20 value 91.034864
iter  30 value 87.976329
iter  40 value 87.825196
iter  50 value 87.791414
final  value 87.791333 
converged
Fitting Repeat 1 

# weights:  103
initial  value 112.871512 
iter  10 value 93.854006
iter  20 value 88.673345
iter  30 value 85.741865
iter  40 value 84.835211
iter  50 value 84.337300
iter  60 value 84.201240
final  value 84.186105 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.650235 
iter  10 value 94.055743
iter  20 value 94.002814
iter  30 value 93.902773
iter  40 value 93.879509
iter  50 value 93.871596
iter  60 value 86.967172
iter  70 value 82.862696
iter  80 value 82.538910
iter  90 value 81.810871
iter 100 value 79.238338
final  value 79.238338 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 95.509869 
iter  10 value 93.316368
iter  20 value 87.197124
iter  30 value 84.528948
iter  40 value 79.977302
iter  50 value 79.337180
iter  60 value 78.985534
iter  70 value 78.983933
iter  80 value 78.982958
iter  90 value 78.940959
iter 100 value 78.912365
final  value 78.912365 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 104.052367 
iter  10 value 93.999672
iter  20 value 92.197785
iter  30 value 86.014236
iter  40 value 85.158825
iter  50 value 84.742713
iter  60 value 80.284674
iter  70 value 79.229432
iter  80 value 78.874496
iter  90 value 78.768359
iter 100 value 78.717436
final  value 78.717436 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 108.254658 
iter  10 value 92.914974
iter  20 value 84.461716
iter  30 value 83.887930
iter  40 value 83.719461
iter  50 value 83.710302
iter  50 value 83.710301
iter  50 value 83.710301
final  value 83.710301 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.129276 
iter  10 value 94.047925
iter  20 value 88.414057
iter  30 value 87.614871
iter  40 value 82.280679
iter  50 value 80.634925
iter  60 value 80.196469
iter  70 value 79.898880
iter  80 value 79.870818
iter  90 value 79.691723
iter 100 value 78.505614
final  value 78.505614 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 120.436070 
iter  10 value 94.206212
iter  20 value 93.890774
iter  30 value 88.639613
iter  40 value 84.452981
iter  50 value 83.759636
iter  60 value 82.528682
iter  70 value 81.198595
iter  80 value 80.944003
iter  90 value 79.704836
iter 100 value 79.358164
final  value 79.358164 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.045450 
iter  10 value 94.125624
iter  20 value 87.870581
iter  30 value 85.468553
iter  40 value 83.075515
iter  50 value 82.004552
iter  60 value 81.486814
iter  70 value 80.733252
iter  80 value 80.021721
iter  90 value 79.900883
iter 100 value 79.770548
final  value 79.770548 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 116.315057 
iter  10 value 93.952584
iter  20 value 88.357923
iter  30 value 82.992499
iter  40 value 79.998988
iter  50 value 79.576282
iter  60 value 79.346042
iter  70 value 78.731888
iter  80 value 78.088266
iter  90 value 77.557222
iter 100 value 77.374684
final  value 77.374684 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.994135 
iter  10 value 96.593266
iter  20 value 94.170829
iter  30 value 93.527189
iter  40 value 91.037966
iter  50 value 90.083085
iter  60 value 85.200955
iter  70 value 83.681116
iter  80 value 82.378437
iter  90 value 81.350889
iter 100 value 81.137768
final  value 81.137768 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 128.251200 
iter  10 value 94.064195
iter  20 value 91.618532
iter  30 value 84.663488
iter  40 value 82.827086
iter  50 value 82.134959
iter  60 value 81.825674
iter  70 value 79.383259
iter  80 value 79.134374
iter  90 value 79.079874
iter 100 value 78.762779
final  value 78.762779 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 118.572752 
iter  10 value 94.150909
iter  20 value 90.605549
iter  30 value 85.008480
iter  40 value 84.358900
iter  50 value 80.769527
iter  60 value 79.653024
iter  70 value 79.274024
iter  80 value 79.083351
iter  90 value 78.932892
iter 100 value 78.796162
final  value 78.796162 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.860767 
iter  10 value 94.291201
iter  20 value 88.682631
iter  30 value 85.048698
iter  40 value 80.887856
iter  50 value 78.976173
iter  60 value 77.735294
iter  70 value 77.328474
iter  80 value 77.218888
iter  90 value 77.076845
iter 100 value 77.066013
final  value 77.066013 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 127.998533 
iter  10 value 94.134558
iter  20 value 93.552658
iter  30 value 84.896743
iter  40 value 84.146592
iter  50 value 82.136026
iter  60 value 80.932474
iter  70 value 78.750807
iter  80 value 78.220693
iter  90 value 77.808415
iter 100 value 77.538198
final  value 77.538198 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.053370 
iter  10 value 94.569587
iter  20 value 94.158070
iter  30 value 93.849714
iter  40 value 90.819677
iter  50 value 88.623805
iter  60 value 82.701493
iter  70 value 81.803615
iter  80 value 80.222449
iter  90 value 79.745846
iter 100 value 79.370729
final  value 79.370729 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.524145 
iter  10 value 93.837676
iter  20 value 93.836598
final  value 93.835909 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.190672 
final  value 94.054682 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.409874 
iter  10 value 94.053877
final  value 94.053295 
converged
Fitting Repeat 4 

# weights:  103
initial  value 109.451359 
iter  10 value 93.837602
iter  20 value 93.836715
iter  30 value 93.812810
iter  40 value 86.683250
iter  50 value 84.316265
iter  60 value 82.901297
iter  70 value 82.873273
iter  80 value 82.847648
iter  90 value 82.692376
iter 100 value 82.678303
final  value 82.678303 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 95.723466 
iter  10 value 93.837834
iter  20 value 93.836743
final  value 93.836255 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.316854 
iter  10 value 93.814406
iter  20 value 93.760441
iter  30 value 91.996562
iter  40 value 81.907341
iter  50 value 81.882976
iter  60 value 81.881864
iter  70 value 80.315673
iter  80 value 78.355821
iter  90 value 77.163058
iter 100 value 76.657972
final  value 76.657972 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 97.772020 
iter  10 value 94.057837
iter  20 value 94.050017
final  value 93.836343 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.363774 
iter  10 value 94.057505
iter  20 value 93.965028
final  value 93.811247 
converged
Fitting Repeat 4 

# weights:  305
initial  value 110.645915 
iter  10 value 94.063862
iter  20 value 94.058497
iter  30 value 93.788183
iter  40 value 86.676624
iter  50 value 86.549446
iter  60 value 86.547674
iter  70 value 86.541868
iter  80 value 86.217660
iter  90 value 84.760981
iter 100 value 76.941303
final  value 76.941303 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.525663 
iter  10 value 94.057995
iter  20 value 94.052915
iter  20 value 94.052914
final  value 94.052914 
converged
Fitting Repeat 1 

# weights:  507
initial  value 124.062866 
iter  10 value 93.844484
iter  20 value 93.836985
iter  30 value 93.351283
iter  40 value 84.972384
iter  50 value 84.785052
iter  60 value 84.784189
iter  70 value 84.322147
iter  80 value 82.189411
iter  90 value 80.034618
iter 100 value 79.695403
final  value 79.695403 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 114.374364 
iter  10 value 93.846473
iter  20 value 93.840742
iter  30 value 92.938186
iter  40 value 83.986731
iter  50 value 83.805941
iter  60 value 83.803122
final  value 83.803046 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.018320 
iter  10 value 94.060926
iter  20 value 93.523592
iter  30 value 86.811577
iter  40 value 86.597465
iter  50 value 86.584310
iter  60 value 86.419524
final  value 86.419404 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.032737 
iter  10 value 93.847904
iter  20 value 93.798728
iter  30 value 89.298773
iter  40 value 89.289860
iter  50 value 89.175664
iter  60 value 89.135903
iter  70 value 89.017142
final  value 89.017135 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.393344 
iter  10 value 93.854770
iter  20 value 93.842863
iter  30 value 93.828337
iter  40 value 93.825500
iter  50 value 88.323474
iter  60 value 82.483280
iter  70 value 78.313385
iter  80 value 77.925654
iter  90 value 77.923381
iter 100 value 77.922740
final  value 77.922740 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.523429 
iter  10 value 87.042979
final  value 87.032769 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.178210 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.162245 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.160082 
iter  10 value 91.644165
iter  20 value 91.322388
final  value 91.322383 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.600872 
iter  10 value 94.112648
final  value 94.112570 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.139432 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.597218 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.478959 
final  value 94.467391 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.203396 
final  value 94.467391 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.755724 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 125.462748 
iter  10 value 88.446190
iter  20 value 85.103733
iter  30 value 85.097108
iter  40 value 85.095380
final  value 85.095257 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.577791 
iter  10 value 94.066783
iter  10 value 94.066783
iter  10 value 94.066783
final  value 94.066783 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.895707 
iter  10 value 94.466856
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.051545 
iter  10 value 93.422104
iter  20 value 85.239358
iter  30 value 81.738364
iter  40 value 81.737460
final  value 81.737351 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.087254 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.200864 
iter  10 value 94.488561
iter  20 value 94.038570
iter  30 value 93.975094
iter  40 value 93.968513
iter  50 value 93.949036
iter  60 value 87.350753
iter  70 value 82.661343
iter  80 value 82.411859
iter  90 value 82.168193
iter 100 value 80.988943
final  value 80.988943 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.823127 
iter  10 value 93.400538
iter  20 value 83.950412
iter  30 value 82.983122
iter  40 value 82.888105
final  value 82.877881 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.903166 
iter  10 value 94.386187
iter  20 value 92.740364
iter  30 value 89.201872
iter  40 value 87.317832
iter  50 value 86.468914
iter  60 value 84.087613
iter  70 value 82.807937
iter  80 value 82.793271
iter  90 value 82.786053
iter 100 value 82.784560
final  value 82.784560 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 104.293447 
iter  10 value 94.400361
iter  20 value 87.765371
iter  30 value 82.972684
iter  40 value 82.879053
iter  50 value 82.877887
final  value 82.877881 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.054392 
iter  10 value 94.625134
iter  20 value 94.488026
iter  30 value 94.369379
iter  40 value 94.119875
iter  50 value 93.979695
iter  60 value 93.949702
iter  70 value 84.524887
iter  80 value 82.510804
iter  90 value 81.931358
iter 100 value 80.810654
final  value 80.810654 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.120667 
iter  10 value 86.893255
iter  20 value 86.441877
iter  30 value 84.789956
iter  40 value 80.806146
iter  50 value 79.702994
iter  60 value 78.809455
iter  70 value 78.597582
iter  80 value 78.584327
iter  90 value 78.578032
iter 100 value 78.533230
final  value 78.533230 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.901888 
iter  10 value 94.511170
iter  20 value 93.592260
iter  30 value 89.461935
iter  40 value 83.982974
iter  50 value 82.124391
iter  60 value 80.389331
iter  70 value 80.172454
iter  80 value 80.037461
iter  90 value 79.667145
iter 100 value 79.260578
final  value 79.260578 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 128.403232 
iter  10 value 94.494086
iter  20 value 87.264963
iter  30 value 86.224030
iter  40 value 83.716675
iter  50 value 83.479453
iter  60 value 83.108761
iter  70 value 82.515708
iter  80 value 82.078120
iter  90 value 80.922964
iter 100 value 80.591344
final  value 80.591344 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.818990 
iter  10 value 94.534773
iter  20 value 91.040301
iter  30 value 83.771142
iter  40 value 83.170617
iter  50 value 83.009283
iter  60 value 82.832689
iter  70 value 81.186717
iter  80 value 80.327012
iter  90 value 79.561819
iter 100 value 78.974533
final  value 78.974533 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.064808 
iter  10 value 94.499601
iter  20 value 94.312721
iter  30 value 89.808226
iter  40 value 87.062399
iter  50 value 84.571851
iter  60 value 81.598220
iter  70 value 78.902823
iter  80 value 78.689693
iter  90 value 78.566231
iter 100 value 78.435076
final  value 78.435076 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.793102 
iter  10 value 94.539398
iter  20 value 94.489159
iter  30 value 93.594242
iter  40 value 92.398024
iter  50 value 90.730273
iter  60 value 88.252623
iter  70 value 81.330267
iter  80 value 79.714470
iter  90 value 79.533280
iter 100 value 79.353886
final  value 79.353886 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.983222 
iter  10 value 94.308136
iter  20 value 83.858900
iter  30 value 83.209539
iter  40 value 82.117941
iter  50 value 80.713249
iter  60 value 79.807122
iter  70 value 79.074901
iter  80 value 78.696940
iter  90 value 78.631647
iter 100 value 78.458363
final  value 78.458363 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 116.674418 
iter  10 value 95.102500
iter  20 value 94.435325
iter  30 value 93.984650
iter  40 value 89.885160
iter  50 value 87.904971
iter  60 value 87.168311
iter  70 value 84.026916
iter  80 value 83.164393
iter  90 value 82.477214
iter 100 value 81.617787
final  value 81.617787 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.887962 
iter  10 value 94.928270
iter  20 value 91.626144
iter  30 value 84.248409
iter  40 value 82.065045
iter  50 value 81.615027
iter  60 value 81.242332
iter  70 value 81.004985
iter  80 value 80.764901
iter  90 value 80.118282
iter 100 value 79.718779
final  value 79.718779 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.259287 
iter  10 value 91.207953
iter  20 value 87.293825
iter  30 value 86.785901
iter  40 value 82.821202
iter  50 value 80.291049
iter  60 value 79.672305
iter  70 value 79.439193
iter  80 value 79.063179
iter  90 value 78.705738
iter 100 value 78.330331
final  value 78.330331 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.125510 
final  value 94.485747 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.888507 
final  value 94.485784 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.276775 
final  value 94.485916 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.223198 
final  value 94.486014 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.335354 
iter  10 value 94.485802
iter  20 value 94.484227
final  value 94.484213 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.006174 
iter  10 value 93.408337
iter  20 value 93.396559
iter  30 value 93.392533
iter  40 value 90.981098
iter  50 value 90.552257
iter  60 value 90.177185
iter  70 value 90.057795
final  value 90.055405 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.815648 
iter  10 value 94.149346
iter  20 value 90.743073
iter  30 value 86.749013
iter  40 value 83.220353
iter  50 value 81.204161
iter  60 value 81.198635
final  value 81.198194 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.554821 
iter  10 value 94.472051
iter  20 value 94.466146
iter  30 value 83.819155
iter  40 value 82.094592
iter  50 value 82.094128
final  value 82.093770 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.648590 
iter  10 value 94.489157
iter  20 value 94.464019
iter  30 value 93.826791
iter  40 value 91.459284
iter  50 value 91.395206
iter  60 value 91.090645
iter  70 value 91.083031
final  value 91.082966 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.954634 
iter  10 value 94.489477
iter  20 value 94.484422
final  value 94.484363 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.514761 
iter  10 value 94.492897
iter  20 value 92.408219
iter  30 value 90.400566
final  value 90.386563 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.250010 
iter  10 value 93.875724
iter  20 value 93.433056
iter  30 value 93.430886
iter  40 value 93.426901
iter  50 value 93.423779
iter  60 value 93.197167
iter  70 value 84.044899
iter  80 value 83.872680
iter  90 value 81.601672
iter 100 value 78.973549
final  value 78.973549 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 98.746139 
iter  10 value 94.467247
iter  20 value 92.123275
iter  30 value 85.158318
iter  40 value 81.459071
iter  50 value 81.420998
iter  60 value 81.414431
iter  70 value 80.278687
iter  80 value 80.050848
iter  90 value 79.955771
iter 100 value 79.952115
final  value 79.952115 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.143523 
iter  10 value 94.363367
iter  20 value 90.424531
iter  30 value 90.398899
iter  40 value 90.291189
iter  50 value 90.231649
iter  60 value 90.231581
final  value 90.231569 
converged
Fitting Repeat 5 

# weights:  507
initial  value 110.298602 
iter  10 value 94.492799
iter  20 value 94.448429
iter  30 value 94.201625
iter  40 value 94.146329
iter  50 value 94.144234
iter  60 value 94.137259
iter  70 value 94.136235
iter  80 value 94.135871
iter  90 value 94.135583
final  value 94.135126 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.263560 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.948521 
final  value 94.057229 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.176448 
iter  10 value 93.919416
iter  20 value 93.889023
final  value 93.888889 
converged
Fitting Repeat 4 

# weights:  103
initial  value 105.884385 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.524764 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.582281 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.954506 
final  value 94.482478 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.713139 
iter  10 value 91.394347
final  value 91.321633 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.148175 
iter  10 value 94.558212
iter  20 value 91.104530
iter  30 value 89.277750
iter  40 value 88.113167
iter  50 value 86.621068
iter  60 value 86.446064
iter  70 value 86.440572
iter  80 value 86.391466
final  value 86.389501 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.677930 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.391998 
final  value 94.275363 
converged
Fitting Repeat 2 

# weights:  507
initial  value 94.833079 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.853553 
iter  10 value 91.157426
iter  20 value 87.593887
iter  30 value 87.590735
final  value 87.590732 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.858484 
final  value 94.275362 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.008548 
iter  10 value 94.275363
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.235401 
iter  10 value 94.501232
iter  20 value 94.425019
iter  30 value 93.970146
iter  40 value 92.409183
iter  50 value 88.641504
iter  60 value 88.575483
iter  70 value 88.574304
iter  80 value 88.537364
iter  90 value 88.381765
iter 100 value 85.857694
final  value 85.857694 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 108.388261 
iter  10 value 87.472617
iter  20 value 86.404565
iter  30 value 85.526699
iter  40 value 85.506787
final  value 85.505404 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.054839 
iter  10 value 94.242774
iter  20 value 88.658982
iter  30 value 88.383088
iter  40 value 88.294167
iter  50 value 88.244048
iter  60 value 85.713815
iter  70 value 85.420127
final  value 85.411355 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.636082 
iter  10 value 94.518378
iter  20 value 94.134326
iter  30 value 89.498588
iter  40 value 88.860783
iter  50 value 86.233259
iter  60 value 85.982667
iter  70 value 85.718744
iter  80 value 85.620839
iter  90 value 85.465640
iter 100 value 85.411440
final  value 85.411440 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.409152 
iter  10 value 94.491254
iter  20 value 94.486652
iter  30 value 90.216014
iter  40 value 86.050206
iter  50 value 85.930196
iter  60 value 85.873820
iter  70 value 85.692883
iter  80 value 85.518619
iter  90 value 85.412116
final  value 85.411355 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.248536 
iter  10 value 94.421482
iter  20 value 92.698635
iter  30 value 91.678485
iter  40 value 87.868089
iter  50 value 86.914722
iter  60 value 86.011792
iter  70 value 84.597616
iter  80 value 84.362858
iter  90 value 84.149248
iter 100 value 84.033986
final  value 84.033986 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 134.465946 
iter  10 value 94.473092
iter  20 value 88.444680
iter  30 value 86.519369
iter  40 value 85.985600
iter  50 value 85.857058
iter  60 value 85.264013
iter  70 value 84.264005
iter  80 value 83.897914
iter  90 value 83.707634
iter 100 value 83.651875
final  value 83.651875 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.194706 
iter  10 value 94.221084
iter  20 value 88.600247
iter  30 value 87.610030
iter  40 value 85.699633
iter  50 value 84.991656
iter  60 value 84.096624
iter  70 value 83.274577
iter  80 value 83.001739
iter  90 value 82.867390
iter 100 value 82.758847
final  value 82.758847 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.125704 
iter  10 value 91.540187
iter  20 value 87.299827
iter  30 value 84.931634
iter  40 value 83.974439
iter  50 value 83.465207
iter  60 value 82.970605
iter  70 value 82.748953
iter  80 value 82.668098
iter  90 value 82.654824
iter 100 value 82.643910
final  value 82.643910 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.099762 
iter  10 value 94.326439
iter  20 value 88.403495
iter  30 value 87.734708
iter  40 value 87.291114
iter  50 value 86.068122
iter  60 value 85.406941
iter  70 value 84.125995
iter  80 value 83.719008
iter  90 value 83.123454
iter 100 value 82.833052
final  value 82.833052 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.927447 
iter  10 value 94.692598
iter  20 value 93.645281
iter  30 value 87.408057
iter  40 value 85.928778
iter  50 value 85.078918
iter  60 value 83.628566
iter  70 value 82.889316
iter  80 value 82.763718
iter  90 value 82.516964
iter 100 value 82.376356
final  value 82.376356 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.612922 
iter  10 value 94.669854
iter  20 value 89.447389
iter  30 value 86.686390
iter  40 value 85.774226
iter  50 value 85.642537
iter  60 value 84.893830
iter  70 value 84.136677
iter  80 value 82.983093
iter  90 value 82.687444
iter 100 value 82.634372
final  value 82.634372 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 124.794176 
iter  10 value 95.323591
iter  20 value 87.673324
iter  30 value 85.670101
iter  40 value 85.058208
iter  50 value 84.095491
iter  60 value 83.517277
iter  70 value 83.081934
iter  80 value 83.036230
iter  90 value 82.912724
iter 100 value 82.857928
final  value 82.857928 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 122.355149 
iter  10 value 94.375466
iter  20 value 88.705139
iter  30 value 88.276970
iter  40 value 86.915540
iter  50 value 85.865223
iter  60 value 85.572941
iter  70 value 85.181848
iter  80 value 83.969158
iter  90 value 83.527631
iter 100 value 83.394734
final  value 83.394734 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.034935 
iter  10 value 94.493395
iter  20 value 84.834867
iter  30 value 83.846745
iter  40 value 83.396847
iter  50 value 83.251538
iter  60 value 83.029881
iter  70 value 82.784543
iter  80 value 82.615151
iter  90 value 82.512934
iter 100 value 82.312781
final  value 82.312781 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.415500 
final  value 94.486003 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.011586 
iter  10 value 93.947687
iter  20 value 93.924117
iter  30 value 93.923640
iter  40 value 93.923219
iter  50 value 93.865829
final  value 93.865183 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.007296 
iter  10 value 94.485803
final  value 94.484248 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.704380 
final  value 94.485787 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.958599 
final  value 94.058913 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.142434 
iter  10 value 94.488715
iter  20 value 94.475442
iter  30 value 94.326468
final  value 94.326392 
converged
Fitting Repeat 2 

# weights:  305
initial  value 121.248254 
iter  10 value 94.489532
iter  20 value 94.314381
iter  30 value 91.019486
iter  40 value 86.438590
iter  50 value 86.275649
iter  60 value 86.275393
final  value 86.274971 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.667962 
iter  10 value 92.942095
iter  20 value 92.797768
iter  30 value 92.795983
iter  40 value 92.791240
iter  50 value 91.690975
iter  60 value 87.429033
iter  70 value 87.189062
iter  80 value 87.176359
final  value 87.152893 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.313858 
iter  10 value 94.489491
iter  20 value 94.485071
iter  30 value 87.099887
iter  40 value 86.549918
iter  50 value 86.287789
iter  60 value 86.258845
iter  70 value 86.257788
iter  80 value 86.218042
iter  90 value 86.217241
iter 100 value 86.216985
final  value 86.216985 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.141391 
iter  10 value 94.280466
iter  20 value 94.275914
final  value 94.275642 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.690679 
iter  10 value 94.491951
iter  20 value 94.484681
iter  30 value 94.410259
iter  40 value 91.230910
iter  50 value 86.550581
iter  60 value 86.503532
iter  70 value 86.500090
iter  80 value 84.717584
iter  90 value 84.697395
iter 100 value 84.691828
final  value 84.691828 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.163610 
iter  10 value 94.283403
iter  20 value 93.598667
iter  30 value 86.928167
iter  40 value 85.063248
final  value 85.063229 
converged
Fitting Repeat 3 

# weights:  507
initial  value 114.714186 
iter  10 value 94.283419
iter  20 value 94.276459
final  value 94.276390 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.712369 
iter  10 value 94.283597
iter  20 value 94.277380
iter  30 value 93.643893
iter  40 value 90.799201
iter  50 value 89.337238
iter  60 value 89.335807
iter  70 value 89.335441
iter  80 value 89.333261
iter  90 value 88.117569
iter 100 value 87.757439
final  value 87.757439 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.772577 
iter  10 value 94.492352
iter  20 value 94.459696
iter  30 value 93.201996
iter  40 value 85.966151
iter  50 value 85.907491
iter  60 value 83.766426
iter  70 value 83.291247
iter  80 value 83.289101
iter  90 value 83.274465
iter 100 value 82.659111
final  value 82.659111 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 134.046290 
iter  10 value 117.708829
iter  20 value 115.009785
iter  30 value 107.939393
iter  40 value 105.467931
iter  50 value 104.508672
iter  60 value 102.383467
iter  70 value 102.081166
iter  80 value 101.774923
iter  90 value 101.076127
iter 100 value 100.770931
final  value 100.770931 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 153.002508 
iter  10 value 119.776868
iter  20 value 112.397503
iter  30 value 110.912461
iter  40 value 109.281833
iter  50 value 108.933500
iter  60 value 106.088621
iter  70 value 103.190941
iter  80 value 102.280976
iter  90 value 101.979430
iter 100 value 101.359512
final  value 101.359512 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 143.580644 
iter  10 value 116.754729
iter  20 value 111.509118
iter  30 value 110.055578
iter  40 value 106.146968
iter  50 value 104.709791
iter  60 value 104.382857
iter  70 value 104.332732
iter  80 value 104.271475
iter  90 value 103.466736
iter 100 value 102.000566
final  value 102.000566 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 129.877437 
iter  10 value 118.087261
iter  20 value 112.127587
iter  30 value 110.583561
iter  40 value 109.573695
iter  50 value 106.878741
iter  60 value 105.147922
iter  70 value 104.338742
iter  80 value 103.066477
iter  90 value 101.662261
iter 100 value 101.117877
final  value 101.117877 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 128.413780 
iter  10 value 117.899440
iter  20 value 115.020802
iter  30 value 106.533150
iter  40 value 106.225906
iter  50 value 105.881224
iter  60 value 105.310575
iter  70 value 104.849578
iter  80 value 104.360516
iter  90 value 103.141663
iter 100 value 102.706927
final  value 102.706927 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Aug 15 04:18:55 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  45.12    1.45  141.70 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.87 1.8936.97
FreqInteractors0.260.010.29
calculateAAC0.000.070.06
calculateAutocor0.530.110.64
calculateCTDC0.110.010.13
calculateCTDD0.810.060.87
calculateCTDT0.310.020.33
calculateCTriad0.500.010.52
calculateDC0.100.000.09
calculateF0.420.050.47
calculateKSAAP0.140.020.15
calculateQD_Sm2.310.112.43
calculateTC2.030.122.15
calculateTC_Sm0.300.080.38
corr_plot34.95 1.7736.73
enrichfindP 0.63 0.1213.83
enrichfind_hp0.290.021.61
enrichplot0.320.000.37
filter_missing_values000
getFASTA0.010.002.24
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data0.000.010.01
plotPPI0.060.020.16
pred_ensembel13.50 0.4714.15
var_imp36.14 1.5737.81