Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-08-15 12:06 -0400 (Fri, 15 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4818 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" | 4554 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4595 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4537 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4535 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2317 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-08-15 04:12:19 -0400 (Fri, 15 Aug 2025) |
EndedAt: 2025-08-15 04:19:05 -0400 (Fri, 15 Aug 2025) |
EllapsedTime: 406.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.22-bioc\R\library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck' * using R version 4.5.1 (2025-06-13 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.15.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 36.14 1.57 37.81 FSmethod 34.87 1.89 36.97 corr_plot 34.95 1.77 36.73 pred_ensembel 13.50 0.47 14.15 enrichfindP 0.63 0.12 13.83 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'F:/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.22-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.22-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.15.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.088264 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.295848 iter 10 value 90.369269 iter 20 value 89.575007 iter 30 value 88.993590 iter 40 value 88.968861 iter 50 value 88.968777 final value 88.968765 converged Fitting Repeat 3 # weights: 103 initial value 97.438282 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.490735 final value 93.810010 converged Fitting Repeat 5 # weights: 103 initial value 95.293505 iter 10 value 93.847410 final value 93.836068 converged Fitting Repeat 1 # weights: 305 initial value 129.600932 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 102.090849 iter 10 value 93.836196 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 98.388836 iter 10 value 94.053794 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 116.108790 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 113.383428 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.956911 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 109.195376 final value 93.903448 converged Fitting Repeat 3 # weights: 507 initial value 110.815799 iter 10 value 94.037174 iter 20 value 94.035090 final value 94.035088 converged Fitting Repeat 4 # weights: 507 initial value 111.558107 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 96.391728 final value 93.812866 converged Fitting Repeat 1 # weights: 103 initial value 104.988383 iter 10 value 94.072157 iter 20 value 93.932723 iter 30 value 93.891373 iter 40 value 92.183481 iter 50 value 85.910512 iter 60 value 85.687957 iter 70 value 84.466035 iter 80 value 84.305057 iter 90 value 83.993812 iter 100 value 82.858117 final value 82.858117 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.022090 iter 10 value 94.055940 iter 20 value 85.781747 iter 30 value 84.591829 iter 40 value 83.774094 iter 50 value 83.255491 iter 60 value 83.227070 final value 83.227059 converged Fitting Repeat 3 # weights: 103 initial value 97.488056 iter 10 value 94.057889 iter 20 value 93.994978 iter 30 value 93.911120 iter 40 value 93.896351 iter 50 value 93.851374 iter 60 value 89.080214 iter 70 value 87.126935 iter 80 value 86.015690 iter 90 value 84.295440 iter 100 value 83.746404 final value 83.746404 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.189462 iter 10 value 93.451324 iter 20 value 86.961206 iter 30 value 86.563153 iter 40 value 86.556180 iter 50 value 85.673346 iter 60 value 85.211430 iter 70 value 85.034605 iter 80 value 83.028312 iter 90 value 82.914391 iter 100 value 82.838713 final value 82.838713 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.961845 iter 10 value 94.080537 iter 20 value 93.958348 iter 30 value 93.840821 iter 40 value 93.840338 final value 93.840336 converged Fitting Repeat 1 # weights: 305 initial value 114.707322 iter 10 value 90.127752 iter 20 value 85.781974 iter 30 value 84.148870 iter 40 value 83.347767 iter 50 value 83.087330 iter 60 value 82.009047 iter 70 value 81.671200 iter 80 value 81.616420 iter 90 value 81.532341 iter 100 value 81.477491 final value 81.477491 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.465594 iter 10 value 93.780093 iter 20 value 89.979707 iter 30 value 86.747520 iter 40 value 86.659690 iter 50 value 84.422146 iter 60 value 83.242670 iter 70 value 82.787596 iter 80 value 82.711403 iter 90 value 82.589227 iter 100 value 82.514755 final value 82.514755 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.551649 iter 10 value 88.217143 iter 20 value 84.801652 iter 30 value 84.447161 iter 40 value 83.999495 iter 50 value 83.249083 iter 60 value 82.863041 iter 70 value 82.805869 iter 80 value 82.790475 iter 90 value 82.544411 iter 100 value 81.848549 final value 81.848549 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.803423 iter 10 value 94.064513 iter 20 value 93.881058 iter 30 value 93.763807 iter 40 value 85.023657 iter 50 value 84.586659 iter 60 value 84.212181 iter 70 value 83.667657 iter 80 value 82.727582 iter 90 value 81.914079 iter 100 value 81.269558 final value 81.269558 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.085905 iter 10 value 95.140579 iter 20 value 94.161125 iter 30 value 85.418537 iter 40 value 84.207055 iter 50 value 82.907175 iter 60 value 81.887755 iter 70 value 81.657590 iter 80 value 81.560770 iter 90 value 81.499412 iter 100 value 81.404930 final value 81.404930 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.072852 iter 10 value 94.151329 iter 20 value 93.208855 iter 30 value 91.204987 iter 40 value 87.788414 iter 50 value 85.204026 iter 60 value 83.459186 iter 70 value 82.055175 iter 80 value 81.559551 iter 90 value 81.124994 iter 100 value 80.880034 final value 80.880034 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.253813 iter 10 value 94.241984 iter 20 value 88.477395 iter 30 value 84.938081 iter 40 value 84.389341 iter 50 value 83.275090 iter 60 value 82.636558 iter 70 value 81.985983 iter 80 value 81.265428 iter 90 value 80.978471 iter 100 value 80.579570 final value 80.579570 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.351481 iter 10 value 95.946760 iter 20 value 87.750484 iter 30 value 83.471552 iter 40 value 82.384198 iter 50 value 81.900884 iter 60 value 81.631153 iter 70 value 81.473697 iter 80 value 81.379904 iter 90 value 81.278595 iter 100 value 81.165544 final value 81.165544 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.842404 iter 10 value 94.225815 iter 20 value 93.917161 iter 30 value 93.513632 iter 40 value 86.042128 iter 50 value 84.795030 iter 60 value 84.596470 iter 70 value 84.529654 iter 80 value 83.576468 iter 90 value 82.953900 iter 100 value 82.197902 final value 82.197902 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.240814 iter 10 value 92.791104 iter 20 value 86.988772 iter 30 value 86.107731 iter 40 value 85.571114 iter 50 value 85.222096 iter 60 value 84.804876 iter 70 value 83.429600 iter 80 value 83.100367 iter 90 value 82.903889 iter 100 value 82.028368 final value 82.028368 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.365623 final value 93.837715 converged Fitting Repeat 2 # weights: 103 initial value 94.923691 final value 94.054567 converged Fitting Repeat 3 # weights: 103 initial value 100.794677 iter 10 value 93.092982 iter 20 value 93.092326 final value 93.092307 converged Fitting Repeat 4 # weights: 103 initial value 101.315911 iter 10 value 93.837884 iter 20 value 93.836721 iter 30 value 93.656013 iter 40 value 86.643822 final value 86.643770 converged Fitting Repeat 5 # weights: 103 initial value 116.741273 final value 94.054811 converged Fitting Repeat 1 # weights: 305 initial value 105.881335 iter 10 value 94.058408 iter 20 value 94.052937 iter 30 value 86.740638 iter 40 value 85.106781 iter 50 value 85.103258 iter 60 value 85.102579 iter 70 value 85.097149 final value 85.096022 converged Fitting Repeat 2 # weights: 305 initial value 100.693845 iter 10 value 94.056859 iter 20 value 94.052916 iter 30 value 92.159225 iter 40 value 88.612035 iter 50 value 88.603007 iter 60 value 88.562972 iter 70 value 88.561991 iter 80 value 88.558554 iter 90 value 85.045275 iter 100 value 84.014331 final value 84.014331 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.178314 iter 10 value 94.007740 iter 20 value 93.960201 iter 30 value 93.935795 iter 40 value 90.109589 iter 50 value 87.299573 iter 60 value 87.299006 iter 70 value 85.663030 iter 80 value 83.820736 iter 90 value 83.705004 final value 83.704739 converged Fitting Repeat 4 # weights: 305 initial value 102.269170 iter 10 value 94.057730 iter 20 value 93.704818 iter 30 value 86.251233 iter 40 value 86.181028 iter 50 value 86.161638 iter 60 value 84.409785 iter 70 value 84.362175 iter 80 value 83.004221 iter 90 value 82.922616 iter 100 value 82.921832 final value 82.921832 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.297599 iter 10 value 88.700109 iter 20 value 87.543883 iter 30 value 86.397802 iter 40 value 86.214615 iter 50 value 86.207978 iter 60 value 86.206458 iter 70 value 86.204141 final value 86.203633 converged Fitting Repeat 1 # weights: 507 initial value 98.667417 iter 10 value 93.297288 iter 20 value 93.290371 iter 30 value 93.289720 iter 40 value 93.289572 iter 50 value 93.253730 final value 93.238660 converged Fitting Repeat 2 # weights: 507 initial value 101.425767 iter 10 value 90.325067 iter 20 value 89.122512 iter 30 value 85.034782 iter 40 value 84.884152 iter 50 value 84.263174 iter 60 value 83.411311 iter 70 value 83.375977 iter 80 value 83.373797 iter 90 value 83.211436 iter 100 value 83.161070 final value 83.161070 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.792930 iter 10 value 94.060721 iter 20 value 93.895090 iter 30 value 84.199581 iter 40 value 84.005292 iter 50 value 83.136426 iter 60 value 83.135345 iter 70 value 83.134527 iter 80 value 83.132606 iter 90 value 83.132473 iter 100 value 83.132213 final value 83.132213 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.261305 iter 10 value 93.112686 iter 20 value 93.110820 iter 30 value 93.064399 iter 40 value 93.064196 iter 50 value 93.062812 iter 60 value 92.871256 iter 70 value 86.246870 iter 80 value 83.318262 iter 90 value 82.164528 iter 100 value 80.435494 final value 80.435494 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.724491 iter 10 value 93.843773 iter 20 value 93.767650 iter 30 value 86.772934 iter 40 value 86.306803 iter 50 value 86.305759 final value 86.305621 converged Fitting Repeat 1 # weights: 103 initial value 106.997719 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.439697 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.679719 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.754538 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.964133 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.210420 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.943043 iter 10 value 91.869827 iter 20 value 91.298889 iter 30 value 91.295018 final value 91.294975 converged Fitting Repeat 3 # weights: 305 initial value 101.612210 final value 94.477594 converged Fitting Repeat 4 # weights: 305 initial value 101.671735 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.338982 iter 10 value 93.599514 iter 20 value 83.017186 iter 30 value 81.555022 iter 40 value 81.418796 final value 81.418264 converged Fitting Repeat 1 # weights: 507 initial value 99.411465 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 107.859585 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 105.103157 iter 10 value 92.983918 final value 92.849997 converged Fitting Repeat 4 # weights: 507 initial value 101.344688 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 116.233107 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.886603 iter 10 value 94.343655 iter 20 value 87.749705 iter 30 value 86.237783 iter 40 value 84.387502 iter 50 value 83.729648 iter 60 value 83.540203 final value 83.512413 converged Fitting Repeat 2 # weights: 103 initial value 106.691409 iter 10 value 92.643877 iter 20 value 84.719020 iter 30 value 84.030196 iter 40 value 83.903552 iter 50 value 83.586155 iter 60 value 83.092947 iter 70 value 83.088187 iter 70 value 83.088187 iter 70 value 83.088187 final value 83.088187 converged Fitting Repeat 3 # weights: 103 initial value 98.109715 iter 10 value 94.486851 iter 20 value 90.743046 iter 30 value 86.085005 iter 40 value 83.648433 iter 50 value 82.964074 iter 60 value 82.484669 iter 70 value 82.431913 iter 80 value 82.068570 iter 90 value 81.135603 iter 100 value 80.728027 final value 80.728027 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.487475 iter 10 value 94.491488 iter 20 value 92.950058 iter 30 value 91.801333 iter 40 value 91.224612 iter 50 value 91.204917 iter 60 value 91.191517 iter 70 value 91.189922 iter 80 value 91.164350 iter 90 value 91.094612 iter 100 value 84.951016 final value 84.951016 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.749159 iter 10 value 94.569449 iter 20 value 94.488599 iter 30 value 94.219356 iter 40 value 94.104714 iter 50 value 88.409397 iter 60 value 82.626337 iter 70 value 82.370605 iter 80 value 81.984034 iter 90 value 81.304267 iter 100 value 80.905258 final value 80.905258 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.832693 iter 10 value 94.328332 iter 20 value 90.752438 iter 30 value 83.844550 iter 40 value 82.528431 iter 50 value 80.870197 iter 60 value 80.076302 iter 70 value 79.197945 iter 80 value 79.144823 iter 90 value 78.979628 iter 100 value 78.907372 final value 78.907372 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.389784 iter 10 value 94.424820 iter 20 value 85.323401 iter 30 value 84.573785 iter 40 value 83.942702 iter 50 value 82.487336 iter 60 value 80.238612 iter 70 value 79.884616 iter 80 value 79.528220 iter 90 value 79.049332 iter 100 value 78.949641 final value 78.949641 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.493168 iter 10 value 94.485866 iter 20 value 91.232932 iter 30 value 87.318283 iter 40 value 85.128276 iter 50 value 82.743639 iter 60 value 82.139851 iter 70 value 80.505720 iter 80 value 80.138339 iter 90 value 79.992777 iter 100 value 79.865698 final value 79.865698 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.922633 iter 10 value 94.566589 iter 20 value 83.504453 iter 30 value 82.150015 iter 40 value 81.812902 iter 50 value 81.092910 iter 60 value 80.780021 iter 70 value 80.122572 iter 80 value 79.615748 iter 90 value 79.484758 iter 100 value 79.426974 final value 79.426974 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.973093 iter 10 value 91.091440 iter 20 value 86.717077 iter 30 value 85.116752 iter 40 value 81.061380 iter 50 value 80.516635 iter 60 value 80.196994 iter 70 value 80.105338 iter 80 value 79.984046 iter 90 value 79.324505 iter 100 value 78.989065 final value 78.989065 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.793030 iter 10 value 94.677417 iter 20 value 94.246702 iter 30 value 86.742114 iter 40 value 81.741721 iter 50 value 80.943072 iter 60 value 80.350076 iter 70 value 79.950271 iter 80 value 79.734585 iter 90 value 79.360176 iter 100 value 78.983416 final value 78.983416 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.296593 iter 10 value 91.198041 iter 20 value 87.178711 iter 30 value 84.373676 iter 40 value 83.991350 iter 50 value 83.780563 iter 60 value 83.589671 iter 70 value 83.224588 iter 80 value 83.163288 iter 90 value 83.126270 iter 100 value 82.880315 final value 82.880315 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.119521 iter 10 value 94.532272 iter 20 value 92.294435 iter 30 value 82.910383 iter 40 value 81.319547 iter 50 value 81.047833 iter 60 value 80.213776 iter 70 value 79.991993 iter 80 value 79.661497 iter 90 value 79.314451 iter 100 value 78.915604 final value 78.915604 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.117130 iter 10 value 94.309004 iter 20 value 87.286104 iter 30 value 82.177200 iter 40 value 80.563864 iter 50 value 79.994846 iter 60 value 79.617544 iter 70 value 79.313102 iter 80 value 79.065351 iter 90 value 78.949391 iter 100 value 78.894297 final value 78.894297 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.540903 iter 10 value 93.371389 iter 20 value 84.023388 iter 30 value 83.577121 iter 40 value 83.273666 iter 50 value 81.921505 iter 60 value 81.009607 iter 70 value 80.864529 iter 80 value 80.724662 iter 90 value 80.579789 iter 100 value 80.216963 final value 80.216963 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.791416 final value 94.485864 converged Fitting Repeat 2 # weights: 103 initial value 104.017226 final value 94.485704 converged Fitting Repeat 3 # weights: 103 initial value 107.621368 final value 94.485644 converged Fitting Repeat 4 # weights: 103 initial value 101.542877 final value 94.486027 converged Fitting Repeat 5 # weights: 103 initial value 96.487820 final value 94.486034 converged Fitting Repeat 1 # weights: 305 initial value 115.410170 iter 10 value 94.489411 iter 20 value 94.483652 iter 30 value 84.635063 iter 40 value 84.379501 final value 84.281317 converged Fitting Repeat 2 # weights: 305 initial value 107.502562 iter 10 value 94.489166 iter 20 value 85.656422 iter 30 value 85.652398 iter 40 value 85.247718 final value 85.247483 converged Fitting Repeat 3 # weights: 305 initial value 101.212311 iter 10 value 94.349701 iter 20 value 94.346670 final value 94.345858 converged Fitting Repeat 4 # weights: 305 initial value 108.881549 iter 10 value 94.503153 iter 20 value 94.497326 iter 30 value 92.550225 iter 40 value 91.539998 iter 50 value 91.536098 iter 60 value 91.528156 iter 70 value 90.007435 iter 80 value 80.780209 iter 90 value 80.754678 iter 100 value 80.746576 final value 80.746576 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.230225 iter 10 value 94.489145 iter 20 value 94.370092 iter 30 value 86.129785 iter 40 value 85.999145 iter 50 value 85.192317 iter 60 value 84.321023 iter 70 value 83.759202 iter 80 value 83.555903 iter 90 value 83.255807 iter 100 value 83.254441 final value 83.254441 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.279998 iter 10 value 94.485439 iter 20 value 94.117444 iter 30 value 92.369417 iter 40 value 90.547737 iter 50 value 90.531165 iter 60 value 90.530115 final value 90.529363 converged Fitting Repeat 2 # weights: 507 initial value 98.165135 iter 10 value 94.492316 iter 20 value 94.337476 iter 30 value 87.886145 iter 40 value 82.651177 iter 50 value 82.362736 final value 82.306492 converged Fitting Repeat 3 # weights: 507 initial value 112.422522 iter 10 value 88.823923 iter 20 value 84.394447 iter 30 value 84.264560 iter 40 value 83.269427 iter 50 value 83.258939 final value 83.253926 converged Fitting Repeat 4 # weights: 507 initial value 117.468126 iter 10 value 94.362381 iter 20 value 94.107203 iter 30 value 84.453225 iter 40 value 83.045942 iter 50 value 81.998138 iter 60 value 81.200252 iter 70 value 80.232724 iter 80 value 79.827973 iter 90 value 79.482192 iter 100 value 78.100131 final value 78.100131 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.881663 iter 10 value 94.362979 iter 20 value 94.355259 final value 94.345708 converged Fitting Repeat 1 # weights: 103 initial value 96.616200 final value 93.836066 converged Fitting Repeat 2 # weights: 103 initial value 100.994266 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 3 # weights: 103 initial value 98.164925 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.831187 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.889708 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.109379 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 101.773707 final value 94.052911 converged Fitting Repeat 3 # weights: 305 initial value 106.190223 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 114.220503 iter 10 value 93.836078 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 96.112631 iter 10 value 89.772367 final value 89.757988 converged Fitting Repeat 1 # weights: 507 initial value 114.244308 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 102.107885 iter 10 value 93.895409 iter 20 value 93.771264 iter 30 value 91.614821 iter 40 value 90.482658 iter 50 value 90.470761 iter 60 value 90.468556 final value 90.468542 converged Fitting Repeat 3 # weights: 507 initial value 97.056652 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 100.021031 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 105.290433 iter 10 value 93.293794 iter 20 value 91.034864 iter 30 value 87.976329 iter 40 value 87.825196 iter 50 value 87.791414 final value 87.791333 converged Fitting Repeat 1 # weights: 103 initial value 112.871512 iter 10 value 93.854006 iter 20 value 88.673345 iter 30 value 85.741865 iter 40 value 84.835211 iter 50 value 84.337300 iter 60 value 84.201240 final value 84.186105 converged Fitting Repeat 2 # weights: 103 initial value 100.650235 iter 10 value 94.055743 iter 20 value 94.002814 iter 30 value 93.902773 iter 40 value 93.879509 iter 50 value 93.871596 iter 60 value 86.967172 iter 70 value 82.862696 iter 80 value 82.538910 iter 90 value 81.810871 iter 100 value 79.238338 final value 79.238338 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.509869 iter 10 value 93.316368 iter 20 value 87.197124 iter 30 value 84.528948 iter 40 value 79.977302 iter 50 value 79.337180 iter 60 value 78.985534 iter 70 value 78.983933 iter 80 value 78.982958 iter 90 value 78.940959 iter 100 value 78.912365 final value 78.912365 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.052367 iter 10 value 93.999672 iter 20 value 92.197785 iter 30 value 86.014236 iter 40 value 85.158825 iter 50 value 84.742713 iter 60 value 80.284674 iter 70 value 79.229432 iter 80 value 78.874496 iter 90 value 78.768359 iter 100 value 78.717436 final value 78.717436 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.254658 iter 10 value 92.914974 iter 20 value 84.461716 iter 30 value 83.887930 iter 40 value 83.719461 iter 50 value 83.710302 iter 50 value 83.710301 iter 50 value 83.710301 final value 83.710301 converged Fitting Repeat 1 # weights: 305 initial value 110.129276 iter 10 value 94.047925 iter 20 value 88.414057 iter 30 value 87.614871 iter 40 value 82.280679 iter 50 value 80.634925 iter 60 value 80.196469 iter 70 value 79.898880 iter 80 value 79.870818 iter 90 value 79.691723 iter 100 value 78.505614 final value 78.505614 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.436070 iter 10 value 94.206212 iter 20 value 93.890774 iter 30 value 88.639613 iter 40 value 84.452981 iter 50 value 83.759636 iter 60 value 82.528682 iter 70 value 81.198595 iter 80 value 80.944003 iter 90 value 79.704836 iter 100 value 79.358164 final value 79.358164 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.045450 iter 10 value 94.125624 iter 20 value 87.870581 iter 30 value 85.468553 iter 40 value 83.075515 iter 50 value 82.004552 iter 60 value 81.486814 iter 70 value 80.733252 iter 80 value 80.021721 iter 90 value 79.900883 iter 100 value 79.770548 final value 79.770548 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.315057 iter 10 value 93.952584 iter 20 value 88.357923 iter 30 value 82.992499 iter 40 value 79.998988 iter 50 value 79.576282 iter 60 value 79.346042 iter 70 value 78.731888 iter 80 value 78.088266 iter 90 value 77.557222 iter 100 value 77.374684 final value 77.374684 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.994135 iter 10 value 96.593266 iter 20 value 94.170829 iter 30 value 93.527189 iter 40 value 91.037966 iter 50 value 90.083085 iter 60 value 85.200955 iter 70 value 83.681116 iter 80 value 82.378437 iter 90 value 81.350889 iter 100 value 81.137768 final value 81.137768 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.251200 iter 10 value 94.064195 iter 20 value 91.618532 iter 30 value 84.663488 iter 40 value 82.827086 iter 50 value 82.134959 iter 60 value 81.825674 iter 70 value 79.383259 iter 80 value 79.134374 iter 90 value 79.079874 iter 100 value 78.762779 final value 78.762779 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.572752 iter 10 value 94.150909 iter 20 value 90.605549 iter 30 value 85.008480 iter 40 value 84.358900 iter 50 value 80.769527 iter 60 value 79.653024 iter 70 value 79.274024 iter 80 value 79.083351 iter 90 value 78.932892 iter 100 value 78.796162 final value 78.796162 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.860767 iter 10 value 94.291201 iter 20 value 88.682631 iter 30 value 85.048698 iter 40 value 80.887856 iter 50 value 78.976173 iter 60 value 77.735294 iter 70 value 77.328474 iter 80 value 77.218888 iter 90 value 77.076845 iter 100 value 77.066013 final value 77.066013 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.998533 iter 10 value 94.134558 iter 20 value 93.552658 iter 30 value 84.896743 iter 40 value 84.146592 iter 50 value 82.136026 iter 60 value 80.932474 iter 70 value 78.750807 iter 80 value 78.220693 iter 90 value 77.808415 iter 100 value 77.538198 final value 77.538198 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.053370 iter 10 value 94.569587 iter 20 value 94.158070 iter 30 value 93.849714 iter 40 value 90.819677 iter 50 value 88.623805 iter 60 value 82.701493 iter 70 value 81.803615 iter 80 value 80.222449 iter 90 value 79.745846 iter 100 value 79.370729 final value 79.370729 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.524145 iter 10 value 93.837676 iter 20 value 93.836598 final value 93.835909 converged Fitting Repeat 2 # weights: 103 initial value 100.190672 final value 94.054682 converged Fitting Repeat 3 # weights: 103 initial value 103.409874 iter 10 value 94.053877 final value 94.053295 converged Fitting Repeat 4 # weights: 103 initial value 109.451359 iter 10 value 93.837602 iter 20 value 93.836715 iter 30 value 93.812810 iter 40 value 86.683250 iter 50 value 84.316265 iter 60 value 82.901297 iter 70 value 82.873273 iter 80 value 82.847648 iter 90 value 82.692376 iter 100 value 82.678303 final value 82.678303 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.723466 iter 10 value 93.837834 iter 20 value 93.836743 final value 93.836255 converged Fitting Repeat 1 # weights: 305 initial value 96.316854 iter 10 value 93.814406 iter 20 value 93.760441 iter 30 value 91.996562 iter 40 value 81.907341 iter 50 value 81.882976 iter 60 value 81.881864 iter 70 value 80.315673 iter 80 value 78.355821 iter 90 value 77.163058 iter 100 value 76.657972 final value 76.657972 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.772020 iter 10 value 94.057837 iter 20 value 94.050017 final value 93.836343 converged Fitting Repeat 3 # weights: 305 initial value 95.363774 iter 10 value 94.057505 iter 20 value 93.965028 final value 93.811247 converged Fitting Repeat 4 # weights: 305 initial value 110.645915 iter 10 value 94.063862 iter 20 value 94.058497 iter 30 value 93.788183 iter 40 value 86.676624 iter 50 value 86.549446 iter 60 value 86.547674 iter 70 value 86.541868 iter 80 value 86.217660 iter 90 value 84.760981 iter 100 value 76.941303 final value 76.941303 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.525663 iter 10 value 94.057995 iter 20 value 94.052915 iter 20 value 94.052914 final value 94.052914 converged Fitting Repeat 1 # weights: 507 initial value 124.062866 iter 10 value 93.844484 iter 20 value 93.836985 iter 30 value 93.351283 iter 40 value 84.972384 iter 50 value 84.785052 iter 60 value 84.784189 iter 70 value 84.322147 iter 80 value 82.189411 iter 90 value 80.034618 iter 100 value 79.695403 final value 79.695403 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.374364 iter 10 value 93.846473 iter 20 value 93.840742 iter 30 value 92.938186 iter 40 value 83.986731 iter 50 value 83.805941 iter 60 value 83.803122 final value 83.803046 converged Fitting Repeat 3 # weights: 507 initial value 112.018320 iter 10 value 94.060926 iter 20 value 93.523592 iter 30 value 86.811577 iter 40 value 86.597465 iter 50 value 86.584310 iter 60 value 86.419524 final value 86.419404 converged Fitting Repeat 4 # weights: 507 initial value 97.032737 iter 10 value 93.847904 iter 20 value 93.798728 iter 30 value 89.298773 iter 40 value 89.289860 iter 50 value 89.175664 iter 60 value 89.135903 iter 70 value 89.017142 final value 89.017135 converged Fitting Repeat 5 # weights: 507 initial value 100.393344 iter 10 value 93.854770 iter 20 value 93.842863 iter 30 value 93.828337 iter 40 value 93.825500 iter 50 value 88.323474 iter 60 value 82.483280 iter 70 value 78.313385 iter 80 value 77.925654 iter 90 value 77.923381 iter 100 value 77.922740 final value 77.922740 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.523429 iter 10 value 87.042979 final value 87.032769 converged Fitting Repeat 2 # weights: 103 initial value 101.178210 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.162245 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.160082 iter 10 value 91.644165 iter 20 value 91.322388 final value 91.322383 converged Fitting Repeat 5 # weights: 103 initial value 97.600872 iter 10 value 94.112648 final value 94.112570 converged Fitting Repeat 1 # weights: 305 initial value 103.139432 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 108.597218 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.478959 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 99.203396 final value 94.467391 converged Fitting Repeat 5 # weights: 305 initial value 98.755724 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 125.462748 iter 10 value 88.446190 iter 20 value 85.103733 iter 30 value 85.097108 iter 40 value 85.095380 final value 85.095257 converged Fitting Repeat 2 # weights: 507 initial value 95.577791 iter 10 value 94.066783 iter 10 value 94.066783 iter 10 value 94.066783 final value 94.066783 converged Fitting Repeat 3 # weights: 507 initial value 100.895707 iter 10 value 94.466856 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 101.051545 iter 10 value 93.422104 iter 20 value 85.239358 iter 30 value 81.738364 iter 40 value 81.737460 final value 81.737351 converged Fitting Repeat 5 # weights: 507 initial value 105.087254 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 103.200864 iter 10 value 94.488561 iter 20 value 94.038570 iter 30 value 93.975094 iter 40 value 93.968513 iter 50 value 93.949036 iter 60 value 87.350753 iter 70 value 82.661343 iter 80 value 82.411859 iter 90 value 82.168193 iter 100 value 80.988943 final value 80.988943 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.823127 iter 10 value 93.400538 iter 20 value 83.950412 iter 30 value 82.983122 iter 40 value 82.888105 final value 82.877881 converged Fitting Repeat 3 # weights: 103 initial value 101.903166 iter 10 value 94.386187 iter 20 value 92.740364 iter 30 value 89.201872 iter 40 value 87.317832 iter 50 value 86.468914 iter 60 value 84.087613 iter 70 value 82.807937 iter 80 value 82.793271 iter 90 value 82.786053 iter 100 value 82.784560 final value 82.784560 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.293447 iter 10 value 94.400361 iter 20 value 87.765371 iter 30 value 82.972684 iter 40 value 82.879053 iter 50 value 82.877887 final value 82.877881 converged Fitting Repeat 5 # weights: 103 initial value 99.054392 iter 10 value 94.625134 iter 20 value 94.488026 iter 30 value 94.369379 iter 40 value 94.119875 iter 50 value 93.979695 iter 60 value 93.949702 iter 70 value 84.524887 iter 80 value 82.510804 iter 90 value 81.931358 iter 100 value 80.810654 final value 80.810654 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.120667 iter 10 value 86.893255 iter 20 value 86.441877 iter 30 value 84.789956 iter 40 value 80.806146 iter 50 value 79.702994 iter 60 value 78.809455 iter 70 value 78.597582 iter 80 value 78.584327 iter 90 value 78.578032 iter 100 value 78.533230 final value 78.533230 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.901888 iter 10 value 94.511170 iter 20 value 93.592260 iter 30 value 89.461935 iter 40 value 83.982974 iter 50 value 82.124391 iter 60 value 80.389331 iter 70 value 80.172454 iter 80 value 80.037461 iter 90 value 79.667145 iter 100 value 79.260578 final value 79.260578 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 128.403232 iter 10 value 94.494086 iter 20 value 87.264963 iter 30 value 86.224030 iter 40 value 83.716675 iter 50 value 83.479453 iter 60 value 83.108761 iter 70 value 82.515708 iter 80 value 82.078120 iter 90 value 80.922964 iter 100 value 80.591344 final value 80.591344 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.818990 iter 10 value 94.534773 iter 20 value 91.040301 iter 30 value 83.771142 iter 40 value 83.170617 iter 50 value 83.009283 iter 60 value 82.832689 iter 70 value 81.186717 iter 80 value 80.327012 iter 90 value 79.561819 iter 100 value 78.974533 final value 78.974533 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.064808 iter 10 value 94.499601 iter 20 value 94.312721 iter 30 value 89.808226 iter 40 value 87.062399 iter 50 value 84.571851 iter 60 value 81.598220 iter 70 value 78.902823 iter 80 value 78.689693 iter 90 value 78.566231 iter 100 value 78.435076 final value 78.435076 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.793102 iter 10 value 94.539398 iter 20 value 94.489159 iter 30 value 93.594242 iter 40 value 92.398024 iter 50 value 90.730273 iter 60 value 88.252623 iter 70 value 81.330267 iter 80 value 79.714470 iter 90 value 79.533280 iter 100 value 79.353886 final value 79.353886 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.983222 iter 10 value 94.308136 iter 20 value 83.858900 iter 30 value 83.209539 iter 40 value 82.117941 iter 50 value 80.713249 iter 60 value 79.807122 iter 70 value 79.074901 iter 80 value 78.696940 iter 90 value 78.631647 iter 100 value 78.458363 final value 78.458363 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.674418 iter 10 value 95.102500 iter 20 value 94.435325 iter 30 value 93.984650 iter 40 value 89.885160 iter 50 value 87.904971 iter 60 value 87.168311 iter 70 value 84.026916 iter 80 value 83.164393 iter 90 value 82.477214 iter 100 value 81.617787 final value 81.617787 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.887962 iter 10 value 94.928270 iter 20 value 91.626144 iter 30 value 84.248409 iter 40 value 82.065045 iter 50 value 81.615027 iter 60 value 81.242332 iter 70 value 81.004985 iter 80 value 80.764901 iter 90 value 80.118282 iter 100 value 79.718779 final value 79.718779 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.259287 iter 10 value 91.207953 iter 20 value 87.293825 iter 30 value 86.785901 iter 40 value 82.821202 iter 50 value 80.291049 iter 60 value 79.672305 iter 70 value 79.439193 iter 80 value 79.063179 iter 90 value 78.705738 iter 100 value 78.330331 final value 78.330331 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.125510 final value 94.485747 converged Fitting Repeat 2 # weights: 103 initial value 103.888507 final value 94.485784 converged Fitting Repeat 3 # weights: 103 initial value 98.276775 final value 94.485916 converged Fitting Repeat 4 # weights: 103 initial value 102.223198 final value 94.486014 converged Fitting Repeat 5 # weights: 103 initial value 98.335354 iter 10 value 94.485802 iter 20 value 94.484227 final value 94.484213 converged Fitting Repeat 1 # weights: 305 initial value 107.006174 iter 10 value 93.408337 iter 20 value 93.396559 iter 30 value 93.392533 iter 40 value 90.981098 iter 50 value 90.552257 iter 60 value 90.177185 iter 70 value 90.057795 final value 90.055405 converged Fitting Repeat 2 # weights: 305 initial value 102.815648 iter 10 value 94.149346 iter 20 value 90.743073 iter 30 value 86.749013 iter 40 value 83.220353 iter 50 value 81.204161 iter 60 value 81.198635 final value 81.198194 converged Fitting Repeat 3 # weights: 305 initial value 104.554821 iter 10 value 94.472051 iter 20 value 94.466146 iter 30 value 83.819155 iter 40 value 82.094592 iter 50 value 82.094128 final value 82.093770 converged Fitting Repeat 4 # weights: 305 initial value 98.648590 iter 10 value 94.489157 iter 20 value 94.464019 iter 30 value 93.826791 iter 40 value 91.459284 iter 50 value 91.395206 iter 60 value 91.090645 iter 70 value 91.083031 final value 91.082966 converged Fitting Repeat 5 # weights: 305 initial value 108.954634 iter 10 value 94.489477 iter 20 value 94.484422 final value 94.484363 converged Fitting Repeat 1 # weights: 507 initial value 98.514761 iter 10 value 94.492897 iter 20 value 92.408219 iter 30 value 90.400566 final value 90.386563 converged Fitting Repeat 2 # weights: 507 initial value 102.250010 iter 10 value 93.875724 iter 20 value 93.433056 iter 30 value 93.430886 iter 40 value 93.426901 iter 50 value 93.423779 iter 60 value 93.197167 iter 70 value 84.044899 iter 80 value 83.872680 iter 90 value 81.601672 iter 100 value 78.973549 final value 78.973549 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.746139 iter 10 value 94.467247 iter 20 value 92.123275 iter 30 value 85.158318 iter 40 value 81.459071 iter 50 value 81.420998 iter 60 value 81.414431 iter 70 value 80.278687 iter 80 value 80.050848 iter 90 value 79.955771 iter 100 value 79.952115 final value 79.952115 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.143523 iter 10 value 94.363367 iter 20 value 90.424531 iter 30 value 90.398899 iter 40 value 90.291189 iter 50 value 90.231649 iter 60 value 90.231581 final value 90.231569 converged Fitting Repeat 5 # weights: 507 initial value 110.298602 iter 10 value 94.492799 iter 20 value 94.448429 iter 30 value 94.201625 iter 40 value 94.146329 iter 50 value 94.144234 iter 60 value 94.137259 iter 70 value 94.136235 iter 80 value 94.135871 iter 90 value 94.135583 final value 94.135126 converged Fitting Repeat 1 # weights: 103 initial value 101.263560 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.948521 final value 94.057229 converged Fitting Repeat 3 # weights: 103 initial value 95.176448 iter 10 value 93.919416 iter 20 value 93.889023 final value 93.888889 converged Fitting Repeat 4 # weights: 103 initial value 105.884385 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.524764 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.582281 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.954506 final value 94.482478 converged Fitting Repeat 3 # weights: 305 initial value 99.713139 iter 10 value 91.394347 final value 91.321633 converged Fitting Repeat 4 # weights: 305 initial value 103.148175 iter 10 value 94.558212 iter 20 value 91.104530 iter 30 value 89.277750 iter 40 value 88.113167 iter 50 value 86.621068 iter 60 value 86.446064 iter 70 value 86.440572 iter 80 value 86.391466 final value 86.389501 converged Fitting Repeat 5 # weights: 305 initial value 103.677930 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 103.391998 final value 94.275363 converged Fitting Repeat 2 # weights: 507 initial value 94.833079 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 97.853553 iter 10 value 91.157426 iter 20 value 87.593887 iter 30 value 87.590735 final value 87.590732 converged Fitting Repeat 4 # weights: 507 initial value 105.858484 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 96.008548 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 98.235401 iter 10 value 94.501232 iter 20 value 94.425019 iter 30 value 93.970146 iter 40 value 92.409183 iter 50 value 88.641504 iter 60 value 88.575483 iter 70 value 88.574304 iter 80 value 88.537364 iter 90 value 88.381765 iter 100 value 85.857694 final value 85.857694 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.388261 iter 10 value 87.472617 iter 20 value 86.404565 iter 30 value 85.526699 iter 40 value 85.506787 final value 85.505404 converged Fitting Repeat 3 # weights: 103 initial value 100.054839 iter 10 value 94.242774 iter 20 value 88.658982 iter 30 value 88.383088 iter 40 value 88.294167 iter 50 value 88.244048 iter 60 value 85.713815 iter 70 value 85.420127 final value 85.411355 converged Fitting Repeat 4 # weights: 103 initial value 97.636082 iter 10 value 94.518378 iter 20 value 94.134326 iter 30 value 89.498588 iter 40 value 88.860783 iter 50 value 86.233259 iter 60 value 85.982667 iter 70 value 85.718744 iter 80 value 85.620839 iter 90 value 85.465640 iter 100 value 85.411440 final value 85.411440 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.409152 iter 10 value 94.491254 iter 20 value 94.486652 iter 30 value 90.216014 iter 40 value 86.050206 iter 50 value 85.930196 iter 60 value 85.873820 iter 70 value 85.692883 iter 80 value 85.518619 iter 90 value 85.412116 final value 85.411355 converged Fitting Repeat 1 # weights: 305 initial value 102.248536 iter 10 value 94.421482 iter 20 value 92.698635 iter 30 value 91.678485 iter 40 value 87.868089 iter 50 value 86.914722 iter 60 value 86.011792 iter 70 value 84.597616 iter 80 value 84.362858 iter 90 value 84.149248 iter 100 value 84.033986 final value 84.033986 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 134.465946 iter 10 value 94.473092 iter 20 value 88.444680 iter 30 value 86.519369 iter 40 value 85.985600 iter 50 value 85.857058 iter 60 value 85.264013 iter 70 value 84.264005 iter 80 value 83.897914 iter 90 value 83.707634 iter 100 value 83.651875 final value 83.651875 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.194706 iter 10 value 94.221084 iter 20 value 88.600247 iter 30 value 87.610030 iter 40 value 85.699633 iter 50 value 84.991656 iter 60 value 84.096624 iter 70 value 83.274577 iter 80 value 83.001739 iter 90 value 82.867390 iter 100 value 82.758847 final value 82.758847 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.125704 iter 10 value 91.540187 iter 20 value 87.299827 iter 30 value 84.931634 iter 40 value 83.974439 iter 50 value 83.465207 iter 60 value 82.970605 iter 70 value 82.748953 iter 80 value 82.668098 iter 90 value 82.654824 iter 100 value 82.643910 final value 82.643910 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.099762 iter 10 value 94.326439 iter 20 value 88.403495 iter 30 value 87.734708 iter 40 value 87.291114 iter 50 value 86.068122 iter 60 value 85.406941 iter 70 value 84.125995 iter 80 value 83.719008 iter 90 value 83.123454 iter 100 value 82.833052 final value 82.833052 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.927447 iter 10 value 94.692598 iter 20 value 93.645281 iter 30 value 87.408057 iter 40 value 85.928778 iter 50 value 85.078918 iter 60 value 83.628566 iter 70 value 82.889316 iter 80 value 82.763718 iter 90 value 82.516964 iter 100 value 82.376356 final value 82.376356 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.612922 iter 10 value 94.669854 iter 20 value 89.447389 iter 30 value 86.686390 iter 40 value 85.774226 iter 50 value 85.642537 iter 60 value 84.893830 iter 70 value 84.136677 iter 80 value 82.983093 iter 90 value 82.687444 iter 100 value 82.634372 final value 82.634372 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.794176 iter 10 value 95.323591 iter 20 value 87.673324 iter 30 value 85.670101 iter 40 value 85.058208 iter 50 value 84.095491 iter 60 value 83.517277 iter 70 value 83.081934 iter 80 value 83.036230 iter 90 value 82.912724 iter 100 value 82.857928 final value 82.857928 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.355149 iter 10 value 94.375466 iter 20 value 88.705139 iter 30 value 88.276970 iter 40 value 86.915540 iter 50 value 85.865223 iter 60 value 85.572941 iter 70 value 85.181848 iter 80 value 83.969158 iter 90 value 83.527631 iter 100 value 83.394734 final value 83.394734 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.034935 iter 10 value 94.493395 iter 20 value 84.834867 iter 30 value 83.846745 iter 40 value 83.396847 iter 50 value 83.251538 iter 60 value 83.029881 iter 70 value 82.784543 iter 80 value 82.615151 iter 90 value 82.512934 iter 100 value 82.312781 final value 82.312781 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.415500 final value 94.486003 converged Fitting Repeat 2 # weights: 103 initial value 103.011586 iter 10 value 93.947687 iter 20 value 93.924117 iter 30 value 93.923640 iter 40 value 93.923219 iter 50 value 93.865829 final value 93.865183 converged Fitting Repeat 3 # weights: 103 initial value 96.007296 iter 10 value 94.485803 final value 94.484248 converged Fitting Repeat 4 # weights: 103 initial value 96.704380 final value 94.485787 converged Fitting Repeat 5 # weights: 103 initial value 101.958599 final value 94.058913 converged Fitting Repeat 1 # weights: 305 initial value 105.142434 iter 10 value 94.488715 iter 20 value 94.475442 iter 30 value 94.326468 final value 94.326392 converged Fitting Repeat 2 # weights: 305 initial value 121.248254 iter 10 value 94.489532 iter 20 value 94.314381 iter 30 value 91.019486 iter 40 value 86.438590 iter 50 value 86.275649 iter 60 value 86.275393 final value 86.274971 converged Fitting Repeat 3 # weights: 305 initial value 96.667962 iter 10 value 92.942095 iter 20 value 92.797768 iter 30 value 92.795983 iter 40 value 92.791240 iter 50 value 91.690975 iter 60 value 87.429033 iter 70 value 87.189062 iter 80 value 87.176359 final value 87.152893 converged Fitting Repeat 4 # weights: 305 initial value 99.313858 iter 10 value 94.489491 iter 20 value 94.485071 iter 30 value 87.099887 iter 40 value 86.549918 iter 50 value 86.287789 iter 60 value 86.258845 iter 70 value 86.257788 iter 80 value 86.218042 iter 90 value 86.217241 iter 100 value 86.216985 final value 86.216985 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.141391 iter 10 value 94.280466 iter 20 value 94.275914 final value 94.275642 converged Fitting Repeat 1 # weights: 507 initial value 109.690679 iter 10 value 94.491951 iter 20 value 94.484681 iter 30 value 94.410259 iter 40 value 91.230910 iter 50 value 86.550581 iter 60 value 86.503532 iter 70 value 86.500090 iter 80 value 84.717584 iter 90 value 84.697395 iter 100 value 84.691828 final value 84.691828 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.163610 iter 10 value 94.283403 iter 20 value 93.598667 iter 30 value 86.928167 iter 40 value 85.063248 final value 85.063229 converged Fitting Repeat 3 # weights: 507 initial value 114.714186 iter 10 value 94.283419 iter 20 value 94.276459 final value 94.276390 converged Fitting Repeat 4 # weights: 507 initial value 107.712369 iter 10 value 94.283597 iter 20 value 94.277380 iter 30 value 93.643893 iter 40 value 90.799201 iter 50 value 89.337238 iter 60 value 89.335807 iter 70 value 89.335441 iter 80 value 89.333261 iter 90 value 88.117569 iter 100 value 87.757439 final value 87.757439 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.772577 iter 10 value 94.492352 iter 20 value 94.459696 iter 30 value 93.201996 iter 40 value 85.966151 iter 50 value 85.907491 iter 60 value 83.766426 iter 70 value 83.291247 iter 80 value 83.289101 iter 90 value 83.274465 iter 100 value 82.659111 final value 82.659111 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 134.046290 iter 10 value 117.708829 iter 20 value 115.009785 iter 30 value 107.939393 iter 40 value 105.467931 iter 50 value 104.508672 iter 60 value 102.383467 iter 70 value 102.081166 iter 80 value 101.774923 iter 90 value 101.076127 iter 100 value 100.770931 final value 100.770931 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 153.002508 iter 10 value 119.776868 iter 20 value 112.397503 iter 30 value 110.912461 iter 40 value 109.281833 iter 50 value 108.933500 iter 60 value 106.088621 iter 70 value 103.190941 iter 80 value 102.280976 iter 90 value 101.979430 iter 100 value 101.359512 final value 101.359512 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 143.580644 iter 10 value 116.754729 iter 20 value 111.509118 iter 30 value 110.055578 iter 40 value 106.146968 iter 50 value 104.709791 iter 60 value 104.382857 iter 70 value 104.332732 iter 80 value 104.271475 iter 90 value 103.466736 iter 100 value 102.000566 final value 102.000566 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.877437 iter 10 value 118.087261 iter 20 value 112.127587 iter 30 value 110.583561 iter 40 value 109.573695 iter 50 value 106.878741 iter 60 value 105.147922 iter 70 value 104.338742 iter 80 value 103.066477 iter 90 value 101.662261 iter 100 value 101.117877 final value 101.117877 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.413780 iter 10 value 117.899440 iter 20 value 115.020802 iter 30 value 106.533150 iter 40 value 106.225906 iter 50 value 105.881224 iter 60 value 105.310575 iter 70 value 104.849578 iter 80 value 104.360516 iter 90 value 103.141663 iter 100 value 102.706927 final value 102.706927 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Aug 15 04:18:55 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 45.12 1.45 141.70
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.87 | 1.89 | 36.97 | |
FreqInteractors | 0.26 | 0.01 | 0.29 | |
calculateAAC | 0.00 | 0.07 | 0.06 | |
calculateAutocor | 0.53 | 0.11 | 0.64 | |
calculateCTDC | 0.11 | 0.01 | 0.13 | |
calculateCTDD | 0.81 | 0.06 | 0.87 | |
calculateCTDT | 0.31 | 0.02 | 0.33 | |
calculateCTriad | 0.50 | 0.01 | 0.52 | |
calculateDC | 0.10 | 0.00 | 0.09 | |
calculateF | 0.42 | 0.05 | 0.47 | |
calculateKSAAP | 0.14 | 0.02 | 0.15 | |
calculateQD_Sm | 2.31 | 0.11 | 2.43 | |
calculateTC | 2.03 | 0.12 | 2.15 | |
calculateTC_Sm | 0.30 | 0.08 | 0.38 | |
corr_plot | 34.95 | 1.77 | 36.73 | |
enrichfindP | 0.63 | 0.12 | 13.83 | |
enrichfind_hp | 0.29 | 0.02 | 1.61 | |
enrichplot | 0.32 | 0.00 | 0.37 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.00 | 2.24 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.00 | 0.01 | 0.01 | |
plotPPI | 0.06 | 0.02 | 0.16 | |
pred_ensembel | 13.50 | 0.47 | 14.15 | |
var_imp | 36.14 | 1.57 | 37.81 | |