Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-02-01 11:44 -0500 (Sat, 01 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4704 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" | 4467 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" | 4478 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4431 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 977/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-01-31 19:40:58 -0500 (Fri, 31 Jan 2025) |
EndedAt: 2025-01-31 19:43:55 -0500 (Fri, 31 Jan 2025) |
EllapsedTime: 177.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-01-20 r87609) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 17.946 0.798 18.961 var_imp 17.663 0.748 18.474 corr_plot 17.462 0.702 18.372 pred_ensembel 5.597 0.092 5.105 enrichfindP 0.164 0.028 7.650 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.740060 iter 10 value 89.721723 iter 20 value 87.396925 iter 30 value 87.389851 final value 87.389808 converged Fitting Repeat 2 # weights: 103 initial value 103.041132 final value 93.869755 converged Fitting Repeat 3 # weights: 103 initial value 98.136833 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.007744 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 103.799013 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.702496 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.884416 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 113.956719 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 127.837940 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 104.568181 final value 94.032968 converged Fitting Repeat 1 # weights: 507 initial value 94.532568 iter 10 value 91.696951 iter 20 value 91.696173 final value 91.696115 converged Fitting Repeat 2 # weights: 507 initial value 100.826140 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 107.072742 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.974546 final value 93.988096 converged Fitting Repeat 5 # weights: 507 initial value 97.911714 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 101.770378 iter 10 value 93.982301 iter 20 value 86.747443 iter 30 value 84.879225 iter 40 value 84.195808 iter 50 value 83.740393 iter 60 value 83.728519 iter 70 value 83.728223 final value 83.728212 converged Fitting Repeat 2 # weights: 103 initial value 98.936724 iter 10 value 93.314381 iter 20 value 86.801318 iter 30 value 86.423239 iter 40 value 86.017698 iter 50 value 85.877713 iter 60 value 85.319345 iter 70 value 84.943792 iter 80 value 83.849222 iter 90 value 82.985103 iter 100 value 82.965936 final value 82.965936 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.472268 iter 10 value 94.053399 iter 20 value 92.601935 iter 30 value 90.386590 iter 40 value 88.835314 iter 50 value 84.702613 iter 60 value 84.122253 iter 70 value 83.000724 iter 80 value 82.971831 iter 90 value 82.940984 iter 100 value 82.918297 final value 82.918297 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.762760 iter 10 value 88.764509 iter 20 value 84.461186 iter 30 value 83.994936 iter 40 value 83.846024 iter 50 value 83.785545 final value 83.785496 converged Fitting Repeat 5 # weights: 103 initial value 96.498801 iter 10 value 94.045681 iter 20 value 88.528618 iter 30 value 87.152280 iter 40 value 86.358507 iter 50 value 84.292064 iter 60 value 83.836313 iter 70 value 83.785548 final value 83.785496 converged Fitting Repeat 1 # weights: 305 initial value 105.818829 iter 10 value 90.232984 iter 20 value 85.732019 iter 30 value 85.426949 iter 40 value 84.376261 iter 50 value 84.124902 iter 60 value 84.008127 iter 70 value 83.920855 iter 80 value 83.798740 iter 90 value 83.029697 iter 100 value 82.562887 final value 82.562887 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.394142 iter 10 value 94.023100 iter 20 value 90.779812 iter 30 value 88.768954 iter 40 value 87.331363 iter 50 value 85.974250 iter 60 value 85.003100 iter 70 value 84.393989 iter 80 value 83.461427 iter 90 value 82.579130 iter 100 value 81.782874 final value 81.782874 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.404690 iter 10 value 94.175610 iter 20 value 93.971597 iter 30 value 93.160927 iter 40 value 92.824463 iter 50 value 92.483620 iter 60 value 92.448185 iter 70 value 92.420029 iter 80 value 91.265446 iter 90 value 89.546197 iter 100 value 84.958540 final value 84.958540 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.556282 iter 10 value 90.678974 iter 20 value 86.984140 iter 30 value 85.265491 iter 40 value 83.149867 iter 50 value 82.406102 iter 60 value 82.198095 iter 70 value 81.974420 iter 80 value 81.796201 iter 90 value 81.699546 iter 100 value 81.687087 final value 81.687087 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.860270 iter 10 value 94.118224 iter 20 value 93.865285 iter 30 value 93.377417 iter 40 value 88.248888 iter 50 value 86.343557 iter 60 value 84.724091 iter 70 value 83.548233 iter 80 value 82.772314 iter 90 value 82.175463 iter 100 value 81.752190 final value 81.752190 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.528877 iter 10 value 92.465541 iter 20 value 87.325439 iter 30 value 86.247084 iter 40 value 84.256672 iter 50 value 82.639651 iter 60 value 82.021418 iter 70 value 81.797413 iter 80 value 81.773669 iter 90 value 81.762387 iter 100 value 81.699846 final value 81.699846 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.477518 iter 10 value 91.171670 iter 20 value 86.337019 iter 30 value 85.389386 iter 40 value 83.460341 iter 50 value 82.979084 iter 60 value 82.708133 iter 70 value 82.495976 iter 80 value 82.393922 iter 90 value 82.189715 iter 100 value 82.116271 final value 82.116271 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.736467 iter 10 value 93.936599 iter 20 value 87.348228 iter 30 value 85.645741 iter 40 value 83.982860 iter 50 value 83.684673 iter 60 value 83.536947 iter 70 value 83.353819 iter 80 value 82.974105 iter 90 value 82.430941 iter 100 value 82.127585 final value 82.127585 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.841241 iter 10 value 96.253132 iter 20 value 89.130236 iter 30 value 85.959445 iter 40 value 85.299108 iter 50 value 84.707589 iter 60 value 83.257649 iter 70 value 82.356049 iter 80 value 82.256575 iter 90 value 82.011221 iter 100 value 81.391986 final value 81.391986 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 134.612280 iter 10 value 94.284336 iter 20 value 93.672311 iter 30 value 90.612242 iter 40 value 86.565689 iter 50 value 83.741586 iter 60 value 83.109073 iter 70 value 82.841376 iter 80 value 82.550432 iter 90 value 82.370621 iter 100 value 82.140129 final value 82.140129 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 116.918688 final value 94.054417 converged Fitting Repeat 2 # weights: 103 initial value 101.948327 final value 93.155551 converged Fitting Repeat 3 # weights: 103 initial value 94.236518 final value 94.054770 converged Fitting Repeat 4 # weights: 103 initial value 96.955683 final value 94.054272 converged Fitting Repeat 5 # weights: 103 initial value 99.035024 final value 94.054491 converged Fitting Repeat 1 # weights: 305 initial value 105.906489 iter 10 value 94.038039 iter 20 value 94.033980 iter 30 value 93.968406 iter 40 value 92.166781 iter 50 value 89.759302 iter 60 value 85.500189 iter 70 value 85.250915 iter 80 value 85.249874 iter 90 value 84.609403 iter 100 value 84.556691 final value 84.556691 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.971235 iter 10 value 94.057127 iter 20 value 93.584800 iter 30 value 89.407054 iter 40 value 85.006624 iter 50 value 81.956788 iter 60 value 81.912220 iter 70 value 81.904482 iter 80 value 81.900588 iter 90 value 81.893966 iter 100 value 81.677453 final value 81.677453 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.677321 iter 10 value 94.053832 iter 20 value 94.052879 iter 30 value 88.920077 iter 40 value 85.410123 iter 50 value 84.279839 final value 84.279671 converged Fitting Repeat 4 # weights: 305 initial value 98.416046 iter 10 value 94.057904 iter 20 value 94.042112 iter 30 value 90.736039 iter 40 value 85.604227 iter 50 value 85.385146 iter 60 value 85.223773 iter 70 value 83.738571 iter 80 value 83.735081 final value 83.733390 converged Fitting Repeat 5 # weights: 305 initial value 107.058730 iter 10 value 94.058545 iter 20 value 93.680809 iter 30 value 92.797973 iter 40 value 92.766394 iter 50 value 92.764444 iter 60 value 92.763729 iter 70 value 92.762355 iter 80 value 92.759240 iter 90 value 92.758548 iter 100 value 92.659391 final value 92.659391 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.081204 iter 10 value 94.041344 iter 20 value 94.005613 iter 30 value 88.128989 iter 40 value 85.115394 iter 40 value 85.115394 iter 40 value 85.115394 final value 85.115394 converged Fitting Repeat 2 # weights: 507 initial value 117.832870 iter 10 value 93.162189 iter 20 value 93.156938 iter 30 value 89.088116 iter 40 value 84.751570 iter 50 value 84.139415 iter 60 value 83.159773 iter 70 value 81.752387 iter 80 value 81.246990 iter 90 value 80.922121 iter 100 value 80.843676 final value 80.843676 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.925301 iter 10 value 89.062470 iter 20 value 85.847632 iter 30 value 85.094565 iter 40 value 84.924845 iter 50 value 84.807974 iter 60 value 83.998789 iter 70 value 83.266223 iter 80 value 83.126475 final value 83.126216 converged Fitting Repeat 4 # weights: 507 initial value 95.421532 iter 10 value 94.041203 iter 20 value 93.937731 iter 30 value 87.242692 iter 40 value 86.992661 iter 50 value 84.996044 iter 60 value 84.676644 iter 70 value 84.376566 iter 80 value 83.102297 iter 90 value 83.088691 iter 100 value 82.976326 final value 82.976326 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 133.628035 iter 10 value 94.061359 iter 20 value 94.053211 iter 30 value 94.018440 iter 40 value 86.269420 iter 50 value 84.181290 iter 60 value 82.204024 iter 70 value 82.078253 iter 80 value 80.954076 iter 90 value 80.530749 iter 100 value 80.524160 final value 80.524160 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.008124 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.407602 final value 94.354396 converged Fitting Repeat 3 # weights: 103 initial value 96.834057 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.100157 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.990204 final value 94.354396 converged Fitting Repeat 1 # weights: 305 initial value 98.963203 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.674974 iter 10 value 92.801133 final value 92.790738 converged Fitting Repeat 3 # weights: 305 initial value 116.005542 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.692667 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.593844 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.807980 iter 10 value 94.354396 iter 10 value 94.354396 iter 10 value 94.354396 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 101.677756 iter 10 value 88.480483 iter 20 value 84.480821 final value 84.480000 converged Fitting Repeat 3 # weights: 507 initial value 97.691263 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 98.370313 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 103.296762 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 103.086011 iter 10 value 94.102402 iter 20 value 82.672457 iter 30 value 81.278566 iter 40 value 80.636001 iter 50 value 80.530924 iter 60 value 80.496603 final value 80.496451 converged Fitting Repeat 2 # weights: 103 initial value 96.489990 iter 10 value 94.477841 iter 20 value 94.327247 iter 30 value 92.426654 iter 40 value 78.999502 iter 50 value 78.122834 iter 60 value 77.086055 iter 70 value 76.462531 iter 80 value 76.062818 final value 76.062198 converged Fitting Repeat 3 # weights: 103 initial value 106.613536 iter 10 value 94.212791 iter 20 value 89.422361 iter 30 value 86.265937 iter 40 value 80.239102 iter 50 value 79.405399 iter 60 value 77.830342 iter 70 value 76.422211 iter 80 value 76.101241 iter 90 value 75.694515 final value 75.694498 converged Fitting Repeat 4 # weights: 103 initial value 106.025339 iter 10 value 94.228137 iter 20 value 93.528132 iter 30 value 93.439785 iter 40 value 92.956182 iter 50 value 86.929667 iter 60 value 84.992632 iter 70 value 82.086137 iter 80 value 81.138397 iter 90 value 80.654170 iter 100 value 80.498022 final value 80.498022 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.951534 iter 10 value 93.725006 iter 20 value 93.340890 iter 30 value 82.197801 iter 40 value 78.189041 iter 50 value 77.342314 iter 60 value 76.496214 iter 70 value 76.191961 iter 80 value 75.820893 final value 75.694498 converged Fitting Repeat 1 # weights: 305 initial value 106.315242 iter 10 value 93.872294 iter 20 value 90.585709 iter 30 value 83.251123 iter 40 value 79.383135 iter 50 value 79.048754 iter 60 value 78.390450 iter 70 value 76.968470 iter 80 value 75.162750 iter 90 value 74.060770 iter 100 value 73.952408 final value 73.952408 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.564452 iter 10 value 94.129680 iter 20 value 93.592249 iter 30 value 85.565001 iter 40 value 82.384224 iter 50 value 81.760679 iter 60 value 81.027390 iter 70 value 75.794395 iter 80 value 75.551229 iter 90 value 74.908754 iter 100 value 74.766514 final value 74.766514 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.765505 iter 10 value 95.437895 iter 20 value 90.225488 iter 30 value 86.131687 iter 40 value 82.707817 iter 50 value 77.212895 iter 60 value 76.060429 iter 70 value 74.730362 iter 80 value 73.875606 iter 90 value 73.558178 iter 100 value 73.430068 final value 73.430068 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.788379 iter 10 value 94.586854 iter 20 value 88.158354 iter 30 value 84.887893 iter 40 value 83.659381 iter 50 value 82.990715 iter 60 value 81.392604 iter 70 value 79.010281 iter 80 value 78.529157 iter 90 value 78.418413 iter 100 value 77.572091 final value 77.572091 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.432453 iter 10 value 92.135166 iter 20 value 81.784405 iter 30 value 81.098518 iter 40 value 81.072883 iter 50 value 80.963639 iter 60 value 77.881948 iter 70 value 75.693585 iter 80 value 74.167547 iter 90 value 73.968037 iter 100 value 73.676423 final value 73.676423 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 133.156080 iter 10 value 94.459953 iter 20 value 85.226242 iter 30 value 82.822715 iter 40 value 78.860205 iter 50 value 77.019692 iter 60 value 76.929869 iter 70 value 76.254869 iter 80 value 75.835658 iter 90 value 74.959922 iter 100 value 73.993315 final value 73.993315 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.062283 iter 10 value 94.266386 iter 20 value 85.209951 iter 30 value 80.738415 iter 40 value 80.179286 iter 50 value 78.787283 iter 60 value 77.251902 iter 70 value 74.557156 iter 80 value 74.327560 iter 90 value 74.000596 iter 100 value 73.638039 final value 73.638039 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.551728 iter 10 value 94.224496 iter 20 value 84.273678 iter 30 value 78.993363 iter 40 value 78.301116 iter 50 value 77.244583 iter 60 value 76.856309 iter 70 value 76.039342 iter 80 value 75.536323 iter 90 value 74.662482 iter 100 value 74.247272 final value 74.247272 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.568521 iter 10 value 94.986214 iter 20 value 85.781148 iter 30 value 84.033171 iter 40 value 80.158615 iter 50 value 77.434285 iter 60 value 76.352378 iter 70 value 75.803106 iter 80 value 74.772470 iter 90 value 74.386916 iter 100 value 74.324926 final value 74.324926 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.237103 iter 10 value 89.330477 iter 20 value 82.874122 iter 30 value 79.011911 iter 40 value 78.263688 iter 50 value 76.005238 iter 60 value 74.925985 iter 70 value 74.368523 iter 80 value 73.698386 iter 90 value 73.592402 iter 100 value 73.474672 final value 73.474672 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 115.536102 final value 94.485700 converged Fitting Repeat 2 # weights: 103 initial value 107.578947 iter 10 value 94.486064 iter 20 value 94.059429 iter 30 value 90.075876 iter 40 value 88.865530 iter 50 value 88.859486 iter 60 value 88.134283 iter 70 value 87.803812 iter 80 value 87.803606 iter 90 value 87.799628 iter 100 value 87.798309 final value 87.798309 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.977978 final value 94.485876 converged Fitting Repeat 4 # weights: 103 initial value 99.414049 final value 94.485754 converged Fitting Repeat 5 # weights: 103 initial value 96.122477 iter 10 value 92.714574 iter 20 value 92.541725 final value 92.541621 converged Fitting Repeat 1 # weights: 305 initial value 98.352386 iter 10 value 94.488701 iter 20 value 94.435263 iter 30 value 81.318824 iter 40 value 80.250448 iter 50 value 77.503330 iter 60 value 77.396357 iter 70 value 77.359748 iter 80 value 76.045394 iter 90 value 74.304416 iter 100 value 73.000959 final value 73.000959 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.942927 iter 10 value 92.751267 iter 20 value 92.743357 iter 30 value 92.680089 iter 40 value 92.628546 final value 92.627921 converged Fitting Repeat 3 # weights: 305 initial value 95.044973 iter 10 value 84.680999 iter 20 value 80.068527 iter 30 value 80.065175 final value 80.065080 converged Fitting Repeat 4 # weights: 305 initial value 98.001488 iter 10 value 91.070111 iter 20 value 91.066297 iter 30 value 82.910325 iter 40 value 80.108451 final value 80.103823 converged Fitting Repeat 5 # weights: 305 initial value 118.811760 iter 10 value 94.489875 iter 20 value 94.484667 final value 94.484598 converged Fitting Repeat 1 # weights: 507 initial value 112.056969 iter 10 value 94.492051 iter 20 value 81.651010 iter 30 value 81.226296 iter 40 value 81.219241 iter 50 value 80.137891 iter 60 value 80.128426 final value 80.128329 converged Fitting Repeat 2 # weights: 507 initial value 96.099451 iter 10 value 94.490367 iter 20 value 89.182998 iter 30 value 84.315608 iter 40 value 78.863120 iter 50 value 77.832745 iter 60 value 77.333980 final value 77.332879 converged Fitting Repeat 3 # weights: 507 initial value 109.240040 iter 10 value 94.492934 iter 20 value 94.453404 iter 30 value 82.859662 iter 40 value 80.878244 iter 50 value 80.868714 iter 60 value 77.406212 iter 70 value 76.444688 iter 80 value 76.291113 iter 90 value 76.130682 iter 100 value 76.128245 final value 76.128245 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.593221 iter 10 value 94.363021 iter 20 value 94.256026 iter 30 value 87.290419 iter 40 value 87.041444 final value 87.041392 converged Fitting Repeat 5 # weights: 507 initial value 97.592841 iter 10 value 93.386030 iter 20 value 92.984240 iter 30 value 92.459146 iter 40 value 92.455042 final value 92.454466 converged Fitting Repeat 1 # weights: 103 initial value 103.788734 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.714308 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.240486 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.926558 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 113.052214 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.229046 iter 10 value 92.235849 iter 20 value 88.588315 iter 30 value 88.587989 iter 40 value 88.366382 final value 88.311610 converged Fitting Repeat 2 # weights: 305 initial value 96.949129 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.829194 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 95.428411 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 106.565278 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.906603 iter 10 value 92.688762 iter 20 value 89.718499 iter 30 value 86.592068 final value 86.588623 converged Fitting Repeat 2 # weights: 507 initial value 103.473595 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 100.038659 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 119.501341 final value 94.473119 converged Fitting Repeat 5 # weights: 507 initial value 97.700408 iter 10 value 94.300531 final value 94.280105 converged Fitting Repeat 1 # weights: 103 initial value 96.871219 iter 10 value 94.381537 iter 20 value 92.426753 iter 30 value 90.997597 iter 40 value 90.715468 iter 50 value 88.462646 iter 60 value 87.661866 iter 70 value 86.904273 iter 80 value 85.403909 iter 90 value 84.463302 iter 100 value 84.308162 final value 84.308162 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.613174 iter 10 value 94.490398 iter 20 value 94.235798 iter 30 value 91.224153 iter 40 value 88.292503 iter 50 value 87.942421 iter 60 value 87.098778 iter 70 value 84.716088 iter 80 value 84.482603 iter 90 value 84.394066 iter 100 value 84.339401 final value 84.339401 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.764514 iter 10 value 94.488813 iter 20 value 94.278370 iter 30 value 93.017767 iter 40 value 92.557656 iter 50 value 92.099336 iter 60 value 88.674852 iter 70 value 88.005820 iter 80 value 86.976971 iter 90 value 85.795913 iter 100 value 84.627414 final value 84.627414 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.871822 iter 10 value 94.490869 iter 20 value 89.955901 iter 30 value 88.534214 iter 40 value 88.392082 iter 50 value 87.985276 iter 60 value 87.834213 iter 70 value 87.774158 iter 80 value 86.257598 iter 90 value 85.843354 iter 100 value 85.786384 final value 85.786384 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.452584 iter 10 value 93.824854 iter 20 value 92.932085 iter 30 value 91.722285 iter 40 value 90.393495 iter 50 value 88.239556 iter 60 value 84.902346 iter 70 value 84.295396 iter 80 value 84.118468 iter 90 value 84.039636 iter 100 value 83.969091 final value 83.969091 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.534801 iter 10 value 94.649262 iter 20 value 89.305317 iter 30 value 88.691940 iter 40 value 88.407679 iter 50 value 87.405509 iter 60 value 84.898922 iter 70 value 83.931330 iter 80 value 83.223151 iter 90 value 83.171246 iter 100 value 83.116483 final value 83.116483 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.655399 iter 10 value 93.716152 iter 20 value 87.575006 iter 30 value 87.224203 iter 40 value 86.715146 iter 50 value 84.960470 iter 60 value 83.575885 iter 70 value 83.363287 iter 80 value 83.344043 iter 90 value 83.249391 iter 100 value 83.072880 final value 83.072880 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.645289 iter 10 value 94.351762 iter 20 value 91.362994 iter 30 value 87.636768 iter 40 value 86.256531 iter 50 value 84.988334 iter 60 value 84.257388 iter 70 value 83.659127 iter 80 value 83.345627 iter 90 value 83.099336 iter 100 value 82.941495 final value 82.941495 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.943251 iter 10 value 94.295067 iter 20 value 92.146395 iter 30 value 90.109950 iter 40 value 88.715873 iter 50 value 88.591106 iter 60 value 88.457022 iter 70 value 88.187346 iter 80 value 88.089253 iter 90 value 86.668377 iter 100 value 86.123562 final value 86.123562 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.508427 iter 10 value 94.392922 iter 20 value 89.163345 iter 30 value 87.468915 iter 40 value 85.864922 iter 50 value 84.858867 iter 60 value 84.359177 iter 70 value 83.663429 iter 80 value 83.021359 iter 90 value 82.969975 iter 100 value 82.945009 final value 82.945009 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.032505 iter 10 value 94.483435 iter 20 value 91.321878 iter 30 value 87.766826 iter 40 value 86.881860 iter 50 value 85.975118 iter 60 value 85.779710 iter 70 value 83.772425 iter 80 value 83.196391 iter 90 value 83.002621 iter 100 value 82.877083 final value 82.877083 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.583377 iter 10 value 94.572473 iter 20 value 93.763044 iter 30 value 89.655495 iter 40 value 88.514900 iter 50 value 87.848351 iter 60 value 86.783560 iter 70 value 85.050925 iter 80 value 84.041095 iter 90 value 83.072341 iter 100 value 82.760825 final value 82.760825 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.281243 iter 10 value 94.711557 iter 20 value 93.607029 iter 30 value 89.692094 iter 40 value 88.147611 iter 50 value 86.883046 iter 60 value 85.518780 iter 70 value 83.958457 iter 80 value 83.488408 iter 90 value 83.134298 iter 100 value 83.096278 final value 83.096278 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.941241 iter 10 value 94.443962 iter 20 value 88.740283 iter 30 value 87.511335 iter 40 value 85.551178 iter 50 value 84.900248 iter 60 value 84.448758 iter 70 value 83.465831 iter 80 value 83.058249 iter 90 value 82.961692 iter 100 value 82.859007 final value 82.859007 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 132.356213 iter 10 value 94.486376 iter 20 value 90.091211 iter 30 value 86.470053 iter 40 value 84.408563 iter 50 value 84.075649 iter 60 value 83.356141 iter 70 value 83.123562 iter 80 value 82.794294 iter 90 value 82.673863 iter 100 value 82.591391 final value 82.591391 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.253271 iter 10 value 94.485914 iter 20 value 94.484224 final value 94.484216 converged Fitting Repeat 2 # weights: 103 initial value 108.895564 final value 94.485666 converged Fitting Repeat 3 # weights: 103 initial value 98.132245 final value 94.485765 converged Fitting Repeat 4 # weights: 103 initial value 96.117015 iter 10 value 94.485843 iter 20 value 94.482586 iter 30 value 88.271791 iter 40 value 88.219676 iter 50 value 88.214863 iter 50 value 88.214862 iter 60 value 88.214782 iter 70 value 88.214108 iter 80 value 88.213496 iter 90 value 88.134431 iter 100 value 88.126841 final value 88.126841 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.016484 iter 10 value 94.486072 iter 20 value 94.477336 iter 30 value 87.403102 iter 40 value 87.331159 iter 50 value 87.273909 iter 60 value 87.238879 iter 70 value 86.891969 iter 80 value 86.066851 iter 90 value 86.049789 final value 86.049695 converged Fitting Repeat 1 # weights: 305 initial value 98.693111 iter 10 value 94.279449 iter 20 value 94.257990 iter 30 value 94.256088 iter 40 value 94.254156 final value 94.253660 converged Fitting Repeat 2 # weights: 305 initial value 104.028817 iter 10 value 94.489178 iter 20 value 94.437074 iter 30 value 94.264970 iter 40 value 94.264929 iter 40 value 94.264929 iter 40 value 94.264929 final value 94.264929 converged Fitting Repeat 3 # weights: 305 initial value 120.920177 iter 10 value 94.488507 iter 20 value 94.484227 iter 30 value 90.905381 iter 40 value 89.476581 iter 50 value 88.648496 iter 60 value 87.569112 iter 70 value 87.568057 iter 80 value 87.527700 iter 90 value 86.060277 iter 100 value 85.228097 final value 85.228097 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.685351 iter 10 value 93.797547 iter 20 value 92.593813 iter 30 value 92.400689 iter 40 value 92.142128 iter 50 value 92.138743 iter 60 value 92.137389 iter 70 value 92.116101 iter 80 value 92.071113 iter 90 value 92.069276 iter 100 value 86.462175 final value 86.462175 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.394142 iter 10 value 94.489663 iter 20 value 93.844103 iter 30 value 91.266785 iter 40 value 88.156880 iter 50 value 86.555931 iter 60 value 85.550090 iter 70 value 85.394156 iter 80 value 85.375984 iter 90 value 85.375651 iter 100 value 85.375525 final value 85.375525 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 97.644028 iter 10 value 94.492387 iter 20 value 94.445846 iter 30 value 89.833382 iter 40 value 89.810000 iter 50 value 88.686392 iter 60 value 87.701662 iter 70 value 87.685343 iter 80 value 87.538668 final value 87.538623 converged Fitting Repeat 2 # weights: 507 initial value 108.209596 iter 10 value 94.475129 iter 20 value 94.468396 iter 30 value 94.467052 iter 40 value 93.727656 iter 50 value 93.126041 iter 60 value 92.883717 iter 70 value 92.210742 iter 80 value 91.970195 final value 91.969772 converged Fitting Repeat 3 # weights: 507 initial value 129.797567 iter 10 value 94.491745 iter 20 value 94.461347 iter 30 value 93.242153 iter 40 value 90.308613 iter 50 value 84.362547 iter 60 value 83.572954 iter 70 value 82.439474 iter 80 value 82.001882 iter 90 value 81.764474 iter 100 value 81.642425 final value 81.642425 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.435798 iter 10 value 90.510823 iter 20 value 90.421253 iter 30 value 89.858754 iter 40 value 89.846772 iter 50 value 87.874135 iter 60 value 87.291679 iter 70 value 87.288267 iter 80 value 87.285947 final value 87.285790 converged Fitting Repeat 5 # weights: 507 initial value 98.979308 iter 10 value 94.321810 iter 20 value 94.279074 iter 30 value 88.762451 iter 40 value 88.749129 iter 50 value 88.610655 iter 60 value 87.079500 iter 70 value 86.872756 iter 80 value 86.871825 iter 90 value 86.788127 iter 100 value 86.783814 final value 86.783814 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.492878 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.196503 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.760714 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.775888 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.558216 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 107.177670 iter 10 value 92.288692 iter 20 value 92.281088 final value 92.281082 converged Fitting Repeat 2 # weights: 305 initial value 94.335084 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 106.340192 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.309276 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.333303 final value 94.011429 converged Fitting Repeat 1 # weights: 507 initial value 108.108230 iter 10 value 92.712272 iter 20 value 92.223960 iter 30 value 92.213882 final value 92.213869 converged Fitting Repeat 2 # weights: 507 initial value 101.141274 iter 10 value 92.282026 iter 20 value 92.272531 final value 92.272521 converged Fitting Repeat 3 # weights: 507 initial value 102.594116 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.787618 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.400557 iter 10 value 92.286541 iter 20 value 92.281087 final value 92.281082 converged Fitting Repeat 1 # weights: 103 initial value 99.078537 iter 10 value 93.959344 iter 20 value 92.874675 iter 30 value 92.732734 iter 40 value 89.112802 iter 50 value 82.795023 iter 60 value 82.622205 iter 70 value 82.105622 iter 80 value 80.721529 iter 90 value 80.509938 iter 100 value 80.095784 final value 80.095784 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 113.252196 iter 10 value 93.887840 iter 20 value 92.302542 iter 30 value 86.587365 iter 40 value 86.158308 iter 50 value 85.733259 iter 60 value 85.458333 iter 70 value 84.996039 iter 80 value 84.622664 iter 90 value 84.584282 final value 84.584281 converged Fitting Repeat 3 # weights: 103 initial value 98.394688 iter 10 value 93.334533 iter 20 value 89.681559 iter 30 value 89.045230 iter 40 value 86.498721 iter 50 value 85.333553 iter 60 value 84.425917 iter 70 value 84.213573 iter 80 value 84.155107 final value 84.155055 converged Fitting Repeat 4 # weights: 103 initial value 97.199429 iter 10 value 93.853390 iter 20 value 90.137072 iter 30 value 88.276050 iter 40 value 88.102678 iter 50 value 88.013549 iter 60 value 84.576596 iter 70 value 84.473392 iter 80 value 84.469553 final value 84.469519 converged Fitting Repeat 5 # weights: 103 initial value 96.164938 iter 10 value 94.054966 iter 20 value 90.056783 iter 30 value 88.177238 iter 40 value 87.607789 iter 50 value 86.782840 iter 60 value 85.994793 iter 70 value 85.220728 iter 80 value 84.539623 iter 90 value 84.469747 final value 84.469519 converged Fitting Repeat 1 # weights: 305 initial value 106.405610 iter 10 value 94.400648 iter 20 value 88.835659 iter 30 value 85.579729 iter 40 value 83.877717 iter 50 value 83.525420 iter 60 value 82.350126 iter 70 value 81.509679 iter 80 value 80.957022 iter 90 value 80.645069 iter 100 value 80.447697 final value 80.447697 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 135.749141 iter 10 value 94.053862 iter 20 value 88.127292 iter 30 value 86.420123 iter 40 value 86.333097 iter 50 value 85.525480 iter 60 value 84.076418 iter 70 value 83.598299 iter 80 value 83.464462 iter 90 value 83.431826 iter 100 value 83.309205 final value 83.309205 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.107731 iter 10 value 94.056575 iter 20 value 92.714940 iter 30 value 88.976492 iter 40 value 85.437340 iter 50 value 83.319490 iter 60 value 83.077086 iter 70 value 83.006217 iter 80 value 81.670270 iter 90 value 80.034042 iter 100 value 79.685174 final value 79.685174 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.397382 iter 10 value 93.214037 iter 20 value 88.327393 iter 30 value 84.517801 iter 40 value 81.200063 iter 50 value 78.801006 iter 60 value 78.334618 iter 70 value 78.284832 iter 80 value 78.171099 iter 90 value 78.106126 iter 100 value 78.094145 final value 78.094145 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.961971 iter 10 value 92.737725 iter 20 value 87.691947 iter 30 value 86.602201 iter 40 value 85.262540 iter 50 value 84.457174 iter 60 value 82.277789 iter 70 value 81.533022 iter 80 value 80.656376 iter 90 value 79.812059 iter 100 value 78.926971 final value 78.926971 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.834204 iter 10 value 91.982592 iter 20 value 87.193735 iter 30 value 86.480068 iter 40 value 86.262270 iter 50 value 82.533020 iter 60 value 80.981533 iter 70 value 79.865401 iter 80 value 79.214617 iter 90 value 78.666940 iter 100 value 77.979643 final value 77.979643 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.796944 iter 10 value 93.220474 iter 20 value 91.822707 iter 30 value 88.720304 iter 40 value 82.557056 iter 50 value 80.986416 iter 60 value 80.235669 iter 70 value 78.884378 iter 80 value 78.458778 iter 90 value 78.341581 iter 100 value 78.190809 final value 78.190809 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.045712 iter 10 value 99.112997 iter 20 value 91.425142 iter 30 value 89.130061 iter 40 value 85.801407 iter 50 value 84.406073 iter 60 value 81.674705 iter 70 value 80.016451 iter 80 value 79.490705 iter 90 value 78.849864 iter 100 value 78.209380 final value 78.209380 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.298819 iter 10 value 94.058311 iter 20 value 92.041566 iter 30 value 86.015040 iter 40 value 85.120806 iter 50 value 84.343580 iter 60 value 83.434435 iter 70 value 82.082998 iter 80 value 81.935488 iter 90 value 80.403868 iter 100 value 79.669443 final value 79.669443 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.708898 iter 10 value 94.080618 iter 20 value 92.488640 iter 30 value 86.105340 iter 40 value 82.722775 iter 50 value 80.699091 iter 60 value 80.509630 iter 70 value 80.107803 iter 80 value 80.088983 iter 90 value 80.005832 iter 100 value 79.788277 final value 79.788277 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.848819 final value 94.054674 converged Fitting Repeat 2 # weights: 103 initial value 99.563460 iter 10 value 94.054849 iter 20 value 94.052916 iter 30 value 92.305871 iter 40 value 92.295476 iter 50 value 92.292204 iter 60 value 92.289730 iter 60 value 92.289729 iter 60 value 92.289729 final value 92.289729 converged Fitting Repeat 3 # weights: 103 initial value 95.891174 final value 94.054448 converged Fitting Repeat 4 # weights: 103 initial value 99.332653 iter 10 value 94.054327 final value 94.053095 converged Fitting Repeat 5 # weights: 103 initial value 100.406874 final value 94.054822 converged Fitting Repeat 1 # weights: 305 initial value 113.875693 iter 10 value 94.059009 iter 20 value 93.695659 iter 30 value 88.605298 iter 40 value 82.978850 iter 50 value 82.949396 iter 60 value 82.944318 iter 70 value 82.943267 iter 80 value 82.212999 iter 90 value 81.922151 iter 100 value 80.770160 final value 80.770160 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.702770 iter 10 value 91.857594 iter 20 value 91.372370 iter 30 value 90.834445 iter 40 value 90.831665 iter 50 value 90.705613 iter 60 value 90.470412 iter 70 value 90.469607 iter 80 value 90.469056 final value 90.468634 converged Fitting Repeat 3 # weights: 305 initial value 107.055851 iter 10 value 94.058174 iter 20 value 94.053030 iter 30 value 92.292469 final value 92.286170 converged Fitting Repeat 4 # weights: 305 initial value 97.691130 iter 10 value 92.294953 iter 20 value 92.290873 iter 30 value 87.026490 iter 40 value 82.958981 iter 50 value 82.925158 iter 60 value 81.990647 iter 70 value 78.078127 iter 80 value 76.934301 iter 90 value 76.375513 iter 100 value 76.067483 final value 76.067483 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.611822 iter 10 value 92.832538 iter 20 value 92.177136 iter 30 value 92.135032 iter 40 value 92.088226 iter 50 value 92.085288 iter 60 value 88.533216 iter 70 value 85.848798 iter 80 value 85.846738 iter 90 value 85.035772 iter 100 value 83.841044 final value 83.841044 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.200010 iter 10 value 94.056004 iter 20 value 92.287072 iter 30 value 86.910433 iter 40 value 86.787838 iter 50 value 86.787633 iter 60 value 83.876063 iter 70 value 83.411200 iter 80 value 82.463777 iter 90 value 82.294753 iter 100 value 82.294180 final value 82.294180 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.959479 iter 10 value 93.384547 iter 20 value 93.365647 iter 30 value 92.901984 iter 40 value 86.067150 iter 50 value 83.661908 iter 60 value 83.507440 final value 83.507372 converged Fitting Repeat 3 # weights: 507 initial value 98.809684 iter 10 value 94.060959 iter 20 value 93.997480 iter 30 value 93.669323 iter 40 value 90.082660 iter 50 value 84.794317 iter 60 value 84.084615 iter 70 value 83.417615 final value 83.415937 converged Fitting Repeat 4 # weights: 507 initial value 100.376781 iter 10 value 90.220473 iter 20 value 81.966867 iter 30 value 80.997287 iter 40 value 80.461523 iter 50 value 80.275241 iter 60 value 80.176494 iter 70 value 80.080285 final value 80.079534 converged Fitting Repeat 5 # weights: 507 initial value 103.405624 iter 10 value 92.328994 iter 20 value 92.296804 iter 30 value 92.286636 final value 92.286533 converged Fitting Repeat 1 # weights: 103 initial value 95.735513 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.205679 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 110.483470 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.061130 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.385835 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.308185 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.068767 iter 10 value 94.428657 final value 94.423530 converged Fitting Repeat 3 # weights: 305 initial value 110.396481 iter 10 value 94.529087 iter 20 value 94.428873 final value 94.428840 converged Fitting Repeat 4 # weights: 305 initial value 94.949295 iter 10 value 94.481829 final value 94.481804 converged Fitting Repeat 5 # weights: 305 initial value 98.397656 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 128.176391 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 101.696333 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 124.484195 final value 93.783647 converged Fitting Repeat 4 # weights: 507 initial value 111.607189 final value 94.423529 converged Fitting Repeat 5 # weights: 507 initial value 100.111989 final value 93.755649 converged Fitting Repeat 1 # weights: 103 initial value 96.520655 iter 10 value 94.488759 iter 20 value 94.466063 iter 30 value 93.383875 iter 40 value 93.266746 iter 50 value 93.195981 iter 60 value 88.052207 iter 70 value 86.554712 iter 80 value 85.579150 iter 90 value 85.404892 iter 100 value 85.372665 final value 85.372665 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 117.697983 iter 10 value 94.323701 iter 20 value 86.098016 iter 30 value 85.682737 iter 40 value 85.255948 iter 50 value 85.091008 iter 60 value 84.609808 iter 70 value 84.486021 iter 80 value 84.460251 iter 90 value 84.445872 final value 84.445649 converged Fitting Repeat 3 # weights: 103 initial value 96.132862 iter 10 value 94.297163 iter 20 value 90.800859 iter 30 value 88.414774 iter 40 value 87.896413 iter 50 value 86.490816 iter 60 value 86.020896 iter 70 value 85.757933 iter 80 value 85.351765 final value 85.330886 converged Fitting Repeat 4 # weights: 103 initial value 106.092341 iter 10 value 94.414648 iter 20 value 93.516879 iter 30 value 93.215415 iter 40 value 93.050502 iter 50 value 92.204792 iter 60 value 92.004030 final value 92.001615 converged Fitting Repeat 5 # weights: 103 initial value 98.023803 iter 10 value 94.488862 iter 20 value 93.658219 iter 30 value 92.850468 iter 40 value 89.075358 iter 50 value 84.838760 iter 60 value 84.543943 iter 70 value 84.224652 iter 80 value 84.124248 iter 90 value 84.091428 iter 100 value 83.795060 final value 83.795060 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.522907 iter 10 value 93.928333 iter 20 value 90.146755 iter 30 value 88.522154 iter 40 value 87.613008 iter 50 value 85.013905 iter 60 value 84.356579 iter 70 value 84.180318 iter 80 value 84.054992 iter 90 value 83.626770 iter 100 value 83.457602 final value 83.457602 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.108630 iter 10 value 94.755654 iter 20 value 89.409926 iter 30 value 87.379940 iter 40 value 85.961799 iter 50 value 84.085292 iter 60 value 83.603211 iter 70 value 83.287194 iter 80 value 83.105001 iter 90 value 82.577961 iter 100 value 82.298030 final value 82.298030 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.929509 iter 10 value 94.798269 iter 20 value 86.783595 iter 30 value 85.539062 iter 40 value 85.238384 iter 50 value 84.944168 iter 60 value 84.456991 iter 70 value 83.652779 iter 80 value 83.417658 iter 90 value 83.002650 iter 100 value 82.846983 final value 82.846983 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.772064 iter 10 value 90.282620 iter 20 value 85.197350 iter 30 value 84.592878 iter 40 value 84.446206 iter 50 value 84.272414 iter 60 value 84.123564 iter 70 value 84.047562 iter 80 value 83.977859 iter 90 value 83.618358 iter 100 value 83.449551 final value 83.449551 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.494800 iter 10 value 94.519883 iter 20 value 94.402662 iter 30 value 91.874583 iter 40 value 88.869835 iter 50 value 87.549218 iter 60 value 87.072461 iter 70 value 84.106215 iter 80 value 83.170980 iter 90 value 82.968925 iter 100 value 82.843762 final value 82.843762 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.441585 iter 10 value 94.818585 iter 20 value 90.743160 iter 30 value 89.035260 iter 40 value 85.923121 iter 50 value 85.525033 iter 60 value 85.284876 iter 70 value 84.047328 iter 80 value 83.546297 iter 90 value 83.022872 iter 100 value 82.960435 final value 82.960435 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.119409 iter 10 value 95.543191 iter 20 value 94.379879 iter 30 value 89.777312 iter 40 value 88.527676 iter 50 value 86.486502 iter 60 value 84.323897 iter 70 value 83.386314 iter 80 value 83.049488 iter 90 value 82.625870 iter 100 value 82.342930 final value 82.342930 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.206726 iter 10 value 94.400717 iter 20 value 88.698666 iter 30 value 87.980980 iter 40 value 87.700135 iter 50 value 85.855569 iter 60 value 85.522887 iter 70 value 85.025825 iter 80 value 83.333227 iter 90 value 82.915180 iter 100 value 82.749244 final value 82.749244 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.006326 iter 10 value 94.515429 iter 20 value 94.408002 iter 30 value 89.494709 iter 40 value 88.717640 iter 50 value 85.524318 iter 60 value 84.310670 iter 70 value 84.039477 iter 80 value 83.061988 iter 90 value 82.427167 iter 100 value 82.282140 final value 82.282140 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.136660 iter 10 value 94.846124 iter 20 value 94.698773 iter 30 value 86.368420 iter 40 value 85.388665 iter 50 value 84.976289 iter 60 value 84.364793 iter 70 value 84.134513 iter 80 value 84.116921 iter 90 value 84.009866 iter 100 value 83.187816 final value 83.187816 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.654163 iter 10 value 91.978422 final value 91.978265 converged Fitting Repeat 2 # weights: 103 initial value 99.918472 final value 94.485692 converged Fitting Repeat 3 # weights: 103 initial value 112.802915 iter 10 value 94.485815 iter 20 value 94.481256 final value 94.467404 converged Fitting Repeat 4 # weights: 103 initial value 95.426655 final value 93.785366 converged Fitting Repeat 5 # weights: 103 initial value 104.663059 final value 94.485942 converged Fitting Repeat 1 # weights: 305 initial value 102.922521 iter 10 value 94.488402 iter 20 value 88.644562 iter 30 value 87.130251 final value 87.119609 converged Fitting Repeat 2 # weights: 305 initial value 108.273465 iter 10 value 94.472401 iter 20 value 94.468284 iter 30 value 93.900318 iter 40 value 93.723404 iter 50 value 89.398247 iter 60 value 84.669742 iter 70 value 84.666846 final value 84.666837 converged Fitting Repeat 3 # weights: 305 initial value 96.438209 iter 10 value 94.489093 iter 20 value 93.663574 iter 30 value 87.011275 iter 40 value 86.987157 iter 50 value 86.717081 iter 60 value 84.052639 iter 70 value 83.739560 final value 83.739237 converged Fitting Repeat 4 # weights: 305 initial value 102.516783 iter 10 value 94.488621 iter 20 value 93.847226 iter 30 value 84.967714 iter 40 value 84.697869 iter 50 value 84.617814 iter 60 value 84.397868 iter 70 value 84.382633 iter 80 value 84.299562 iter 90 value 83.967245 iter 100 value 83.922065 final value 83.922065 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.204316 iter 10 value 92.345467 iter 20 value 92.298470 iter 30 value 92.293397 iter 40 value 91.907189 iter 50 value 91.781166 iter 60 value 91.779444 iter 70 value 91.779216 iter 80 value 91.779161 final value 91.779159 converged Fitting Repeat 1 # weights: 507 initial value 118.400258 iter 10 value 94.518669 iter 20 value 94.271429 iter 30 value 94.265159 iter 40 value 94.263799 final value 94.263795 converged Fitting Repeat 2 # weights: 507 initial value 94.825100 iter 10 value 94.486304 iter 20 value 94.169665 iter 30 value 86.164010 iter 40 value 86.159012 iter 50 value 85.141421 iter 60 value 84.750814 iter 70 value 83.977252 iter 80 value 83.975551 iter 90 value 83.965244 iter 100 value 83.854911 final value 83.854911 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.611533 iter 10 value 94.475692 iter 20 value 94.468914 iter 30 value 89.946763 iter 40 value 85.984891 iter 50 value 84.626093 iter 60 value 83.691833 iter 70 value 83.262411 iter 80 value 83.250935 iter 90 value 83.123505 final value 83.094707 converged Fitting Repeat 4 # weights: 507 initial value 105.909422 iter 10 value 94.475225 iter 20 value 94.453732 iter 30 value 87.869301 iter 40 value 86.937382 final value 86.926248 converged Fitting Repeat 5 # weights: 507 initial value 121.039781 iter 10 value 94.475577 iter 20 value 94.269396 iter 30 value 85.687222 iter 40 value 83.567975 iter 50 value 83.179866 iter 60 value 82.513156 iter 70 value 82.351926 iter 80 value 82.210710 iter 90 value 82.113352 iter 100 value 82.066051 final value 82.066051 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 122.940667 iter 10 value 109.495988 iter 20 value 109.295266 iter 30 value 109.291729 iter 40 value 109.290763 iter 50 value 106.982495 iter 60 value 106.649689 iter 70 value 106.649501 iter 80 value 106.648597 iter 90 value 106.648168 final value 106.647991 converged Fitting Repeat 2 # weights: 305 initial value 128.207782 iter 10 value 117.895346 iter 20 value 117.411610 iter 30 value 107.023928 iter 40 value 105.540264 iter 50 value 104.923724 iter 60 value 104.377370 iter 70 value 103.988690 iter 80 value 103.795833 iter 90 value 103.701426 iter 100 value 103.696557 final value 103.696557 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 120.105209 iter 10 value 117.894726 iter 20 value 117.883560 iter 30 value 117.607925 final value 117.607866 converged Fitting Repeat 4 # weights: 305 initial value 121.102168 iter 10 value 117.892009 iter 20 value 117.210232 final value 117.206259 converged Fitting Repeat 5 # weights: 305 initial value 119.998713 iter 10 value 117.895001 iter 20 value 117.795918 iter 30 value 112.648296 iter 40 value 111.008028 iter 50 value 111.007202 iter 60 value 109.139078 iter 70 value 109.072476 iter 70 value 109.072475 iter 70 value 109.072475 final value 109.072475 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 31 19:43:51 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 16.647 0.418 65.564
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 17.946 | 0.798 | 18.961 | |
FreqInteractors | 0.075 | 0.005 | 0.080 | |
calculateAAC | 0.013 | 0.003 | 0.015 | |
calculateAutocor | 0.141 | 0.022 | 0.162 | |
calculateCTDC | 0.025 | 0.001 | 0.027 | |
calculateCTDD | 0.180 | 0.011 | 0.191 | |
calculateCTDT | 0.080 | 0.003 | 0.083 | |
calculateCTriad | 0.142 | 0.007 | 0.151 | |
calculateDC | 0.030 | 0.003 | 0.033 | |
calculateF | 0.096 | 0.003 | 0.100 | |
calculateKSAAP | 0.031 | 0.003 | 0.035 | |
calculateQD_Sm | 0.623 | 0.055 | 0.678 | |
calculateTC | 0.511 | 0.045 | 0.565 | |
calculateTC_Sm | 0.112 | 0.015 | 0.130 | |
corr_plot | 17.462 | 0.702 | 18.372 | |
enrichfindP | 0.164 | 0.028 | 7.650 | |
enrichfind_hp | 0.022 | 0.010 | 0.982 | |
enrichplot | 0.119 | 0.003 | 0.122 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.032 | 0.006 | 3.238 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.000 | |
plotPPI | 0.024 | 0.001 | 0.026 | |
pred_ensembel | 5.597 | 0.092 | 5.105 | |
var_imp | 17.663 | 0.748 | 18.474 | |