Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2024-12-24 11:45 -0500 (Tue, 24 Dec 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" | 4754 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" | 4472 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4426 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4381 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" | 4373 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 973/2274 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2024-12-23 19:44:27 -0500 (Mon, 23 Dec 2024) |
EndedAt: 2024-12-23 19:46:49 -0500 (Mon, 23 Dec 2024) |
EllapsedTime: 141.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2024-11-20 r87352) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 18.165 0.703 19.107 FSmethod 17.697 0.780 18.777 corr_plot 17.461 0.715 18.404 pred_ensembel 5.676 0.120 5.163 enrichfindP 0.167 0.028 7.625 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 104.313035 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.949666 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.646085 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.237857 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.377321 iter 10 value 94.320360 final value 94.320300 converged Fitting Repeat 1 # weights: 305 initial value 98.516669 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 112.842695 iter 10 value 94.154675 final value 94.145582 converged Fitting Repeat 3 # weights: 305 initial value 99.817186 iter 10 value 93.700637 final value 93.693222 converged Fitting Repeat 4 # weights: 305 initial value 112.309658 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 108.452261 iter 10 value 94.215090 final value 94.214007 converged Fitting Repeat 1 # weights: 507 initial value 106.653489 iter 10 value 94.035716 final value 94.035715 converged Fitting Repeat 2 # weights: 507 initial value 98.436833 iter 10 value 94.090611 final value 94.090583 converged Fitting Repeat 3 # weights: 507 initial value 98.029166 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 114.541863 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 94.906677 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.524192 iter 10 value 94.431236 iter 20 value 92.341895 iter 30 value 91.796086 iter 40 value 89.669460 iter 50 value 87.889073 iter 60 value 87.774804 iter 70 value 85.266157 iter 80 value 85.129642 iter 90 value 85.019640 iter 100 value 84.995315 final value 84.995315 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.328162 iter 10 value 94.098691 iter 20 value 90.241815 iter 30 value 88.168317 iter 40 value 87.392173 iter 50 value 87.313104 iter 60 value 87.299891 iter 70 value 87.296154 iter 80 value 85.954020 iter 90 value 84.671419 iter 100 value 84.605414 final value 84.605414 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.629898 iter 10 value 94.492368 iter 20 value 93.840478 iter 30 value 86.374590 iter 40 value 86.015772 iter 50 value 85.678581 iter 60 value 85.100834 iter 70 value 84.996746 final value 84.995311 converged Fitting Repeat 4 # weights: 103 initial value 109.999316 iter 10 value 94.486625 iter 20 value 94.248782 iter 30 value 93.383795 iter 40 value 91.091141 iter 50 value 88.287117 iter 60 value 87.198169 iter 70 value 86.994698 iter 80 value 84.475673 iter 90 value 83.277195 iter 100 value 82.531010 final value 82.531010 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.850747 iter 10 value 94.501839 iter 20 value 92.643662 iter 30 value 87.390608 iter 40 value 86.604213 iter 50 value 86.177199 iter 60 value 85.395457 iter 70 value 84.919652 iter 80 value 84.476624 iter 90 value 84.438305 final value 84.435354 converged Fitting Repeat 1 # weights: 305 initial value 108.144524 iter 10 value 94.465172 iter 20 value 88.332967 iter 30 value 87.113047 iter 40 value 85.614177 iter 50 value 83.494446 iter 60 value 81.559981 iter 70 value 80.887642 iter 80 value 80.717872 iter 90 value 80.291003 iter 100 value 80.230702 final value 80.230702 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.568591 iter 10 value 94.326064 iter 20 value 94.148776 iter 30 value 92.348072 iter 40 value 89.698658 iter 50 value 86.341320 iter 60 value 82.652729 iter 70 value 81.909307 iter 80 value 81.711899 iter 90 value 81.519602 iter 100 value 81.405095 final value 81.405095 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.302820 iter 10 value 95.275389 iter 20 value 88.775752 iter 30 value 87.725153 iter 40 value 87.231139 iter 50 value 85.271155 iter 60 value 84.590308 iter 70 value 83.324178 iter 80 value 82.952365 iter 90 value 82.336516 iter 100 value 81.198525 final value 81.198525 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.921537 iter 10 value 93.855872 iter 20 value 88.576371 iter 30 value 84.513178 iter 40 value 81.984782 iter 50 value 81.275716 iter 60 value 80.876417 iter 70 value 80.819504 iter 80 value 80.725603 iter 90 value 80.686771 iter 100 value 80.603315 final value 80.603315 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.077775 iter 10 value 95.286557 iter 20 value 94.655931 iter 30 value 90.139564 iter 40 value 86.658628 iter 50 value 85.008728 iter 60 value 84.338814 iter 70 value 84.033735 iter 80 value 83.837730 iter 90 value 83.740720 iter 100 value 83.595540 final value 83.595540 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.722912 iter 10 value 94.683685 iter 20 value 93.559149 iter 30 value 90.207272 iter 40 value 85.574811 iter 50 value 85.019709 iter 60 value 83.711840 iter 70 value 83.200055 iter 80 value 82.299445 iter 90 value 81.733986 iter 100 value 81.246168 final value 81.246168 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.672961 iter 10 value 94.288719 iter 20 value 88.252538 iter 30 value 86.157825 iter 40 value 85.347980 iter 50 value 84.924738 iter 60 value 82.892538 iter 70 value 82.504865 iter 80 value 82.254695 iter 90 value 82.169269 iter 100 value 81.909070 final value 81.909070 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.446959 iter 10 value 97.426965 iter 20 value 87.375588 iter 30 value 83.412540 iter 40 value 82.705144 iter 50 value 82.365836 iter 60 value 81.498201 iter 70 value 81.336618 iter 80 value 81.106540 iter 90 value 80.952539 iter 100 value 80.929140 final value 80.929140 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.761992 iter 10 value 94.612048 iter 20 value 94.460511 iter 30 value 85.826690 iter 40 value 83.828626 iter 50 value 83.358705 iter 60 value 82.732114 iter 70 value 82.553035 iter 80 value 82.270611 iter 90 value 81.789920 iter 100 value 81.556099 final value 81.556099 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.002527 iter 10 value 95.125457 iter 20 value 94.373169 iter 30 value 91.925401 iter 40 value 89.499961 iter 50 value 84.551052 iter 60 value 83.537221 iter 70 value 81.821544 iter 80 value 81.595527 iter 90 value 81.110131 iter 100 value 80.949862 final value 80.949862 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.082992 final value 94.485772 converged Fitting Repeat 2 # weights: 103 initial value 104.389379 final value 94.485732 converged Fitting Repeat 3 # weights: 103 initial value 99.631613 final value 94.485706 converged Fitting Repeat 4 # weights: 103 initial value 96.378704 final value 94.485727 converged Fitting Repeat 5 # weights: 103 initial value 112.634657 iter 10 value 94.485846 iter 20 value 94.437009 iter 30 value 94.424704 iter 40 value 94.410321 iter 50 value 94.409567 iter 60 value 94.409373 final value 94.409317 converged Fitting Repeat 1 # weights: 305 initial value 106.419548 iter 10 value 94.488846 final value 94.484237 converged Fitting Repeat 2 # weights: 305 initial value 119.424451 iter 10 value 94.471646 iter 20 value 94.459097 iter 30 value 94.198761 final value 94.167479 converged Fitting Repeat 3 # weights: 305 initial value 100.671752 iter 10 value 94.488939 iter 20 value 94.484242 iter 30 value 94.424282 iter 40 value 87.419952 iter 50 value 87.283575 iter 60 value 87.046811 iter 70 value 87.042399 iter 80 value 87.041697 iter 90 value 86.738226 iter 100 value 86.737652 final value 86.737652 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.350473 iter 10 value 94.251670 iter 20 value 94.171397 iter 30 value 94.167627 iter 40 value 94.140074 iter 50 value 93.976080 iter 60 value 90.330548 iter 70 value 87.306076 iter 80 value 85.766708 iter 90 value 80.344167 iter 100 value 79.336002 final value 79.336002 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.038905 iter 10 value 94.489133 iter 20 value 94.472388 iter 30 value 94.121780 iter 40 value 91.373627 iter 50 value 84.337686 iter 60 value 84.061870 iter 70 value 84.057333 iter 80 value 83.042762 iter 90 value 82.822887 iter 100 value 82.777709 final value 82.777709 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.442839 iter 10 value 94.261785 iter 20 value 94.208006 iter 30 value 94.188711 iter 40 value 94.186702 iter 50 value 94.163639 iter 60 value 92.523470 iter 70 value 92.121586 iter 80 value 91.980852 iter 90 value 91.770942 final value 91.770928 converged Fitting Repeat 2 # weights: 507 initial value 99.938642 iter 10 value 94.491734 iter 20 value 94.484399 iter 30 value 94.179321 iter 40 value 92.294494 iter 50 value 92.287309 iter 60 value 92.214050 iter 70 value 92.211211 iter 80 value 88.392586 iter 90 value 88.214543 final value 88.214434 converged Fitting Repeat 3 # weights: 507 initial value 116.662040 iter 10 value 94.493855 iter 20 value 94.466157 iter 30 value 86.886368 iter 40 value 86.458220 iter 50 value 86.457903 iter 60 value 86.431366 iter 70 value 86.421416 iter 80 value 86.358725 iter 90 value 86.297362 final value 86.297303 converged Fitting Repeat 4 # weights: 507 initial value 106.780680 iter 10 value 94.437768 iter 20 value 94.400796 iter 30 value 94.236157 iter 40 value 94.200501 iter 50 value 94.199874 iter 50 value 94.199874 final value 94.199874 converged Fitting Repeat 5 # weights: 507 initial value 131.842045 iter 10 value 94.475477 iter 20 value 94.299264 iter 30 value 94.190455 iter 40 value 94.182971 iter 50 value 86.858378 iter 60 value 85.043257 iter 70 value 85.042982 iter 80 value 85.004765 iter 90 value 84.962980 iter 100 value 84.526860 final value 84.526860 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.644508 iter 10 value 90.798758 iter 20 value 90.785453 final value 90.785354 converged Fitting Repeat 2 # weights: 103 initial value 97.532682 iter 10 value 94.105275 final value 94.105264 converged Fitting Repeat 3 # weights: 103 initial value 98.304913 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.170287 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.772223 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.314106 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.980847 iter 10 value 94.321755 iter 20 value 94.055838 final value 94.055815 converged Fitting Repeat 3 # weights: 305 initial value 110.151491 iter 10 value 94.311285 final value 94.275362 converged Fitting Repeat 4 # weights: 305 initial value 107.308092 iter 10 value 94.275364 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 97.091448 iter 10 value 94.484218 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 110.269303 final value 94.057228 converged Fitting Repeat 2 # weights: 507 initial value 108.282159 iter 10 value 94.055259 iter 20 value 93.238651 final value 93.238631 converged Fitting Repeat 3 # weights: 507 initial value 102.295240 iter 10 value 93.701710 iter 10 value 93.701709 iter 10 value 93.701709 final value 93.701709 converged Fitting Repeat 4 # weights: 507 initial value 95.097192 iter 10 value 94.057229 iter 10 value 94.057229 iter 10 value 94.057229 final value 94.057229 converged Fitting Repeat 5 # weights: 507 initial value 98.408363 iter 10 value 90.231955 iter 20 value 87.517813 iter 30 value 85.179589 iter 40 value 84.957214 iter 50 value 84.952012 iter 60 value 84.951900 final value 84.951899 converged Fitting Repeat 1 # weights: 103 initial value 96.654461 iter 10 value 94.426782 iter 20 value 94.097891 iter 30 value 94.041855 iter 40 value 92.155943 iter 50 value 87.540627 iter 60 value 85.868261 iter 70 value 85.640166 iter 80 value 85.519707 iter 90 value 85.507219 final value 85.506820 converged Fitting Repeat 2 # weights: 103 initial value 110.023441 iter 10 value 95.475143 iter 20 value 94.486808 iter 30 value 94.329970 iter 40 value 93.900114 iter 50 value 87.746193 iter 60 value 86.624865 iter 70 value 86.500139 iter 80 value 85.771848 iter 90 value 84.722208 iter 100 value 84.129685 final value 84.129685 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.274955 iter 10 value 94.486857 iter 20 value 94.422571 iter 30 value 92.261544 iter 40 value 87.660375 iter 50 value 84.689558 iter 60 value 84.178680 iter 70 value 84.053094 iter 80 value 83.880009 iter 90 value 83.495433 iter 100 value 83.374330 final value 83.374330 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 117.230408 iter 10 value 95.841113 iter 20 value 94.485818 iter 30 value 94.331106 iter 40 value 94.313203 iter 50 value 90.148517 iter 60 value 87.892266 iter 70 value 87.851464 iter 80 value 85.924647 iter 90 value 85.521845 iter 100 value 85.508293 final value 85.508293 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.354711 iter 10 value 94.354352 iter 20 value 89.605164 iter 30 value 86.350556 iter 40 value 85.912798 iter 50 value 85.737995 iter 60 value 85.575161 iter 70 value 85.509302 final value 85.506821 converged Fitting Repeat 1 # weights: 305 initial value 108.011320 iter 10 value 94.407002 iter 20 value 93.447353 iter 30 value 86.864361 iter 40 value 85.550563 iter 50 value 84.840114 iter 60 value 83.563941 iter 70 value 82.632013 iter 80 value 82.412869 iter 90 value 82.285495 iter 100 value 82.232269 final value 82.232269 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.636148 iter 10 value 94.473072 iter 20 value 93.886479 iter 30 value 92.834747 iter 40 value 91.710732 iter 50 value 90.368092 iter 60 value 90.155382 iter 70 value 87.383820 iter 80 value 84.711203 iter 90 value 84.295473 iter 100 value 83.426846 final value 83.426846 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.066713 iter 10 value 95.836409 iter 20 value 90.053235 iter 30 value 86.895164 iter 40 value 86.137628 iter 50 value 85.667196 iter 60 value 84.925318 iter 70 value 83.153128 iter 80 value 82.804412 iter 90 value 82.644434 iter 100 value 82.283749 final value 82.283749 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.019740 iter 10 value 94.342937 iter 20 value 89.739843 iter 30 value 86.813069 iter 40 value 85.976931 iter 50 value 83.053753 iter 60 value 82.502173 iter 70 value 82.253934 iter 80 value 82.175615 iter 90 value 82.108432 iter 100 value 82.057423 final value 82.057423 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.946826 iter 10 value 94.236473 iter 20 value 87.997522 iter 30 value 86.286688 iter 40 value 85.910069 iter 50 value 84.977047 iter 60 value 84.243271 iter 70 value 84.068625 iter 80 value 83.985980 iter 90 value 83.850244 iter 100 value 83.740244 final value 83.740244 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.747816 iter 10 value 94.691392 iter 20 value 91.050815 iter 30 value 87.621602 iter 40 value 87.140932 iter 50 value 83.351210 iter 60 value 82.777939 iter 70 value 82.541814 iter 80 value 82.459082 iter 90 value 82.452798 iter 100 value 82.269951 final value 82.269951 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.446280 iter 10 value 94.507012 iter 20 value 87.433719 iter 30 value 85.803881 iter 40 value 83.639568 iter 50 value 82.657178 iter 60 value 82.496246 iter 70 value 82.350680 iter 80 value 81.873858 iter 90 value 81.520399 iter 100 value 81.404179 final value 81.404179 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.460586 iter 10 value 94.167882 iter 20 value 92.899768 iter 30 value 88.493753 iter 40 value 83.845782 iter 50 value 82.758991 iter 60 value 81.852296 iter 70 value 81.697030 iter 80 value 81.430710 iter 90 value 81.292843 iter 100 value 81.250535 final value 81.250535 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.490497 iter 10 value 94.829175 iter 20 value 89.675836 iter 30 value 86.832896 iter 40 value 85.682331 iter 50 value 84.564727 iter 60 value 83.247779 iter 70 value 82.718865 iter 80 value 82.214581 iter 90 value 82.136865 iter 100 value 82.030972 final value 82.030972 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.008798 iter 10 value 94.780579 iter 20 value 93.784843 iter 30 value 92.656998 iter 40 value 86.438555 iter 50 value 85.646737 iter 60 value 84.976280 iter 70 value 84.124608 iter 80 value 83.983168 iter 90 value 83.782607 iter 100 value 83.600607 final value 83.600607 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.802330 iter 10 value 94.485812 iter 20 value 94.484226 final value 94.484215 converged Fitting Repeat 2 # weights: 103 initial value 99.886259 iter 10 value 94.256348 iter 20 value 94.230291 iter 30 value 94.228703 iter 40 value 91.989181 iter 50 value 88.294985 iter 60 value 87.912185 iter 70 value 87.910504 iter 80 value 86.999687 final value 86.961706 converged Fitting Repeat 3 # weights: 103 initial value 101.265339 final value 94.485946 converged Fitting Repeat 4 # weights: 103 initial value 96.506757 iter 10 value 89.279453 iter 20 value 89.279171 iter 30 value 89.006641 iter 40 value 89.005415 final value 89.005397 converged Fitting Repeat 5 # weights: 103 initial value 99.859674 final value 94.486031 converged Fitting Repeat 1 # weights: 305 initial value 105.148478 iter 10 value 94.280372 iter 20 value 94.120312 iter 30 value 94.034666 iter 40 value 94.027998 iter 50 value 93.823992 iter 60 value 89.650720 iter 70 value 85.172820 iter 80 value 83.774190 iter 90 value 80.597643 iter 100 value 79.963962 final value 79.963962 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.632574 iter 10 value 94.094361 iter 20 value 94.088656 iter 30 value 94.001672 iter 40 value 93.487744 iter 50 value 93.479200 final value 93.479129 converged Fitting Repeat 3 # weights: 305 initial value 117.544347 iter 10 value 94.257730 iter 20 value 94.056113 iter 30 value 94.034620 final value 94.028067 converged Fitting Repeat 4 # weights: 305 initial value 111.187732 iter 10 value 94.443077 iter 20 value 94.440806 iter 30 value 94.439807 iter 40 value 94.240987 iter 50 value 94.090734 iter 60 value 94.089218 final value 94.089194 converged Fitting Repeat 5 # weights: 305 initial value 98.882731 iter 10 value 94.488385 iter 20 value 94.484198 iter 30 value 94.050122 iter 40 value 86.911633 iter 50 value 85.085312 iter 60 value 84.827932 iter 70 value 83.803163 iter 80 value 83.800681 iter 90 value 83.798887 iter 100 value 83.794462 final value 83.794462 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.525079 iter 10 value 94.097311 iter 20 value 88.786694 iter 30 value 85.273127 iter 40 value 85.232841 iter 50 value 85.168666 iter 60 value 85.034746 iter 70 value 85.020686 iter 80 value 85.018835 iter 90 value 85.013373 iter 100 value 84.645575 final value 84.645575 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.732696 iter 10 value 94.492194 iter 20 value 94.032293 iter 30 value 87.356473 iter 40 value 87.322034 iter 50 value 87.191552 iter 60 value 87.052615 iter 70 value 87.048170 iter 80 value 86.468984 iter 90 value 82.911486 iter 100 value 81.281812 final value 81.281812 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.229611 iter 10 value 94.036896 iter 20 value 94.035312 iter 30 value 89.099571 iter 40 value 88.550969 iter 50 value 88.550007 final value 88.549874 converged Fitting Repeat 4 # weights: 507 initial value 99.908862 iter 10 value 94.492673 iter 20 value 94.064871 iter 30 value 94.058114 iter 40 value 91.284396 iter 50 value 88.157126 iter 60 value 88.107939 iter 70 value 82.701202 iter 80 value 81.320211 iter 90 value 81.285142 iter 100 value 81.281404 final value 81.281404 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.678576 iter 10 value 94.100555 iter 20 value 93.323536 iter 30 value 93.231485 iter 40 value 92.124137 iter 50 value 92.117120 iter 60 value 88.157705 iter 70 value 87.573904 iter 80 value 87.565590 iter 90 value 86.809276 iter 100 value 86.581578 final value 86.581578 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.557284 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.648895 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 113.013000 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.352978 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.794407 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.190941 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 112.057096 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.453137 iter 10 value 92.744555 final value 92.701657 converged Fitting Repeat 4 # weights: 305 initial value 115.866019 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 107.033698 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 96.334719 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.662579 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.028921 iter 10 value 93.220126 iter 20 value 90.793003 iter 30 value 90.767852 final value 90.767807 converged Fitting Repeat 4 # weights: 507 initial value 110.671268 iter 10 value 89.350797 iter 20 value 86.715619 iter 30 value 86.704649 iter 40 value 86.697221 iter 50 value 86.660546 final value 86.660227 converged Fitting Repeat 5 # weights: 507 initial value 96.797026 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 104.366694 iter 10 value 94.057132 iter 20 value 93.133794 iter 30 value 92.945308 iter 40 value 84.943308 iter 50 value 82.665354 iter 60 value 80.155401 iter 70 value 79.035474 iter 80 value 78.794795 final value 78.777084 converged Fitting Repeat 2 # weights: 103 initial value 97.457885 iter 10 value 93.768869 iter 20 value 85.720697 iter 30 value 84.272998 iter 40 value 84.112121 iter 50 value 83.980852 iter 60 value 83.952901 final value 83.952895 converged Fitting Repeat 3 # weights: 103 initial value 98.168861 iter 10 value 94.063089 iter 20 value 94.004019 iter 30 value 93.736939 iter 40 value 93.703227 iter 50 value 84.254097 iter 60 value 81.544635 iter 70 value 81.239772 iter 80 value 81.158470 iter 90 value 81.148601 iter 100 value 81.148362 final value 81.148362 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.833836 iter 10 value 93.832987 iter 20 value 87.560658 iter 30 value 87.047799 iter 40 value 86.034214 iter 50 value 85.052818 iter 60 value 78.960895 iter 70 value 78.876507 iter 80 value 78.798712 iter 90 value 78.779516 final value 78.777084 converged Fitting Repeat 5 # weights: 103 initial value 102.244734 iter 10 value 94.055881 iter 20 value 94.000186 iter 30 value 93.741754 iter 40 value 93.130803 iter 50 value 84.355090 iter 60 value 83.166034 iter 70 value 82.741445 iter 80 value 82.483064 iter 90 value 81.848558 final value 81.800525 converged Fitting Repeat 1 # weights: 305 initial value 102.022668 iter 10 value 91.486397 iter 20 value 84.342360 iter 30 value 83.302494 iter 40 value 81.880343 iter 50 value 80.397492 iter 60 value 79.922954 iter 70 value 79.415656 iter 80 value 79.185500 iter 90 value 78.980661 iter 100 value 78.696787 final value 78.696787 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.220358 iter 10 value 94.139250 iter 20 value 93.445544 iter 30 value 90.861538 iter 40 value 90.665804 iter 50 value 90.622294 iter 60 value 90.173288 iter 70 value 87.366875 iter 80 value 84.595554 iter 90 value 80.645256 iter 100 value 80.178313 final value 80.178313 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.553427 iter 10 value 92.176550 iter 20 value 90.530751 iter 30 value 84.461642 iter 40 value 83.930479 iter 50 value 82.688030 iter 60 value 81.162001 iter 70 value 80.692439 iter 80 value 80.142160 iter 90 value 79.718214 iter 100 value 79.627619 final value 79.627619 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.215009 iter 10 value 94.037418 iter 20 value 89.804910 iter 30 value 87.882512 iter 40 value 87.087225 iter 50 value 86.791171 iter 60 value 84.171097 iter 70 value 81.298339 iter 80 value 79.527740 iter 90 value 78.044760 iter 100 value 77.811235 final value 77.811235 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.436838 iter 10 value 93.193705 iter 20 value 89.306724 iter 30 value 88.576778 iter 40 value 83.561473 iter 50 value 82.568942 iter 60 value 81.076289 iter 70 value 80.762312 iter 80 value 80.723848 iter 90 value 80.667321 iter 100 value 80.534125 final value 80.534125 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.872709 iter 10 value 93.833437 iter 20 value 89.564510 iter 30 value 88.392976 iter 40 value 83.135710 iter 50 value 79.688508 iter 60 value 79.171303 iter 70 value 78.853284 iter 80 value 78.724259 iter 90 value 78.681610 iter 100 value 78.615028 final value 78.615028 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.406262 iter 10 value 94.083014 iter 20 value 93.790998 iter 30 value 84.295735 iter 40 value 83.936399 iter 50 value 83.625203 iter 60 value 81.813261 iter 70 value 81.551247 iter 80 value 81.266707 iter 90 value 80.524499 iter 100 value 80.362001 final value 80.362001 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.207232 iter 10 value 94.042245 iter 20 value 88.384189 iter 30 value 87.632171 iter 40 value 83.936526 iter 50 value 80.513071 iter 60 value 80.346318 iter 70 value 80.180879 iter 80 value 79.131862 iter 90 value 78.766008 iter 100 value 78.327509 final value 78.327509 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.283154 iter 10 value 94.601593 iter 20 value 89.949201 iter 30 value 88.085001 iter 40 value 86.690090 iter 50 value 82.235256 iter 60 value 80.543863 iter 70 value 79.951019 iter 80 value 79.714846 iter 90 value 79.669497 iter 100 value 79.624689 final value 79.624689 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.838347 iter 10 value 94.784739 iter 20 value 94.043924 iter 30 value 91.274658 iter 40 value 85.043365 iter 50 value 84.817627 iter 60 value 83.857328 iter 70 value 82.694484 iter 80 value 81.010362 iter 90 value 79.260588 iter 100 value 78.349420 final value 78.349420 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.048220 iter 10 value 93.723016 final value 93.706567 converged Fitting Repeat 2 # weights: 103 initial value 96.949736 final value 94.054549 converged Fitting Repeat 3 # weights: 103 initial value 99.163402 iter 10 value 92.704145 iter 20 value 92.703611 iter 30 value 92.665972 iter 40 value 92.665526 final value 92.665465 converged Fitting Repeat 4 # weights: 103 initial value 95.937801 final value 94.054435 converged Fitting Repeat 5 # weights: 103 initial value 94.900825 final value 94.054600 converged Fitting Repeat 1 # weights: 305 initial value 129.166992 iter 10 value 94.055802 iter 20 value 92.702956 iter 30 value 83.038272 iter 40 value 82.759257 iter 50 value 81.140369 iter 60 value 80.999010 iter 70 value 80.997732 iter 80 value 80.987063 iter 90 value 80.092049 iter 100 value 79.112378 final value 79.112378 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 94.828050 iter 10 value 91.803674 iter 20 value 91.768718 iter 30 value 91.708823 iter 40 value 91.708501 final value 91.708120 converged Fitting Repeat 3 # weights: 305 initial value 96.338055 iter 10 value 94.054116 iter 20 value 94.023931 iter 30 value 88.207409 iter 40 value 82.451736 iter 50 value 82.441693 iter 60 value 81.169693 iter 70 value 78.813190 iter 80 value 78.773352 iter 90 value 78.770892 iter 90 value 78.770891 final value 78.770891 converged Fitting Repeat 4 # weights: 305 initial value 108.171577 iter 10 value 93.920483 iter 20 value 93.916139 iter 30 value 92.978637 iter 40 value 87.265927 iter 50 value 77.683317 iter 60 value 76.367267 iter 70 value 76.268847 iter 80 value 76.253729 iter 90 value 76.241300 iter 100 value 76.236821 final value 76.236821 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.066479 iter 10 value 94.058611 iter 20 value 94.053422 iter 30 value 90.460490 iter 40 value 90.440460 iter 50 value 90.439438 iter 60 value 88.284153 iter 70 value 81.873373 iter 80 value 81.871475 iter 90 value 81.871052 iter 100 value 81.856107 final value 81.856107 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 94.494915 iter 10 value 94.054222 iter 20 value 84.682263 iter 30 value 79.695932 iter 40 value 79.662652 iter 50 value 79.662159 final value 79.662152 converged Fitting Repeat 2 # weights: 507 initial value 114.550123 iter 10 value 93.968459 iter 20 value 93.919106 iter 30 value 86.989882 iter 40 value 86.203505 iter 50 value 86.167587 iter 60 value 86.165874 iter 70 value 85.974222 iter 80 value 83.791618 iter 90 value 82.795947 iter 100 value 82.770681 final value 82.770681 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.709980 iter 10 value 94.069815 iter 20 value 92.928102 iter 30 value 83.438486 iter 40 value 79.963851 iter 50 value 79.760466 final value 79.758992 converged Fitting Repeat 4 # weights: 507 initial value 101.373231 iter 10 value 90.486096 iter 20 value 86.211645 iter 30 value 86.199519 iter 40 value 86.043055 iter 50 value 85.869676 iter 60 value 85.844001 iter 70 value 83.056065 iter 80 value 80.814941 iter 90 value 80.386127 iter 100 value 80.384410 final value 80.384410 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.455703 iter 10 value 94.061375 iter 20 value 93.926268 iter 30 value 92.559569 iter 40 value 88.591869 iter 50 value 78.850474 iter 60 value 78.713380 iter 70 value 78.487007 iter 80 value 78.160885 iter 90 value 78.154853 iter 100 value 78.152478 final value 78.152478 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.212943 final value 94.443243 converged Fitting Repeat 2 # weights: 103 initial value 99.640097 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.338875 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.295559 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.547725 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.700437 iter 10 value 93.019448 iter 20 value 92.912487 final value 92.912281 converged Fitting Repeat 2 # weights: 305 initial value 107.658360 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 115.271139 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.548618 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 95.195832 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 124.710793 iter 10 value 94.365463 iter 10 value 94.365462 iter 10 value 94.365462 final value 94.365462 converged Fitting Repeat 2 # weights: 507 initial value 96.451742 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 98.255636 iter 10 value 87.578860 iter 20 value 86.058665 iter 30 value 86.033319 iter 40 value 86.033035 iter 40 value 86.033035 final value 86.033035 converged Fitting Repeat 4 # weights: 507 initial value 97.024298 iter 10 value 94.362441 final value 94.361958 converged Fitting Repeat 5 # weights: 507 initial value 115.404940 iter 10 value 94.443370 final value 94.442934 converged Fitting Repeat 1 # weights: 103 initial value 97.497529 iter 10 value 94.437616 iter 20 value 89.243066 iter 30 value 86.934699 iter 40 value 85.608207 iter 50 value 85.088032 iter 60 value 84.966103 iter 70 value 84.783603 iter 80 value 84.100310 iter 90 value 83.590879 iter 100 value 83.563298 final value 83.563298 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.303705 iter 10 value 93.506483 iter 20 value 87.604010 iter 30 value 87.071994 iter 40 value 86.664755 iter 50 value 86.437785 iter 60 value 85.529992 iter 70 value 85.247732 final value 85.244639 converged Fitting Repeat 3 # weights: 103 initial value 98.522542 iter 10 value 93.743552 iter 20 value 89.489776 iter 30 value 85.799625 iter 40 value 85.379708 iter 50 value 85.061244 iter 60 value 84.796345 iter 70 value 84.566093 iter 80 value 84.277147 iter 90 value 83.838445 iter 100 value 83.724178 final value 83.724178 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.334294 iter 10 value 94.367889 iter 20 value 86.791119 iter 30 value 86.423964 iter 40 value 86.274197 iter 50 value 86.105070 iter 60 value 85.916472 iter 70 value 85.633197 iter 80 value 85.624702 iter 90 value 85.557890 iter 100 value 85.497082 final value 85.497082 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.901194 iter 10 value 94.488990 iter 20 value 94.449545 iter 30 value 94.314578 iter 40 value 94.293051 iter 50 value 94.289217 iter 60 value 91.618600 iter 70 value 86.892602 iter 80 value 86.257202 iter 90 value 85.920683 iter 100 value 85.649963 final value 85.649963 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.776836 iter 10 value 95.189700 iter 20 value 94.934920 iter 30 value 94.350821 iter 40 value 87.738149 iter 50 value 85.974500 iter 60 value 83.684582 iter 70 value 83.270795 iter 80 value 83.036009 iter 90 value 82.771671 iter 100 value 82.401310 final value 82.401310 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.846239 iter 10 value 94.484877 iter 20 value 93.235492 iter 30 value 90.728673 iter 40 value 87.914941 iter 50 value 86.931866 iter 60 value 84.056618 iter 70 value 83.413403 iter 80 value 83.173757 iter 90 value 82.988138 iter 100 value 82.826174 final value 82.826174 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.687132 iter 10 value 95.683455 iter 20 value 94.462039 iter 30 value 93.156947 iter 40 value 88.194031 iter 50 value 87.802362 iter 60 value 87.350970 iter 70 value 86.549710 iter 80 value 86.228586 iter 90 value 85.359848 iter 100 value 85.009290 final value 85.009290 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.209024 iter 10 value 94.368453 iter 20 value 89.558812 iter 30 value 88.043207 iter 40 value 86.554716 iter 50 value 85.804099 iter 60 value 85.491039 iter 70 value 85.257528 iter 80 value 85.153959 iter 90 value 84.491704 iter 100 value 84.296371 final value 84.296371 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.309335 iter 10 value 87.275266 iter 20 value 85.458644 iter 30 value 83.710026 iter 40 value 82.909573 iter 50 value 82.307925 iter 60 value 82.191268 iter 70 value 82.183953 iter 80 value 82.179983 iter 90 value 82.174588 iter 100 value 82.170340 final value 82.170340 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.234362 iter 10 value 94.487397 iter 20 value 90.093471 iter 30 value 86.900214 iter 40 value 86.450946 iter 50 value 84.883461 iter 60 value 84.462687 iter 70 value 83.773346 iter 80 value 83.601280 iter 90 value 82.876643 iter 100 value 82.534036 final value 82.534036 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.734831 iter 10 value 94.443761 iter 20 value 90.319878 iter 30 value 89.704823 iter 40 value 89.108636 iter 50 value 87.025401 iter 60 value 86.411013 iter 70 value 86.065443 iter 80 value 84.002225 iter 90 value 83.110594 iter 100 value 82.784018 final value 82.784018 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.743264 iter 10 value 93.947816 iter 20 value 88.038765 iter 30 value 86.028846 iter 40 value 85.810078 iter 50 value 85.601850 iter 60 value 85.331640 iter 70 value 85.137757 iter 80 value 83.348793 iter 90 value 82.808077 iter 100 value 82.717136 final value 82.717136 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.102618 iter 10 value 94.748405 iter 20 value 93.137931 iter 30 value 90.025524 iter 40 value 86.931859 iter 50 value 86.226719 iter 60 value 85.737439 iter 70 value 83.902434 iter 80 value 83.561098 iter 90 value 83.201232 iter 100 value 82.784299 final value 82.784299 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.918171 iter 10 value 94.534276 iter 20 value 89.898647 iter 30 value 86.727378 iter 40 value 85.878032 iter 50 value 83.636032 iter 60 value 83.342964 iter 70 value 83.258677 iter 80 value 83.106644 iter 90 value 83.033635 iter 100 value 82.868219 final value 82.868219 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.075661 final value 94.485523 converged Fitting Repeat 2 # weights: 103 initial value 105.438312 iter 10 value 94.486038 final value 94.484281 converged Fitting Repeat 3 # weights: 103 initial value 100.795338 final value 94.485756 converged Fitting Repeat 4 # weights: 103 initial value 109.051678 final value 94.485879 converged Fitting Repeat 5 # weights: 103 initial value 99.869230 final value 94.485865 converged Fitting Repeat 1 # weights: 305 initial value 98.901555 iter 10 value 94.258621 iter 20 value 94.256870 final value 94.254287 converged Fitting Repeat 2 # weights: 305 initial value 98.194482 iter 10 value 94.480811 iter 20 value 94.447072 iter 30 value 94.254077 iter 40 value 94.253645 final value 94.253641 converged Fitting Repeat 3 # weights: 305 initial value 98.641146 iter 10 value 94.487953 iter 20 value 93.432004 iter 30 value 87.939082 iter 40 value 86.524919 iter 50 value 86.437521 iter 60 value 85.399078 iter 70 value 85.354351 final value 85.353974 converged Fitting Repeat 4 # weights: 305 initial value 105.765116 iter 10 value 94.489507 iter 20 value 94.322342 iter 30 value 91.651545 iter 40 value 90.641432 iter 50 value 87.439588 iter 60 value 87.421882 iter 70 value 87.406597 iter 80 value 87.404661 iter 90 value 86.014676 iter 100 value 85.992931 final value 85.992931 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.592136 iter 10 value 94.489030 iter 20 value 94.402788 iter 30 value 88.501666 iter 40 value 86.686772 iter 50 value 86.476103 final value 86.476085 converged Fitting Repeat 1 # weights: 507 initial value 103.109888 iter 10 value 94.492668 iter 20 value 94.480553 iter 30 value 93.190439 iter 40 value 87.894669 iter 50 value 87.889592 iter 60 value 87.738831 iter 70 value 87.719844 iter 80 value 87.711695 iter 90 value 87.701865 iter 100 value 87.698896 final value 87.698896 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.113203 iter 10 value 94.558255 iter 20 value 86.789150 iter 30 value 85.908161 iter 40 value 85.904092 iter 50 value 84.932072 iter 60 value 84.177739 iter 70 value 84.165294 final value 84.165260 converged Fitting Repeat 3 # weights: 507 initial value 95.049984 iter 10 value 94.283310 iter 20 value 94.240737 iter 30 value 94.236168 iter 40 value 94.234985 iter 50 value 94.230717 final value 94.230305 converged Fitting Repeat 4 # weights: 507 initial value 103.926099 iter 10 value 94.492169 iter 20 value 91.308574 iter 30 value 87.829233 iter 40 value 87.712327 iter 50 value 87.710082 iter 60 value 87.707459 iter 70 value 87.255045 iter 80 value 86.591705 iter 90 value 86.270242 final value 86.268495 converged Fitting Repeat 5 # weights: 507 initial value 118.964818 iter 10 value 94.492592 iter 20 value 94.443483 iter 30 value 92.631335 iter 40 value 92.604163 iter 50 value 92.603723 final value 92.603701 converged Fitting Repeat 1 # weights: 103 initial value 99.989272 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.685885 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.707441 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.133343 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.524086 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.396836 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.780741 final value 93.987879 converged Fitting Repeat 3 # weights: 305 initial value 108.482931 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 104.819430 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 112.816164 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 103.155690 iter 10 value 94.051331 iter 20 value 92.430140 iter 30 value 87.217294 iter 40 value 86.586533 iter 50 value 85.751471 final value 85.729814 converged Fitting Repeat 2 # weights: 507 initial value 111.180901 iter 10 value 94.058208 iter 20 value 94.052915 final value 94.052911 converged Fitting Repeat 3 # weights: 507 initial value 94.886611 final value 93.812866 converged Fitting Repeat 4 # weights: 507 initial value 97.820873 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 105.954217 iter 10 value 81.477710 iter 20 value 80.885430 iter 30 value 80.883120 final value 80.883117 converged Fitting Repeat 1 # weights: 103 initial value 96.566991 iter 10 value 94.055011 iter 20 value 93.725370 iter 30 value 83.913934 iter 40 value 83.118536 iter 50 value 81.474667 iter 60 value 81.336451 iter 70 value 81.171778 iter 80 value 81.119867 iter 80 value 81.119867 final value 81.119867 converged Fitting Repeat 2 # weights: 103 initial value 101.413297 iter 10 value 94.056707 iter 10 value 94.056707 iter 20 value 94.029162 iter 30 value 93.925558 iter 40 value 87.975181 iter 50 value 86.186121 iter 60 value 83.735776 iter 70 value 81.331440 iter 80 value 80.244270 iter 90 value 79.985959 iter 100 value 79.434091 final value 79.434091 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.617348 iter 10 value 94.054829 iter 20 value 92.722782 iter 30 value 84.234175 iter 40 value 81.963667 iter 50 value 81.831718 iter 60 value 81.125858 final value 81.119947 converged Fitting Repeat 4 # weights: 103 initial value 98.426609 iter 10 value 92.006724 iter 20 value 85.546260 iter 30 value 83.511987 iter 40 value 82.837204 iter 50 value 80.419871 iter 60 value 80.188754 iter 70 value 80.158189 iter 80 value 79.920924 iter 90 value 79.749627 iter 90 value 79.749626 iter 90 value 79.749626 final value 79.749626 converged Fitting Repeat 5 # weights: 103 initial value 98.551454 iter 10 value 94.056789 iter 20 value 91.218618 iter 30 value 82.952118 iter 40 value 82.211150 iter 50 value 81.398495 iter 60 value 80.973830 iter 70 value 80.459263 iter 80 value 80.249179 iter 90 value 80.188740 final value 80.188630 converged Fitting Repeat 1 # weights: 305 initial value 100.397433 iter 10 value 87.480272 iter 20 value 85.951976 iter 30 value 85.275078 iter 40 value 83.082869 iter 50 value 80.407381 iter 60 value 79.598169 iter 70 value 78.869124 iter 80 value 78.491285 iter 90 value 77.977741 iter 100 value 77.879318 final value 77.879318 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.953174 iter 10 value 93.960694 iter 20 value 84.681153 iter 30 value 83.630057 iter 40 value 83.048321 iter 50 value 80.596019 iter 60 value 79.971192 iter 70 value 79.544956 iter 80 value 79.363869 iter 90 value 78.477353 iter 100 value 78.045244 final value 78.045244 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 128.481895 iter 10 value 94.064463 iter 20 value 89.281926 iter 30 value 84.726359 iter 40 value 84.282826 iter 50 value 83.849862 iter 60 value 82.402126 iter 70 value 80.372743 iter 80 value 79.542193 iter 90 value 79.221215 iter 100 value 79.062939 final value 79.062939 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.828527 iter 10 value 94.055705 iter 20 value 93.775374 iter 30 value 87.990858 iter 40 value 82.641931 iter 50 value 82.212907 iter 60 value 80.348448 iter 70 value 78.908544 iter 80 value 78.228735 iter 90 value 78.089662 iter 100 value 78.064525 final value 78.064525 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.606218 iter 10 value 93.789661 iter 20 value 91.260552 iter 30 value 82.986200 iter 40 value 80.153263 iter 50 value 79.783035 iter 60 value 79.642160 iter 70 value 79.423295 iter 80 value 78.774743 iter 90 value 78.393916 iter 100 value 78.268632 final value 78.268632 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.043333 iter 10 value 94.341518 iter 20 value 94.011776 iter 30 value 87.079141 iter 40 value 82.141440 iter 50 value 81.347300 iter 60 value 81.107784 iter 70 value 81.011133 iter 80 value 80.588492 iter 90 value 79.244596 iter 100 value 78.852378 final value 78.852378 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.070438 iter 10 value 94.154493 iter 20 value 93.849559 iter 30 value 88.897332 iter 40 value 82.135551 iter 50 value 80.226023 iter 60 value 78.703665 iter 70 value 77.946528 iter 80 value 77.883078 iter 90 value 77.670414 iter 100 value 77.609103 final value 77.609103 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.928334 iter 10 value 93.852099 iter 20 value 84.863225 iter 30 value 84.176233 iter 40 value 80.916531 iter 50 value 79.890028 iter 60 value 78.688930 iter 70 value 78.123768 iter 80 value 77.747843 iter 90 value 77.625828 iter 100 value 77.584328 final value 77.584328 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.926903 iter 10 value 96.611146 iter 20 value 94.087219 iter 30 value 87.305422 iter 40 value 81.619073 iter 50 value 81.324682 iter 60 value 80.093262 iter 70 value 79.775495 iter 80 value 79.431573 iter 90 value 78.726727 iter 100 value 78.210039 final value 78.210039 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.608994 iter 10 value 93.805072 iter 20 value 89.719372 iter 30 value 83.381510 iter 40 value 81.101277 iter 50 value 79.544596 iter 60 value 78.358203 iter 70 value 78.034679 iter 80 value 77.711446 iter 90 value 77.600002 iter 100 value 77.514557 final value 77.514557 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.477371 final value 94.054758 converged Fitting Repeat 2 # weights: 103 initial value 114.606302 iter 10 value 93.838024 iter 20 value 93.836643 iter 30 value 93.728591 iter 40 value 93.353287 iter 50 value 85.719684 final value 83.650667 converged Fitting Repeat 3 # weights: 103 initial value 95.644771 iter 10 value 93.724004 iter 20 value 93.722533 iter 30 value 93.722298 iter 30 value 93.722298 final value 93.722298 converged Fitting Repeat 4 # weights: 103 initial value 100.883963 iter 10 value 94.054721 iter 20 value 94.052979 final value 94.052920 converged Fitting Repeat 5 # weights: 103 initial value 103.109030 final value 94.054553 converged Fitting Repeat 1 # weights: 305 initial value 99.512045 iter 10 value 94.057530 iter 20 value 94.053027 iter 20 value 94.053027 final value 93.836299 converged Fitting Repeat 2 # weights: 305 initial value 100.250970 iter 10 value 94.057016 iter 20 value 94.050375 iter 30 value 93.670566 iter 40 value 93.192181 iter 50 value 85.988424 iter 60 value 84.598572 iter 70 value 80.675841 iter 80 value 80.299656 iter 90 value 80.283168 iter 100 value 80.282997 final value 80.282997 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.184023 iter 10 value 94.016252 iter 20 value 93.879841 iter 30 value 93.333924 iter 40 value 85.890440 iter 50 value 84.653897 iter 60 value 84.637296 iter 70 value 84.633843 final value 84.633696 converged Fitting Repeat 4 # weights: 305 initial value 99.179909 iter 10 value 93.841137 iter 20 value 93.836396 final value 93.836267 converged Fitting Repeat 5 # weights: 305 initial value 94.156642 iter 10 value 94.055460 iter 20 value 92.925916 iter 30 value 91.379567 iter 40 value 91.376021 final value 91.376019 converged Fitting Repeat 1 # weights: 507 initial value 122.756970 iter 10 value 94.033611 iter 20 value 93.996637 iter 30 value 90.523911 iter 40 value 89.758776 iter 50 value 89.756497 iter 60 value 88.762999 iter 70 value 82.543191 iter 80 value 81.118542 iter 90 value 80.166082 iter 100 value 79.013800 final value 79.013800 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.887847 iter 10 value 93.844354 iter 20 value 93.230223 iter 30 value 86.163984 iter 40 value 84.776284 iter 50 value 83.920372 iter 60 value 83.645473 iter 70 value 83.244572 iter 80 value 83.238241 iter 90 value 83.236601 iter 100 value 83.228507 final value 83.228507 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.759275 iter 10 value 93.844758 final value 93.844752 converged Fitting Repeat 4 # weights: 507 initial value 97.527732 iter 10 value 93.678086 iter 20 value 88.565437 iter 30 value 82.303246 iter 40 value 82.278374 final value 82.277407 converged Fitting Repeat 5 # weights: 507 initial value 115.978242 iter 10 value 93.852465 iter 20 value 93.847517 iter 30 value 88.146098 iter 40 value 84.550019 iter 50 value 84.214973 iter 60 value 84.208595 iter 70 value 83.866566 iter 80 value 81.423279 iter 90 value 79.018411 iter 100 value 79.017033 final value 79.017033 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 134.698112 iter 10 value 117.495880 iter 20 value 115.352520 iter 30 value 112.889095 iter 40 value 106.804514 iter 50 value 105.251583 iter 60 value 103.461846 iter 70 value 102.012786 iter 80 value 101.632415 iter 90 value 101.106301 iter 100 value 100.853607 final value 100.853607 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 150.473072 iter 10 value 118.027568 iter 20 value 113.969720 iter 30 value 108.398520 iter 40 value 104.970166 iter 50 value 104.245130 iter 60 value 101.465908 iter 70 value 101.066373 iter 80 value 100.870795 iter 90 value 100.661427 iter 100 value 100.515477 final value 100.515477 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 133.556620 iter 10 value 117.920532 iter 20 value 117.047308 iter 30 value 115.160538 iter 40 value 111.267014 iter 50 value 109.395981 iter 60 value 104.774506 iter 70 value 103.450116 iter 80 value 102.870843 iter 90 value 102.190737 iter 100 value 101.633380 final value 101.633380 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 150.244508 iter 10 value 117.821233 iter 20 value 110.801246 iter 30 value 108.806078 iter 40 value 108.322593 iter 50 value 108.161787 iter 60 value 106.098114 iter 70 value 105.076481 iter 80 value 104.591016 iter 90 value 103.642748 iter 100 value 102.911632 final value 102.911632 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 163.422224 iter 10 value 118.163156 iter 20 value 117.501896 iter 30 value 111.678211 iter 40 value 108.574183 iter 50 value 107.698771 iter 60 value 106.646876 iter 70 value 106.175311 iter 80 value 105.361811 iter 90 value 104.664397 iter 100 value 102.740171 final value 102.740171 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Dec 23 19:46:45 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 17.436 0.377 28.751
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 17.697 | 0.780 | 18.777 | |
FreqInteractors | 0.080 | 0.005 | 0.084 | |
calculateAAC | 0.014 | 0.003 | 0.018 | |
calculateAutocor | 0.140 | 0.015 | 0.155 | |
calculateCTDC | 0.025 | 0.001 | 0.026 | |
calculateCTDD | 0.175 | 0.004 | 0.180 | |
calculateCTDT | 0.082 | 0.003 | 0.085 | |
calculateCTriad | 0.139 | 0.005 | 0.144 | |
calculateDC | 0.029 | 0.003 | 0.032 | |
calculateF | 0.089 | 0.002 | 0.091 | |
calculateKSAAP | 0.031 | 0.004 | 0.033 | |
calculateQD_Sm | 0.593 | 0.053 | 0.647 | |
calculateTC | 0.523 | 0.056 | 0.580 | |
calculateTC_Sm | 0.091 | 0.005 | 0.096 | |
corr_plot | 17.461 | 0.715 | 18.404 | |
enrichfindP | 0.167 | 0.028 | 7.625 | |
enrichfind_hp | 0.024 | 0.008 | 0.964 | |
enrichplot | 0.119 | 0.004 | 0.123 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.028 | 0.006 | 3.267 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.000 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.026 | 0.001 | 0.027 | |
pred_ensembel | 5.676 | 0.120 | 5.163 | |
var_imp | 18.165 | 0.703 | 19.107 | |