| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:07 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
| Package: HPiP |
| Version: 1.15.0 |
| Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.15.0.tar.gz |
| StartedAt: 2025-09-09 07:48:46 -0000 (Tue, 09 Sep 2025) |
| EndedAt: 2025-09-09 07:55:22 -0000 (Tue, 09 Sep 2025) |
| EllapsedTime: 396.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.806 0.391 36.544
corr_plot 34.193 0.311 34.563
FSmethod 33.440 0.599 34.094
pred_ensembel 17.995 0.630 17.435
enrichfindP 0.510 0.008 21.375
getFASTA 0.079 0.004 6.099
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 98.578794
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.213910
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.324091
iter 10 value 94.047879
final value 94.026542
converged
Fitting Repeat 4
# weights: 103
initial value 103.886102
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.870756
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.988649
final value 94.026542
converged
Fitting Repeat 2
# weights: 305
initial value 113.354456
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.396342
final value 94.088889
converged
Fitting Repeat 4
# weights: 305
initial value 101.097158
final value 94.026542
converged
Fitting Repeat 5
# weights: 305
initial value 98.626093
final value 94.026542
converged
Fitting Repeat 1
# weights: 507
initial value 100.446850
iter 10 value 91.251364
iter 20 value 88.130119
final value 88.126185
converged
Fitting Repeat 2
# weights: 507
initial value 99.310173
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 100.371849
final value 94.026542
converged
Fitting Repeat 4
# weights: 507
initial value 116.253715
iter 10 value 93.992035
iter 20 value 85.316494
iter 30 value 85.244058
final value 85.243423
converged
Fitting Repeat 5
# weights: 507
initial value 105.697731
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 101.877837
iter 10 value 94.487124
iter 20 value 93.721292
iter 30 value 88.159736
iter 40 value 85.799636
iter 50 value 84.706371
iter 60 value 84.487688
iter 70 value 83.269836
iter 80 value 82.342552
iter 90 value 82.105392
iter 100 value 82.073313
final value 82.073313
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.912927
iter 10 value 94.867745
iter 20 value 94.488122
iter 30 value 94.110258
iter 40 value 86.740175
iter 50 value 86.065765
iter 60 value 84.077089
iter 70 value 83.920101
iter 80 value 83.864468
iter 90 value 83.821728
iter 100 value 83.500417
final value 83.500417
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 101.037592
iter 10 value 94.683500
iter 20 value 94.486463
iter 30 value 94.051742
iter 40 value 93.789857
iter 50 value 86.775291
iter 60 value 85.723011
iter 70 value 85.636921
iter 80 value 85.611882
iter 90 value 85.590407
iter 100 value 85.454919
final value 85.454919
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 109.697597
iter 10 value 94.439068
iter 20 value 94.077670
iter 30 value 89.396701
iter 40 value 87.689582
iter 50 value 87.359588
iter 60 value 85.899584
iter 70 value 85.410572
iter 80 value 85.284519
iter 90 value 82.558218
iter 100 value 82.348294
final value 82.348294
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 107.823078
iter 10 value 94.454502
iter 20 value 94.372604
iter 30 value 92.923640
iter 40 value 92.753721
iter 50 value 92.446309
iter 60 value 92.061097
iter 70 value 92.020187
iter 80 value 91.585612
iter 90 value 91.283115
iter 100 value 91.266433
final value 91.266433
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 113.410604
iter 10 value 94.292693
iter 20 value 89.360945
iter 30 value 87.756279
iter 40 value 85.762983
iter 50 value 85.286310
iter 60 value 85.055061
iter 70 value 84.250039
iter 80 value 82.934373
iter 90 value 82.172710
iter 100 value 81.848423
final value 81.848423
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 125.231977
iter 10 value 94.717242
iter 20 value 94.080238
iter 30 value 87.885404
iter 40 value 86.019144
iter 50 value 85.787294
iter 60 value 85.715073
iter 70 value 84.848803
iter 80 value 83.105186
iter 90 value 82.816716
iter 100 value 82.781064
final value 82.781064
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 117.470297
iter 10 value 94.013091
iter 20 value 87.722344
iter 30 value 86.162414
iter 40 value 85.516928
iter 50 value 84.889150
iter 60 value 82.951162
iter 70 value 82.093497
iter 80 value 81.151530
iter 90 value 80.869448
iter 100 value 80.708563
final value 80.708563
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 120.520719
iter 10 value 94.903085
iter 20 value 92.969201
iter 30 value 90.977662
iter 40 value 85.667359
iter 50 value 84.447708
iter 60 value 84.095891
iter 70 value 83.289787
iter 80 value 82.335715
iter 90 value 81.763042
iter 100 value 81.641931
final value 81.641931
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.712383
iter 10 value 94.508753
iter 20 value 94.192738
iter 30 value 93.812406
iter 40 value 90.225338
iter 50 value 86.866744
iter 60 value 85.509408
iter 70 value 84.434296
iter 80 value 83.806070
iter 90 value 83.293094
iter 100 value 83.230016
final value 83.230016
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.438649
iter 10 value 100.162471
iter 20 value 87.759378
iter 30 value 85.192271
iter 40 value 84.039414
iter 50 value 82.487643
iter 60 value 81.720906
iter 70 value 81.352745
iter 80 value 81.108449
iter 90 value 80.931677
iter 100 value 80.779038
final value 80.779038
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.903710
iter 10 value 94.309939
iter 20 value 92.039584
iter 30 value 85.601090
iter 40 value 82.615497
iter 50 value 82.364338
iter 60 value 81.946681
iter 70 value 80.951460
iter 80 value 80.273283
iter 90 value 80.202727
iter 100 value 80.075875
final value 80.075875
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.259458
iter 10 value 96.855931
iter 20 value 92.617107
iter 30 value 89.351270
iter 40 value 87.553751
iter 50 value 85.482340
iter 60 value 83.311211
iter 70 value 82.473098
iter 80 value 81.933783
iter 90 value 81.607782
iter 100 value 81.531381
final value 81.531381
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.856158
iter 10 value 95.568613
iter 20 value 92.559377
iter 30 value 86.335446
iter 40 value 85.504939
iter 50 value 83.392876
iter 60 value 81.186988
iter 70 value 80.443565
iter 80 value 80.175694
iter 90 value 80.051901
iter 100 value 79.786983
final value 79.786983
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.966006
iter 10 value 94.217743
iter 20 value 88.956398
iter 30 value 86.555823
iter 40 value 86.359676
iter 50 value 83.444802
iter 60 value 82.834409
iter 70 value 82.630559
iter 80 value 82.136673
iter 90 value 81.719540
iter 100 value 81.423302
final value 81.423302
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.139813
final value 94.485611
converged
Fitting Repeat 2
# weights: 103
initial value 95.956162
final value 94.485877
converged
Fitting Repeat 3
# weights: 103
initial value 101.373795
final value 94.485761
converged
Fitting Repeat 4
# weights: 103
initial value 95.076368
final value 94.485941
converged
Fitting Repeat 5
# weights: 103
initial value 95.235720
final value 94.486006
converged
Fitting Repeat 1
# weights: 305
initial value 98.839696
iter 10 value 85.444838
iter 20 value 84.283009
iter 30 value 83.678560
iter 40 value 83.675597
iter 50 value 83.673588
final value 83.672626
converged
Fitting Repeat 2
# weights: 305
initial value 96.230743
iter 10 value 94.031365
iter 20 value 88.965544
iter 30 value 86.897144
iter 40 value 86.618096
iter 50 value 86.617949
final value 86.617882
converged
Fitting Repeat 3
# weights: 305
initial value 98.786641
iter 10 value 94.488893
iter 20 value 94.482263
iter 30 value 93.643670
iter 40 value 89.170055
iter 50 value 89.082927
iter 60 value 89.082732
iter 60 value 89.082731
iter 70 value 89.082458
iter 80 value 88.843254
iter 90 value 88.842787
iter 100 value 86.044615
final value 86.044615
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.554000
iter 10 value 94.107886
iter 20 value 87.162734
iter 30 value 85.914122
iter 40 value 83.743785
iter 50 value 83.552472
iter 60 value 83.549543
final value 83.549099
converged
Fitting Repeat 5
# weights: 305
initial value 108.549880
iter 10 value 94.031701
iter 20 value 93.923056
iter 30 value 92.132664
iter 40 value 91.603981
iter 50 value 91.293403
iter 60 value 91.274349
iter 70 value 91.272013
iter 80 value 91.271531
final value 91.271412
converged
Fitting Repeat 1
# weights: 507
initial value 104.540694
iter 10 value 94.491882
iter 20 value 94.483683
iter 30 value 94.028529
final value 94.027391
converged
Fitting Repeat 2
# weights: 507
initial value 101.598151
iter 10 value 93.683434
iter 20 value 93.673457
iter 30 value 93.671182
iter 40 value 93.654330
iter 50 value 93.640002
iter 60 value 93.535804
iter 70 value 93.521259
iter 80 value 93.519010
iter 90 value 93.514452
iter 100 value 92.354896
final value 92.354896
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.313834
iter 10 value 94.035082
iter 20 value 93.985621
iter 30 value 93.971549
iter 40 value 89.803819
iter 50 value 86.679414
iter 60 value 86.084548
iter 70 value 86.016819
iter 80 value 86.015950
final value 86.015919
converged
Fitting Repeat 4
# weights: 507
initial value 102.339345
iter 10 value 94.034467
iter 20 value 93.998864
final value 93.969842
converged
Fitting Repeat 5
# weights: 507
initial value 126.521408
iter 10 value 94.485029
iter 20 value 92.138114
iter 30 value 87.991589
iter 40 value 87.698342
iter 50 value 86.075198
iter 60 value 83.695115
iter 70 value 82.217531
iter 80 value 81.987320
iter 90 value 81.904763
final value 81.904342
converged
Fitting Repeat 1
# weights: 103
initial value 95.839157
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 109.401311
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.693776
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 109.679607
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.928004
iter 10 value 93.900827
final value 93.900011
converged
Fitting Repeat 1
# weights: 305
initial value 98.283652
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.316147
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.411345
final value 93.869755
converged
Fitting Repeat 4
# weights: 305
initial value 100.506009
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 109.311983
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 119.213151
iter 10 value 89.651443
iter 20 value 83.422980
iter 30 value 82.443130
iter 40 value 82.404533
iter 50 value 82.325798
final value 82.325732
converged
Fitting Repeat 2
# weights: 507
initial value 98.141616
iter 10 value 84.012009
iter 20 value 83.964864
iter 30 value 82.100897
final value 82.021773
converged
Fitting Repeat 3
# weights: 507
initial value 113.756164
final value 94.038251
converged
Fitting Repeat 4
# weights: 507
initial value 98.306797
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 104.589625
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 97.262929
iter 10 value 94.056269
iter 20 value 90.826967
iter 30 value 85.971177
iter 40 value 83.545387
iter 50 value 83.383060
iter 60 value 82.815770
iter 70 value 81.567897
iter 80 value 81.527626
final value 81.527575
converged
Fitting Repeat 2
# weights: 103
initial value 95.863826
iter 10 value 93.687024
iter 20 value 93.368339
iter 30 value 84.287078
iter 40 value 83.871130
iter 50 value 83.307826
iter 60 value 81.802577
iter 70 value 81.530575
iter 80 value 81.527770
iter 90 value 81.527576
final value 81.527574
converged
Fitting Repeat 3
# weights: 103
initial value 102.884890
iter 10 value 94.001021
iter 20 value 90.573684
iter 30 value 87.719311
iter 40 value 83.025003
iter 50 value 81.145955
iter 60 value 81.029617
iter 70 value 80.700959
iter 80 value 80.477990
iter 90 value 80.437474
final value 80.437472
converged
Fitting Repeat 4
# weights: 103
initial value 109.205123
iter 10 value 94.058371
iter 20 value 87.314210
iter 30 value 84.059212
iter 40 value 81.956217
iter 50 value 81.539356
iter 60 value 81.529201
final value 81.527575
converged
Fitting Repeat 5
# weights: 103
initial value 107.124362
iter 10 value 93.992932
iter 20 value 92.717866
iter 30 value 91.388694
iter 40 value 90.913480
iter 50 value 90.030209
iter 60 value 84.122540
iter 70 value 81.996214
iter 80 value 81.592601
iter 90 value 81.528011
final value 81.527574
converged
Fitting Repeat 1
# weights: 305
initial value 103.021010
iter 10 value 94.193576
iter 20 value 83.882356
iter 30 value 81.543816
iter 40 value 81.199382
iter 50 value 80.300165
iter 60 value 79.725867
iter 70 value 79.577954
iter 80 value 79.284376
iter 90 value 79.202514
iter 100 value 79.176684
final value 79.176684
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.894775
iter 10 value 94.043198
iter 20 value 91.961326
iter 30 value 87.134692
iter 40 value 83.452673
iter 50 value 83.138732
iter 60 value 80.709135
iter 70 value 80.330523
iter 80 value 79.947274
iter 90 value 79.824335
iter 100 value 79.317902
final value 79.317902
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.141608
iter 10 value 95.615436
iter 20 value 91.654218
iter 30 value 84.672488
iter 40 value 83.112555
iter 50 value 81.260220
iter 60 value 81.139362
iter 70 value 80.897785
iter 80 value 79.894808
iter 90 value 79.036803
iter 100 value 78.791038
final value 78.791038
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.160422
iter 10 value 93.671757
iter 20 value 90.885945
iter 30 value 85.057600
iter 40 value 82.513034
iter 50 value 80.265148
iter 60 value 79.892824
iter 70 value 79.535980
iter 80 value 79.384458
iter 90 value 79.374450
iter 100 value 79.286779
final value 79.286779
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.672432
iter 10 value 94.228446
iter 20 value 83.957808
iter 30 value 81.837119
iter 40 value 81.546710
iter 50 value 81.524581
iter 60 value 81.299155
iter 70 value 81.284476
iter 80 value 81.095192
iter 90 value 80.538363
iter 100 value 80.290025
final value 80.290025
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 135.416270
iter 10 value 94.431045
iter 20 value 89.211511
iter 30 value 83.781003
iter 40 value 81.849716
iter 50 value 81.590399
iter 60 value 80.793754
iter 70 value 79.767247
iter 80 value 79.569057
iter 90 value 79.370159
iter 100 value 79.308768
final value 79.308768
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.827668
iter 10 value 94.061955
iter 20 value 86.302416
iter 30 value 84.796948
iter 40 value 82.520703
iter 50 value 81.515329
iter 60 value 80.951757
iter 70 value 80.775329
iter 80 value 80.636264
iter 90 value 80.001142
iter 100 value 79.663169
final value 79.663169
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.872457
iter 10 value 93.655845
iter 20 value 84.439802
iter 30 value 82.166479
iter 40 value 81.593754
iter 50 value 81.303980
iter 60 value 81.283671
final value 81.281297
converged
Fitting Repeat 4
# weights: 507
initial value 102.583823
iter 10 value 94.102722
iter 20 value 91.453659
iter 30 value 85.852548
iter 40 value 80.937460
iter 50 value 80.308956
iter 60 value 79.983082
iter 70 value 79.925869
iter 80 value 79.680886
iter 90 value 79.427298
iter 100 value 79.125773
final value 79.125773
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.765964
iter 10 value 98.311234
iter 20 value 90.379010
iter 30 value 85.480343
iter 40 value 82.885518
iter 50 value 81.229040
iter 60 value 81.037681
iter 70 value 81.015593
iter 80 value 80.906315
iter 90 value 79.443591
iter 100 value 79.030945
final value 79.030945
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.286690
final value 94.054335
converged
Fitting Repeat 2
# weights: 103
initial value 100.585581
iter 10 value 94.054641
iter 20 value 94.052638
iter 30 value 94.035354
iter 40 value 93.257189
iter 50 value 93.246289
iter 60 value 84.178826
final value 82.159278
converged
Fitting Repeat 3
# weights: 103
initial value 102.350074
iter 10 value 94.054746
iter 20 value 94.052230
iter 30 value 82.709977
iter 40 value 82.544368
iter 50 value 82.448405
iter 60 value 82.446874
final value 82.446626
converged
Fitting Repeat 4
# weights: 103
initial value 115.455851
final value 94.054699
converged
Fitting Repeat 5
# weights: 103
initial value 116.251748
iter 10 value 94.054465
iter 20 value 93.758074
iter 30 value 83.572566
iter 40 value 82.267050
iter 50 value 81.432491
iter 60 value 81.343077
iter 70 value 81.342814
iter 70 value 81.342813
iter 70 value 81.342813
final value 81.342813
converged
Fitting Repeat 1
# weights: 305
initial value 101.325141
iter 10 value 94.057649
iter 20 value 92.784814
iter 30 value 82.162729
iter 40 value 82.161305
iter 50 value 81.507773
iter 60 value 80.157117
iter 70 value 80.133754
iter 80 value 79.517051
iter 90 value 78.970735
iter 100 value 78.820578
final value 78.820578
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.104786
iter 10 value 94.042943
iter 20 value 94.041912
iter 30 value 94.038515
final value 94.038489
converged
Fitting Repeat 3
# weights: 305
initial value 94.386870
iter 10 value 94.056117
iter 20 value 94.041981
iter 30 value 94.041256
iter 40 value 93.880459
iter 50 value 82.185419
iter 60 value 82.163692
iter 70 value 81.972490
iter 80 value 81.923432
iter 90 value 81.729101
iter 100 value 81.725334
final value 81.725334
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.730148
iter 10 value 94.057777
iter 20 value 93.877774
iter 30 value 93.805535
iter 40 value 92.223667
final value 91.254286
converged
Fitting Repeat 5
# weights: 305
initial value 104.457319
iter 10 value 94.058014
iter 20 value 94.053091
iter 30 value 93.552284
iter 40 value 83.861945
final value 83.535494
converged
Fitting Repeat 1
# weights: 507
initial value 97.593600
iter 10 value 85.019481
iter 20 value 83.632190
iter 30 value 83.629645
iter 40 value 83.628249
iter 50 value 81.628351
iter 60 value 81.555560
iter 70 value 81.555198
iter 80 value 81.554277
final value 81.554216
converged
Fitting Repeat 2
# weights: 507
initial value 96.790409
iter 10 value 93.833452
iter 20 value 93.828185
iter 30 value 93.826183
iter 30 value 93.826182
iter 30 value 93.826182
final value 93.826182
converged
Fitting Repeat 3
# weights: 507
initial value 110.216077
iter 10 value 94.060854
iter 20 value 93.915841
iter 30 value 82.741497
iter 40 value 82.405205
iter 50 value 80.967420
iter 60 value 80.934963
iter 70 value 80.214992
iter 80 value 79.735194
iter 90 value 79.734661
iter 100 value 79.728396
final value 79.728396
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 97.446301
iter 10 value 94.046009
iter 20 value 94.038509
final value 94.038392
converged
Fitting Repeat 5
# weights: 507
initial value 101.250249
iter 10 value 84.155119
iter 20 value 80.482623
iter 30 value 80.280891
final value 80.278633
converged
Fitting Repeat 1
# weights: 103
initial value 105.700775
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.275174
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 106.598488
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 98.486893
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.439098
final value 94.050000
converged
Fitting Repeat 1
# weights: 305
initial value 112.791223
iter 10 value 93.990542
final value 93.988095
converged
Fitting Repeat 2
# weights: 305
initial value 105.508374
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 98.475798
iter 10 value 85.006556
iter 20 value 84.940721
iter 30 value 84.926930
iter 40 value 84.895868
iter 50 value 84.827218
iter 50 value 84.827218
iter 50 value 84.827217
final value 84.827217
converged
Fitting Repeat 4
# weights: 305
initial value 95.771025
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 102.199997
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 108.263440
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 117.459741
iter 10 value 91.618225
iter 20 value 84.668264
iter 30 value 84.618295
iter 40 value 84.426597
iter 50 value 84.279948
final value 84.272860
converged
Fitting Repeat 3
# weights: 507
initial value 113.732667
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 110.894733
final value 93.988095
converged
Fitting Repeat 5
# weights: 507
initial value 102.532854
iter 10 value 94.045163
iter 20 value 94.032973
final value 94.032968
converged
Fitting Repeat 1
# weights: 103
initial value 115.558367
iter 10 value 94.042428
iter 20 value 88.819459
iter 30 value 87.985558
iter 40 value 87.739342
iter 50 value 85.125737
iter 60 value 83.599370
iter 70 value 82.867118
iter 80 value 82.616297
iter 90 value 82.579395
final value 82.579320
converged
Fitting Repeat 2
# weights: 103
initial value 106.629060
iter 10 value 94.062868
iter 20 value 94.055379
iter 30 value 89.638419
iter 40 value 84.679095
iter 50 value 84.347479
iter 60 value 84.219396
iter 70 value 83.988884
iter 80 value 82.831444
iter 90 value 82.450858
iter 100 value 82.406259
final value 82.406259
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.768575
iter 10 value 93.417536
iter 20 value 88.318554
iter 30 value 84.392243
iter 40 value 84.082736
iter 50 value 83.793525
iter 60 value 83.087335
iter 70 value 82.517158
iter 80 value 81.194827
iter 90 value 80.958073
final value 80.922627
converged
Fitting Repeat 4
# weights: 103
initial value 101.020000
iter 10 value 93.810689
iter 20 value 88.727859
iter 30 value 86.550201
iter 40 value 86.493775
iter 50 value 83.261471
iter 60 value 82.965915
iter 70 value 82.760872
iter 80 value 81.887951
iter 90 value 81.512465
iter 100 value 81.417690
final value 81.417690
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.473357
iter 10 value 94.052711
iter 20 value 94.002704
iter 30 value 88.643001
iter 40 value 85.223452
iter 50 value 84.319094
iter 60 value 84.059705
iter 70 value 83.417778
iter 80 value 82.919023
iter 90 value 82.657288
iter 100 value 82.626107
final value 82.626107
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 117.407008
iter 10 value 94.102650
iter 20 value 90.634107
iter 30 value 84.523868
iter 40 value 84.171612
iter 50 value 83.677477
iter 60 value 81.397744
iter 70 value 80.986252
iter 80 value 80.042158
iter 90 value 79.883294
iter 100 value 79.694985
final value 79.694985
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.556275
iter 10 value 93.494615
iter 20 value 88.712798
iter 30 value 84.516557
iter 40 value 83.716845
iter 50 value 82.889027
iter 60 value 82.057151
iter 70 value 80.718682
iter 80 value 79.868880
iter 90 value 79.478541
iter 100 value 79.102866
final value 79.102866
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.369666
iter 10 value 94.136147
iter 20 value 87.910636
iter 30 value 85.138750
iter 40 value 84.917390
iter 50 value 81.962803
iter 60 value 80.074611
iter 70 value 79.639657
iter 80 value 79.320754
iter 90 value 78.955062
iter 100 value 78.754033
final value 78.754033
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.677705
iter 10 value 93.914254
iter 20 value 88.365872
iter 30 value 86.634220
iter 40 value 86.205418
iter 50 value 86.028938
iter 60 value 85.879950
iter 70 value 83.272600
iter 80 value 82.368535
iter 90 value 81.961563
iter 100 value 80.182310
final value 80.182310
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.160561
iter 10 value 94.216734
iter 20 value 94.061385
iter 30 value 93.613465
iter 40 value 85.177521
iter 50 value 83.812893
iter 60 value 81.344457
iter 70 value 79.990105
iter 80 value 79.748402
iter 90 value 79.132451
iter 100 value 78.873981
final value 78.873981
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.592135
iter 10 value 94.058463
iter 20 value 91.066635
iter 30 value 84.778819
iter 40 value 81.638063
iter 50 value 80.355907
iter 60 value 79.256171
iter 70 value 78.728067
iter 80 value 78.240371
iter 90 value 78.146430
iter 100 value 78.099686
final value 78.099686
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 130.840973
iter 10 value 94.877901
iter 20 value 93.270075
iter 30 value 85.436983
iter 40 value 83.845438
iter 50 value 82.815731
iter 60 value 80.762347
iter 70 value 79.416455
iter 80 value 78.812495
iter 90 value 78.614644
iter 100 value 78.441463
final value 78.441463
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.390275
iter 10 value 96.607381
iter 20 value 96.253478
iter 30 value 94.086840
iter 40 value 87.342377
iter 50 value 85.519056
iter 60 value 84.839124
iter 70 value 82.588501
iter 80 value 81.137798
iter 90 value 81.037654
iter 100 value 80.866327
final value 80.866327
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 128.365231
iter 10 value 93.753173
iter 20 value 87.847263
iter 30 value 83.558345
iter 40 value 82.304036
iter 50 value 81.074390
iter 60 value 80.463420
iter 70 value 79.934061
iter 80 value 79.406710
iter 90 value 79.201290
iter 100 value 79.142357
final value 79.142357
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.528152
iter 10 value 98.403229
iter 20 value 93.646048
iter 30 value 92.680354
iter 40 value 89.730212
iter 50 value 85.632389
iter 60 value 84.401291
iter 70 value 83.587481
iter 80 value 82.332411
iter 90 value 80.475043
iter 100 value 79.213879
final value 79.213879
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.989884
final value 94.054643
converged
Fitting Repeat 2
# weights: 103
initial value 97.829977
final value 94.054411
converged
Fitting Repeat 3
# weights: 103
initial value 103.399629
final value 94.054392
converged
Fitting Repeat 4
# weights: 103
initial value 111.721191
final value 94.034619
converged
Fitting Repeat 5
# weights: 103
initial value 99.101666
final value 94.054543
converged
Fitting Repeat 1
# weights: 305
initial value 103.130593
iter 10 value 94.057471
iter 20 value 93.359029
iter 30 value 92.266206
iter 40 value 92.263181
iter 50 value 92.218669
iter 60 value 92.218557
iter 60 value 92.218556
iter 60 value 92.218556
final value 92.218556
converged
Fitting Repeat 2
# weights: 305
initial value 100.575004
iter 10 value 94.056677
iter 20 value 94.047344
iter 30 value 84.618652
iter 40 value 83.032792
iter 50 value 82.944385
iter 60 value 82.943834
iter 70 value 82.637363
iter 80 value 82.593698
iter 90 value 82.593378
final value 82.592869
converged
Fitting Repeat 3
# weights: 305
initial value 101.424841
iter 10 value 94.056006
iter 20 value 94.016584
iter 30 value 94.013310
iter 40 value 94.010749
iter 50 value 92.676690
iter 60 value 91.696427
iter 70 value 91.115854
iter 80 value 82.112907
iter 90 value 82.040106
iter 100 value 82.035612
final value 82.035612
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.937843
iter 10 value 94.057873
iter 20 value 94.053068
iter 30 value 84.921951
iter 40 value 84.347750
iter 50 value 82.787564
iter 60 value 79.737247
iter 70 value 79.551485
iter 80 value 78.225163
iter 90 value 78.152468
iter 100 value 78.151003
final value 78.151003
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.429643
iter 10 value 94.038304
iter 20 value 94.033876
iter 30 value 93.371782
iter 40 value 86.386669
iter 50 value 84.644427
iter 60 value 84.004880
iter 70 value 83.066905
iter 80 value 82.752113
iter 90 value 82.700620
iter 100 value 82.700209
final value 82.700209
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 97.645396
iter 10 value 94.041246
iter 20 value 94.038758
iter 30 value 93.895047
iter 40 value 91.251185
iter 50 value 84.533561
iter 60 value 84.430634
iter 70 value 84.429698
iter 80 value 84.428496
iter 90 value 84.428035
iter 100 value 84.426696
final value 84.426696
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.800672
iter 10 value 88.935641
iter 20 value 81.922833
iter 30 value 81.810937
iter 40 value 81.630638
iter 50 value 81.613840
iter 60 value 81.605759
final value 81.595693
converged
Fitting Repeat 3
# weights: 507
initial value 110.325590
iter 10 value 94.041448
iter 20 value 92.035798
iter 30 value 84.919524
iter 40 value 84.840199
iter 40 value 84.840199
final value 84.840199
converged
Fitting Repeat 4
# weights: 507
initial value 122.659538
iter 10 value 94.041431
iter 20 value 93.851791
iter 30 value 91.934382
iter 40 value 90.101459
iter 50 value 90.050456
iter 60 value 89.962029
iter 70 value 89.942956
iter 80 value 89.928916
iter 90 value 89.865622
iter 100 value 88.981234
final value 88.981234
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.338101
iter 10 value 94.060847
iter 20 value 94.036123
iter 30 value 91.823447
iter 40 value 89.089880
iter 50 value 83.441480
iter 60 value 81.282118
iter 70 value 81.069436
iter 80 value 81.023450
iter 90 value 80.982786
iter 100 value 80.925187
final value 80.925187
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.306796
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.897224
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.420457
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 109.383495
final value 94.275362
converged
Fitting Repeat 5
# weights: 103
initial value 97.330564
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 108.755887
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 98.856619
iter 10 value 93.772978
final value 93.772973
converged
Fitting Repeat 3
# weights: 305
initial value 104.654472
iter 10 value 91.657934
iter 20 value 91.614755
iter 30 value 91.491610
final value 91.491554
converged
Fitting Repeat 4
# weights: 305
initial value 96.005168
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 101.730219
final value 93.456972
converged
Fitting Repeat 1
# weights: 507
initial value 103.139014
iter 10 value 93.637379
iter 10 value 93.637379
iter 10 value 93.637379
final value 93.637379
converged
Fitting Repeat 2
# weights: 507
initial value 113.974192
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 118.722315
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 97.757888
iter 10 value 94.047684
final value 93.999229
converged
Fitting Repeat 5
# weights: 507
initial value 110.498918
iter 10 value 93.643864
final value 93.637379
converged
Fitting Repeat 1
# weights: 103
initial value 100.083878
iter 10 value 94.467603
iter 20 value 88.573319
iter 30 value 86.415691
iter 40 value 84.561908
iter 50 value 84.292142
iter 60 value 84.286971
final value 84.286880
converged
Fitting Repeat 2
# weights: 103
initial value 99.301697
iter 10 value 94.486566
iter 20 value 93.916888
iter 30 value 93.772000
iter 40 value 93.702507
iter 50 value 86.961544
iter 60 value 86.418876
iter 70 value 84.306582
iter 80 value 84.298824
iter 90 value 84.112987
iter 100 value 83.925864
final value 83.925864
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 106.519309
iter 10 value 94.574172
iter 20 value 94.446096
iter 30 value 87.779228
iter 40 value 85.655983
iter 50 value 84.453930
iter 60 value 84.325099
iter 70 value 84.300386
iter 80 value 84.286880
final value 84.286879
converged
Fitting Repeat 4
# weights: 103
initial value 103.011681
iter 10 value 94.449309
iter 20 value 90.951697
iter 30 value 87.512372
iter 40 value 84.560620
iter 50 value 83.345506
iter 60 value 82.178996
iter 70 value 81.874368
iter 80 value 81.692629
iter 90 value 81.180975
final value 81.180937
converged
Fitting Repeat 5
# weights: 103
initial value 96.934156
iter 10 value 88.844523
iter 20 value 85.775481
iter 30 value 84.806839
iter 40 value 84.102836
iter 50 value 83.194214
iter 60 value 83.135506
iter 70 value 81.792700
iter 80 value 81.078968
iter 90 value 80.964653
final value 80.963846
converged
Fitting Repeat 1
# weights: 305
initial value 109.427474
iter 10 value 94.465730
iter 20 value 94.077836
iter 30 value 92.522019
iter 40 value 90.683052
iter 50 value 90.453743
iter 60 value 89.215186
iter 70 value 85.324288
iter 80 value 83.081061
iter 90 value 81.766661
iter 100 value 81.060676
final value 81.060676
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.750490
iter 10 value 94.431164
iter 20 value 93.959985
iter 30 value 88.189394
iter 40 value 85.530849
iter 50 value 84.566159
iter 60 value 83.487933
iter 70 value 83.344004
iter 80 value 83.266558
iter 90 value 81.719999
iter 100 value 80.535133
final value 80.535133
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.306993
iter 10 value 91.503600
iter 20 value 86.472186
iter 30 value 85.505544
iter 40 value 84.251934
iter 50 value 84.050814
iter 60 value 83.062433
iter 70 value 80.638479
iter 80 value 80.388059
iter 90 value 80.028635
iter 100 value 79.800462
final value 79.800462
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.499157
iter 10 value 93.569747
iter 20 value 86.935263
iter 30 value 83.602261
iter 40 value 82.994057
iter 50 value 82.896106
iter 60 value 82.463650
iter 70 value 81.773921
iter 80 value 81.176096
iter 90 value 80.901713
iter 100 value 80.310774
final value 80.310774
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.847601
iter 10 value 94.455805
iter 20 value 89.593654
iter 30 value 88.403021
iter 40 value 84.334598
iter 50 value 82.650204
iter 60 value 82.036215
iter 70 value 81.900487
iter 80 value 81.683478
iter 90 value 81.515502
iter 100 value 81.487586
final value 81.487586
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.833128
iter 10 value 91.406843
iter 20 value 85.731451
iter 30 value 83.275804
iter 40 value 82.113275
iter 50 value 82.001139
iter 60 value 81.917871
iter 70 value 81.555539
iter 80 value 81.308062
iter 90 value 80.936286
iter 100 value 79.925726
final value 79.925726
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.779625
iter 10 value 94.384372
iter 20 value 94.350892
iter 30 value 89.347087
iter 40 value 85.407315
iter 50 value 83.298290
iter 60 value 81.222256
iter 70 value 80.861417
iter 80 value 80.661042
iter 90 value 80.551297
iter 100 value 80.154952
final value 80.154952
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.805003
iter 10 value 94.602863
iter 20 value 91.455050
iter 30 value 87.345086
iter 40 value 85.844375
iter 50 value 82.525815
iter 60 value 81.251758
iter 70 value 81.118993
iter 80 value 80.925296
iter 90 value 80.843399
iter 100 value 80.316454
final value 80.316454
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.334240
iter 10 value 94.358526
iter 20 value 93.781515
iter 30 value 90.123051
iter 40 value 86.438502
iter 50 value 85.091578
iter 60 value 81.757562
iter 70 value 80.811055
iter 80 value 79.855456
iter 90 value 79.706083
iter 100 value 79.535818
final value 79.535818
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.154809
iter 10 value 94.553257
iter 20 value 90.678026
iter 30 value 84.798874
iter 40 value 84.215122
iter 50 value 82.676577
iter 60 value 82.249887
iter 70 value 81.725468
iter 80 value 81.212443
iter 90 value 80.465163
iter 100 value 80.006128
final value 80.006128
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.164909
final value 94.486023
converged
Fitting Repeat 2
# weights: 103
initial value 97.648015
final value 94.485755
converged
Fitting Repeat 3
# weights: 103
initial value 99.618302
final value 94.485846
converged
Fitting Repeat 4
# weights: 103
initial value 103.025882
iter 10 value 93.639179
iter 20 value 93.638448
iter 30 value 85.304422
iter 40 value 84.039123
iter 50 value 84.000497
iter 60 value 83.678171
iter 70 value 82.855387
iter 80 value 82.579748
iter 90 value 82.153672
final value 82.088903
converged
Fitting Repeat 5
# weights: 103
initial value 101.294052
final value 94.485921
converged
Fitting Repeat 1
# weights: 305
initial value 102.710903
iter 10 value 94.489149
iter 20 value 88.329022
final value 85.755525
converged
Fitting Repeat 2
# weights: 305
initial value 101.640361
iter 10 value 94.487763
iter 20 value 94.455968
iter 30 value 84.821522
iter 40 value 84.749713
final value 84.736403
converged
Fitting Repeat 3
# weights: 305
initial value 106.994010
iter 10 value 94.489250
iter 20 value 94.408870
iter 30 value 84.076330
iter 40 value 84.055733
iter 50 value 84.052168
iter 60 value 84.039050
iter 70 value 84.038717
final value 84.037909
converged
Fitting Repeat 4
# weights: 305
initial value 97.348406
iter 10 value 94.280252
iter 20 value 94.275438
iter 30 value 90.639706
iter 40 value 85.514514
iter 50 value 85.504087
iter 60 value 83.975712
iter 70 value 83.893312
iter 80 value 83.892642
final value 83.892454
converged
Fitting Repeat 5
# weights: 305
initial value 102.340345
iter 10 value 94.489692
iter 20 value 94.352113
iter 30 value 91.870799
iter 40 value 91.865847
iter 50 value 91.769658
iter 60 value 91.621829
iter 70 value 86.350895
iter 80 value 83.773534
iter 90 value 83.005684
iter 100 value 82.661269
final value 82.661269
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.825493
iter 10 value 94.283273
iter 20 value 94.198797
iter 30 value 90.978092
iter 40 value 90.352881
iter 50 value 90.263501
iter 60 value 89.243434
iter 70 value 81.666960
iter 80 value 81.621803
iter 90 value 80.861022
iter 100 value 80.553134
final value 80.553134
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.035163
iter 10 value 94.492434
iter 20 value 94.281149
iter 30 value 84.182884
iter 40 value 84.068012
iter 50 value 83.958949
iter 60 value 79.934075
iter 70 value 79.057003
iter 80 value 78.867579
iter 90 value 78.656789
iter 100 value 78.603815
final value 78.603815
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.726683
iter 10 value 94.491100
iter 20 value 93.922757
iter 30 value 89.140817
iter 40 value 89.119628
iter 50 value 86.317290
iter 60 value 82.938650
iter 70 value 82.777078
iter 80 value 82.613641
iter 90 value 82.604289
iter 100 value 82.592913
final value 82.592913
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.939205
iter 10 value 90.077893
iter 20 value 87.009246
iter 30 value 87.007110
iter 40 value 86.905742
iter 50 value 83.959079
iter 60 value 81.938966
iter 70 value 81.916575
iter 80 value 81.307861
iter 90 value 81.298963
iter 100 value 81.282581
final value 81.282581
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.420915
iter 10 value 88.945952
iter 20 value 88.592050
iter 30 value 83.107394
iter 40 value 82.089931
iter 50 value 81.588180
iter 60 value 80.406731
iter 70 value 80.128166
iter 80 value 80.113392
iter 90 value 80.059932
iter 100 value 80.016208
final value 80.016208
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.193068
final value 94.275362
converged
Fitting Repeat 2
# weights: 103
initial value 96.870591
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.973091
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 104.069955
iter 10 value 94.275363
final value 94.275362
converged
Fitting Repeat 5
# weights: 103
initial value 99.553517
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.544072
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 101.734998
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.007337
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 114.517464
final value 94.105263
converged
Fitting Repeat 5
# weights: 305
initial value 108.435943
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 109.580699
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 102.389873
iter 10 value 94.275610
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 107.424921
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 97.583593
final value 94.088889
converged
Fitting Repeat 5
# weights: 507
initial value 109.883326
iter 10 value 93.065044
iter 20 value 92.310514
iter 30 value 92.039613
iter 40 value 91.915970
iter 50 value 91.914007
iter 60 value 90.489546
iter 70 value 90.442464
final value 90.442036
converged
Fitting Repeat 1
# weights: 103
initial value 109.652318
iter 10 value 94.381065
iter 20 value 93.570247
iter 30 value 93.549090
iter 40 value 93.548698
iter 50 value 89.133801
iter 60 value 87.198392
iter 70 value 86.436845
iter 80 value 83.659860
iter 90 value 82.889751
iter 100 value 82.418746
final value 82.418746
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 105.047438
iter 10 value 94.434560
iter 20 value 90.747822
iter 30 value 89.337133
iter 40 value 89.011041
iter 50 value 84.005093
iter 60 value 82.827569
iter 70 value 82.356881
iter 80 value 82.299090
iter 90 value 82.252454
iter 100 value 82.215871
final value 82.215871
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.497581
iter 10 value 94.552610
iter 20 value 94.487816
iter 30 value 89.838420
iter 40 value 84.604613
iter 50 value 83.680149
iter 60 value 83.476848
iter 70 value 82.602686
iter 80 value 82.310463
iter 90 value 82.271028
iter 100 value 82.215865
final value 82.215865
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.844881
iter 10 value 93.509255
iter 20 value 87.410991
iter 30 value 86.073433
iter 40 value 85.725662
iter 50 value 85.452440
iter 60 value 85.300731
iter 70 value 85.221502
iter 80 value 85.151871
iter 90 value 85.134162
final value 85.134157
converged
Fitting Repeat 5
# weights: 103
initial value 97.888959
iter 10 value 94.431329
iter 20 value 93.677652
iter 30 value 93.665589
iter 40 value 89.906577
iter 50 value 87.072581
iter 60 value 86.722927
iter 70 value 85.609033
iter 80 value 83.244194
iter 90 value 82.580873
iter 100 value 82.044010
final value 82.044010
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.589927
iter 10 value 94.214912
iter 20 value 90.973575
iter 30 value 87.736983
iter 40 value 87.112811
iter 50 value 86.253067
iter 60 value 84.253560
iter 70 value 82.540419
iter 80 value 81.598889
iter 90 value 81.250977
iter 100 value 81.220982
final value 81.220982
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.483481
iter 10 value 94.618400
iter 20 value 93.880082
iter 30 value 93.643573
iter 40 value 87.154821
iter 50 value 83.656586
iter 60 value 83.429248
iter 70 value 82.655007
iter 80 value 82.272647
iter 90 value 81.977909
iter 100 value 81.513356
final value 81.513356
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.781639
iter 10 value 94.501602
iter 20 value 93.804945
iter 30 value 91.595436
iter 40 value 90.704011
iter 50 value 84.278309
iter 60 value 83.579248
iter 70 value 83.012105
iter 80 value 82.491468
iter 90 value 82.010533
iter 100 value 81.794809
final value 81.794809
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.953483
iter 10 value 93.929093
iter 20 value 90.323295
iter 30 value 85.036945
iter 40 value 83.830205
iter 50 value 83.408304
iter 60 value 83.040069
iter 70 value 82.847323
iter 80 value 82.783504
iter 90 value 81.852322
iter 100 value 81.411018
final value 81.411018
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.821223
iter 10 value 94.655770
iter 20 value 87.201552
iter 30 value 84.073365
iter 40 value 82.087014
iter 50 value 81.789746
iter 60 value 81.346417
iter 70 value 81.245849
iter 80 value 81.209918
iter 90 value 81.208155
iter 100 value 81.204429
final value 81.204429
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 131.818078
iter 10 value 94.401777
iter 20 value 94.231231
iter 30 value 91.578395
iter 40 value 84.226712
iter 50 value 83.205531
iter 60 value 82.031555
iter 70 value 81.687386
iter 80 value 81.206775
iter 90 value 81.074536
iter 100 value 80.926801
final value 80.926801
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.325260
iter 10 value 96.603164
iter 20 value 86.475219
iter 30 value 83.412507
iter 40 value 82.620937
iter 50 value 81.986889
iter 60 value 81.433225
iter 70 value 81.304412
iter 80 value 81.138191
iter 90 value 80.952896
iter 100 value 80.799816
final value 80.799816
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.521880
iter 10 value 94.481521
iter 20 value 93.687388
iter 30 value 93.556128
iter 40 value 89.281291
iter 50 value 88.403712
iter 60 value 85.120075
iter 70 value 83.184257
iter 80 value 82.488262
iter 90 value 82.197298
iter 100 value 81.967532
final value 81.967532
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.873252
iter 10 value 94.061418
iter 20 value 89.037670
iter 30 value 87.537999
iter 40 value 87.155811
iter 50 value 84.417268
iter 60 value 83.200026
iter 70 value 82.825865
iter 80 value 82.010227
iter 90 value 81.806731
iter 100 value 81.552331
final value 81.552331
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.232662
iter 10 value 93.979109
iter 20 value 89.560884
iter 30 value 85.979998
iter 40 value 84.457285
iter 50 value 82.901074
iter 60 value 82.464667
iter 70 value 82.304556
iter 80 value 81.625027
iter 90 value 81.261500
iter 100 value 81.178607
final value 81.178607
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.018505
final value 94.486019
converged
Fitting Repeat 2
# weights: 103
initial value 102.442540
final value 94.485828
converged
Fitting Repeat 3
# weights: 103
initial value 95.197035
final value 94.486088
converged
Fitting Repeat 4
# weights: 103
initial value 104.940293
iter 10 value 94.277099
iter 20 value 93.735108
iter 30 value 93.409714
iter 40 value 93.409480
final value 93.409478
converged
Fitting Repeat 5
# weights: 103
initial value 108.470253
iter 10 value 94.787417
iter 20 value 94.707847
iter 30 value 94.488042
final value 94.484223
converged
Fitting Repeat 1
# weights: 305
initial value 100.553530
iter 10 value 94.093985
iter 20 value 93.977308
iter 30 value 88.251185
iter 40 value 88.245098
iter 50 value 88.244115
iter 60 value 88.243153
iter 70 value 88.182514
iter 80 value 87.433469
iter 90 value 87.367488
final value 87.367465
converged
Fitting Repeat 2
# weights: 305
initial value 98.394228
iter 10 value 94.230915
iter 20 value 91.792191
iter 30 value 91.479422
iter 40 value 91.477904
iter 50 value 91.476365
iter 60 value 91.395357
iter 70 value 91.184462
final value 91.184329
converged
Fitting Repeat 3
# weights: 305
initial value 104.604090
iter 10 value 94.488901
iter 20 value 94.484235
final value 94.484214
converged
Fitting Repeat 4
# weights: 305
initial value 107.326104
iter 10 value 94.489052
iter 20 value 94.313303
final value 93.559028
converged
Fitting Repeat 5
# weights: 305
initial value 98.118672
iter 10 value 94.094092
iter 20 value 93.864981
iter 30 value 88.452770
iter 40 value 86.234997
iter 50 value 86.205785
iter 60 value 85.538551
iter 70 value 83.702944
iter 80 value 83.558423
iter 90 value 83.556740
iter 100 value 83.556592
final value 83.556592
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.291816
iter 10 value 94.492498
iter 20 value 94.460066
iter 30 value 93.426052
iter 40 value 90.025108
iter 50 value 85.549826
iter 60 value 85.460658
iter 70 value 85.265087
iter 80 value 85.191623
iter 90 value 85.186706
iter 100 value 83.629084
final value 83.629084
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.938210
iter 10 value 94.477053
iter 20 value 94.436270
final value 94.276578
converged
Fitting Repeat 3
# weights: 507
initial value 116.104806
iter 10 value 94.097187
iter 20 value 94.089809
iter 30 value 92.933813
iter 40 value 85.422665
iter 50 value 82.976920
iter 60 value 82.712045
iter 70 value 82.691457
iter 80 value 82.664031
iter 90 value 82.650171
iter 100 value 81.604649
final value 81.604649
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.804476
iter 10 value 94.656049
iter 20 value 94.638029
iter 30 value 93.502875
iter 40 value 87.429745
iter 50 value 87.371449
iter 60 value 87.342274
iter 70 value 84.624862
iter 80 value 83.450154
iter 90 value 82.312349
iter 100 value 81.322510
final value 81.322510
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 98.886609
iter 10 value 94.283442
iter 20 value 94.278065
final value 94.276371
converged
Fitting Repeat 1
# weights: 103
initial value 148.717623
iter 10 value 117.829206
iter 20 value 117.103485
iter 30 value 116.405972
iter 40 value 115.395378
iter 50 value 107.508180
iter 60 value 105.998922
iter 70 value 105.372116
iter 80 value 105.367589
iter 90 value 105.359732
iter 100 value 105.312941
final value 105.312941
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 126.852914
iter 10 value 116.709472
iter 20 value 112.191035
iter 30 value 111.542587
iter 40 value 110.062208
iter 50 value 107.596296
iter 60 value 107.230677
iter 70 value 106.128032
iter 80 value 105.289506
iter 90 value 105.261476
iter 100 value 105.258334
final value 105.258334
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 134.172616
iter 10 value 117.854204
iter 20 value 116.569924
iter 30 value 111.679988
iter 40 value 111.035916
iter 50 value 107.401507
iter 60 value 107.288985
iter 70 value 106.805284
iter 80 value 105.949541
iter 90 value 105.733010
iter 100 value 105.517239
final value 105.517239
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 119.940131
iter 10 value 115.927395
iter 20 value 114.135975
iter 30 value 113.877093
iter 40 value 113.818400
iter 40 value 113.818399
iter 40 value 113.818399
final value 113.818399
converged
Fitting Repeat 5
# weights: 103
initial value 122.470864
iter 10 value 117.776510
iter 20 value 113.070393
iter 30 value 109.732270
iter 40 value 109.170248
iter 50 value 106.050233
iter 60 value 105.361982
iter 70 value 105.261050
iter 80 value 105.258333
iter 80 value 105.258333
iter 80 value 105.258333
final value 105.258333
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Sep 9 07:55:18 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
51.685 1.686 132.386
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.440 | 0.599 | 34.094 | |
| FreqInteractors | 0.279 | 0.008 | 0.287 | |
| calculateAAC | 0.044 | 0.004 | 0.048 | |
| calculateAutocor | 0.636 | 0.016 | 0.655 | |
| calculateCTDC | 0.089 | 0.004 | 0.093 | |
| calculateCTDD | 0.744 | 0.000 | 0.746 | |
| calculateCTDT | 0.243 | 0.004 | 0.248 | |
| calculateCTriad | 0.428 | 0.016 | 0.445 | |
| calculateDC | 0.123 | 0.000 | 0.123 | |
| calculateF | 0.413 | 0.004 | 0.418 | |
| calculateKSAAP | 0.135 | 0.000 | 0.136 | |
| calculateQD_Sm | 2.326 | 0.020 | 2.351 | |
| calculateTC | 2.257 | 0.028 | 2.290 | |
| calculateTC_Sm | 0.313 | 0.008 | 0.322 | |
| corr_plot | 34.193 | 0.311 | 34.563 | |
| enrichfindP | 0.510 | 0.008 | 21.375 | |
| enrichfind_hp | 0.079 | 0.000 | 1.383 | |
| enrichplot | 0.499 | 0.000 | 0.500 | |
| filter_missing_values | 0.001 | 0.000 | 0.002 | |
| getFASTA | 0.079 | 0.004 | 6.099 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.000 | 0.002 | |
| plotPPI | 0.078 | 0.004 | 0.083 | |
| pred_ensembel | 17.995 | 0.630 | 17.435 | |
| var_imp | 35.806 | 0.391 | 36.544 | |