| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-01 11:35 -0500 (Mon, 01 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4866 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4572 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 994/2328 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-11-30 20:28:01 -0500 (Sun, 30 Nov 2025) |
| EndedAt: 2025-11-30 20:31:27 -0500 (Sun, 30 Nov 2025) |
| EllapsedTime: 205.7 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 19.221 0.924 20.887
corr_plot 19.081 0.895 20.714
var_imp 18.581 0.988 20.961
pred_ensembel 6.528 0.112 6.341
enrichfindP 0.194 0.038 12.521
getFASTA 0.031 0.007 5.236
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 94.486828
final value 94.466823
converged
Fitting Repeat 2
# weights: 103
initial value 98.235560
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.305312
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 94.929514
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.076315
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 105.135538
iter 10 value 94.424931
final value 94.423548
converged
Fitting Repeat 2
# weights: 305
initial value 94.764599
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 108.028381
iter 10 value 94.466823
iter 10 value 94.466823
iter 10 value 94.466823
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 102.121684
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.994779
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.639900
iter 10 value 94.338747
final value 94.338745
converged
Fitting Repeat 2
# weights: 507
initial value 114.008173
final value 94.466823
converged
Fitting Repeat 3
# weights: 507
initial value 95.246587
iter 10 value 94.356092
iter 20 value 94.354287
iter 20 value 94.354287
iter 20 value 94.354287
final value 94.354287
converged
Fitting Repeat 4
# weights: 507
initial value 96.542632
iter 10 value 83.771489
iter 20 value 83.240692
iter 30 value 83.239653
iter 40 value 83.239526
final value 83.239521
converged
Fitting Repeat 5
# weights: 507
initial value 121.199232
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 102.073524
iter 10 value 94.533602
iter 20 value 90.854083
iter 30 value 90.125949
iter 40 value 89.595019
iter 50 value 87.533240
iter 60 value 83.769099
iter 70 value 83.694120
iter 80 value 83.687061
final value 83.684617
converged
Fitting Repeat 2
# weights: 103
initial value 97.237253
iter 10 value 93.939959
iter 20 value 88.183344
iter 30 value 87.167440
iter 40 value 85.641915
iter 50 value 85.340088
iter 60 value 84.484604
iter 70 value 84.234770
iter 80 value 84.217690
final value 84.217673
converged
Fitting Repeat 3
# weights: 103
initial value 97.431939
iter 10 value 94.490232
iter 20 value 94.346970
iter 30 value 94.159036
iter 40 value 92.084463
iter 50 value 91.609394
iter 60 value 91.571360
iter 70 value 86.309787
iter 80 value 84.972686
iter 90 value 84.571367
iter 100 value 84.013777
final value 84.013777
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.919653
iter 10 value 94.488592
iter 20 value 91.476611
iter 30 value 88.694699
iter 40 value 88.088114
iter 50 value 87.586615
iter 60 value 85.230140
iter 70 value 83.834111
iter 80 value 83.740486
iter 90 value 83.642421
iter 100 value 83.602193
final value 83.602193
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.174165
iter 10 value 93.862925
iter 20 value 86.637934
iter 30 value 85.376152
iter 40 value 85.180519
iter 50 value 85.150803
iter 60 value 85.138274
iter 70 value 85.052014
iter 80 value 84.441323
iter 90 value 84.218034
final value 84.217673
converged
Fitting Repeat 1
# weights: 305
initial value 101.517916
iter 10 value 91.597653
iter 20 value 89.202119
iter 30 value 86.585499
iter 40 value 85.108504
iter 50 value 83.760384
iter 60 value 82.891505
iter 70 value 82.320622
iter 80 value 81.896208
iter 90 value 81.606183
iter 100 value 81.492510
final value 81.492510
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.313956
iter 10 value 94.809165
iter 20 value 94.543409
iter 30 value 94.358121
iter 40 value 91.680799
iter 50 value 87.500012
iter 60 value 86.588269
iter 70 value 84.807247
iter 80 value 84.540123
iter 90 value 84.239083
iter 100 value 83.927865
final value 83.927865
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.872297
iter 10 value 94.550695
iter 20 value 94.104022
iter 30 value 90.728532
iter 40 value 87.428217
iter 50 value 87.044786
iter 60 value 84.684222
iter 70 value 84.221415
iter 80 value 82.892039
iter 90 value 82.739277
iter 100 value 82.666700
final value 82.666700
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 98.792638
iter 10 value 91.384854
iter 20 value 85.924166
iter 30 value 84.145479
iter 40 value 83.735175
iter 50 value 83.680000
iter 60 value 83.544093
iter 70 value 83.173848
iter 80 value 82.374062
iter 90 value 82.216337
iter 100 value 82.051155
final value 82.051155
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.940499
iter 10 value 94.719195
iter 20 value 93.965142
iter 30 value 93.778995
iter 40 value 93.710483
iter 50 value 85.748891
iter 60 value 85.333803
iter 70 value 84.624485
iter 80 value 84.374929
iter 90 value 84.344875
iter 100 value 84.249172
final value 84.249172
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.867543
iter 10 value 88.947868
iter 20 value 86.826663
iter 30 value 85.250338
iter 40 value 84.444487
iter 50 value 83.274362
iter 60 value 82.958251
iter 70 value 82.665401
iter 80 value 82.557638
iter 90 value 82.421673
iter 100 value 82.193114
final value 82.193114
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.595433
iter 10 value 94.490034
iter 20 value 89.752753
iter 30 value 86.736513
iter 40 value 86.275450
iter 50 value 84.976348
iter 60 value 84.102954
iter 70 value 83.534524
iter 80 value 82.677746
iter 90 value 82.272149
iter 100 value 81.810578
final value 81.810578
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.235493
iter 10 value 94.525710
iter 20 value 93.862480
iter 30 value 87.020593
iter 40 value 85.518656
iter 50 value 84.490830
iter 60 value 83.966994
iter 70 value 83.947742
iter 80 value 83.919189
iter 90 value 83.896537
iter 100 value 83.789494
final value 83.789494
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 116.900699
iter 10 value 94.557391
iter 20 value 94.107844
iter 30 value 92.656518
iter 40 value 88.877764
iter 50 value 87.875475
iter 60 value 87.366202
iter 70 value 85.841365
iter 80 value 84.192549
iter 90 value 83.495867
iter 100 value 83.388934
final value 83.388934
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.793980
iter 10 value 96.677967
iter 20 value 94.764499
iter 30 value 87.498253
iter 40 value 86.246739
iter 50 value 85.156479
iter 60 value 83.992936
iter 70 value 82.547373
iter 80 value 81.596948
iter 90 value 81.405021
iter 100 value 81.395836
final value 81.395836
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.009076
final value 94.485785
converged
Fitting Repeat 2
# weights: 103
initial value 94.901020
final value 94.485759
converged
Fitting Repeat 3
# weights: 103
initial value 96.418644
iter 10 value 94.485769
iter 20 value 94.484163
iter 30 value 93.715584
iter 40 value 86.380931
iter 50 value 86.340998
iter 60 value 86.329409
iter 70 value 86.327540
iter 80 value 86.324044
iter 90 value 86.131108
final value 86.130965
converged
Fitting Repeat 4
# weights: 103
initial value 101.254702
final value 94.485950
converged
Fitting Repeat 5
# weights: 103
initial value 107.501556
iter 10 value 94.485907
iter 20 value 94.481931
iter 30 value 86.054558
iter 40 value 85.659131
iter 50 value 85.477569
iter 60 value 85.366447
iter 70 value 85.286483
iter 80 value 85.225287
iter 90 value 85.221305
iter 100 value 85.217094
final value 85.217094
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.141939
iter 10 value 94.488836
final value 94.484628
converged
Fitting Repeat 2
# weights: 305
initial value 96.690432
iter 10 value 94.487628
iter 20 value 94.369892
iter 30 value 92.838697
iter 40 value 92.794904
iter 50 value 92.574882
iter 60 value 90.328997
iter 70 value 90.114233
iter 80 value 90.111884
iter 90 value 90.104135
iter 100 value 85.145214
final value 85.145214
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.579694
iter 10 value 94.156943
iter 20 value 94.057099
iter 30 value 94.052260
iter 40 value 89.044914
iter 50 value 85.119071
iter 60 value 85.114011
iter 70 value 85.112609
iter 80 value 85.108385
iter 90 value 85.104636
iter 100 value 85.102420
final value 85.102420
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.887289
iter 10 value 94.083619
iter 20 value 94.080279
iter 30 value 89.771141
iter 40 value 84.124282
iter 50 value 84.051757
final value 84.051444
converged
Fitting Repeat 5
# weights: 305
initial value 105.051617
iter 10 value 94.488947
final value 94.484224
converged
Fitting Repeat 1
# weights: 507
initial value 105.417970
iter 10 value 94.492292
iter 20 value 94.475589
iter 30 value 94.331104
iter 30 value 94.331103
iter 30 value 94.331103
final value 94.331103
converged
Fitting Repeat 2
# weights: 507
initial value 125.465538
iter 10 value 94.490271
iter 20 value 94.347462
iter 30 value 94.283797
iter 40 value 90.726899
iter 50 value 87.200211
iter 60 value 86.860381
iter 70 value 86.749828
iter 80 value 86.749167
iter 90 value 86.747623
iter 100 value 86.741077
final value 86.741077
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.060718
iter 10 value 94.487644
iter 20 value 87.415971
iter 30 value 85.439914
iter 40 value 85.129605
iter 50 value 84.868621
iter 60 value 83.746642
iter 70 value 81.858288
iter 80 value 79.827221
iter 90 value 79.724695
iter 100 value 79.678034
final value 79.678034
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.399825
iter 10 value 94.491366
iter 20 value 94.170625
final value 94.089076
converged
Fitting Repeat 5
# weights: 507
initial value 101.212087
iter 10 value 94.475169
iter 20 value 93.595308
iter 30 value 87.595350
iter 40 value 87.246311
iter 50 value 86.314905
iter 60 value 86.306194
iter 70 value 85.974556
iter 80 value 84.413142
iter 90 value 84.405395
iter 100 value 84.405057
final value 84.405057
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 109.137071
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 106.429411
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.736580
iter 10 value 86.765762
final value 86.376990
converged
Fitting Repeat 4
# weights: 103
initial value 94.106247
final value 93.869755
converged
Fitting Repeat 5
# weights: 103
initial value 105.009460
final value 93.915746
converged
Fitting Repeat 1
# weights: 305
initial value 103.082419
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 98.340586
iter 10 value 93.715893
final value 93.697143
converged
Fitting Repeat 3
# weights: 305
initial value 106.126243
final value 93.915746
converged
Fitting Repeat 4
# weights: 305
initial value 97.142020
iter 10 value 93.485056
final value 93.481484
converged
Fitting Repeat 5
# weights: 305
initial value 95.343389
final value 93.915746
converged
Fitting Repeat 1
# weights: 507
initial value 101.827055
iter 10 value 87.955578
iter 20 value 85.509322
iter 30 value 85.033672
final value 84.988767
converged
Fitting Repeat 2
# weights: 507
initial value 99.738847
iter 10 value 93.916550
iter 20 value 93.915749
final value 93.915746
converged
Fitting Repeat 3
# weights: 507
initial value 110.590373
final value 93.915746
converged
Fitting Repeat 4
# weights: 507
initial value 118.095257
iter 10 value 93.341347
iter 10 value 93.341346
iter 10 value 93.341346
final value 93.341346
converged
Fitting Repeat 5
# weights: 507
initial value 106.763521
iter 10 value 93.723568
final value 93.713370
converged
Fitting Repeat 1
# weights: 103
initial value 103.472113
iter 10 value 94.056755
iter 20 value 92.566722
iter 30 value 83.549849
iter 40 value 82.463187
iter 50 value 81.974548
iter 60 value 81.826112
iter 70 value 81.647744
iter 80 value 81.030706
iter 90 value 80.374413
iter 100 value 80.250747
final value 80.250747
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.325286
iter 10 value 94.041064
iter 20 value 85.301065
iter 30 value 84.957485
iter 40 value 84.688100
iter 50 value 84.404442
iter 60 value 83.932194
iter 70 value 83.300868
iter 80 value 83.180708
final value 83.158535
converged
Fitting Repeat 3
# weights: 103
initial value 102.596272
iter 10 value 85.276665
iter 20 value 83.659156
iter 30 value 83.038202
iter 40 value 82.627429
iter 50 value 82.613881
iter 60 value 82.589334
final value 82.588290
converged
Fitting Repeat 4
# weights: 103
initial value 96.120890
iter 10 value 94.042473
iter 20 value 87.472830
iter 30 value 85.440437
iter 40 value 82.591702
iter 50 value 82.475358
iter 60 value 82.441591
iter 70 value 82.421250
final value 82.419849
converged
Fitting Repeat 5
# weights: 103
initial value 108.308717
iter 10 value 94.063733
iter 20 value 90.504200
iter 30 value 84.506494
iter 40 value 83.571620
iter 50 value 83.018323
iter 60 value 82.860112
final value 82.847361
converged
Fitting Repeat 1
# weights: 305
initial value 103.391798
iter 10 value 94.139704
iter 20 value 93.672935
iter 30 value 85.155383
iter 40 value 84.580414
iter 50 value 81.432898
iter 60 value 80.921851
iter 70 value 79.893147
iter 80 value 79.295131
iter 90 value 79.255680
iter 100 value 79.250162
final value 79.250162
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.326631
iter 10 value 88.998915
iter 20 value 86.048769
iter 30 value 82.026167
iter 40 value 81.244376
iter 50 value 80.408499
iter 60 value 79.778168
iter 70 value 79.708479
iter 80 value 79.338594
iter 90 value 78.859370
iter 100 value 78.753641
final value 78.753641
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.211879
iter 10 value 94.008973
iter 20 value 84.974284
iter 30 value 84.092064
iter 40 value 82.748049
iter 50 value 82.249568
iter 60 value 80.648485
iter 70 value 79.504465
iter 80 value 78.946994
iter 90 value 78.777979
iter 100 value 78.716265
final value 78.716265
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.230584
iter 10 value 93.268462
iter 20 value 86.843258
iter 30 value 85.333682
iter 40 value 81.964669
iter 50 value 81.289426
iter 60 value 80.755836
iter 70 value 79.521304
iter 80 value 79.345598
iter 90 value 79.317394
iter 100 value 79.279447
final value 79.279447
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.370223
iter 10 value 94.108573
iter 20 value 89.265470
iter 30 value 87.831643
iter 40 value 84.813719
iter 50 value 82.601563
iter 60 value 81.312789
iter 70 value 79.835176
iter 80 value 79.134954
iter 90 value 78.771954
iter 100 value 78.441421
final value 78.441421
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 123.462074
iter 10 value 92.923445
iter 20 value 83.774500
iter 30 value 81.972153
iter 40 value 81.178140
iter 50 value 80.738013
iter 60 value 79.490247
iter 70 value 78.495876
iter 80 value 78.328549
iter 90 value 78.150111
iter 100 value 77.997480
final value 77.997480
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.936224
iter 10 value 94.396717
iter 20 value 86.934495
iter 30 value 85.615022
iter 40 value 83.712365
iter 50 value 82.021560
iter 60 value 81.666576
iter 70 value 81.201657
iter 80 value 80.761403
iter 90 value 80.638941
iter 100 value 80.614943
final value 80.614943
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 135.301315
iter 10 value 94.237643
iter 20 value 93.590196
iter 30 value 92.338673
iter 40 value 84.317988
iter 50 value 82.974851
iter 60 value 82.604952
iter 70 value 82.138735
iter 80 value 82.092196
iter 90 value 82.075073
iter 100 value 82.006229
final value 82.006229
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.948239
iter 10 value 95.254026
iter 20 value 94.893813
iter 30 value 94.057421
iter 40 value 84.177548
iter 50 value 82.515927
iter 60 value 82.005955
iter 70 value 81.606823
iter 80 value 80.789510
iter 90 value 80.079222
iter 100 value 79.984807
final value 79.984807
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.733839
iter 10 value 93.402461
iter 20 value 83.827732
iter 30 value 82.098270
iter 40 value 81.745680
iter 50 value 81.526783
iter 60 value 81.388164
iter 70 value 81.046252
iter 80 value 80.683195
iter 90 value 79.906715
iter 100 value 79.398800
final value 79.398800
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.389260
iter 10 value 93.937039
iter 20 value 93.748681
iter 30 value 93.483227
final value 93.482556
converged
Fitting Repeat 2
# weights: 103
initial value 97.787370
iter 10 value 93.698723
iter 20 value 93.698477
iter 30 value 93.481720
iter 30 value 93.481720
iter 30 value 93.481720
final value 93.481720
converged
Fitting Repeat 3
# weights: 103
initial value 94.461063
final value 93.630188
converged
Fitting Repeat 4
# weights: 103
initial value 110.393437
final value 94.054600
converged
Fitting Repeat 5
# weights: 103
initial value 95.489865
final value 94.054552
converged
Fitting Repeat 1
# weights: 305
initial value 96.772174
iter 10 value 94.057933
iter 20 value 94.053231
iter 30 value 93.635721
iter 40 value 93.482835
iter 50 value 93.482251
iter 60 value 84.599650
iter 70 value 84.092782
iter 80 value 84.047907
final value 84.046880
converged
Fitting Repeat 2
# weights: 305
initial value 99.129633
iter 10 value 89.367053
iter 20 value 85.616038
iter 30 value 85.612410
iter 40 value 85.608959
iter 50 value 85.357508
iter 60 value 85.266591
iter 70 value 85.266216
final value 85.265777
converged
Fitting Repeat 3
# weights: 305
initial value 96.909897
iter 10 value 92.422984
iter 20 value 91.405370
iter 30 value 91.338478
iter 40 value 91.334011
iter 50 value 91.333522
iter 50 value 91.333521
final value 91.333521
converged
Fitting Repeat 4
# weights: 305
initial value 127.862696
iter 10 value 94.057672
iter 20 value 94.053202
iter 30 value 93.481900
final value 93.481631
converged
Fitting Repeat 5
# weights: 305
initial value 100.716485
iter 10 value 94.057441
final value 94.053045
converged
Fitting Repeat 1
# weights: 507
initial value 100.645320
iter 10 value 94.054078
iter 20 value 94.042208
iter 30 value 84.170110
iter 40 value 82.416807
final value 82.416791
converged
Fitting Repeat 2
# weights: 507
initial value 94.745074
iter 10 value 93.244185
iter 20 value 92.115000
iter 30 value 92.092811
final value 92.092138
converged
Fitting Repeat 3
# weights: 507
initial value 117.611277
iter 10 value 94.061357
iter 20 value 94.045811
iter 20 value 94.045811
iter 30 value 93.458453
iter 40 value 83.816782
iter 50 value 81.907249
final value 81.906847
converged
Fitting Repeat 4
# weights: 507
initial value 128.578994
iter 10 value 94.061521
iter 20 value 94.054396
iter 30 value 88.533081
iter 40 value 86.610978
iter 50 value 84.158497
iter 60 value 80.763365
iter 70 value 78.493401
iter 80 value 78.330190
iter 90 value 78.315458
iter 100 value 78.306792
final value 78.306792
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.494645
iter 10 value 93.923908
iter 20 value 91.932965
iter 30 value 91.827272
iter 40 value 91.286131
iter 50 value 91.278857
iter 60 value 91.278484
iter 70 value 91.278339
final value 91.278320
converged
Fitting Repeat 1
# weights: 103
initial value 96.778619
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.005201
final value 94.264858
converged
Fitting Repeat 3
# weights: 103
initial value 102.030185
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.906460
final value 94.457914
converged
Fitting Repeat 5
# weights: 103
initial value 100.070095
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.834799
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 113.311348
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 106.001530
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.155427
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 97.222885
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.430018
iter 10 value 94.448378
iter 20 value 94.031520
final value 94.026542
converged
Fitting Repeat 2
# weights: 507
initial value 106.590396
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 107.985928
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 116.536586
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 96.305157
final value 94.020991
converged
Fitting Repeat 1
# weights: 103
initial value 96.678488
iter 10 value 94.468604
iter 20 value 93.853988
iter 30 value 89.074118
iter 40 value 86.657330
iter 50 value 84.854702
iter 60 value 84.338665
iter 70 value 84.162485
iter 80 value 84.055487
final value 84.054378
converged
Fitting Repeat 2
# weights: 103
initial value 97.840336
iter 10 value 94.063396
iter 20 value 90.796309
iter 30 value 90.080045
iter 40 value 89.190229
iter 50 value 88.195219
iter 60 value 86.607696
iter 70 value 82.556212
iter 80 value 82.167058
iter 90 value 81.896867
final value 81.892454
converged
Fitting Repeat 3
# weights: 103
initial value 111.988229
iter 10 value 94.248730
iter 20 value 86.494303
iter 30 value 85.497124
iter 40 value 85.123517
iter 50 value 82.758050
iter 60 value 82.250347
iter 70 value 81.902661
final value 81.892454
converged
Fitting Repeat 4
# weights: 103
initial value 103.006682
iter 10 value 94.493380
iter 20 value 94.487179
iter 30 value 93.526790
iter 40 value 87.115680
iter 50 value 85.964421
iter 60 value 84.387400
iter 70 value 84.083365
iter 80 value 84.059853
final value 84.054378
converged
Fitting Repeat 5
# weights: 103
initial value 102.179457
iter 10 value 94.488620
iter 20 value 94.022997
iter 30 value 93.903282
iter 40 value 93.889491
iter 50 value 89.612245
iter 60 value 87.589544
iter 70 value 86.368365
iter 80 value 84.735154
iter 90 value 84.255704
iter 100 value 84.185614
final value 84.185614
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.956860
iter 10 value 94.714931
iter 20 value 94.450425
iter 30 value 92.467883
iter 40 value 87.562623
iter 50 value 85.579847
iter 60 value 84.790249
iter 70 value 82.732933
iter 80 value 81.565030
iter 90 value 81.480616
iter 100 value 81.422402
final value 81.422402
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 109.138856
iter 10 value 94.235879
iter 20 value 93.897555
iter 30 value 93.091939
iter 40 value 89.093411
iter 50 value 88.258585
iter 60 value 84.822901
iter 70 value 84.053142
iter 80 value 83.739421
iter 90 value 82.392869
iter 100 value 81.507755
final value 81.507755
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.784906
iter 10 value 95.372181
iter 20 value 88.654541
iter 30 value 84.664775
iter 40 value 82.708206
iter 50 value 81.547587
iter 60 value 80.956926
iter 70 value 80.788462
iter 80 value 80.686725
iter 90 value 80.662643
iter 100 value 80.625839
final value 80.625839
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.281863
iter 10 value 94.619045
iter 20 value 87.399898
iter 30 value 86.641559
iter 40 value 84.493194
iter 50 value 83.179429
iter 60 value 82.792509
iter 70 value 82.550272
iter 80 value 81.888566
iter 90 value 81.777288
iter 100 value 81.743030
final value 81.743030
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.195244
iter 10 value 95.206579
iter 20 value 94.220616
iter 30 value 88.146979
iter 40 value 83.821596
iter 50 value 83.217867
iter 60 value 83.065136
iter 70 value 82.684173
iter 80 value 82.612933
iter 90 value 82.152905
iter 100 value 81.516902
final value 81.516902
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 128.178314
iter 10 value 93.122463
iter 20 value 88.779297
iter 30 value 87.416518
iter 40 value 85.793761
iter 50 value 84.589202
iter 60 value 84.375752
iter 70 value 83.290306
iter 80 value 81.790779
iter 90 value 80.950231
iter 100 value 80.792832
final value 80.792832
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.180720
iter 10 value 95.012800
iter 20 value 88.353485
iter 30 value 86.592350
iter 40 value 84.859378
iter 50 value 84.503677
iter 60 value 83.704333
iter 70 value 83.507807
iter 80 value 83.044466
iter 90 value 81.054556
iter 100 value 80.865829
final value 80.865829
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.934359
iter 10 value 94.525941
iter 20 value 92.195823
iter 30 value 86.161294
iter 40 value 84.922478
iter 50 value 83.957884
iter 60 value 83.844323
iter 70 value 83.375304
iter 80 value 81.383028
iter 90 value 80.611277
iter 100 value 80.105768
final value 80.105768
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 125.353537
iter 10 value 95.067699
iter 20 value 94.419631
iter 30 value 91.218902
iter 40 value 85.633974
iter 50 value 83.988071
iter 60 value 83.210491
iter 70 value 82.453103
iter 80 value 82.110079
iter 90 value 81.945511
iter 100 value 81.740390
final value 81.740390
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.232528
iter 10 value 94.392068
iter 20 value 93.819757
iter 30 value 88.993325
iter 40 value 88.380013
iter 50 value 87.499700
iter 60 value 86.328775
iter 70 value 86.148366
iter 80 value 85.577295
iter 90 value 83.505641
iter 100 value 82.220781
final value 82.220781
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.949064
iter 10 value 94.489623
final value 94.487742
converged
Fitting Repeat 2
# weights: 103
initial value 96.471708
final value 94.485924
converged
Fitting Repeat 3
# weights: 103
initial value 102.806391
final value 94.485920
converged
Fitting Repeat 4
# weights: 103
initial value 96.305633
final value 94.485919
converged
Fitting Repeat 5
# weights: 103
initial value 99.891220
final value 94.485985
converged
Fitting Repeat 1
# weights: 305
initial value 95.598338
iter 10 value 92.477377
iter 20 value 84.337617
iter 30 value 83.494869
iter 40 value 82.372769
iter 50 value 82.053323
iter 60 value 81.978143
iter 70 value 81.414379
iter 80 value 81.241717
iter 90 value 80.414741
iter 100 value 80.316443
final value 80.316443
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.566710
iter 10 value 94.031498
iter 20 value 92.263710
iter 30 value 84.352930
iter 40 value 84.093206
iter 50 value 82.204594
iter 60 value 81.209912
final value 81.153446
converged
Fitting Repeat 3
# weights: 305
initial value 104.146905
iter 10 value 94.488642
iter 20 value 94.159007
final value 93.810009
converged
Fitting Repeat 4
# weights: 305
initial value 109.014970
iter 10 value 94.489250
iter 20 value 94.334051
iter 30 value 91.046762
iter 40 value 86.032964
iter 50 value 84.729269
iter 60 value 84.728035
final value 84.727987
converged
Fitting Repeat 5
# weights: 305
initial value 102.820329
iter 10 value 90.870453
iter 20 value 88.272157
iter 30 value 88.195588
iter 40 value 87.311875
iter 50 value 87.282626
iter 60 value 87.281560
iter 70 value 87.278645
iter 80 value 84.823815
iter 90 value 83.988331
iter 100 value 83.853399
final value 83.853399
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.829292
iter 10 value 93.791608
iter 20 value 88.780187
iter 30 value 87.858470
iter 40 value 87.857300
final value 87.857085
converged
Fitting Repeat 2
# weights: 507
initial value 97.675426
iter 10 value 94.492145
iter 20 value 94.417147
iter 30 value 92.908715
iter 40 value 92.897530
final value 92.897508
converged
Fitting Repeat 3
# weights: 507
initial value 102.361795
iter 10 value 89.175597
iter 20 value 88.429320
iter 30 value 88.397307
iter 40 value 88.225626
iter 50 value 87.268869
iter 60 value 86.933552
final value 86.932681
converged
Fitting Repeat 4
# weights: 507
initial value 98.360240
iter 10 value 93.808611
iter 20 value 93.796640
iter 30 value 93.787440
iter 40 value 93.786798
final value 93.786781
converged
Fitting Repeat 5
# weights: 507
initial value 95.888927
iter 10 value 94.035045
iter 20 value 94.027473
final value 94.027025
converged
Fitting Repeat 1
# weights: 103
initial value 96.432630
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.911363
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.064610
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.706024
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.916837
iter 10 value 90.574422
iter 20 value 83.061903
final value 83.052050
converged
Fitting Repeat 1
# weights: 305
initial value 98.534091
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.666295
final value 93.811828
converged
Fitting Repeat 3
# weights: 305
initial value 98.284564
iter 10 value 93.811828
iter 10 value 93.811828
iter 10 value 93.811828
final value 93.811828
converged
Fitting Repeat 4
# weights: 305
initial value 99.133255
iter 10 value 92.654232
iter 20 value 91.177708
iter 30 value 91.177422
final value 91.177420
converged
Fitting Repeat 5
# weights: 305
initial value 112.233085
iter 10 value 84.243494
iter 20 value 84.108547
iter 30 value 83.671715
final value 83.671595
converged
Fitting Repeat 1
# weights: 507
initial value 113.254016
iter 10 value 93.478342
final value 93.478341
converged
Fitting Repeat 2
# weights: 507
initial value 124.320391
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 106.959286
iter 10 value 93.857054
iter 20 value 93.811988
iter 30 value 93.811830
final value 93.811828
converged
Fitting Repeat 4
# weights: 507
initial value 107.340747
final value 93.788889
converged
Fitting Repeat 5
# weights: 507
initial value 118.639058
iter 10 value 93.801477
iter 20 value 93.796571
iter 30 value 92.683934
final value 92.683908
converged
Fitting Repeat 1
# weights: 103
initial value 105.211636
iter 10 value 93.559128
iter 20 value 84.258701
iter 30 value 83.904576
iter 40 value 82.794502
iter 50 value 82.529391
iter 60 value 82.481729
iter 70 value 81.961580
iter 80 value 81.860414
final value 81.859821
converged
Fitting Repeat 2
# weights: 103
initial value 100.132497
iter 10 value 94.271445
iter 20 value 86.090902
iter 30 value 83.677193
iter 40 value 82.996745
iter 50 value 82.236684
iter 60 value 82.059617
iter 70 value 81.365453
iter 80 value 80.402474
iter 90 value 80.232129
iter 100 value 80.231501
final value 80.231501
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 111.087630
iter 10 value 94.333011
iter 20 value 84.513636
iter 30 value 83.903688
iter 40 value 82.566809
iter 50 value 82.303096
iter 60 value 81.963386
iter 70 value 81.859833
final value 81.859822
converged
Fitting Repeat 4
# weights: 103
initial value 100.087380
iter 10 value 94.412574
iter 20 value 88.768005
iter 30 value 85.548947
iter 40 value 83.911650
iter 50 value 82.876957
iter 60 value 80.854449
iter 70 value 80.591901
iter 80 value 80.241410
iter 90 value 80.232098
iter 90 value 80.232098
final value 80.232098
converged
Fitting Repeat 5
# weights: 103
initial value 104.192579
iter 10 value 94.484396
iter 20 value 87.893208
iter 30 value 86.582975
iter 40 value 84.347826
iter 50 value 82.363994
iter 60 value 80.970541
iter 70 value 80.256198
iter 80 value 80.231217
iter 90 value 80.228538
iter 90 value 80.228538
final value 80.228538
converged
Fitting Repeat 1
# weights: 305
initial value 103.094275
iter 10 value 94.906976
iter 20 value 93.405951
iter 30 value 84.644786
iter 40 value 82.870504
iter 50 value 82.502282
iter 60 value 82.382545
iter 70 value 82.305115
iter 80 value 81.941731
iter 90 value 81.886446
iter 100 value 81.866378
final value 81.866378
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.372652
iter 10 value 94.356792
iter 20 value 91.824042
iter 30 value 91.286301
iter 40 value 90.016836
iter 50 value 83.417408
iter 60 value 81.600766
iter 70 value 80.878859
iter 80 value 79.961259
iter 90 value 79.824632
iter 100 value 79.488296
final value 79.488296
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.152039
iter 10 value 94.475981
iter 20 value 91.373904
iter 30 value 83.684981
iter 40 value 80.546402
iter 50 value 79.506515
iter 60 value 78.792390
iter 70 value 78.216717
iter 80 value 77.961209
iter 90 value 77.868827
iter 100 value 77.688868
final value 77.688868
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.885613
iter 10 value 94.142604
iter 20 value 82.715275
iter 30 value 81.653348
iter 40 value 80.224004
iter 50 value 79.316692
iter 60 value 78.876798
iter 70 value 78.455894
iter 80 value 78.170461
iter 90 value 77.980374
iter 100 value 77.812795
final value 77.812795
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.831885
iter 10 value 94.492489
iter 20 value 93.310144
iter 30 value 83.955568
iter 40 value 83.056742
iter 50 value 80.402836
iter 60 value 79.597642
iter 70 value 79.189809
iter 80 value 78.425759
iter 90 value 78.100569
iter 100 value 77.935808
final value 77.935808
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.957333
iter 10 value 90.365586
iter 20 value 83.344714
iter 30 value 81.126131
iter 40 value 78.685973
iter 50 value 78.349829
iter 60 value 77.886477
iter 70 value 77.742302
iter 80 value 77.600051
iter 90 value 77.337450
iter 100 value 77.257073
final value 77.257073
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 124.810959
iter 10 value 91.643124
iter 20 value 86.056159
iter 30 value 84.815452
iter 40 value 82.307624
iter 50 value 82.019683
iter 60 value 79.199806
iter 70 value 78.365148
iter 80 value 77.694118
iter 90 value 77.585776
iter 100 value 77.379112
final value 77.379112
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.359736
iter 10 value 93.866145
iter 20 value 84.041725
iter 30 value 82.697410
iter 40 value 81.940217
iter 50 value 80.593789
iter 60 value 78.774667
iter 70 value 78.434125
iter 80 value 77.985858
iter 90 value 77.658657
iter 100 value 77.413983
final value 77.413983
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.069533
iter 10 value 93.610215
iter 20 value 85.534577
iter 30 value 85.046865
iter 40 value 82.515846
iter 50 value 80.876909
iter 60 value 79.598664
iter 70 value 79.550862
iter 80 value 79.277911
iter 90 value 79.147119
iter 100 value 79.048410
final value 79.048410
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.869149
iter 10 value 96.031981
iter 20 value 92.849975
iter 30 value 87.534984
iter 40 value 82.671981
iter 50 value 81.213270
iter 60 value 80.093989
iter 70 value 78.439775
iter 80 value 78.056242
iter 90 value 77.536766
iter 100 value 77.383462
final value 77.383462
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.111360
iter 10 value 89.028391
iter 20 value 88.646485
iter 30 value 86.642426
iter 40 value 86.639796
iter 50 value 85.459466
iter 60 value 85.457201
iter 70 value 85.456044
iter 80 value 84.506869
iter 90 value 83.683306
final value 83.683291
converged
Fitting Repeat 2
# weights: 103
initial value 94.813340
final value 94.485812
converged
Fitting Repeat 3
# weights: 103
initial value 97.043748
iter 10 value 94.485911
iter 20 value 94.480594
final value 94.478786
converged
Fitting Repeat 4
# weights: 103
initial value 97.330221
iter 10 value 83.444031
iter 20 value 83.015955
iter 30 value 83.013528
iter 40 value 82.999912
iter 50 value 82.966785
iter 60 value 81.379303
iter 70 value 80.536550
iter 80 value 80.402214
iter 90 value 80.401787
final value 80.401036
converged
Fitting Repeat 5
# weights: 103
initial value 97.110864
iter 10 value 94.485879
iter 20 value 94.438191
iter 30 value 92.326796
iter 40 value 92.210594
iter 50 value 91.320140
iter 60 value 90.804666
final value 90.802573
converged
Fitting Repeat 1
# weights: 305
initial value 96.137318
iter 10 value 94.489469
iter 20 value 94.484337
iter 30 value 92.715693
iter 40 value 91.535613
iter 50 value 91.508564
final value 91.508504
converged
Fitting Repeat 2
# weights: 305
initial value 110.632519
iter 10 value 94.489445
iter 20 value 94.474714
iter 30 value 84.157542
iter 40 value 81.629068
iter 50 value 79.824953
iter 60 value 79.591497
iter 70 value 79.323905
iter 80 value 79.259529
iter 90 value 79.238428
iter 100 value 79.183236
final value 79.183236
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 94.717785
iter 10 value 92.172392
iter 20 value 92.167661
iter 30 value 92.166066
iter 40 value 92.163270
iter 50 value 90.737786
iter 60 value 90.645066
iter 70 value 90.514694
iter 80 value 90.514361
final value 90.513674
converged
Fitting Repeat 4
# weights: 305
initial value 97.681973
iter 10 value 93.816479
iter 20 value 93.814247
iter 30 value 93.812272
iter 40 value 93.812198
iter 40 value 93.812198
final value 93.812198
converged
Fitting Repeat 5
# weights: 305
initial value 97.764480
iter 10 value 93.817332
iter 20 value 93.814033
iter 30 value 93.812344
final value 93.812335
converged
Fitting Repeat 1
# weights: 507
initial value 112.228003
iter 10 value 93.820223
iter 20 value 93.816262
iter 30 value 91.197553
iter 40 value 86.033970
iter 50 value 84.827030
iter 60 value 82.230719
iter 70 value 82.086136
final value 82.085780
converged
Fitting Repeat 2
# weights: 507
initial value 97.429329
iter 10 value 92.262818
iter 20 value 91.723926
iter 30 value 89.569733
iter 40 value 88.254126
iter 50 value 87.431784
iter 60 value 87.392898
iter 60 value 87.392897
final value 87.392896
converged
Fitting Repeat 3
# weights: 507
initial value 109.385945
iter 10 value 94.492485
iter 20 value 94.343266
iter 30 value 93.773643
iter 30 value 93.773642
final value 93.773637
converged
Fitting Repeat 4
# weights: 507
initial value 124.099840
iter 10 value 94.677121
iter 20 value 88.540205
iter 30 value 88.502749
iter 40 value 88.502302
iter 50 value 88.500824
iter 60 value 88.499778
iter 70 value 88.455950
iter 80 value 85.421640
iter 90 value 85.197407
iter 100 value 85.173209
final value 85.173209
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 101.379485
iter 10 value 93.819937
iter 20 value 93.816489
iter 30 value 90.957821
iter 40 value 90.321169
iter 50 value 90.318867
iter 60 value 90.318540
iter 70 value 90.318003
final value 90.317888
converged
Fitting Repeat 1
# weights: 103
initial value 95.746148
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.803227
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.295145
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 103.228216
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.704634
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 101.253811
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 117.838702
final value 94.052911
converged
Fitting Repeat 3
# weights: 305
initial value 105.460241
iter 10 value 92.945357
iter 20 value 92.822296
final value 92.822222
converged
Fitting Repeat 4
# weights: 305
initial value 109.750144
final value 93.601516
converged
Fitting Repeat 5
# weights: 305
initial value 111.347832
iter 10 value 94.053296
final value 94.052911
converged
Fitting Repeat 1
# weights: 507
initial value 132.298095
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 115.984910
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 108.889308
iter 10 value 93.582819
iter 20 value 92.071974
iter 30 value 90.909302
final value 90.909125
converged
Fitting Repeat 4
# weights: 507
initial value 101.947043
iter 10 value 92.945402
final value 92.945355
converged
Fitting Repeat 5
# weights: 507
initial value 113.539173
iter 10 value 92.313239
iter 20 value 90.266450
final value 90.262441
converged
Fitting Repeat 1
# weights: 103
initial value 96.897604
iter 10 value 93.985645
iter 20 value 93.231466
iter 30 value 93.060821
iter 40 value 86.722217
iter 50 value 85.629059
iter 60 value 84.778308
iter 70 value 84.490456
iter 80 value 82.691449
iter 90 value 82.367104
iter 100 value 82.141803
final value 82.141803
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 93.427906
iter 10 value 86.366614
iter 20 value 85.828625
iter 30 value 83.770495
iter 40 value 82.443447
iter 50 value 82.124166
iter 60 value 82.087795
final value 82.087772
converged
Fitting Repeat 3
# weights: 103
initial value 97.722615
iter 10 value 94.025764
iter 20 value 90.932381
iter 30 value 88.398905
iter 40 value 85.330855
iter 50 value 84.073917
iter 60 value 83.945749
final value 83.941619
converged
Fitting Repeat 4
# weights: 103
initial value 98.263110
iter 10 value 94.038185
iter 20 value 87.924715
iter 30 value 87.323923
iter 40 value 86.843366
iter 50 value 86.559006
iter 60 value 86.333170
final value 86.318202
converged
Fitting Repeat 5
# weights: 103
initial value 102.680460
iter 10 value 94.056621
iter 20 value 93.396433
iter 30 value 93.240466
iter 40 value 93.160295
iter 50 value 92.879382
iter 60 value 88.264258
iter 70 value 84.589292
iter 80 value 84.177407
iter 90 value 84.085774
iter 100 value 84.047998
final value 84.047998
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.139347
iter 10 value 92.267358
iter 20 value 86.325384
iter 30 value 85.786379
iter 40 value 83.997427
iter 50 value 83.539917
iter 60 value 83.256915
iter 70 value 83.043587
iter 80 value 82.962201
iter 90 value 82.957430
iter 90 value 82.957429
final value 82.957428
converged
Fitting Repeat 2
# weights: 305
initial value 110.143223
iter 10 value 95.763919
iter 20 value 89.053726
iter 30 value 86.773599
iter 40 value 85.690150
iter 50 value 82.636620
iter 60 value 82.306517
iter 70 value 82.177618
iter 80 value 81.992171
iter 90 value 81.943674
iter 100 value 81.912333
final value 81.912333
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.487927
iter 10 value 94.037000
iter 20 value 93.380507
iter 30 value 93.076375
iter 40 value 92.331224
iter 50 value 90.332895
iter 60 value 87.189831
iter 70 value 83.645767
iter 80 value 82.357176
iter 90 value 81.566822
iter 100 value 81.433866
final value 81.433866
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.307424
iter 10 value 94.030711
iter 20 value 92.200998
iter 30 value 91.052450
iter 40 value 88.438266
iter 50 value 83.752078
iter 60 value 82.819129
iter 70 value 82.190930
iter 80 value 81.886471
iter 90 value 81.640547
iter 100 value 81.270595
final value 81.270595
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.824698
iter 10 value 94.021913
iter 20 value 92.984484
iter 30 value 89.150250
iter 40 value 87.163863
iter 50 value 86.838033
iter 60 value 86.601712
iter 70 value 86.441099
iter 80 value 84.423291
iter 90 value 83.191257
iter 100 value 81.815950
final value 81.815950
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 134.417210
iter 10 value 94.596473
iter 20 value 94.136688
iter 30 value 93.393080
iter 40 value 86.081590
iter 50 value 85.756728
iter 60 value 85.527154
iter 70 value 84.665461
iter 80 value 83.513211
iter 90 value 82.754312
iter 100 value 81.818686
final value 81.818686
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.575590
iter 10 value 91.385044
iter 20 value 88.980467
iter 30 value 88.598829
iter 40 value 83.701319
iter 50 value 83.011836
iter 60 value 82.710968
iter 70 value 82.439766
iter 80 value 82.083429
iter 90 value 81.664342
iter 100 value 81.367272
final value 81.367272
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.999852
iter 10 value 94.028566
iter 20 value 91.863641
iter 30 value 90.367617
iter 40 value 90.075697
iter 50 value 88.004993
iter 60 value 84.847583
iter 70 value 82.841179
iter 80 value 82.385243
iter 90 value 82.078231
iter 100 value 82.050965
final value 82.050965
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 127.219095
iter 10 value 94.286204
iter 20 value 92.790090
iter 30 value 86.298390
iter 40 value 84.545988
iter 50 value 83.630894
iter 60 value 81.487553
iter 70 value 80.997822
iter 80 value 80.883883
iter 90 value 80.855980
iter 100 value 80.753705
final value 80.753705
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 119.210434
iter 10 value 94.335813
iter 20 value 86.543548
iter 30 value 86.032255
iter 40 value 83.974544
iter 50 value 82.789291
iter 60 value 82.480218
iter 70 value 82.276297
iter 80 value 82.021622
iter 90 value 81.902993
iter 100 value 81.652420
final value 81.652420
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.903202
final value 94.054514
converged
Fitting Repeat 2
# weights: 103
initial value 103.897590
iter 10 value 94.054392
iter 20 value 94.052967
final value 94.052917
converged
Fitting Repeat 3
# weights: 103
initial value 97.002480
final value 94.056977
converged
Fitting Repeat 4
# weights: 103
initial value 98.025445
final value 94.054223
converged
Fitting Repeat 5
# weights: 103
initial value 95.319478
final value 94.054719
converged
Fitting Repeat 1
# weights: 305
initial value 94.840490
iter 10 value 92.952889
iter 20 value 92.938816
iter 30 value 92.937032
iter 40 value 92.838238
iter 50 value 88.965923
iter 60 value 86.958564
iter 70 value 86.574508
iter 80 value 86.570159
iter 90 value 86.269403
iter 100 value 86.051166
final value 86.051166
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.041095
iter 10 value 94.057661
iter 20 value 94.031908
iter 30 value 92.292654
iter 40 value 90.493044
iter 50 value 83.272748
iter 60 value 82.177447
iter 70 value 82.046217
iter 80 value 81.329023
iter 90 value 81.168932
iter 100 value 81.168626
final value 81.168626
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.394178
iter 10 value 92.950669
iter 20 value 92.949715
iter 30 value 92.902844
iter 40 value 88.677812
iter 50 value 85.580426
iter 60 value 84.897159
iter 70 value 84.896627
iter 80 value 84.893222
final value 84.892118
converged
Fitting Repeat 4
# weights: 305
initial value 99.497009
iter 10 value 94.056129
iter 20 value 93.096696
iter 30 value 92.807492
final value 92.807449
converged
Fitting Repeat 5
# weights: 305
initial value 99.150270
iter 10 value 92.952365
iter 20 value 92.935011
iter 30 value 88.597408
iter 40 value 88.471445
iter 50 value 87.283025
iter 60 value 85.881823
iter 70 value 85.733532
iter 80 value 85.718419
iter 90 value 85.618310
iter 100 value 85.614362
final value 85.614362
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 94.688068
final value 93.636968
converged
Fitting Repeat 2
# weights: 507
initial value 102.332175
iter 10 value 94.057855
iter 20 value 92.396161
iter 30 value 87.849041
iter 40 value 87.823023
iter 50 value 87.605858
iter 60 value 86.712697
iter 70 value 86.119697
iter 80 value 86.097021
iter 90 value 86.080669
final value 86.080447
converged
Fitting Repeat 3
# weights: 507
initial value 121.608721
iter 10 value 92.955245
iter 20 value 92.936013
iter 30 value 91.620976
iter 40 value 90.422289
iter 50 value 86.240991
iter 60 value 83.658342
iter 70 value 83.060096
iter 80 value 82.908004
iter 90 value 81.853683
iter 100 value 80.674785
final value 80.674785
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.105756
iter 10 value 92.954619
iter 20 value 92.952883
iter 30 value 92.941183
iter 40 value 92.933668
iter 50 value 88.953692
iter 60 value 82.729054
iter 70 value 80.485938
iter 80 value 80.420914
iter 90 value 80.415188
final value 80.415037
converged
Fitting Repeat 5
# weights: 507
initial value 105.461776
iter 10 value 93.954769
iter 20 value 93.438394
iter 30 value 88.490313
iter 40 value 87.010105
final value 87.009922
converged
Fitting Repeat 1
# weights: 305
initial value 170.245711
iter 10 value 117.766986
iter 20 value 114.552072
iter 30 value 110.402296
iter 40 value 109.716811
iter 50 value 109.101127
iter 60 value 108.185454
iter 70 value 103.525501
iter 80 value 103.022554
iter 90 value 102.786580
iter 100 value 102.158477
final value 102.158477
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.801940
iter 10 value 109.237683
iter 20 value 108.751075
iter 30 value 108.218703
iter 40 value 104.903945
iter 50 value 104.741294
iter 60 value 104.708712
iter 70 value 104.652441
iter 80 value 103.217986
iter 90 value 102.877845
iter 100 value 102.775229
final value 102.775229
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 124.423363
iter 10 value 117.706244
iter 20 value 108.668373
iter 30 value 106.273971
iter 40 value 105.543377
iter 50 value 104.120755
iter 60 value 103.792329
iter 70 value 103.500263
iter 80 value 103.376123
iter 90 value 103.279725
iter 100 value 103.139419
final value 103.139419
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 126.673568
iter 10 value 117.775816
iter 20 value 110.205827
iter 30 value 106.926145
iter 30 value 106.926144
final value 106.926144
converged
Fitting Repeat 5
# weights: 305
initial value 155.815850
iter 10 value 116.215010
iter 20 value 114.802538
iter 30 value 112.808662
iter 40 value 107.419897
iter 50 value 106.779332
iter 60 value 106.176693
iter 70 value 105.916465
iter 80 value 105.529382
iter 90 value 104.639569
iter 100 value 104.124780
final value 104.124780
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sun Nov 30 20:31:23 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
20.134 0.453 69.273
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 19.221 | 0.924 | 20.887 | |
| FreqInteractors | 0.176 | 0.013 | 0.210 | |
| calculateAAC | 0.013 | 0.002 | 0.015 | |
| calculateAutocor | 0.264 | 0.035 | 0.313 | |
| calculateCTDC | 0.032 | 0.004 | 0.037 | |
| calculateCTDD | 0.163 | 0.009 | 0.182 | |
| calculateCTDT | 0.057 | 0.005 | 0.062 | |
| calculateCTriad | 0.155 | 0.017 | 0.182 | |
| calculateDC | 0.031 | 0.004 | 0.036 | |
| calculateF | 0.100 | 0.007 | 0.117 | |
| calculateKSAAP | 0.033 | 0.003 | 0.040 | |
| calculateQD_Sm | 0.645 | 0.074 | 0.732 | |
| calculateTC | 0.690 | 0.073 | 0.988 | |
| calculateTC_Sm | 0.092 | 0.012 | 0.104 | |
| corr_plot | 19.081 | 0.895 | 20.714 | |
| enrichfindP | 0.194 | 0.038 | 12.521 | |
| enrichfind_hp | 0.015 | 0.002 | 1.130 | |
| enrichplot | 0.173 | 0.006 | 0.194 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.031 | 0.007 | 5.236 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0.000 | 0.001 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0 | 0 | 0 | |
| plotPPI | 0.030 | 0.001 | 0.038 | |
| pred_ensembel | 6.528 | 0.112 | 6.341 | |
| var_imp | 18.581 | 0.988 | 20.961 | |