| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-22 11:35 -0500 (Mon, 22 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4878 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4593 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 996/2332 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-12-21 20:13:07 -0500 (Sun, 21 Dec 2025) |
| EndedAt: 2025-12-21 20:16:35 -0500 (Sun, 21 Dec 2025) |
| EllapsedTime: 207.7 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 19.129 0.876 20.532
corr_plot 19.015 0.934 20.547
var_imp 18.644 0.933 20.430
pred_ensembel 6.435 0.126 6.183
enrichfindP 0.194 0.036 13.501
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 110.666195
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.508797
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.148674
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 100.575308
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.316866
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.780688
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 112.255726
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 109.091390
iter 10 value 93.994012
iter 10 value 93.994012
iter 10 value 93.994012
final value 93.994012
converged
Fitting Repeat 4
# weights: 305
initial value 101.041434
iter 10 value 90.192046
final value 90.175439
converged
Fitting Repeat 5
# weights: 305
initial value 97.720199
iter 10 value 90.828915
final value 90.745185
converged
Fitting Repeat 1
# weights: 507
initial value 99.411026
iter 10 value 93.854212
iter 20 value 88.273052
iter 30 value 88.258611
iter 30 value 88.258611
iter 30 value 88.258611
final value 88.258611
converged
Fitting Repeat 2
# weights: 507
initial value 99.993763
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 134.519795
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 97.261619
final value 94.043243
converged
Fitting Repeat 5
# weights: 507
initial value 106.038364
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 104.774980
iter 10 value 94.057968
iter 20 value 94.029803
iter 30 value 93.203843
iter 40 value 88.345827
iter 50 value 86.689169
iter 60 value 81.892847
iter 70 value 81.030066
iter 80 value 80.820598
iter 90 value 80.719065
final value 80.719028
converged
Fitting Repeat 2
# weights: 103
initial value 95.956849
iter 10 value 94.070265
iter 20 value 84.404416
iter 30 value 83.340455
iter 40 value 82.693562
iter 50 value 81.778149
iter 60 value 81.355894
iter 70 value 80.973474
final value 80.971019
converged
Fitting Repeat 3
# weights: 103
initial value 104.146380
iter 10 value 94.049876
iter 20 value 93.489420
iter 30 value 88.598500
iter 40 value 84.581498
iter 50 value 84.012257
iter 60 value 80.562984
iter 70 value 79.813680
iter 80 value 79.176732
iter 90 value 78.784516
iter 100 value 78.738430
final value 78.738430
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 106.665561
iter 10 value 94.108504
iter 20 value 94.057116
iter 30 value 93.750109
iter 40 value 87.148535
iter 50 value 86.358252
iter 60 value 85.047690
iter 70 value 82.114704
iter 80 value 81.251988
iter 90 value 80.854643
iter 100 value 80.812954
final value 80.812954
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.239963
iter 10 value 94.067119
iter 20 value 94.044426
iter 30 value 93.698441
iter 40 value 93.599888
iter 50 value 91.262350
iter 60 value 90.024131
iter 70 value 89.854443
iter 80 value 89.738991
final value 89.738978
converged
Fitting Repeat 1
# weights: 305
initial value 100.652819
iter 10 value 94.094257
iter 20 value 94.002847
iter 30 value 87.982417
iter 40 value 83.224114
iter 50 value 80.100318
iter 60 value 79.827339
iter 70 value 78.385419
iter 80 value 77.671368
iter 90 value 77.271470
iter 100 value 77.106420
final value 77.106420
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.381371
iter 10 value 94.053867
iter 20 value 82.759751
iter 30 value 82.160975
iter 40 value 82.016126
iter 50 value 81.914787
iter 60 value 81.424752
iter 70 value 79.720856
iter 80 value 77.175892
iter 90 value 76.897575
iter 100 value 76.398095
final value 76.398095
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.256881
iter 10 value 94.124876
iter 20 value 90.246882
iter 30 value 81.438469
iter 40 value 78.330498
iter 50 value 77.685606
iter 60 value 77.227757
iter 70 value 77.143750
iter 80 value 77.124613
iter 90 value 76.968800
iter 100 value 76.518208
final value 76.518208
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.572335
iter 10 value 91.206261
iter 20 value 87.739910
iter 30 value 83.744850
iter 40 value 82.383683
iter 50 value 79.744957
iter 60 value 78.699840
iter 70 value 78.097876
iter 80 value 77.815640
iter 90 value 77.135828
iter 100 value 76.808089
final value 76.808089
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.539156
iter 10 value 94.233436
iter 20 value 94.003677
iter 30 value 91.625871
iter 40 value 88.461097
iter 50 value 86.204603
iter 60 value 83.040518
iter 70 value 82.585070
iter 80 value 81.260227
iter 90 value 79.702984
iter 100 value 79.566607
final value 79.566607
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.492471
iter 10 value 94.135627
iter 20 value 93.576876
iter 30 value 91.065761
iter 40 value 90.574620
iter 50 value 89.567085
iter 60 value 87.229006
iter 70 value 81.432774
iter 80 value 80.912909
iter 90 value 79.836569
iter 100 value 79.054610
final value 79.054610
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.493022
iter 10 value 94.854697
iter 20 value 91.000366
iter 30 value 87.307172
iter 40 value 86.633677
iter 50 value 86.166261
iter 60 value 85.973856
iter 70 value 83.180283
iter 80 value 80.074165
iter 90 value 77.823801
iter 100 value 77.516674
final value 77.516674
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 115.993665
iter 10 value 94.222423
iter 20 value 82.908968
iter 30 value 82.536280
iter 40 value 82.027912
iter 50 value 80.594316
iter 60 value 77.964805
iter 70 value 77.289769
iter 80 value 76.939482
iter 90 value 76.618634
iter 100 value 76.534184
final value 76.534184
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.173957
iter 10 value 94.849200
iter 20 value 92.698653
iter 30 value 86.421281
iter 40 value 83.458855
iter 50 value 82.237530
iter 60 value 81.337782
iter 70 value 79.912546
iter 80 value 78.851215
iter 90 value 77.370568
iter 100 value 77.041889
final value 77.041889
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.315977
iter 10 value 94.913435
iter 20 value 94.058257
iter 30 value 89.025616
iter 40 value 82.408038
iter 50 value 82.063301
iter 60 value 80.523827
iter 70 value 78.297108
iter 80 value 77.192559
iter 90 value 77.087208
iter 100 value 77.060993
final value 77.060993
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.808997
final value 94.054398
converged
Fitting Repeat 2
# weights: 103
initial value 97.874517
iter 10 value 87.171975
iter 20 value 84.358200
iter 30 value 82.371842
iter 40 value 82.360208
iter 50 value 82.359943
iter 60 value 82.359645
iter 70 value 81.485549
iter 80 value 80.821388
iter 90 value 80.804562
iter 100 value 80.626280
final value 80.626280
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.951333
iter 10 value 94.054566
iter 20 value 94.052942
iter 30 value 81.907800
iter 40 value 81.897700
iter 50 value 81.897404
iter 60 value 81.866377
iter 70 value 81.712448
iter 80 value 81.712096
iter 90 value 81.711949
iter 100 value 81.711426
final value 81.711426
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 120.731947
iter 10 value 94.044999
iter 20 value 94.043494
iter 30 value 91.661987
iter 40 value 84.269379
iter 50 value 82.695236
iter 60 value 81.796349
iter 70 value 81.758606
final value 81.758253
converged
Fitting Repeat 5
# weights: 103
initial value 95.639506
final value 94.054733
converged
Fitting Repeat 1
# weights: 305
initial value 105.468519
iter 10 value 94.047569
iter 20 value 92.852576
iter 30 value 92.164304
iter 40 value 90.243018
iter 50 value 88.626302
iter 60 value 87.799103
iter 70 value 82.241973
iter 80 value 82.159602
iter 90 value 82.156533
iter 100 value 82.152932
final value 82.152932
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.958135
iter 10 value 94.058404
iter 20 value 94.053544
iter 30 value 91.286620
iter 40 value 85.083505
iter 50 value 84.860530
iter 60 value 84.853736
iter 70 value 84.851515
iter 80 value 84.850138
final value 84.849258
converged
Fitting Repeat 3
# weights: 305
initial value 95.468642
iter 10 value 94.057139
iter 20 value 92.889932
iter 30 value 91.242884
iter 40 value 83.316139
iter 50 value 82.867312
iter 60 value 81.237633
iter 70 value 81.224982
iter 80 value 81.224839
final value 81.224618
converged
Fitting Repeat 4
# weights: 305
initial value 94.619793
iter 10 value 94.048146
iter 20 value 94.043403
iter 30 value 93.915023
iter 40 value 83.733727
iter 50 value 78.753612
iter 60 value 77.947535
iter 70 value 77.588871
iter 80 value 75.894204
iter 90 value 75.850582
iter 100 value 75.820580
final value 75.820580
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.571168
iter 10 value 94.056560
iter 20 value 91.158937
iter 30 value 90.913334
iter 40 value 90.912982
iter 50 value 90.911986
iter 60 value 87.170370
iter 70 value 81.516273
iter 80 value 81.497774
iter 90 value 81.138215
iter 100 value 80.973273
final value 80.973273
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.422630
iter 10 value 89.450001
iter 20 value 80.296809
iter 30 value 78.807264
iter 40 value 76.364354
iter 50 value 75.398514
iter 60 value 75.371027
iter 70 value 75.370704
iter 80 value 75.366239
final value 75.364081
converged
Fitting Repeat 2
# weights: 507
initial value 99.231736
iter 10 value 93.975514
iter 20 value 93.170817
iter 30 value 90.934763
iter 40 value 90.928278
iter 50 value 90.924207
final value 90.922518
converged
Fitting Repeat 3
# weights: 507
initial value 96.068660
iter 10 value 93.665685
iter 20 value 91.687993
iter 30 value 82.349646
iter 40 value 81.895299
iter 50 value 81.895131
iter 60 value 81.895079
final value 81.895077
converged
Fitting Repeat 4
# weights: 507
initial value 100.739568
iter 10 value 94.051528
iter 20 value 94.042738
iter 30 value 93.848593
iter 40 value 91.471908
iter 50 value 81.109775
iter 60 value 79.226754
iter 70 value 78.785080
iter 80 value 78.774226
iter 90 value 78.737956
iter 100 value 78.734487
final value 78.734487
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.438252
iter 10 value 94.057191
iter 20 value 92.660465
iter 30 value 91.207737
iter 40 value 87.242531
iter 50 value 86.188307
iter 60 value 86.166192
iter 70 value 86.144163
iter 80 value 86.131013
iter 90 value 85.379953
iter 100 value 85.365503
final value 85.365503
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.213471
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 114.967178
iter 10 value 94.275432
final value 94.275362
converged
Fitting Repeat 3
# weights: 103
initial value 97.304598
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.533488
final value 94.275363
converged
Fitting Repeat 5
# weights: 103
initial value 97.840806
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.480481
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 99.572223
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 105.812323
iter 10 value 94.230279
final value 94.229692
converged
Fitting Repeat 4
# weights: 305
initial value 97.426600
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 103.562396
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 106.117510
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 94.698006
iter 10 value 84.497490
iter 20 value 83.902359
final value 83.885614
converged
Fitting Repeat 3
# weights: 507
initial value 103.572481
final value 94.275362
converged
Fitting Repeat 4
# weights: 507
initial value 95.893086
iter 10 value 94.275379
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 108.292289
final value 94.305882
converged
Fitting Repeat 1
# weights: 103
initial value 104.205320
iter 10 value 94.488667
iter 20 value 94.422799
iter 30 value 94.342447
iter 40 value 94.334123
iter 50 value 94.068457
iter 60 value 92.429148
iter 70 value 85.613206
iter 80 value 85.005001
iter 90 value 84.247194
iter 100 value 84.129386
final value 84.129386
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 109.319453
iter 10 value 94.482024
iter 20 value 94.068721
iter 30 value 94.062561
iter 40 value 94.056295
iter 50 value 93.791901
iter 60 value 88.785162
iter 70 value 86.636185
iter 80 value 85.998925
iter 90 value 85.961168
final value 85.952882
converged
Fitting Repeat 3
# weights: 103
initial value 103.643091
iter 10 value 94.788498
iter 20 value 94.490052
iter 30 value 94.147213
iter 40 value 94.062285
iter 50 value 91.237129
iter 60 value 89.935109
iter 70 value 89.882563
iter 80 value 87.084974
iter 90 value 85.013813
iter 100 value 84.666394
final value 84.666394
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 110.729287
iter 10 value 96.231631
iter 20 value 94.488717
iter 30 value 94.456204
iter 40 value 93.769675
iter 50 value 92.338199
iter 60 value 92.306232
iter 70 value 92.303628
iter 80 value 92.051073
iter 90 value 92.040979
final value 92.040975
converged
Fitting Repeat 5
# weights: 103
initial value 99.054353
iter 10 value 94.487829
iter 20 value 93.721677
iter 30 value 86.953746
iter 40 value 84.924887
iter 50 value 84.077453
iter 60 value 83.887169
iter 70 value 83.474355
iter 80 value 83.443759
iter 90 value 83.436174
iter 100 value 83.403031
final value 83.403031
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.165602
iter 10 value 94.216915
iter 20 value 93.354081
iter 30 value 85.958774
iter 40 value 85.495499
iter 50 value 85.229666
iter 60 value 84.304284
iter 70 value 83.768648
iter 80 value 82.656790
iter 90 value 82.245162
iter 100 value 81.874594
final value 81.874594
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 109.723921
iter 10 value 94.848680
iter 20 value 88.760116
iter 30 value 86.563674
iter 40 value 85.529742
iter 50 value 85.036660
iter 60 value 84.297805
iter 70 value 83.147994
iter 80 value 82.919508
iter 90 value 82.629549
iter 100 value 82.559409
final value 82.559409
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.044204
iter 10 value 91.020012
iter 20 value 86.284899
iter 30 value 84.249953
iter 40 value 83.553942
iter 50 value 82.889025
iter 60 value 82.658583
iter 70 value 82.520483
iter 80 value 82.362455
iter 90 value 82.295157
iter 100 value 82.261275
final value 82.261275
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.641681
iter 10 value 94.474096
iter 20 value 93.919124
iter 30 value 88.825452
iter 40 value 87.532275
iter 50 value 86.787147
iter 60 value 85.256525
iter 70 value 84.223937
iter 80 value 82.828052
iter 90 value 82.416982
iter 100 value 82.271185
final value 82.271185
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.186496
iter 10 value 94.598868
iter 20 value 92.381996
iter 30 value 89.010323
iter 40 value 87.960221
iter 50 value 87.638916
iter 60 value 87.441281
iter 70 value 86.689937
iter 80 value 86.271791
iter 90 value 84.791986
iter 100 value 83.223456
final value 83.223456
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 135.818311
iter 10 value 94.533869
iter 20 value 94.448577
iter 30 value 94.148457
iter 40 value 93.714332
iter 50 value 91.862526
iter 60 value 85.266707
iter 70 value 83.637511
iter 80 value 82.605957
iter 90 value 82.407890
iter 100 value 82.322031
final value 82.322031
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.720039
iter 10 value 94.548927
iter 20 value 88.656622
iter 30 value 86.603498
iter 40 value 86.318369
iter 50 value 86.253310
iter 60 value 86.098021
iter 70 value 84.720176
iter 80 value 82.661950
iter 90 value 81.898005
iter 100 value 81.599631
final value 81.599631
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.413477
iter 10 value 94.458124
iter 20 value 92.753012
iter 30 value 88.228167
iter 40 value 85.082000
iter 50 value 84.584494
iter 60 value 84.062356
iter 70 value 83.748973
iter 80 value 83.615209
iter 90 value 83.412451
iter 100 value 83.294307
final value 83.294307
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.743392
iter 10 value 94.925826
iter 20 value 94.379890
iter 30 value 85.124553
iter 40 value 83.621337
iter 50 value 83.259248
iter 60 value 83.019264
iter 70 value 82.935562
iter 80 value 82.786064
iter 90 value 82.442940
iter 100 value 81.923801
final value 81.923801
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.490278
iter 10 value 94.050206
iter 20 value 88.165729
iter 30 value 86.123513
iter 40 value 84.893804
iter 50 value 83.647780
iter 60 value 83.158039
iter 70 value 83.095512
iter 80 value 82.593324
iter 90 value 82.475107
iter 100 value 82.419955
final value 82.419955
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 111.078314
iter 10 value 85.498433
iter 20 value 84.757847
iter 30 value 84.756918
iter 40 value 84.756348
iter 50 value 84.382245
final value 84.382150
converged
Fitting Repeat 2
# weights: 103
initial value 105.225297
final value 94.485972
converged
Fitting Repeat 3
# weights: 103
initial value 101.389952
final value 94.485742
converged
Fitting Repeat 4
# weights: 103
initial value 110.895511
final value 94.485946
converged
Fitting Repeat 5
# weights: 103
initial value 96.318639
final value 94.496054
converged
Fitting Repeat 1
# weights: 305
initial value 98.480834
iter 10 value 93.428108
iter 20 value 93.424072
iter 30 value 93.423643
iter 40 value 91.862740
iter 50 value 88.208412
iter 60 value 83.319873
iter 70 value 82.871644
iter 80 value 82.278067
final value 82.214287
converged
Fitting Repeat 2
# weights: 305
initial value 98.443194
iter 10 value 94.457518
iter 20 value 94.453002
iter 30 value 94.449436
iter 40 value 94.449335
iter 50 value 94.448189
iter 60 value 94.140886
iter 70 value 94.112826
final value 94.112725
converged
Fitting Repeat 3
# weights: 305
initial value 96.958851
iter 10 value 94.489131
iter 20 value 94.402379
iter 30 value 89.768682
iter 40 value 89.438028
iter 50 value 87.450199
iter 60 value 84.483410
iter 70 value 83.463298
iter 80 value 83.164527
iter 90 value 82.075943
iter 100 value 81.953298
final value 81.953298
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.867154
iter 10 value 94.488845
iter 20 value 94.479465
iter 30 value 93.214604
iter 40 value 93.206398
iter 50 value 93.205653
iter 60 value 93.205444
final value 93.205411
converged
Fitting Repeat 5
# weights: 305
initial value 106.190562
iter 10 value 94.285122
iter 20 value 94.268838
iter 30 value 94.234093
iter 40 value 93.739000
iter 50 value 89.902227
iter 60 value 89.882583
iter 70 value 89.872211
iter 80 value 89.871898
iter 90 value 89.871696
iter 100 value 89.791408
final value 89.791408
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.882254
iter 10 value 94.003347
iter 20 value 93.997001
iter 30 value 93.976284
iter 40 value 91.797081
iter 50 value 87.737926
iter 60 value 86.824591
iter 70 value 86.732670
iter 80 value 84.767968
iter 90 value 83.168707
iter 100 value 82.432180
final value 82.432180
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.314116
iter 10 value 94.239993
iter 20 value 94.237151
iter 30 value 94.073680
iter 40 value 94.072987
iter 50 value 94.059526
iter 60 value 93.943191
iter 70 value 92.704840
iter 80 value 84.871526
iter 90 value 82.850443
iter 100 value 81.913049
final value 81.913049
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.518048
iter 10 value 94.492620
iter 20 value 94.387176
iter 30 value 92.613515
iter 40 value 88.965746
iter 50 value 88.954237
iter 60 value 88.953572
final value 88.953559
converged
Fitting Repeat 4
# weights: 507
initial value 122.091720
iter 10 value 94.283911
iter 20 value 94.276791
iter 30 value 91.928630
iter 40 value 87.516473
final value 87.512851
converged
Fitting Repeat 5
# weights: 507
initial value 104.681758
iter 10 value 94.288057
iter 20 value 94.282316
iter 20 value 94.282316
iter 30 value 94.281843
final value 94.281836
converged
Fitting Repeat 1
# weights: 103
initial value 107.091555
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.433622
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 93.999444
iter 10 value 87.858208
iter 20 value 87.821698
final value 87.821656
converged
Fitting Repeat 4
# weights: 103
initial value 94.755961
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.926764
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.784205
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 108.917077
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 94.920061
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 108.597613
iter 10 value 91.621941
iter 20 value 90.215324
iter 30 value 90.175696
iter 40 value 90.175360
iter 50 value 82.575155
iter 60 value 81.347819
iter 70 value 81.329847
final value 81.329117
converged
Fitting Repeat 5
# weights: 305
initial value 104.930185
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 94.731952
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 100.344235
iter 10 value 93.856425
iter 20 value 93.745510
iter 30 value 93.745359
final value 93.745355
converged
Fitting Repeat 3
# weights: 507
initial value 99.274004
iter 10 value 93.915747
iter 10 value 93.915746
iter 10 value 93.915746
final value 93.915746
converged
Fitting Repeat 4
# weights: 507
initial value 109.060649
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 94.587716
iter 10 value 86.424972
iter 20 value 81.329392
iter 30 value 81.159822
final value 81.158333
converged
Fitting Repeat 1
# weights: 103
initial value 100.288635
iter 10 value 93.855850
iter 20 value 93.794304
iter 30 value 84.739195
iter 40 value 84.228886
iter 50 value 83.963216
iter 60 value 82.258746
iter 70 value 82.008599
iter 80 value 81.989265
iter 90 value 81.987429
iter 90 value 81.987429
iter 90 value 81.987429
final value 81.987429
converged
Fitting Repeat 2
# weights: 103
initial value 97.045166
iter 10 value 94.055086
iter 20 value 93.849501
iter 30 value 89.685446
iter 40 value 84.765674
iter 50 value 83.255669
iter 60 value 82.069135
iter 70 value 81.577690
iter 80 value 80.942596
iter 90 value 80.809900
iter 100 value 80.799151
final value 80.799151
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 110.728162
iter 10 value 93.428217
iter 20 value 83.307517
iter 30 value 82.861289
iter 40 value 82.524748
iter 50 value 82.041058
iter 60 value 82.013423
iter 70 value 81.988033
final value 81.987429
converged
Fitting Repeat 4
# weights: 103
initial value 112.318398
iter 10 value 93.859776
iter 20 value 87.318637
iter 30 value 86.738933
iter 40 value 86.075437
iter 50 value 85.334428
iter 60 value 84.948254
iter 70 value 84.892696
iter 80 value 84.858990
final value 84.858976
converged
Fitting Repeat 5
# weights: 103
initial value 104.504257
iter 10 value 93.950066
iter 20 value 93.234326
iter 30 value 84.783927
iter 40 value 83.596559
iter 50 value 82.539483
iter 60 value 82.010133
iter 70 value 80.802350
iter 80 value 80.730391
final value 80.671314
converged
Fitting Repeat 1
# weights: 305
initial value 109.379326
iter 10 value 94.977428
iter 20 value 92.757081
iter 30 value 91.928244
iter 40 value 89.823962
iter 50 value 86.377613
iter 60 value 85.292743
iter 70 value 80.936074
iter 80 value 80.026928
iter 90 value 79.882801
iter 100 value 79.753105
final value 79.753105
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.428170
iter 10 value 94.099606
iter 20 value 89.288009
iter 30 value 84.423725
iter 40 value 83.388562
iter 50 value 82.180868
iter 60 value 80.490636
iter 70 value 80.116960
iter 80 value 79.882301
iter 90 value 79.801815
iter 100 value 79.543832
final value 79.543832
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.415441
iter 10 value 90.801325
iter 20 value 85.463781
iter 30 value 83.003252
iter 40 value 82.344220
iter 50 value 81.536173
iter 60 value 80.926541
iter 70 value 80.791611
iter 80 value 80.376007
iter 90 value 79.365682
iter 100 value 79.300577
final value 79.300577
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.093581
iter 10 value 94.089560
iter 20 value 90.901981
iter 30 value 82.718702
iter 40 value 82.371414
iter 50 value 81.358827
iter 60 value 80.182133
iter 70 value 79.928518
iter 80 value 79.775001
iter 90 value 79.642913
iter 100 value 79.496934
final value 79.496934
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 121.476175
iter 10 value 94.063588
iter 20 value 94.054095
iter 30 value 89.025459
iter 40 value 85.962529
iter 50 value 85.470855
iter 60 value 84.000705
iter 70 value 81.936025
iter 80 value 81.228982
iter 90 value 81.011327
iter 100 value 80.814919
final value 80.814919
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 123.142161
iter 10 value 94.222081
iter 20 value 93.196039
iter 30 value 87.126441
iter 40 value 84.036140
iter 50 value 81.631630
iter 60 value 80.822801
iter 70 value 80.034741
iter 80 value 79.552461
iter 90 value 79.266626
iter 100 value 79.223423
final value 79.223423
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.826684
iter 10 value 95.496754
iter 20 value 94.251796
iter 30 value 93.713611
iter 40 value 85.109975
iter 50 value 81.800423
iter 60 value 80.888845
iter 70 value 79.721578
iter 80 value 79.643337
iter 90 value 79.519370
iter 100 value 79.473268
final value 79.473268
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.671982
iter 10 value 94.385870
iter 20 value 90.351328
iter 30 value 86.678801
iter 40 value 82.274977
iter 50 value 81.112484
iter 60 value 80.081688
iter 70 value 79.650454
iter 80 value 79.430052
iter 90 value 79.323290
iter 100 value 79.193812
final value 79.193812
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.396717
iter 10 value 93.904650
iter 20 value 88.899147
iter 30 value 84.829450
iter 40 value 82.338068
iter 50 value 81.881277
iter 60 value 80.906920
iter 70 value 80.442792
iter 80 value 79.745010
iter 90 value 79.339342
iter 100 value 79.128955
final value 79.128955
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.916626
iter 10 value 94.349354
iter 20 value 93.623829
iter 30 value 85.506125
iter 40 value 84.047795
iter 50 value 83.865495
iter 60 value 83.221786
iter 70 value 81.658749
iter 80 value 81.273648
iter 90 value 80.289960
iter 100 value 79.711177
final value 79.711177
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.237818
final value 94.054503
converged
Fitting Repeat 2
# weights: 103
initial value 96.539427
final value 94.054682
converged
Fitting Repeat 3
# weights: 103
initial value 99.679464
iter 10 value 86.310837
iter 20 value 86.270718
iter 30 value 86.270002
iter 40 value 86.261149
iter 50 value 86.189038
iter 60 value 83.924549
iter 70 value 82.874509
iter 80 value 82.766761
iter 90 value 82.747925
iter 100 value 82.740117
final value 82.740117
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.032412
iter 10 value 94.061630
final value 94.052914
converged
Fitting Repeat 5
# weights: 103
initial value 101.366188
final value 94.054589
converged
Fitting Repeat 1
# weights: 305
initial value 106.852922
iter 10 value 93.921183
iter 20 value 93.030762
iter 30 value 83.075190
final value 83.032046
converged
Fitting Repeat 2
# weights: 305
initial value 94.621742
iter 10 value 88.543608
iter 20 value 86.103212
iter 30 value 85.941367
iter 40 value 85.938454
iter 50 value 85.935737
final value 85.935333
converged
Fitting Repeat 3
# weights: 305
initial value 109.002110
iter 10 value 94.058210
iter 20 value 94.046724
iter 30 value 87.659684
final value 86.380724
converged
Fitting Repeat 4
# weights: 305
initial value 97.812503
iter 10 value 93.920713
iter 20 value 93.904014
iter 30 value 90.363658
iter 40 value 84.793188
iter 50 value 84.791191
iter 60 value 84.790656
iter 60 value 84.790656
iter 60 value 84.790656
final value 84.790656
converged
Fitting Repeat 5
# weights: 305
initial value 100.301929
iter 10 value 94.016214
iter 20 value 93.827645
iter 30 value 93.773713
iter 40 value 93.773257
final value 93.773255
converged
Fitting Repeat 1
# weights: 507
initial value 89.032908
iter 10 value 81.397049
iter 20 value 81.370819
iter 30 value 81.211286
iter 40 value 80.646660
iter 50 value 80.353967
iter 60 value 80.348414
iter 70 value 80.280733
iter 80 value 80.190975
iter 90 value 80.189102
iter 100 value 80.188100
final value 80.188100
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 96.072450
iter 10 value 93.761206
iter 20 value 93.755468
iter 30 value 92.916563
iter 40 value 87.542840
iter 50 value 87.284935
iter 60 value 85.594291
iter 70 value 85.537481
final value 85.531824
converged
Fitting Repeat 3
# weights: 507
initial value 110.936767
iter 10 value 92.672760
iter 20 value 92.584868
iter 30 value 92.580799
iter 40 value 92.577536
iter 50 value 92.577416
final value 92.577005
converged
Fitting Repeat 4
# weights: 507
initial value 103.755907
iter 10 value 94.061567
iter 20 value 94.052428
iter 30 value 93.930464
iter 40 value 93.795547
final value 93.753066
converged
Fitting Repeat 5
# weights: 507
initial value 113.888783
iter 10 value 93.924009
iter 20 value 93.916928
iter 30 value 85.466996
iter 40 value 84.851606
iter 50 value 82.234579
iter 60 value 80.701058
iter 70 value 80.642223
iter 80 value 80.629326
iter 90 value 80.099862
iter 100 value 80.094533
final value 80.094533
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.379560
iter 10 value 94.028022
final value 94.026542
converged
Fitting Repeat 2
# weights: 103
initial value 102.436808
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.995137
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.550465
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.383507
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 104.319707
final value 94.026542
converged
Fitting Repeat 2
# weights: 305
initial value 104.203206
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.724248
iter 10 value 94.369912
final value 94.026542
converged
Fitting Repeat 4
# weights: 305
initial value 95.015149
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.196239
iter 10 value 93.887795
iter 10 value 93.887794
iter 10 value 93.887794
final value 93.887794
converged
Fitting Repeat 1
# weights: 507
initial value 97.490714
iter 10 value 94.019843
final value 94.019154
converged
Fitting Repeat 2
# weights: 507
initial value 105.502393
iter 10 value 94.026542
iter 10 value 94.026542
iter 10 value 94.026542
final value 94.026542
converged
Fitting Repeat 3
# weights: 507
initial value 100.054775
final value 94.026542
converged
Fitting Repeat 4
# weights: 507
initial value 97.112196
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 97.898470
iter 10 value 94.307757
iter 20 value 93.962229
final value 93.940759
converged
Fitting Repeat 1
# weights: 103
initial value 98.155900
iter 10 value 94.487413
iter 20 value 92.803905
iter 30 value 88.969059
iter 40 value 87.288356
iter 50 value 85.084726
iter 60 value 83.940672
iter 70 value 83.627133
iter 80 value 83.599441
iter 90 value 83.582347
final value 83.582343
converged
Fitting Repeat 2
# weights: 103
initial value 98.506289
iter 10 value 94.477662
iter 20 value 90.129416
iter 30 value 88.489895
iter 40 value 86.794987
iter 50 value 85.886724
iter 60 value 84.392304
iter 70 value 83.312447
iter 80 value 83.013993
iter 90 value 82.994665
iter 100 value 82.962882
final value 82.962882
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.595591
iter 10 value 94.377931
iter 20 value 92.082962
iter 30 value 91.749719
iter 40 value 88.189386
iter 50 value 86.048952
iter 60 value 84.894186
iter 70 value 84.784053
iter 80 value 84.692089
final value 84.692026
converged
Fitting Repeat 4
# weights: 103
initial value 99.912988
iter 10 value 94.439758
iter 20 value 94.021475
iter 30 value 92.397069
iter 40 value 91.870221
iter 50 value 90.821905
iter 60 value 87.272256
iter 70 value 87.055976
iter 80 value 86.450150
iter 90 value 85.341834
iter 100 value 85.261701
final value 85.261701
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 106.475989
iter 10 value 94.488619
iter 20 value 91.962614
iter 30 value 87.323015
iter 40 value 85.819318
iter 50 value 85.079237
iter 60 value 84.971667
iter 70 value 84.734356
iter 80 value 84.350936
iter 90 value 84.311739
iter 100 value 84.266082
final value 84.266082
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 112.756831
iter 10 value 94.280006
iter 20 value 90.465764
iter 30 value 87.003732
iter 40 value 85.177163
iter 50 value 84.074363
iter 60 value 83.532846
iter 70 value 82.630552
iter 80 value 82.193828
iter 90 value 81.947832
iter 100 value 81.783460
final value 81.783460
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.558538
iter 10 value 94.522047
iter 20 value 93.914134
iter 30 value 92.558201
iter 40 value 88.025053
iter 50 value 87.395898
iter 60 value 87.184293
iter 70 value 84.966529
iter 80 value 83.878056
iter 90 value 83.101027
iter 100 value 81.981678
final value 81.981678
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.153916
iter 10 value 94.500560
iter 20 value 93.308398
iter 30 value 89.446032
iter 40 value 87.495503
iter 50 value 86.917017
iter 60 value 86.667225
iter 70 value 86.161487
iter 80 value 84.927426
iter 90 value 84.488377
iter 100 value 83.510700
final value 83.510700
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.100415
iter 10 value 93.969573
iter 20 value 88.350396
iter 30 value 87.916271
iter 40 value 86.072970
iter 50 value 85.329108
iter 60 value 83.097696
iter 70 value 81.900380
iter 80 value 81.745879
iter 90 value 81.690655
iter 100 value 81.676020
final value 81.676020
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.522893
iter 10 value 93.789136
iter 20 value 87.719207
iter 30 value 87.150638
iter 40 value 86.842244
iter 50 value 85.398620
iter 60 value 85.325541
iter 70 value 84.742119
iter 80 value 84.633718
iter 90 value 84.595918
iter 100 value 84.091687
final value 84.091687
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.642054
iter 10 value 94.302550
iter 20 value 91.616396
iter 30 value 90.169231
iter 40 value 88.550276
iter 50 value 85.532982
iter 60 value 83.146090
iter 70 value 82.507829
iter 80 value 82.164427
iter 90 value 81.944914
iter 100 value 81.928838
final value 81.928838
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.062009
iter 10 value 94.212293
iter 20 value 88.095777
iter 30 value 85.005778
iter 40 value 84.318601
iter 50 value 84.161882
iter 60 value 83.465933
iter 70 value 82.971155
iter 80 value 82.512255
iter 90 value 82.324624
iter 100 value 82.237002
final value 82.237002
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.208457
iter 10 value 94.205447
iter 20 value 91.763723
iter 30 value 86.982549
iter 40 value 85.185320
iter 50 value 83.873694
iter 60 value 82.745072
iter 70 value 82.300443
iter 80 value 82.151687
iter 90 value 82.102749
iter 100 value 81.974764
final value 81.974764
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.556200
iter 10 value 94.405629
iter 20 value 90.640371
iter 30 value 88.118730
iter 40 value 87.015169
iter 50 value 84.489132
iter 60 value 83.766484
iter 70 value 83.413411
iter 80 value 83.255601
iter 90 value 83.236065
iter 100 value 83.185767
final value 83.185767
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.170785
iter 10 value 94.696011
iter 20 value 93.127771
iter 30 value 87.628537
iter 40 value 86.720148
iter 50 value 85.089394
iter 60 value 83.087777
iter 70 value 82.579220
iter 80 value 82.194134
iter 90 value 81.838578
iter 100 value 81.666943
final value 81.666943
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.529717
iter 10 value 94.485883
final value 94.484215
converged
Fitting Repeat 2
# weights: 103
initial value 107.554249
iter 10 value 94.485894
iter 20 value 94.059793
final value 94.026754
converged
Fitting Repeat 3
# weights: 103
initial value 103.171368
final value 94.485685
converged
Fitting Repeat 4
# weights: 103
initial value 98.100682
iter 10 value 94.486022
iter 20 value 94.484220
final value 94.484215
converged
Fitting Repeat 5
# weights: 103
initial value 101.456745
final value 94.485678
converged
Fitting Repeat 1
# weights: 305
initial value 99.570262
final value 94.489871
converged
Fitting Repeat 2
# weights: 305
initial value 100.894602
iter 10 value 94.033994
iter 20 value 94.027752
iter 30 value 91.746677
iter 40 value 87.485108
iter 50 value 87.100173
iter 60 value 87.093157
iter 70 value 87.093025
iter 80 value 87.092775
iter 90 value 86.899396
final value 86.898194
converged
Fitting Repeat 3
# weights: 305
initial value 99.522895
iter 10 value 94.491349
iter 20 value 88.916982
iter 30 value 87.206898
iter 40 value 86.990043
iter 50 value 86.989731
iter 60 value 86.857290
iter 70 value 86.752267
iter 70 value 86.752267
iter 70 value 86.752267
final value 86.752267
converged
Fitting Repeat 4
# weights: 305
initial value 97.057024
iter 10 value 94.257800
iter 20 value 94.115911
final value 94.026922
converged
Fitting Repeat 5
# weights: 305
initial value 96.572521
iter 10 value 94.488873
iter 20 value 94.376681
iter 30 value 92.913823
iter 40 value 91.147248
iter 50 value 89.025249
iter 60 value 88.970370
iter 70 value 88.969989
iter 80 value 86.642708
iter 90 value 84.066206
iter 100 value 84.047340
final value 84.047340
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.790848
iter 10 value 94.492734
iter 20 value 94.484801
iter 30 value 91.411065
iter 40 value 86.252976
iter 50 value 86.119181
iter 60 value 86.116804
iter 70 value 85.712960
iter 80 value 85.396987
final value 85.395519
converged
Fitting Repeat 2
# weights: 507
initial value 130.429162
iter 10 value 94.330978
iter 20 value 94.329575
iter 30 value 93.265025
iter 40 value 86.080500
iter 50 value 86.064728
iter 60 value 86.064549
iter 70 value 84.850910
iter 80 value 84.159067
iter 90 value 83.614129
iter 100 value 83.613543
final value 83.613543
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.809824
iter 10 value 94.492037
iter 20 value 94.344467
final value 94.027388
converged
Fitting Repeat 4
# weights: 507
initial value 139.618333
iter 10 value 94.491560
iter 20 value 94.485366
iter 30 value 94.027358
iter 30 value 94.027358
iter 30 value 94.027358
final value 94.027358
converged
Fitting Repeat 5
# weights: 507
initial value 94.515463
final value 94.492613
converged
Fitting Repeat 1
# weights: 103
initial value 100.324043
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.184526
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.711650
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.123292
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.372832
iter 10 value 90.537014
iter 20 value 89.136138
iter 30 value 89.133692
final value 89.133690
converged
Fitting Repeat 1
# weights: 305
initial value 96.629021
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.093636
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.320895
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.662834
final value 93.300000
converged
Fitting Repeat 5
# weights: 305
initial value 99.907792
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 99.463555
iter 10 value 92.830387
iter 20 value 84.762213
iter 30 value 84.134048
iter 40 value 83.510605
iter 50 value 83.163519
iter 60 value 83.162379
final value 83.162367
converged
Fitting Repeat 2
# weights: 507
initial value 112.540822
iter 10 value 89.068411
iter 20 value 87.102700
iter 30 value 87.101125
iter 30 value 87.101124
iter 30 value 87.101124
final value 87.101124
converged
Fitting Repeat 3
# weights: 507
initial value 101.225231
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 111.008019
final value 94.466823
converged
Fitting Repeat 5
# weights: 507
initial value 97.108746
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 99.523675
iter 10 value 94.488531
iter 20 value 94.168992
iter 30 value 94.061824
iter 40 value 92.985290
iter 50 value 91.492215
iter 60 value 89.670566
iter 70 value 89.598361
final value 89.595578
converged
Fitting Repeat 2
# weights: 103
initial value 100.038169
iter 10 value 94.573024
iter 20 value 94.486432
iter 30 value 94.123245
iter 40 value 91.609791
iter 50 value 85.480089
iter 60 value 84.924493
iter 70 value 84.891730
iter 80 value 84.760148
iter 90 value 84.685887
final value 84.679816
converged
Fitting Repeat 3
# weights: 103
initial value 98.368304
iter 10 value 94.310757
iter 20 value 92.620372
iter 30 value 89.045870
iter 40 value 84.726564
iter 50 value 84.103100
iter 60 value 83.217273
iter 70 value 81.992529
iter 80 value 81.849512
iter 90 value 81.572861
iter 100 value 81.284092
final value 81.284092
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.334813
iter 10 value 94.488555
iter 20 value 94.168161
iter 30 value 93.948690
iter 40 value 93.864314
iter 50 value 91.428785
iter 60 value 89.613809
iter 70 value 89.598838
iter 80 value 89.595440
iter 90 value 89.593347
iter 100 value 89.592764
final value 89.592764
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.266954
iter 10 value 94.307381
iter 20 value 86.735107
iter 30 value 85.934033
iter 40 value 84.756522
final value 84.735639
converged
Fitting Repeat 1
# weights: 305
initial value 105.896651
iter 10 value 94.482979
iter 20 value 88.557968
iter 30 value 85.160459
iter 40 value 83.304332
iter 50 value 82.693093
iter 60 value 82.532819
iter 70 value 82.256523
iter 80 value 81.377082
iter 90 value 80.532239
iter 100 value 80.295615
final value 80.295615
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.077858
iter 10 value 94.545021
iter 20 value 93.165581
iter 30 value 92.429598
iter 40 value 90.190871
iter 50 value 89.994147
iter 60 value 89.848835
iter 70 value 88.420938
iter 80 value 86.565023
iter 90 value 84.399994
iter 100 value 83.181576
final value 83.181576
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.859866
iter 10 value 94.457912
iter 20 value 91.297397
iter 30 value 86.238687
iter 40 value 81.978853
iter 50 value 81.419808
iter 60 value 81.336776
iter 70 value 81.151973
iter 80 value 80.682778
iter 90 value 80.595946
iter 100 value 80.575548
final value 80.575548
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.201891
iter 10 value 94.532694
iter 20 value 94.489175
iter 30 value 91.907929
iter 40 value 86.673017
iter 50 value 84.542086
iter 60 value 84.206578
iter 70 value 82.244150
iter 80 value 81.533316
iter 90 value 81.401735
iter 100 value 81.049353
final value 81.049353
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 116.787970
iter 10 value 94.489021
iter 20 value 94.003386
iter 30 value 86.469040
iter 40 value 84.592244
iter 50 value 84.023753
iter 60 value 82.907501
iter 70 value 82.358918
iter 80 value 81.707850
iter 90 value 80.914015
iter 100 value 80.708738
final value 80.708738
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.544383
iter 10 value 93.788264
iter 20 value 87.802622
iter 30 value 86.186825
iter 40 value 82.019372
iter 50 value 81.391801
iter 60 value 81.172639
iter 70 value 81.015503
iter 80 value 80.880749
iter 90 value 80.817130
iter 100 value 80.756566
final value 80.756566
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.026430
iter 10 value 94.442413
iter 20 value 92.713472
iter 30 value 87.382906
iter 40 value 83.787720
iter 50 value 82.748410
iter 60 value 81.952033
iter 70 value 80.798934
iter 80 value 80.467068
iter 90 value 80.259148
iter 100 value 80.042179
final value 80.042179
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 132.801014
iter 10 value 94.840852
iter 20 value 92.548597
iter 30 value 90.911995
iter 40 value 86.022320
iter 50 value 83.947609
iter 60 value 83.196740
iter 70 value 82.231662
iter 80 value 81.802592
iter 90 value 81.315369
iter 100 value 80.607503
final value 80.607503
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.676566
iter 10 value 95.963631
iter 20 value 92.360528
iter 30 value 91.691721
iter 40 value 87.028417
iter 50 value 82.439081
iter 60 value 80.924289
iter 70 value 80.469665
iter 80 value 79.831650
iter 90 value 79.601845
iter 100 value 79.566756
final value 79.566756
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.228243
iter 10 value 97.421319
iter 20 value 86.804963
iter 30 value 84.784109
iter 40 value 84.694264
iter 50 value 84.500994
iter 60 value 83.793567
iter 70 value 82.435383
iter 80 value 81.862089
iter 90 value 80.708851
iter 100 value 80.059224
final value 80.059224
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.891376
iter 10 value 94.410928
final value 94.410923
converged
Fitting Repeat 2
# weights: 103
initial value 101.775689
iter 10 value 94.468694
iter 20 value 94.466845
iter 20 value 94.466845
iter 20 value 94.466845
final value 94.466845
converged
Fitting Repeat 3
# weights: 103
initial value 98.666930
final value 94.485887
converged
Fitting Repeat 4
# weights: 103
initial value 108.547706
final value 94.486177
converged
Fitting Repeat 5
# weights: 103
initial value 98.924732
final value 94.485769
converged
Fitting Repeat 1
# weights: 305
initial value 95.957527
iter 10 value 86.712815
iter 20 value 86.022272
iter 30 value 84.560304
iter 40 value 84.558104
iter 50 value 83.948834
iter 60 value 83.677146
iter 70 value 83.631065
iter 80 value 83.629987
iter 90 value 83.629464
final value 83.629265
converged
Fitting Repeat 2
# weights: 305
initial value 106.091787
iter 10 value 94.413183
iter 20 value 94.408702
iter 30 value 94.013479
iter 40 value 83.763843
iter 50 value 83.557738
final value 83.554076
converged
Fitting Repeat 3
# weights: 305
initial value 96.918380
iter 10 value 94.471749
iter 20 value 94.466891
iter 30 value 91.574756
iter 40 value 82.383069
iter 50 value 80.390632
iter 60 value 80.045082
iter 70 value 79.470245
iter 80 value 79.359924
iter 90 value 79.357299
iter 100 value 79.356025
final value 79.356025
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 97.497275
iter 10 value 94.433869
iter 20 value 94.414628
iter 30 value 89.217463
iter 40 value 88.935579
iter 50 value 88.925256
iter 60 value 85.747594
iter 70 value 85.743996
iter 80 value 85.743485
iter 90 value 83.738330
final value 83.663306
converged
Fitting Repeat 5
# weights: 305
initial value 100.610573
iter 10 value 94.433424
iter 20 value 94.428978
iter 30 value 93.984562
iter 40 value 86.201990
iter 50 value 83.438785
iter 60 value 79.388643
iter 70 value 79.006541
iter 80 value 78.541822
iter 90 value 78.481364
iter 100 value 78.362541
final value 78.362541
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.737036
iter 10 value 87.944719
iter 20 value 84.875292
iter 30 value 84.869985
iter 40 value 84.868068
iter 50 value 83.919435
iter 60 value 83.866185
iter 70 value 83.862409
iter 80 value 83.861709
iter 90 value 83.858097
iter 100 value 83.226375
final value 83.226375
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.196751
iter 10 value 93.349498
iter 20 value 93.307904
iter 30 value 93.305936
iter 40 value 93.302175
iter 50 value 91.265212
iter 60 value 91.246591
iter 70 value 90.919727
iter 80 value 85.163617
iter 90 value 80.800291
iter 100 value 79.838879
final value 79.838879
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.211983
iter 10 value 94.492067
iter 20 value 85.326699
iter 30 value 84.639257
iter 40 value 83.815694
final value 83.815280
converged
Fitting Repeat 4
# weights: 507
initial value 128.013839
iter 10 value 93.272856
iter 20 value 93.267546
iter 30 value 88.532842
iter 40 value 83.662960
iter 50 value 82.903664
iter 60 value 81.698491
iter 70 value 81.572224
iter 80 value 80.741468
iter 90 value 80.705736
iter 100 value 80.703733
final value 80.703733
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.385028
iter 10 value 93.136802
iter 20 value 91.168067
iter 30 value 90.136677
iter 40 value 89.758818
iter 50 value 89.755262
final value 89.754951
converged
Fitting Repeat 1
# weights: 305
initial value 129.018314
iter 10 value 118.303777
iter 20 value 107.471292
iter 30 value 105.957741
iter 40 value 105.722326
iter 50 value 104.259791
iter 60 value 104.002673
iter 70 value 103.115170
iter 80 value 102.201192
iter 90 value 101.701759
iter 100 value 101.290454
final value 101.290454
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 124.655744
iter 10 value 118.095020
iter 20 value 116.795607
iter 30 value 112.750171
iter 40 value 107.685887
iter 50 value 104.872553
iter 60 value 104.205516
iter 70 value 102.745187
iter 80 value 102.604728
iter 90 value 102.530547
iter 100 value 102.410645
final value 102.410645
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 137.233103
iter 10 value 117.177000
iter 20 value 110.680413
iter 30 value 108.061840
iter 40 value 107.224153
iter 50 value 104.250375
iter 60 value 102.606131
iter 70 value 102.316947
iter 80 value 102.104322
iter 90 value 102.032340
iter 100 value 101.959925
final value 101.959925
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 136.361389
iter 10 value 118.013206
iter 20 value 108.937724
iter 30 value 106.936439
iter 40 value 105.916913
iter 50 value 105.397725
iter 60 value 105.290922
iter 70 value 105.172432
iter 80 value 105.005755
iter 90 value 104.621885
iter 100 value 103.354807
final value 103.354807
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 130.469951
iter 10 value 119.284872
iter 20 value 117.628009
iter 30 value 116.523426
iter 40 value 106.475379
iter 50 value 105.089810
iter 60 value 103.896400
iter 70 value 102.390314
iter 80 value 101.176047
iter 90 value 100.830270
iter 100 value 100.722780
final value 100.722780
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sun Dec 21 20:16:30 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
20.239 0.476 73.624
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 19.129 | 0.876 | 20.532 | |
| FreqInteractors | 0.171 | 0.012 | 0.192 | |
| calculateAAC | 0.013 | 0.002 | 0.015 | |
| calculateAutocor | 0.125 | 0.026 | 0.158 | |
| calculateCTDC | 0.033 | 0.006 | 0.038 | |
| calculateCTDD | 0.158 | 0.012 | 0.177 | |
| calculateCTDT | 0.059 | 0.007 | 0.069 | |
| calculateCTriad | 0.150 | 0.016 | 0.174 | |
| calculateDC | 0.032 | 0.003 | 0.040 | |
| calculateF | 0.110 | 0.005 | 0.114 | |
| calculateKSAAP | 0.033 | 0.006 | 0.039 | |
| calculateQD_Sm | 0.811 | 0.078 | 1.167 | |
| calculateTC | 0.599 | 0.061 | 0.678 | |
| calculateTC_Sm | 0.119 | 0.011 | 0.138 | |
| corr_plot | 19.015 | 0.934 | 20.547 | |
| enrichfindP | 0.194 | 0.036 | 13.501 | |
| enrichfind_hp | 0.015 | 0.003 | 0.870 | |
| enrichplot | 0.179 | 0.010 | 0.198 | |
| filter_missing_values | 0.000 | 0.000 | 0.001 | |
| getFASTA | 0.031 | 0.006 | 3.199 | |
| getHPI | 0.000 | 0.001 | 0.000 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.038 | 0.002 | 0.046 | |
| pred_ensembel | 6.435 | 0.126 | 6.183 | |
| var_imp | 18.644 | 0.933 | 20.430 | |