| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:06 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.15.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
| StartedAt: 2025-09-10 20:50:11 -0400 (Wed, 10 Sep 2025) |
| EndedAt: 2025-09-10 20:53:22 -0400 (Wed, 10 Sep 2025) |
| EllapsedTime: 190.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.7
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 17.930 0.708 18.655
FSmethod 17.558 0.674 18.454
corr_plot 17.265 0.659 18.132
pred_ensembel 5.743 0.099 5.234
enrichfindP 0.163 0.029 7.469
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 100.665600
iter 10 value 94.362736
iter 20 value 93.875306
final value 93.874286
converged
Fitting Repeat 2
# weights: 103
initial value 103.992714
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.452901
iter 10 value 94.264963
iter 20 value 93.922942
iter 30 value 93.922241
iter 40 value 93.722223
iter 40 value 93.722222
iter 40 value 93.722222
final value 93.722222
converged
Fitting Repeat 4
# weights: 103
initial value 97.466604
final value 94.400000
converged
Fitting Repeat 5
# weights: 103
initial value 108.409433
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 113.368381
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.264886
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 111.929425
iter 10 value 88.931941
iter 20 value 86.864253
iter 30 value 86.273978
final value 86.270960
converged
Fitting Repeat 4
# weights: 305
initial value 108.911324
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.798139
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 100.835718
iter 10 value 94.340758
iter 20 value 94.340406
final value 94.340398
converged
Fitting Repeat 2
# weights: 507
initial value 105.755388
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 103.463065
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 115.815893
iter 10 value 93.999909
iter 20 value 87.792290
iter 30 value 87.688184
final value 87.687921
converged
Fitting Repeat 5
# weights: 507
initial value 131.860889
final value 94.443244
converged
Fitting Repeat 1
# weights: 103
initial value 99.710728
iter 10 value 94.495282
iter 20 value 92.087675
iter 30 value 88.138403
iter 40 value 86.443340
iter 50 value 85.838643
iter 60 value 85.476292
iter 70 value 84.776181
iter 80 value 84.489944
iter 90 value 84.268949
iter 100 value 83.912800
final value 83.912800
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.452939
iter 10 value 92.150427
iter 20 value 89.495837
iter 30 value 86.335288
iter 40 value 85.656300
iter 50 value 84.864627
iter 60 value 83.778613
iter 70 value 83.530077
final value 83.528296
converged
Fitting Repeat 3
# weights: 103
initial value 99.347646
iter 10 value 94.449928
iter 20 value 89.321235
iter 30 value 88.608383
iter 40 value 88.487312
iter 50 value 85.872689
iter 60 value 84.601384
iter 70 value 84.210723
iter 80 value 84.040237
iter 90 value 83.898350
iter 100 value 83.686058
final value 83.686058
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 109.058661
iter 10 value 94.486424
iter 20 value 94.329328
iter 30 value 92.056564
iter 40 value 86.321335
iter 50 value 85.872964
iter 60 value 85.715250
iter 70 value 85.127057
iter 80 value 84.255123
iter 90 value 84.089425
iter 100 value 83.830999
final value 83.830999
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.516001
iter 10 value 94.483110
iter 20 value 94.250157
iter 30 value 94.239074
iter 40 value 92.694236
iter 50 value 88.195139
iter 60 value 87.846413
iter 70 value 87.718972
iter 80 value 87.607902
iter 90 value 87.165022
iter 100 value 86.509989
final value 86.509989
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 123.625405
iter 10 value 94.453358
iter 20 value 88.615693
iter 30 value 87.231521
iter 40 value 86.086757
iter 50 value 84.827983
iter 60 value 84.344295
iter 70 value 83.973906
iter 80 value 83.091750
iter 90 value 82.831795
iter 100 value 82.717312
final value 82.717312
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.674026
iter 10 value 94.509494
iter 20 value 94.290439
iter 30 value 93.497437
iter 40 value 88.225261
iter 50 value 87.613152
iter 60 value 86.008944
iter 70 value 85.064527
iter 80 value 84.020638
iter 90 value 83.665910
iter 100 value 83.321369
final value 83.321369
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 118.689714
iter 10 value 96.342818
iter 20 value 90.058087
iter 30 value 86.959670
iter 40 value 85.282101
iter 50 value 84.172156
iter 60 value 83.946055
iter 70 value 83.893553
iter 80 value 83.830106
iter 90 value 83.754963
iter 100 value 83.603124
final value 83.603124
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.225263
iter 10 value 94.476669
iter 20 value 93.825521
iter 30 value 87.962228
iter 40 value 85.891847
iter 50 value 85.601264
iter 60 value 85.347764
iter 70 value 84.869528
iter 80 value 83.263007
iter 90 value 82.562673
iter 100 value 82.386560
final value 82.386560
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.415168
iter 10 value 94.491445
final value 94.486180
converged
Fitting Repeat 1
# weights: 507
initial value 110.650836
iter 10 value 94.498379
iter 20 value 93.937412
iter 30 value 92.805822
iter 40 value 89.881978
iter 50 value 86.112630
iter 60 value 84.552557
iter 70 value 83.436552
iter 80 value 82.523287
iter 90 value 81.920454
iter 100 value 81.736943
final value 81.736943
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.420244
iter 10 value 95.018509
iter 20 value 92.023340
iter 30 value 88.882336
iter 40 value 86.643855
iter 50 value 85.779934
iter 60 value 85.150320
iter 70 value 84.973006
iter 80 value 83.320261
iter 90 value 82.268466
iter 100 value 82.028448
final value 82.028448
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.499277
iter 10 value 95.008214
iter 20 value 91.349253
iter 30 value 86.102372
iter 40 value 84.831221
iter 50 value 84.616089
iter 60 value 84.032018
iter 70 value 83.451677
iter 80 value 82.528937
iter 90 value 82.404659
iter 100 value 82.228405
final value 82.228405
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.436583
iter 10 value 94.258566
iter 20 value 89.661229
iter 30 value 84.818672
iter 40 value 84.195565
iter 50 value 83.670130
iter 60 value 83.397391
iter 70 value 82.819197
iter 80 value 82.624077
iter 90 value 82.609271
iter 100 value 82.595957
final value 82.595957
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.957177
iter 10 value 94.511711
iter 20 value 92.572725
iter 30 value 89.478839
iter 40 value 87.316977
iter 50 value 85.436417
iter 60 value 84.415806
iter 70 value 83.866647
iter 80 value 83.676847
iter 90 value 83.453426
iter 100 value 83.367222
final value 83.367222
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.516276
iter 10 value 94.486043
iter 20 value 94.484227
final value 94.484220
converged
Fitting Repeat 2
# weights: 103
initial value 95.686201
iter 10 value 94.485738
iter 20 value 94.484194
iter 30 value 94.215681
final value 94.214121
converged
Fitting Repeat 3
# weights: 103
initial value 100.266850
final value 94.485489
converged
Fitting Repeat 4
# weights: 103
initial value 101.049420
iter 10 value 94.486032
iter 20 value 94.478528
iter 30 value 88.882394
iter 40 value 88.407541
iter 50 value 88.380969
iter 60 value 87.821116
iter 70 value 87.687886
iter 80 value 87.685947
iter 90 value 87.024581
final value 86.834674
converged
Fitting Repeat 5
# weights: 103
initial value 99.213292
final value 94.486018
converged
Fitting Repeat 1
# weights: 305
initial value 96.214540
iter 10 value 94.487885
iter 20 value 94.092184
iter 30 value 88.582630
iter 40 value 87.867951
iter 50 value 87.509773
iter 60 value 86.876960
iter 70 value 86.869250
final value 86.869162
converged
Fitting Repeat 2
# weights: 305
initial value 106.589520
iter 10 value 94.158336
iter 20 value 89.011243
iter 30 value 88.766520
iter 40 value 88.766112
final value 88.765517
converged
Fitting Repeat 3
# weights: 305
initial value 109.655791
iter 10 value 94.448173
iter 20 value 94.412134
final value 94.263506
converged
Fitting Repeat 4
# weights: 305
initial value 112.622585
iter 10 value 94.448188
iter 20 value 89.044912
iter 30 value 87.183630
iter 40 value 87.070622
iter 50 value 87.068191
iter 60 value 86.602012
iter 70 value 86.567555
final value 86.567526
converged
Fitting Repeat 5
# weights: 305
initial value 95.032799
iter 10 value 94.399697
iter 20 value 94.327760
iter 30 value 94.323194
iter 40 value 93.393930
iter 50 value 88.687697
iter 60 value 84.944379
iter 70 value 83.157369
iter 80 value 82.260708
iter 90 value 82.253912
iter 100 value 82.250925
final value 82.250925
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.525119
iter 10 value 94.492430
iter 20 value 94.438357
iter 30 value 87.426311
final value 87.317799
converged
Fitting Repeat 2
# weights: 507
initial value 108.567583
iter 10 value 94.451937
iter 20 value 94.398976
iter 30 value 94.272035
iter 40 value 94.263877
iter 50 value 94.263342
iter 50 value 94.263341
iter 50 value 94.263341
final value 94.263341
converged
Fitting Repeat 3
# weights: 507
initial value 126.434393
iter 10 value 94.492402
iter 20 value 94.244404
iter 30 value 88.813047
iter 40 value 86.004654
iter 50 value 84.959974
final value 84.904398
converged
Fitting Repeat 4
# weights: 507
initial value 96.306128
iter 10 value 94.179866
iter 20 value 94.174898
iter 30 value 94.170163
iter 40 value 94.139109
iter 50 value 94.127352
iter 60 value 89.071602
iter 70 value 89.011089
iter 80 value 86.114841
iter 90 value 86.016035
iter 100 value 85.993949
final value 85.993949
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.758332
iter 10 value 94.408520
iter 20 value 94.407136
iter 30 value 94.067670
iter 40 value 88.221250
iter 50 value 87.437827
iter 60 value 87.285181
iter 70 value 84.046211
iter 80 value 83.149276
iter 90 value 82.066766
iter 100 value 81.089967
final value 81.089967
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.776450
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 111.088040
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 110.244683
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 94.516953
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.134259
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.249929
iter 10 value 94.026551
iter 10 value 94.026550
iter 10 value 94.026550
final value 94.026550
converged
Fitting Repeat 2
# weights: 305
initial value 114.416422
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.589414
iter 10 value 94.372171
iter 20 value 91.815259
final value 91.815245
converged
Fitting Repeat 4
# weights: 305
initial value 110.269121
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 97.534240
iter 10 value 93.671150
iter 20 value 91.425661
final value 91.122771
converged
Fitting Repeat 1
# weights: 507
initial value 102.657698
final value 94.026542
converged
Fitting Repeat 2
# weights: 507
initial value 100.905196
iter 10 value 94.026543
iter 10 value 94.026542
iter 10 value 94.026542
final value 94.026542
converged
Fitting Repeat 3
# weights: 507
initial value 106.173391
iter 10 value 93.894017
final value 93.893997
converged
Fitting Repeat 4
# weights: 507
initial value 121.198293
iter 10 value 87.454257
iter 20 value 85.971972
iter 30 value 85.667907
iter 40 value 84.801611
iter 50 value 84.447902
iter 60 value 84.437295
iter 70 value 84.432581
iter 80 value 84.427000
iter 90 value 84.426702
final value 84.426681
converged
Fitting Repeat 5
# weights: 507
initial value 118.443704
final value 94.026542
converged
Fitting Repeat 1
# weights: 103
initial value 99.287791
iter 10 value 94.488558
iter 10 value 94.488557
iter 10 value 94.488557
final value 94.488557
converged
Fitting Repeat 2
# weights: 103
initial value 107.356209
iter 10 value 94.418793
iter 20 value 91.554974
iter 30 value 91.370958
iter 40 value 86.102755
iter 50 value 84.605775
iter 60 value 83.485949
iter 70 value 83.054355
iter 80 value 82.651870
iter 90 value 82.554347
final value 82.554165
converged
Fitting Repeat 3
# weights: 103
initial value 99.478246
iter 10 value 94.475093
iter 20 value 89.825712
iter 30 value 85.892187
iter 40 value 85.130283
iter 50 value 84.436364
iter 60 value 84.024363
iter 70 value 82.880526
iter 80 value 82.811030
iter 90 value 82.801627
iter 100 value 82.792527
final value 82.792527
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 108.785719
iter 10 value 94.397969
iter 20 value 93.041583
iter 30 value 89.127729
iter 40 value 86.584629
iter 50 value 85.985875
iter 60 value 84.088997
iter 70 value 83.414444
iter 80 value 82.941169
iter 90 value 82.558548
iter 100 value 82.554169
final value 82.554169
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.518036
iter 10 value 94.486528
iter 20 value 88.007500
iter 30 value 84.976218
iter 40 value 84.404129
iter 50 value 84.310697
iter 60 value 84.305213
iter 60 value 84.305212
iter 60 value 84.305212
final value 84.305212
converged
Fitting Repeat 1
# weights: 305
initial value 105.295704
iter 10 value 94.399565
iter 20 value 86.541745
iter 30 value 85.345612
iter 40 value 84.386327
iter 50 value 83.687519
iter 60 value 82.140355
iter 70 value 81.465310
iter 80 value 81.336705
iter 90 value 81.105527
iter 100 value 81.008260
final value 81.008260
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 126.810407
iter 10 value 93.147880
iter 20 value 85.786400
iter 30 value 85.022857
iter 40 value 84.428853
iter 50 value 84.001325
iter 60 value 83.777583
iter 70 value 83.170658
iter 80 value 82.241294
iter 90 value 81.813617
iter 100 value 81.571884
final value 81.571884
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.617114
iter 10 value 94.039062
iter 20 value 86.466985
iter 30 value 85.006274
iter 40 value 84.358910
iter 50 value 84.271578
iter 60 value 83.413280
iter 70 value 83.262151
iter 80 value 83.083771
iter 90 value 82.932872
iter 100 value 82.911954
final value 82.911954
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.949925
iter 10 value 94.504067
iter 20 value 91.007280
iter 30 value 85.263173
iter 40 value 84.468930
iter 50 value 84.029085
iter 60 value 83.217936
iter 70 value 82.700670
iter 80 value 82.002997
iter 90 value 81.884113
iter 100 value 81.764471
final value 81.764471
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.006376
iter 10 value 94.283982
iter 20 value 87.240616
iter 30 value 85.490447
iter 40 value 84.718787
iter 50 value 84.337134
iter 60 value 84.066743
iter 70 value 83.215392
iter 80 value 82.249105
iter 90 value 82.161831
iter 100 value 82.002516
final value 82.002516
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 126.927065
iter 10 value 94.533348
iter 20 value 92.013378
iter 30 value 91.334940
iter 40 value 89.884100
iter 50 value 84.780832
iter 60 value 84.451828
iter 70 value 84.090181
iter 80 value 83.946989
iter 90 value 83.504247
iter 100 value 82.584778
final value 82.584778
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.608099
iter 10 value 94.114450
iter 20 value 89.829236
iter 30 value 86.518664
iter 40 value 85.856932
iter 50 value 84.250641
iter 60 value 83.778575
iter 70 value 83.375652
iter 80 value 82.049552
iter 90 value 81.510773
iter 100 value 81.377933
final value 81.377933
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.050716
iter 10 value 94.542624
iter 20 value 92.356264
iter 30 value 84.800804
iter 40 value 82.990042
iter 50 value 82.350848
iter 60 value 81.961842
iter 70 value 81.566825
iter 80 value 81.365243
iter 90 value 81.232453
iter 100 value 81.184871
final value 81.184871
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.587893
iter 10 value 94.248208
iter 20 value 87.498958
iter 30 value 84.627290
iter 40 value 83.179985
iter 50 value 82.553668
iter 60 value 81.346657
iter 70 value 81.050297
iter 80 value 80.867175
iter 90 value 80.784210
iter 100 value 80.721654
final value 80.721654
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.655032
iter 10 value 94.542098
iter 20 value 86.564198
iter 30 value 85.609615
iter 40 value 84.600156
iter 50 value 83.951682
iter 60 value 83.352496
iter 70 value 82.316257
iter 80 value 81.676501
iter 90 value 81.365075
iter 100 value 81.135376
final value 81.135376
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.576300
iter 10 value 94.327704
iter 20 value 94.028444
iter 30 value 94.026898
final value 94.026859
converged
Fitting Repeat 2
# weights: 103
initial value 98.746778
iter 10 value 94.485907
final value 94.485906
converged
Fitting Repeat 3
# weights: 103
initial value 96.898073
final value 94.485816
converged
Fitting Repeat 4
# weights: 103
initial value 98.329629
final value 94.485846
converged
Fitting Repeat 5
# weights: 103
initial value 96.824739
iter 10 value 94.486089
final value 94.484222
converged
Fitting Repeat 1
# weights: 305
initial value 107.276414
iter 10 value 94.489475
iter 20 value 94.473452
iter 30 value 93.916559
iter 40 value 91.508173
iter 50 value 91.466007
iter 60 value 91.465576
iter 70 value 91.465162
final value 91.464946
converged
Fitting Repeat 2
# weights: 305
initial value 111.155356
iter 10 value 94.031975
iter 20 value 94.027658
iter 30 value 93.265903
iter 40 value 85.528759
iter 50 value 84.839507
iter 60 value 84.749292
iter 70 value 84.341301
iter 80 value 84.199898
iter 90 value 84.180646
iter 100 value 83.561601
final value 83.561601
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.449451
iter 10 value 94.031880
iter 20 value 94.027250
iter 30 value 94.025464
iter 40 value 89.823832
iter 50 value 88.818067
iter 60 value 88.817969
iter 60 value 88.817969
iter 60 value 88.817969
final value 88.817969
converged
Fitting Repeat 4
# weights: 305
initial value 96.295371
iter 10 value 94.488857
iter 20 value 94.436695
iter 30 value 93.830216
iter 40 value 91.174277
iter 50 value 91.155672
iter 60 value 91.153122
iter 70 value 91.152911
iter 80 value 91.125587
final value 91.120625
converged
Fitting Repeat 5
# weights: 305
initial value 101.574936
iter 10 value 94.037117
iter 20 value 94.031095
iter 30 value 94.026711
iter 40 value 93.448483
iter 50 value 89.732195
iter 60 value 86.891206
iter 70 value 86.745019
iter 80 value 86.744310
iter 90 value 85.492256
iter 100 value 84.324170
final value 84.324170
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 117.659005
iter 10 value 88.457684
iter 20 value 85.013650
iter 30 value 84.916165
iter 40 value 84.663352
iter 50 value 83.975998
iter 60 value 83.676237
iter 70 value 83.651797
iter 80 value 83.651030
iter 90 value 82.961885
iter 100 value 82.316160
final value 82.316160
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 134.262150
iter 10 value 94.493505
iter 20 value 94.486760
iter 30 value 92.253799
iter 40 value 88.357313
iter 50 value 88.292424
iter 60 value 88.087107
iter 70 value 86.954432
iter 80 value 86.905723
iter 90 value 83.705753
iter 100 value 82.826397
final value 82.826397
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.403428
iter 10 value 92.789529
iter 20 value 86.996467
iter 30 value 86.956530
iter 40 value 86.951437
iter 50 value 86.105966
iter 60 value 84.861879
iter 70 value 81.927384
iter 80 value 81.914404
iter 90 value 81.914305
iter 90 value 81.914304
iter 90 value 81.914304
final value 81.914304
converged
Fitting Repeat 4
# weights: 507
initial value 106.308278
iter 10 value 94.491922
iter 20 value 93.074661
iter 30 value 83.715412
final value 83.670347
converged
Fitting Repeat 5
# weights: 507
initial value 108.125156
iter 10 value 94.122708
iter 20 value 93.950804
iter 30 value 92.134975
iter 40 value 91.567072
iter 50 value 91.566480
iter 60 value 91.255130
final value 91.191617
converged
Fitting Repeat 1
# weights: 103
initial value 95.581680
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.491231
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 104.406484
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.815368
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 110.006587
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.531344
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 105.004587
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 108.967122
iter 10 value 91.310278
iter 20 value 91.070900
iter 30 value 91.064094
final value 91.064092
converged
Fitting Repeat 4
# weights: 305
initial value 109.344861
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 110.769256
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 109.179903
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 134.231706
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 113.017732
iter 10 value 93.637386
iter 10 value 93.637386
iter 10 value 93.637386
final value 93.637386
converged
Fitting Repeat 4
# weights: 507
initial value 110.136765
final value 94.466823
converged
Fitting Repeat 5
# weights: 507
initial value 119.758861
final value 94.088889
converged
Fitting Repeat 1
# weights: 103
initial value 103.825901
iter 10 value 92.762755
iter 20 value 91.711823
iter 30 value 88.835465
iter 40 value 85.494512
iter 50 value 84.867105
iter 60 value 82.908348
iter 70 value 81.999584
iter 80 value 81.530340
iter 90 value 81.525931
final value 81.524475
converged
Fitting Repeat 2
# weights: 103
initial value 112.804868
iter 10 value 94.442309
iter 20 value 92.588066
iter 30 value 90.434851
iter 40 value 87.402173
iter 50 value 85.349892
iter 60 value 82.385316
iter 70 value 81.632280
iter 80 value 81.540184
iter 90 value 81.530373
iter 100 value 81.529267
final value 81.529267
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.625404
iter 10 value 94.461024
iter 20 value 89.124208
iter 30 value 85.194995
iter 40 value 83.291702
iter 50 value 82.836703
iter 60 value 82.076183
iter 70 value 81.699682
iter 80 value 81.677435
iter 90 value 81.666903
final value 81.666870
converged
Fitting Repeat 4
# weights: 103
initial value 105.164044
iter 10 value 94.426870
iter 20 value 93.584201
iter 30 value 93.393411
iter 40 value 88.652881
iter 50 value 86.061033
iter 60 value 84.995361
iter 70 value 82.572088
iter 80 value 82.364756
iter 90 value 82.211576
iter 100 value 81.545750
final value 81.545750
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 106.929727
iter 10 value 94.453773
iter 20 value 94.036847
iter 30 value 92.729410
iter 40 value 92.634194
iter 50 value 91.470263
iter 60 value 86.758597
iter 70 value 86.001749
iter 80 value 84.532472
iter 90 value 82.295865
iter 100 value 81.974171
final value 81.974171
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 112.981245
iter 10 value 94.117644
iter 20 value 89.179425
iter 30 value 86.503864
iter 40 value 84.662088
iter 50 value 83.452765
iter 60 value 82.398802
iter 70 value 82.006581
iter 80 value 81.960495
iter 90 value 81.792688
iter 100 value 81.513486
final value 81.513486
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.774111
iter 10 value 96.074493
iter 20 value 88.303341
iter 30 value 87.532087
iter 40 value 86.698595
iter 50 value 84.717578
iter 60 value 82.657453
iter 70 value 81.616918
iter 80 value 81.535305
iter 90 value 81.380953
iter 100 value 81.337783
final value 81.337783
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.994045
iter 10 value 94.499643
iter 20 value 92.795196
iter 30 value 88.717908
iter 40 value 85.977778
iter 50 value 84.013714
iter 60 value 82.981114
iter 70 value 81.944616
iter 80 value 81.472935
iter 90 value 81.402617
iter 100 value 81.169341
final value 81.169341
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.324937
iter 10 value 96.289339
iter 20 value 94.709881
iter 30 value 86.989619
iter 40 value 84.533620
iter 50 value 83.699874
iter 60 value 82.368140
iter 70 value 81.844741
iter 80 value 81.832000
iter 90 value 81.721239
iter 100 value 81.061756
final value 81.061756
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.845321
iter 10 value 94.114968
iter 20 value 87.460939
iter 30 value 86.897516
iter 40 value 85.356733
iter 50 value 83.647612
iter 60 value 83.346393
iter 70 value 82.957174
iter 80 value 82.210162
iter 90 value 81.562427
iter 100 value 80.575637
final value 80.575637
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.144600
iter 10 value 94.658673
iter 20 value 94.450723
iter 30 value 93.453395
iter 40 value 89.432076
iter 50 value 87.287210
iter 60 value 85.628733
iter 70 value 85.129652
iter 80 value 82.013680
iter 90 value 81.679629
iter 100 value 81.402037
final value 81.402037
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.739676
iter 10 value 91.992017
iter 20 value 89.269357
iter 30 value 86.800726
iter 40 value 86.442965
iter 50 value 83.340059
iter 60 value 82.495240
iter 70 value 82.006501
iter 80 value 81.530703
iter 90 value 81.243119
iter 100 value 81.042524
final value 81.042524
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.094347
iter 10 value 94.361120
iter 20 value 89.850594
iter 30 value 87.508168
iter 40 value 86.600960
iter 50 value 86.393117
iter 60 value 85.829317
iter 70 value 85.426048
iter 80 value 84.444785
iter 90 value 82.432522
iter 100 value 81.055073
final value 81.055073
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.034611
iter 10 value 94.555646
iter 20 value 93.279990
iter 30 value 87.187320
iter 40 value 86.400063
iter 50 value 84.833925
iter 60 value 82.777449
iter 70 value 81.990567
iter 80 value 81.135728
iter 90 value 80.523295
iter 100 value 80.309828
final value 80.309828
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.075176
iter 10 value 95.702594
iter 20 value 94.492300
iter 30 value 91.418757
iter 40 value 87.930647
iter 50 value 85.090241
iter 60 value 84.781072
iter 70 value 84.602042
iter 80 value 84.296655
iter 90 value 82.422004
iter 100 value 81.871885
final value 81.871885
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.393973
final value 94.486092
converged
Fitting Repeat 2
# weights: 103
initial value 98.473230
final value 94.485820
converged
Fitting Repeat 3
# weights: 103
initial value 101.797887
final value 94.485754
converged
Fitting Repeat 4
# weights: 103
initial value 97.769415
final value 94.468571
converged
Fitting Repeat 5
# weights: 103
initial value 94.609731
final value 94.485849
converged
Fitting Repeat 1
# weights: 305
initial value 97.263702
iter 10 value 94.471387
iter 20 value 94.329974
iter 30 value 87.548401
iter 40 value 87.546620
iter 50 value 87.123125
iter 60 value 87.074453
iter 70 value 87.073997
iter 80 value 86.402649
iter 90 value 84.602938
iter 100 value 83.767107
final value 83.767107
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.016582
iter 10 value 94.489532
iter 20 value 94.431090
iter 30 value 86.629469
final value 85.920367
converged
Fitting Repeat 3
# weights: 305
initial value 105.169901
iter 10 value 94.489074
iter 20 value 94.435406
iter 30 value 89.049140
iter 40 value 86.618808
iter 50 value 86.349532
iter 60 value 85.807581
iter 70 value 85.442053
iter 80 value 85.209874
iter 90 value 85.207500
final value 85.207497
converged
Fitting Repeat 4
# weights: 305
initial value 96.633956
iter 10 value 94.433136
iter 20 value 94.428641
iter 30 value 94.427782
iter 40 value 88.382481
iter 50 value 88.378922
iter 60 value 88.372733
iter 70 value 88.356020
final value 88.323198
converged
Fitting Repeat 5
# weights: 305
initial value 109.078411
iter 10 value 93.881651
iter 20 value 93.822013
iter 30 value 93.770173
final value 93.766461
converged
Fitting Repeat 1
# weights: 507
initial value 97.039797
iter 10 value 94.474998
final value 94.434768
converged
Fitting Repeat 2
# weights: 507
initial value 96.044394
iter 10 value 92.156782
iter 20 value 91.090823
iter 30 value 91.089735
iter 40 value 91.072169
iter 50 value 91.022974
iter 60 value 91.022061
iter 70 value 91.016088
iter 80 value 91.015509
iter 90 value 90.971693
iter 100 value 90.777825
final value 90.777825
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.605590
iter 10 value 94.488847
iter 20 value 93.248080
iter 30 value 85.380081
iter 40 value 84.915787
iter 50 value 84.915456
iter 60 value 84.915169
iter 70 value 83.769317
iter 80 value 83.120769
iter 90 value 82.992510
iter 100 value 80.860910
final value 80.860910
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 135.349674
iter 10 value 94.119078
iter 20 value 94.095525
iter 30 value 92.123258
iter 40 value 88.453862
iter 50 value 88.223627
iter 60 value 88.169520
iter 70 value 87.920215
iter 80 value 87.780369
final value 87.780169
converged
Fitting Repeat 5
# weights: 507
initial value 104.162475
iter 10 value 92.103843
iter 20 value 90.772278
iter 30 value 90.506976
iter 40 value 89.332858
iter 50 value 89.200860
iter 60 value 89.198840
final value 89.198049
converged
Fitting Repeat 1
# weights: 103
initial value 118.647505
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 98.538582
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.743015
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.269538
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.960969
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.682912
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 97.545568
final value 94.044524
converged
Fitting Repeat 3
# weights: 305
initial value 95.788057
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 95.827549
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.625410
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 114.157084
iter 10 value 91.347736
iter 20 value 90.049232
iter 30 value 90.048733
iter 30 value 90.048733
iter 30 value 90.048733
final value 90.048733
converged
Fitting Repeat 2
# weights: 507
initial value 101.165204
iter 10 value 93.582418
iter 10 value 93.582418
iter 10 value 93.582418
final value 93.582418
converged
Fitting Repeat 3
# weights: 507
initial value 109.742464
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 110.169521
final value 93.869756
converged
Fitting Repeat 5
# weights: 507
initial value 121.382835
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 107.385720
iter 10 value 94.059029
iter 20 value 88.222958
iter 30 value 86.158658
iter 40 value 84.796230
iter 50 value 84.271941
iter 60 value 82.069648
iter 70 value 81.824103
iter 80 value 81.815857
iter 90 value 81.814583
iter 100 value 81.814400
final value 81.814400
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.861125
iter 10 value 94.056693
iter 20 value 93.715557
iter 30 value 87.073626
iter 40 value 82.360896
iter 50 value 81.564208
iter 60 value 81.032849
iter 70 value 80.621898
iter 80 value 79.961818
iter 90 value 79.937079
iter 100 value 79.922088
final value 79.922088
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.582038
iter 10 value 94.057094
iter 20 value 93.720027
iter 30 value 93.685033
iter 40 value 90.700825
iter 50 value 84.792359
iter 60 value 80.865500
iter 70 value 80.773797
iter 80 value 80.743380
iter 90 value 80.587259
iter 100 value 80.464705
final value 80.464705
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.771871
iter 10 value 94.059778
iter 20 value 92.619410
iter 30 value 87.223528
iter 40 value 85.892797
iter 50 value 85.577782
iter 60 value 85.268450
iter 70 value 85.253667
iter 80 value 85.227990
iter 90 value 83.332390
iter 100 value 82.414487
final value 82.414487
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.618694
iter 10 value 94.048160
iter 20 value 85.698277
iter 30 value 82.349186
iter 40 value 82.329685
iter 50 value 82.319543
iter 50 value 82.319543
final value 82.319543
converged
Fitting Repeat 1
# weights: 305
initial value 101.322809
iter 10 value 93.281296
iter 20 value 87.096660
iter 30 value 84.850239
iter 40 value 82.601701
iter 50 value 81.859342
iter 60 value 81.616686
iter 70 value 80.925875
iter 80 value 80.623825
iter 90 value 80.200933
iter 100 value 79.921238
final value 79.921238
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.923709
iter 10 value 94.108426
iter 20 value 94.061266
iter 30 value 93.688506
iter 40 value 87.192809
iter 50 value 83.652835
iter 60 value 82.761601
iter 70 value 81.790597
iter 80 value 81.265664
iter 90 value 80.707188
iter 100 value 80.145130
final value 80.145130
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.381443
iter 10 value 93.721584
iter 20 value 85.107778
iter 30 value 83.614336
iter 40 value 82.995570
iter 50 value 82.948833
iter 60 value 82.806726
iter 70 value 82.578349
iter 80 value 82.330020
iter 90 value 82.104906
iter 100 value 82.068290
final value 82.068290
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.687611
iter 10 value 91.783845
iter 20 value 86.684643
iter 30 value 85.871604
iter 40 value 85.026696
iter 50 value 83.259465
iter 60 value 82.888697
iter 70 value 81.843710
iter 80 value 81.206807
iter 90 value 80.113915
iter 100 value 79.159469
final value 79.159469
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 123.555617
iter 10 value 94.083854
iter 20 value 90.351545
iter 30 value 83.148453
iter 40 value 81.720599
iter 50 value 79.575116
iter 60 value 78.379827
iter 70 value 78.253807
iter 80 value 78.047426
iter 90 value 77.661662
iter 100 value 77.571064
final value 77.571064
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.999548
iter 10 value 93.402431
iter 20 value 88.581978
iter 30 value 84.452955
iter 40 value 82.325882
iter 50 value 81.722713
iter 60 value 81.126787
iter 70 value 79.378357
iter 80 value 78.859175
iter 90 value 78.146641
iter 100 value 77.965058
final value 77.965058
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.260629
iter 10 value 94.121004
iter 20 value 89.832306
iter 30 value 88.370695
iter 40 value 83.800877
iter 50 value 82.637745
iter 60 value 82.396376
iter 70 value 81.360974
iter 80 value 80.872896
iter 90 value 80.236048
iter 100 value 79.989688
final value 79.989688
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 129.737120
iter 10 value 93.761785
iter 20 value 89.464925
iter 30 value 89.070341
iter 40 value 86.615087
iter 50 value 83.009953
iter 60 value 80.067167
iter 70 value 79.688586
iter 80 value 78.659637
iter 90 value 78.094935
iter 100 value 78.002377
final value 78.002377
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.170352
iter 10 value 94.079564
iter 20 value 93.937948
iter 30 value 93.463754
iter 40 value 93.417476
iter 50 value 92.885550
iter 60 value 83.988518
iter 70 value 81.272861
iter 80 value 79.715956
iter 90 value 78.952025
iter 100 value 78.267657
final value 78.267657
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 128.113237
iter 10 value 93.947592
iter 20 value 86.846239
iter 30 value 82.640189
iter 40 value 80.183590
iter 50 value 79.034531
iter 60 value 78.733121
iter 70 value 78.363590
iter 80 value 78.018993
iter 90 value 77.933818
iter 100 value 77.894048
final value 77.894048
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.807106
final value 94.054694
converged
Fitting Repeat 2
# weights: 103
initial value 96.894698
iter 10 value 93.584376
iter 20 value 93.382972
final value 93.366568
converged
Fitting Repeat 3
# weights: 103
initial value 95.107249
iter 10 value 93.018926
iter 20 value 91.085190
iter 30 value 91.070489
iter 40 value 91.069994
iter 50 value 91.068020
iter 60 value 90.166486
iter 70 value 83.746542
iter 80 value 83.007252
iter 90 value 82.791984
iter 100 value 82.660489
final value 82.660489
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.388208
final value 94.054943
converged
Fitting Repeat 5
# weights: 103
initial value 97.000721
final value 94.054605
converged
Fitting Repeat 1
# weights: 305
initial value 95.397178
iter 10 value 93.587399
iter 20 value 93.575815
iter 30 value 93.130002
iter 40 value 85.130284
iter 50 value 83.172566
iter 60 value 83.149088
final value 83.148943
converged
Fitting Repeat 2
# weights: 305
initial value 102.772795
iter 10 value 93.383762
iter 20 value 93.370849
iter 30 value 93.365375
iter 40 value 87.407399
iter 50 value 85.561356
iter 60 value 84.721431
iter 70 value 84.604639
final value 84.603766
converged
Fitting Repeat 3
# weights: 305
initial value 94.377776
iter 10 value 94.054104
iter 20 value 94.003284
iter 30 value 85.762019
iter 40 value 85.389634
iter 50 value 85.388306
iter 60 value 85.386871
final value 85.386313
converged
Fitting Repeat 4
# weights: 305
initial value 103.418170
iter 10 value 94.032099
iter 20 value 93.533178
iter 30 value 93.417274
iter 40 value 93.305197
iter 50 value 93.302287
iter 60 value 93.301437
final value 93.301012
converged
Fitting Repeat 5
# weights: 305
initial value 107.880370
iter 10 value 93.415220
iter 20 value 93.409437
iter 30 value 93.382071
iter 40 value 93.358649
iter 50 value 93.301614
final value 93.301603
converged
Fitting Repeat 1
# weights: 507
initial value 94.882075
iter 10 value 93.462955
iter 10 value 93.462955
final value 93.462955
converged
Fitting Repeat 2
# weights: 507
initial value 104.119781
iter 10 value 93.883721
iter 20 value 93.877838
iter 30 value 93.870565
iter 40 value 93.295629
iter 50 value 88.479244
iter 60 value 88.141208
iter 70 value 87.910132
final value 87.897956
converged
Fitting Repeat 3
# weights: 507
initial value 95.689878
iter 10 value 93.590796
iter 20 value 93.565089
iter 30 value 85.637124
iter 40 value 85.390489
iter 50 value 84.107041
iter 60 value 80.637132
iter 70 value 80.341364
final value 80.340504
converged
Fitting Repeat 4
# weights: 507
initial value 123.134202
iter 10 value 93.590926
iter 20 value 93.584250
iter 30 value 93.242264
iter 40 value 91.958622
iter 50 value 89.400944
iter 60 value 86.598624
iter 70 value 86.372002
iter 80 value 86.351895
iter 90 value 86.351697
iter 100 value 86.350326
final value 86.350326
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.680316
iter 10 value 94.060352
iter 20 value 85.580118
final value 82.988567
converged
Fitting Repeat 1
# weights: 103
initial value 96.229820
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.774142
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.274868
iter 10 value 94.035322
iter 20 value 93.601603
final value 93.601516
converged
Fitting Repeat 4
# weights: 103
initial value 98.947519
iter 10 value 86.142138
iter 20 value 85.016326
iter 30 value 84.989398
final value 84.989362
converged
Fitting Repeat 5
# weights: 103
initial value 97.055216
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 124.395226
final value 93.991525
converged
Fitting Repeat 2
# weights: 305
initial value 95.479789
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 119.821949
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 102.463151
iter 10 value 93.949469
iter 20 value 93.850031
final value 93.849361
converged
Fitting Repeat 5
# weights: 305
initial value 99.428108
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 96.153055
iter 10 value 93.543003
iter 20 value 91.887487
iter 30 value 91.475707
iter 40 value 91.474079
final value 91.474034
converged
Fitting Repeat 2
# weights: 507
initial value 108.760093
iter 10 value 91.824177
iter 10 value 91.824176
iter 10 value 91.824176
final value 91.824176
converged
Fitting Repeat 3
# weights: 507
initial value 117.952882
iter 10 value 92.600394
final value 92.597507
converged
Fitting Repeat 4
# weights: 507
initial value 100.792366
iter 10 value 91.824217
final value 91.824176
converged
Fitting Repeat 5
# weights: 507
initial value 94.359094
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 111.356883
iter 10 value 93.883095
iter 20 value 81.615859
iter 30 value 79.882217
iter 40 value 79.860036
iter 50 value 79.826720
iter 60 value 79.590796
iter 70 value 79.576175
iter 80 value 79.532155
iter 90 value 79.479804
final value 79.479774
converged
Fitting Repeat 2
# weights: 103
initial value 100.090224
iter 10 value 94.050659
iter 20 value 93.554141
iter 30 value 84.278935
iter 40 value 82.705431
iter 50 value 81.408294
iter 60 value 79.039290
iter 70 value 77.978847
iter 80 value 77.814732
iter 90 value 77.597306
iter 100 value 77.510377
final value 77.510377
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.611057
iter 10 value 94.076516
iter 20 value 94.058240
iter 30 value 91.243012
iter 40 value 88.932582
iter 50 value 86.455291
iter 60 value 80.055094
iter 70 value 79.579552
iter 80 value 79.576037
iter 90 value 79.510852
iter 100 value 79.480728
final value 79.480728
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.322094
iter 10 value 94.107304
iter 20 value 93.483210
iter 30 value 92.773682
iter 40 value 92.382697
iter 50 value 80.723793
iter 60 value 79.873022
iter 70 value 79.582937
iter 80 value 79.576848
iter 90 value 79.529100
iter 100 value 79.485520
final value 79.485520
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.268949
iter 10 value 84.685451
iter 20 value 84.427236
iter 30 value 84.403017
iter 30 value 84.403016
iter 30 value 84.403016
final value 84.403016
converged
Fitting Repeat 1
# weights: 305
initial value 116.394898
iter 10 value 94.378798
iter 20 value 82.569741
iter 30 value 80.646515
iter 40 value 79.697417
iter 50 value 78.510776
iter 60 value 77.620682
iter 70 value 77.161451
iter 80 value 77.053192
iter 90 value 75.426349
iter 100 value 75.053758
final value 75.053758
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.081676
iter 10 value 94.270252
iter 20 value 91.515130
iter 30 value 79.210057
iter 40 value 79.031927
iter 50 value 78.983826
iter 60 value 78.654515
iter 70 value 77.730264
iter 80 value 76.922254
iter 90 value 76.817308
iter 100 value 76.798794
final value 76.798794
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.922187
iter 10 value 93.890008
iter 20 value 84.926462
iter 30 value 83.395193
iter 40 value 79.293023
iter 50 value 78.373884
iter 60 value 78.064975
iter 70 value 77.853894
iter 80 value 77.717309
iter 90 value 77.610735
iter 100 value 77.321939
final value 77.321939
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.878151
iter 10 value 94.085248
iter 20 value 91.163708
iter 30 value 84.716941
iter 40 value 82.726271
iter 50 value 81.298982
iter 60 value 78.994778
iter 70 value 77.934389
iter 80 value 77.558186
iter 90 value 77.216783
iter 100 value 76.227870
final value 76.227870
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.126106
iter 10 value 93.947454
iter 20 value 90.490152
iter 30 value 88.006165
iter 40 value 87.066263
iter 50 value 85.970336
iter 60 value 80.393812
iter 70 value 77.803952
iter 80 value 77.568993
iter 90 value 77.449785
iter 100 value 77.322894
final value 77.322894
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 117.761754
iter 10 value 95.104984
iter 20 value 91.072733
iter 30 value 86.384703
iter 40 value 80.827649
iter 50 value 78.561783
iter 60 value 78.473024
iter 70 value 78.362440
iter 80 value 78.290258
iter 90 value 78.247291
iter 100 value 78.177545
final value 78.177545
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.735479
iter 10 value 95.889004
iter 20 value 91.345839
iter 30 value 83.984299
iter 40 value 83.749673
iter 50 value 83.602907
iter 60 value 83.316038
iter 70 value 79.956708
iter 80 value 78.602456
iter 90 value 77.963655
iter 100 value 76.882536
final value 76.882536
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.551819
iter 10 value 93.698819
iter 20 value 86.855804
iter 30 value 80.364746
iter 40 value 78.660871
iter 50 value 76.967092
iter 60 value 75.780060
iter 70 value 75.593213
iter 80 value 75.563230
iter 90 value 75.511381
iter 100 value 75.370649
final value 75.370649
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.749915
iter 10 value 94.061703
iter 20 value 91.130679
iter 30 value 82.720718
iter 40 value 78.854315
iter 50 value 77.624107
iter 60 value 77.320009
iter 70 value 77.189676
iter 80 value 77.155317
iter 90 value 77.090756
iter 100 value 76.909985
final value 76.909985
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.364742
iter 10 value 95.294640
iter 20 value 92.933645
iter 30 value 84.348532
iter 40 value 84.128005
iter 50 value 79.678561
iter 60 value 79.367589
iter 70 value 79.163921
iter 80 value 79.066441
iter 90 value 78.347150
iter 100 value 77.315668
final value 77.315668
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.686123
final value 94.054672
converged
Fitting Repeat 2
# weights: 103
initial value 105.922744
final value 94.054467
converged
Fitting Repeat 3
# weights: 103
initial value 95.267772
final value 94.054358
converged
Fitting Repeat 4
# weights: 103
initial value 99.456551
final value 94.054674
converged
Fitting Repeat 5
# weights: 103
initial value 109.072867
iter 10 value 91.827890
iter 20 value 91.827130
iter 30 value 91.189390
iter 40 value 87.640669
iter 50 value 80.621814
iter 60 value 80.529885
iter 70 value 80.524820
iter 80 value 80.524176
iter 90 value 78.133613
iter 100 value 77.597798
final value 77.597798
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.905419
iter 10 value 94.058009
iter 20 value 93.863427
iter 30 value 85.162507
iter 40 value 80.352570
iter 50 value 78.779799
iter 60 value 78.775605
iter 70 value 78.691578
iter 80 value 78.244554
iter 90 value 78.229911
iter 100 value 78.029405
final value 78.029405
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.350034
iter 10 value 91.830040
iter 20 value 91.827326
iter 30 value 82.878075
final value 82.869593
converged
Fitting Repeat 3
# weights: 305
initial value 109.560060
iter 10 value 94.058148
iter 20 value 94.016017
iter 30 value 93.327878
iter 40 value 93.287921
iter 50 value 93.286118
final value 93.285950
converged
Fitting Repeat 4
# weights: 305
initial value 108.202890
iter 10 value 94.055460
iter 20 value 93.962988
iter 30 value 77.744871
iter 40 value 77.634608
iter 50 value 77.633563
iter 60 value 77.633221
iter 70 value 77.534248
iter 80 value 75.408101
iter 90 value 73.736380
iter 100 value 73.276338
final value 73.276338
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 92.774579
iter 10 value 84.482802
iter 20 value 82.739201
iter 30 value 82.734761
iter 40 value 82.718307
iter 50 value 82.666395
iter 60 value 82.664062
iter 70 value 82.660683
iter 80 value 82.660501
final value 82.660486
converged
Fitting Repeat 1
# weights: 507
initial value 95.544236
iter 10 value 87.313300
iter 20 value 79.629500
iter 30 value 76.908580
iter 40 value 76.484602
iter 50 value 76.467515
iter 50 value 76.467514
iter 60 value 76.404936
iter 70 value 76.109257
iter 80 value 76.084710
iter 90 value 76.083706
iter 100 value 74.419111
final value 74.419111
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.963140
iter 10 value 94.047022
iter 20 value 92.610662
iter 30 value 87.538462
iter 40 value 87.511214
iter 50 value 87.510932
iter 60 value 87.508934
iter 70 value 87.508309
iter 70 value 87.508308
iter 70 value 87.508308
final value 87.508308
converged
Fitting Repeat 3
# weights: 507
initial value 111.827511
iter 10 value 94.046384
iter 20 value 93.909574
iter 30 value 85.611942
iter 40 value 85.608460
iter 50 value 85.586246
iter 60 value 81.010428
iter 70 value 80.150376
iter 80 value 75.991417
iter 90 value 74.559796
iter 100 value 74.298301
final value 74.298301
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.764058
iter 10 value 94.046474
iter 20 value 94.033515
iter 30 value 80.905720
iter 40 value 79.986589
iter 50 value 76.863913
iter 60 value 76.461847
iter 70 value 76.387407
final value 76.386377
converged
Fitting Repeat 5
# weights: 507
initial value 115.219861
iter 10 value 94.046981
iter 20 value 94.039683
iter 30 value 84.552579
iter 40 value 77.580468
iter 50 value 77.551959
iter 60 value 77.544677
iter 70 value 77.542554
iter 80 value 77.541541
final value 77.541525
converged
Fitting Repeat 1
# weights: 507
initial value 133.224763
iter 10 value 117.529303
iter 20 value 114.941724
iter 30 value 108.853767
iter 40 value 104.073696
iter 50 value 102.118678
iter 60 value 101.870560
iter 70 value 101.280164
iter 80 value 100.891489
iter 90 value 100.874543
iter 100 value 100.820798
final value 100.820798
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 152.552900
iter 10 value 117.955558
iter 20 value 109.786141
iter 30 value 106.332947
iter 40 value 105.448834
iter 50 value 102.386736
iter 60 value 102.090944
iter 70 value 101.914364
iter 80 value 101.744772
iter 90 value 101.510146
iter 100 value 101.012682
final value 101.012682
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 131.118077
iter 10 value 119.385967
iter 20 value 117.505494
iter 30 value 115.134321
iter 40 value 107.086890
iter 50 value 105.592315
iter 60 value 105.212344
iter 70 value 104.005693
iter 80 value 103.175473
iter 90 value 102.501583
iter 100 value 101.658040
final value 101.658040
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 133.298412
iter 10 value 118.069499
iter 20 value 117.813230
iter 30 value 115.661407
iter 40 value 113.828804
iter 50 value 110.849774
iter 60 value 110.591661
iter 70 value 108.941623
iter 80 value 106.938959
iter 90 value 104.700353
iter 100 value 103.127604
final value 103.127604
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 135.303825
iter 10 value 117.982820
iter 20 value 115.864713
iter 30 value 115.394683
iter 40 value 111.203219
iter 50 value 108.058627
iter 60 value 106.203347
iter 70 value 103.256510
iter 80 value 103.145275
iter 90 value 103.072977
iter 100 value 102.806371
final value 102.806371
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Sep 10 20:53:18 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
18.574 0.412 78.518
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 17.558 | 0.674 | 18.454 | |
| FreqInteractors | 0.076 | 0.003 | 0.079 | |
| calculateAAC | 0.014 | 0.002 | 0.015 | |
| calculateAutocor | 0.129 | 0.018 | 0.147 | |
| calculateCTDC | 0.026 | 0.001 | 0.027 | |
| calculateCTDD | 0.177 | 0.005 | 0.183 | |
| calculateCTDT | 0.081 | 0.002 | 0.083 | |
| calculateCTriad | 0.151 | 0.009 | 0.160 | |
| calculateDC | 0.030 | 0.003 | 0.033 | |
| calculateF | 0.099 | 0.003 | 0.102 | |
| calculateKSAAP | 0.033 | 0.003 | 0.034 | |
| calculateQD_Sm | 0.608 | 0.025 | 0.635 | |
| calculateTC | 0.598 | 0.052 | 0.650 | |
| calculateTC_Sm | 0.092 | 0.005 | 0.097 | |
| corr_plot | 17.265 | 0.659 | 18.132 | |
| enrichfindP | 0.163 | 0.029 | 7.469 | |
| enrichfind_hp | 0.023 | 0.007 | 0.970 | |
| enrichplot | 0.120 | 0.002 | 0.122 | |
| filter_missing_values | 0.000 | 0.000 | 0.001 | |
| getFASTA | 0.029 | 0.006 | 3.839 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.001 | 0.000 | |
| plotPPI | 0.024 | 0.001 | 0.026 | |
| pred_ensembel | 5.743 | 0.099 | 5.234 | |
| var_imp | 17.930 | 0.708 | 18.655 | |