Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-08-22 12:05 -0400 (Fri, 22 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4821 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4599 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4541 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4539 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 988/2319 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-08-21 21:25:15 -0400 (Thu, 21 Aug 2025) |
EndedAt: 2025-08-21 21:31:18 -0400 (Thu, 21 Aug 2025) |
EllapsedTime: 362.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 (2025-06-13) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.306 1.808 37.496 FSmethod 33.253 1.670 35.157 corr_plot 33.151 1.714 35.122 pred_ensembel 13.602 0.432 12.082 enrichfindP 0.453 0.054 8.068 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.956672 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.661922 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.949233 final value 94.354396 converged Fitting Repeat 4 # weights: 103 initial value 98.438979 final value 93.922222 converged Fitting Repeat 5 # weights: 103 initial value 99.797575 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.270946 final value 92.613874 converged Fitting Repeat 2 # weights: 305 initial value 112.809737 iter 10 value 89.203213 iter 20 value 86.279096 final value 86.278694 converged Fitting Repeat 3 # weights: 305 initial value 95.684312 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.633217 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.083984 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 94.953193 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.096199 iter 10 value 89.518864 iter 20 value 89.330868 iter 30 value 89.330619 final value 89.330616 converged Fitting Repeat 3 # weights: 507 initial value 106.770770 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 120.944596 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 101.253457 iter 10 value 92.525868 final value 92.525851 converged Fitting Repeat 1 # weights: 103 initial value 96.687940 iter 10 value 93.439492 iter 20 value 87.621515 iter 30 value 86.679160 iter 40 value 86.023638 iter 50 value 85.977155 final value 85.976823 converged Fitting Repeat 2 # weights: 103 initial value 97.240076 iter 10 value 94.377680 iter 20 value 90.372770 iter 30 value 89.810028 iter 40 value 89.675880 iter 50 value 86.240270 iter 60 value 85.818023 iter 70 value 84.836544 iter 80 value 83.850835 iter 90 value 83.683044 iter 100 value 83.552616 final value 83.552616 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 107.701919 iter 10 value 92.308304 iter 20 value 87.805359 final value 87.376045 converged Fitting Repeat 4 # weights: 103 initial value 98.041616 iter 10 value 94.486588 iter 20 value 87.700368 iter 30 value 87.295060 iter 40 value 87.084434 iter 50 value 86.844871 iter 60 value 85.756800 iter 70 value 85.627144 final value 85.624646 converged Fitting Repeat 5 # weights: 103 initial value 96.594866 iter 10 value 89.540724 iter 20 value 86.225200 iter 30 value 86.139214 iter 40 value 85.865484 iter 50 value 85.628997 final value 85.624646 converged Fitting Repeat 1 # weights: 305 initial value 109.345816 iter 10 value 94.545000 iter 20 value 88.884444 iter 30 value 87.231519 iter 40 value 87.145062 iter 50 value 85.075381 iter 60 value 83.590336 iter 70 value 82.827886 iter 80 value 82.525058 iter 90 value 82.484983 iter 100 value 82.466725 final value 82.466725 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.875460 iter 10 value 94.946858 iter 20 value 93.622995 iter 30 value 88.972934 iter 40 value 85.285270 iter 50 value 83.394734 iter 60 value 83.177530 iter 70 value 82.988000 iter 80 value 82.843405 iter 90 value 82.601667 iter 100 value 82.597781 final value 82.597781 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.964537 iter 10 value 94.276757 iter 20 value 91.053560 iter 30 value 87.559893 iter 40 value 87.142677 iter 50 value 87.030581 iter 60 value 86.880226 iter 70 value 86.770980 iter 80 value 86.630458 iter 90 value 86.440065 iter 100 value 85.269867 final value 85.269867 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.077262 iter 10 value 94.257516 iter 20 value 92.731201 iter 30 value 92.637609 iter 40 value 88.545641 iter 50 value 87.374644 iter 60 value 85.561468 iter 70 value 84.920014 iter 80 value 84.406175 iter 90 value 84.257405 iter 100 value 83.352802 final value 83.352802 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.342818 iter 10 value 94.193523 iter 20 value 86.716099 iter 30 value 85.965867 iter 40 value 85.842837 iter 50 value 85.787994 iter 60 value 85.321332 iter 70 value 84.306703 iter 80 value 83.790069 iter 90 value 83.667254 iter 100 value 83.627425 final value 83.627425 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.723959 iter 10 value 98.985657 iter 20 value 89.366581 iter 30 value 87.371002 iter 40 value 85.481912 iter 50 value 84.094186 iter 60 value 84.004737 iter 70 value 83.693928 iter 80 value 83.202342 iter 90 value 82.880236 iter 100 value 82.564323 final value 82.564323 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.980960 iter 10 value 99.470151 iter 20 value 88.962919 iter 30 value 85.104603 iter 40 value 84.481548 iter 50 value 84.190796 iter 60 value 84.036944 iter 70 value 83.950506 iter 80 value 83.580897 iter 90 value 83.008293 iter 100 value 82.871067 final value 82.871067 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.403676 iter 10 value 94.293352 iter 20 value 91.045931 iter 30 value 86.791792 iter 40 value 84.627858 iter 50 value 83.390899 iter 60 value 83.220686 iter 70 value 82.738612 iter 80 value 82.470009 iter 90 value 82.223061 iter 100 value 82.124950 final value 82.124950 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.707185 iter 10 value 94.389046 iter 20 value 90.354353 iter 30 value 88.634570 iter 40 value 85.066456 iter 50 value 83.447337 iter 60 value 83.082286 iter 70 value 82.874845 iter 80 value 82.786509 iter 90 value 82.595139 iter 100 value 82.507154 final value 82.507154 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.215693 iter 10 value 93.896082 iter 20 value 87.616669 iter 30 value 86.803842 iter 40 value 86.076587 iter 50 value 84.345005 iter 60 value 83.261653 iter 70 value 82.926724 iter 80 value 82.773719 iter 90 value 82.544394 iter 100 value 82.260719 final value 82.260719 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.101257 final value 94.485992 converged Fitting Repeat 2 # weights: 103 initial value 102.681319 final value 94.485828 converged Fitting Repeat 3 # weights: 103 initial value 100.011407 iter 10 value 94.486050 final value 94.484215 converged Fitting Repeat 4 # weights: 103 initial value 97.247342 final value 94.485817 converged Fitting Repeat 5 # weights: 103 initial value 96.320388 iter 10 value 94.485823 iter 20 value 94.283402 iter 30 value 93.854139 iter 40 value 93.818410 iter 50 value 93.817908 iter 60 value 93.816297 iter 70 value 93.678469 iter 80 value 93.559632 iter 90 value 93.558829 final value 93.558813 converged Fitting Repeat 1 # weights: 305 initial value 97.207772 iter 10 value 94.488906 iter 20 value 94.483896 iter 30 value 86.892447 iter 40 value 86.751074 iter 50 value 85.640853 iter 60 value 85.638285 iter 70 value 85.573263 iter 80 value 85.555289 iter 90 value 85.552836 final value 85.552176 converged Fitting Repeat 2 # weights: 305 initial value 106.313486 iter 10 value 94.488307 iter 20 value 94.389947 final value 94.354692 converged Fitting Repeat 3 # weights: 305 initial value 116.010067 iter 10 value 94.488680 iter 20 value 94.366672 iter 30 value 85.425582 iter 40 value 85.398365 iter 50 value 85.390381 iter 60 value 85.217562 final value 85.151263 converged Fitting Repeat 4 # weights: 305 initial value 100.856597 iter 10 value 89.470974 iter 20 value 89.358754 iter 30 value 89.123138 iter 40 value 87.670069 iter 50 value 86.244970 iter 60 value 86.021822 iter 70 value 86.019165 iter 80 value 85.731145 iter 90 value 85.623474 iter 100 value 85.623304 final value 85.623304 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.184010 iter 10 value 94.359136 iter 20 value 94.354787 iter 30 value 94.354014 iter 40 value 86.684990 iter 50 value 86.550313 iter 50 value 86.550313 iter 50 value 86.550313 final value 86.550313 converged Fitting Repeat 1 # weights: 507 initial value 102.794942 iter 10 value 92.882234 iter 20 value 92.483520 iter 30 value 92.234936 iter 40 value 91.968558 iter 50 value 87.718444 iter 60 value 85.351851 iter 70 value 84.893132 iter 80 value 83.601339 iter 90 value 83.276220 iter 100 value 83.275961 final value 83.275961 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.828921 iter 10 value 87.764920 iter 20 value 85.297041 iter 30 value 85.290726 iter 40 value 85.288189 iter 50 value 84.780246 iter 60 value 84.653434 iter 70 value 84.489756 final value 84.476414 converged Fitting Repeat 3 # weights: 507 initial value 102.402715 iter 10 value 94.258081 iter 20 value 89.545479 iter 30 value 86.961598 iter 40 value 86.487705 iter 50 value 86.328231 iter 60 value 86.321684 iter 70 value 86.053726 iter 80 value 85.904925 iter 90 value 85.901732 final value 85.899645 converged Fitting Repeat 4 # weights: 507 initial value 111.219052 iter 10 value 94.492049 iter 20 value 94.412360 iter 30 value 91.095884 iter 40 value 90.306082 iter 50 value 89.504277 iter 60 value 89.384360 iter 70 value 89.370683 final value 89.370413 converged Fitting Repeat 5 # weights: 507 initial value 113.916670 iter 10 value 94.471141 iter 20 value 93.792788 iter 30 value 86.550019 iter 40 value 86.374397 iter 50 value 86.373827 iter 60 value 86.328187 iter 70 value 84.403928 iter 80 value 82.884593 iter 90 value 82.425178 iter 100 value 81.829357 final value 81.829357 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.338751 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.385050 iter 10 value 93.895882 iter 20 value 87.717081 final value 87.588679 converged Fitting Repeat 3 # weights: 103 initial value 105.328003 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 105.276019 final value 94.043243 converged Fitting Repeat 5 # weights: 103 initial value 108.742907 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.361394 final value 94.011429 converged Fitting Repeat 2 # weights: 305 initial value 104.105574 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.768081 iter 10 value 94.043244 final value 94.043243 converged Fitting Repeat 4 # weights: 305 initial value 115.527606 final value 94.043243 converged Fitting Repeat 5 # weights: 305 initial value 108.794161 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 104.982897 iter 10 value 93.355404 iter 20 value 87.572133 final value 87.571429 converged Fitting Repeat 2 # weights: 507 initial value 128.273942 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 126.809663 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.415342 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 108.559266 iter 10 value 93.899997 iter 20 value 87.706021 iter 30 value 87.421792 iter 40 value 87.411187 iter 40 value 87.411186 iter 40 value 87.411186 final value 87.411186 converged Fitting Repeat 1 # weights: 103 initial value 102.114422 iter 10 value 94.047664 iter 20 value 90.185856 iter 30 value 89.204808 iter 40 value 88.205848 iter 50 value 87.342952 iter 60 value 87.324976 iter 70 value 87.198815 iter 80 value 87.167191 iter 90 value 87.133552 iter 100 value 87.083004 final value 87.083004 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.265620 iter 10 value 94.046342 iter 20 value 90.843000 iter 30 value 89.547327 iter 40 value 87.875885 iter 50 value 87.209417 iter 60 value 87.146354 iter 70 value 87.004563 final value 86.959838 converged Fitting Repeat 3 # weights: 103 initial value 101.949229 iter 10 value 94.031497 iter 20 value 90.589362 iter 30 value 90.146918 iter 40 value 88.849612 iter 50 value 88.014596 iter 60 value 86.469153 iter 70 value 85.506018 iter 80 value 84.976437 iter 90 value 84.777418 iter 100 value 84.603938 final value 84.603938 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 115.858010 iter 10 value 94.998799 iter 20 value 93.928444 iter 30 value 87.834695 iter 40 value 86.949660 iter 50 value 86.536867 iter 60 value 86.054281 iter 70 value 85.347109 iter 80 value 85.045314 iter 90 value 84.608155 final value 84.603930 converged Fitting Repeat 5 # weights: 103 initial value 102.282363 iter 10 value 94.031715 iter 20 value 88.712692 iter 30 value 88.171682 iter 40 value 87.988243 iter 50 value 87.604749 iter 60 value 87.363335 iter 70 value 86.636353 iter 80 value 86.442728 final value 86.442640 converged Fitting Repeat 1 # weights: 305 initial value 103.617717 iter 10 value 94.192047 iter 20 value 94.099536 iter 30 value 91.560938 iter 40 value 89.398444 iter 50 value 86.399686 iter 60 value 84.730993 iter 70 value 84.215814 iter 80 value 84.064206 iter 90 value 83.517796 iter 100 value 82.974604 final value 82.974604 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.287657 iter 10 value 94.060951 iter 20 value 91.635482 iter 30 value 87.302926 iter 40 value 86.806851 iter 50 value 85.649832 iter 60 value 85.017054 iter 70 value 84.633902 iter 80 value 84.437138 iter 90 value 84.385485 iter 100 value 84.344084 final value 84.344084 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.052071 iter 10 value 94.043871 iter 20 value 90.690899 iter 30 value 88.363865 iter 40 value 87.456791 iter 50 value 87.152104 iter 60 value 86.953305 iter 70 value 85.747625 iter 80 value 85.267699 iter 90 value 84.680962 iter 100 value 84.626921 final value 84.626921 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.833862 iter 10 value 94.048969 iter 20 value 93.232742 iter 30 value 93.037784 iter 40 value 87.612471 iter 50 value 86.666668 iter 60 value 85.006873 iter 70 value 83.859689 iter 80 value 83.549444 iter 90 value 83.494142 iter 100 value 83.276782 final value 83.276782 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.717009 iter 10 value 89.315360 iter 20 value 88.489271 iter 30 value 87.450476 iter 40 value 86.569840 iter 50 value 84.533581 iter 60 value 84.121175 iter 70 value 84.013744 iter 80 value 83.720644 iter 90 value 83.095273 iter 100 value 82.882039 final value 82.882039 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.101862 iter 10 value 96.566837 iter 20 value 92.841058 iter 30 value 91.904986 iter 40 value 89.938104 iter 50 value 86.504605 iter 60 value 86.283079 iter 70 value 86.015468 iter 80 value 85.685138 iter 90 value 85.203855 iter 100 value 84.616072 final value 84.616072 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.020372 iter 10 value 94.151074 iter 20 value 89.392222 iter 30 value 87.850594 iter 40 value 87.202674 iter 50 value 86.879449 iter 60 value 86.848052 iter 70 value 86.786347 iter 80 value 86.724110 iter 90 value 86.637876 iter 100 value 85.559184 final value 85.559184 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.792938 iter 10 value 94.072639 iter 20 value 93.980235 iter 30 value 91.428385 iter 40 value 86.428134 iter 50 value 85.655092 iter 60 value 84.085796 iter 70 value 83.592814 iter 80 value 83.165336 iter 90 value 82.866644 iter 100 value 82.746590 final value 82.746590 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.802041 iter 10 value 94.626658 iter 20 value 89.624871 iter 30 value 88.344500 iter 40 value 87.807897 iter 50 value 87.302271 iter 60 value 87.221418 iter 70 value 86.896981 iter 80 value 86.724708 iter 90 value 86.055719 iter 100 value 85.515868 final value 85.515868 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.009722 iter 10 value 94.001320 iter 20 value 90.363792 iter 30 value 88.793787 iter 40 value 86.844014 iter 50 value 86.219277 iter 60 value 85.881491 iter 70 value 85.811364 iter 80 value 85.433504 iter 90 value 84.180393 iter 100 value 83.508686 final value 83.508686 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.722537 iter 10 value 93.287792 iter 20 value 87.071946 iter 30 value 86.324113 iter 40 value 85.609923 iter 50 value 85.593629 final value 85.592953 converged Fitting Repeat 2 # weights: 103 initial value 96.513863 iter 10 value 94.054464 iter 20 value 93.759514 iter 30 value 88.032280 iter 40 value 88.016257 iter 50 value 88.013032 iter 60 value 88.008547 iter 70 value 86.273371 iter 80 value 85.983664 final value 85.981144 converged Fitting Repeat 3 # weights: 103 initial value 102.650072 final value 94.054576 converged Fitting Repeat 4 # weights: 103 initial value 104.204562 final value 94.054460 converged Fitting Repeat 5 # weights: 103 initial value 95.397232 final value 94.054561 converged Fitting Repeat 1 # weights: 305 initial value 100.400710 iter 10 value 94.005421 iter 20 value 94.003323 iter 30 value 93.954107 iter 40 value 89.183841 iter 50 value 86.263401 iter 60 value 86.183424 final value 86.183382 converged Fitting Repeat 2 # weights: 305 initial value 114.566777 iter 10 value 94.056846 iter 20 value 94.051691 iter 30 value 92.120485 iter 40 value 87.652822 iter 50 value 87.612375 iter 60 value 86.839306 iter 70 value 84.988886 iter 80 value 84.083795 iter 90 value 84.082209 iter 100 value 84.078641 final value 84.078641 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.973888 iter 10 value 93.152766 iter 20 value 93.149855 iter 30 value 93.146131 iter 40 value 93.146064 iter 50 value 93.145897 iter 60 value 93.092149 iter 70 value 93.091991 final value 93.091919 converged Fitting Repeat 4 # weights: 305 initial value 95.745146 iter 10 value 94.056837 iter 20 value 94.048213 final value 94.043279 converged Fitting Repeat 5 # weights: 305 initial value 105.041652 iter 10 value 93.909157 iter 20 value 93.343108 iter 30 value 91.002201 iter 40 value 90.831842 iter 50 value 90.831398 iter 60 value 90.830994 iter 70 value 89.515637 iter 80 value 86.236838 iter 90 value 85.829500 iter 100 value 85.811654 final value 85.811654 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.401312 iter 10 value 94.051383 iter 20 value 94.043362 iter 30 value 94.043288 final value 94.043280 converged Fitting Repeat 2 # weights: 507 initial value 111.910150 iter 10 value 94.060192 iter 20 value 94.003540 iter 30 value 89.025394 iter 40 value 88.242298 iter 50 value 87.925254 iter 60 value 87.066523 iter 70 value 86.821056 iter 80 value 86.783129 iter 90 value 86.744553 iter 100 value 86.744437 final value 86.744437 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.176859 iter 10 value 94.059819 iter 20 value 91.723137 iter 30 value 90.044875 iter 40 value 89.956474 iter 50 value 89.954489 final value 89.954441 converged Fitting Repeat 4 # weights: 507 initial value 113.060739 iter 10 value 94.060639 iter 20 value 94.053147 iter 30 value 93.980492 iter 40 value 93.294274 iter 50 value 92.833770 iter 60 value 92.584009 iter 70 value 92.562788 iter 80 value 92.562685 iter 90 value 92.438915 iter 100 value 91.791424 final value 91.791424 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.317592 iter 10 value 94.061363 iter 20 value 94.009443 iter 30 value 88.251882 iter 40 value 88.088031 iter 50 value 83.580622 iter 60 value 82.648170 iter 70 value 82.523660 iter 80 value 82.483086 iter 90 value 82.200923 iter 100 value 82.117483 final value 82.117483 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.477978 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.654002 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 116.303022 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.978425 final value 94.354396 converged Fitting Repeat 5 # weights: 103 initial value 102.866900 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.302957 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.057779 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.176587 iter 10 value 93.758422 iter 20 value 90.450179 iter 30 value 89.300168 iter 40 value 89.254660 iter 50 value 88.955231 iter 60 value 88.952730 final value 88.952715 converged Fitting Repeat 4 # weights: 305 initial value 102.801565 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 95.115916 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.117065 iter 10 value 85.216229 final value 85.211792 converged Fitting Repeat 2 # weights: 507 initial value 104.827913 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 129.532490 iter 10 value 90.341868 iter 20 value 87.174031 iter 30 value 87.075253 iter 40 value 87.054623 iter 50 value 84.138957 iter 60 value 84.081131 iter 70 value 83.961651 iter 80 value 83.960712 final value 83.960672 converged Fitting Repeat 4 # weights: 507 initial value 99.907501 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.421974 final value 94.289216 converged Fitting Repeat 1 # weights: 103 initial value 112.225646 iter 10 value 94.489929 iter 20 value 94.477722 iter 30 value 94.311144 iter 40 value 94.299524 iter 50 value 91.611929 iter 60 value 91.117924 iter 70 value 91.049053 iter 80 value 86.521331 iter 90 value 85.454628 iter 100 value 82.633779 final value 82.633779 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.482381 iter 10 value 88.036645 iter 20 value 85.369784 iter 30 value 85.223083 iter 40 value 84.483413 iter 50 value 84.353158 iter 60 value 83.891466 iter 70 value 83.589644 iter 80 value 83.564715 iter 90 value 83.550520 final value 83.549370 converged Fitting Repeat 3 # weights: 103 initial value 96.065810 iter 10 value 94.489621 iter 20 value 94.438775 iter 30 value 84.978760 iter 40 value 84.289105 iter 50 value 83.051332 iter 60 value 82.786327 iter 70 value 82.668286 iter 80 value 82.664680 iter 90 value 82.659225 final value 82.659215 converged Fitting Repeat 4 # weights: 103 initial value 107.174918 iter 10 value 94.495752 iter 20 value 94.478836 iter 30 value 94.307351 iter 40 value 93.656935 iter 50 value 87.951249 iter 60 value 85.817675 iter 70 value 85.580530 iter 80 value 84.661978 iter 90 value 84.441052 iter 100 value 83.855590 final value 83.855590 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 110.682726 iter 10 value 94.543599 iter 20 value 94.490590 iter 30 value 94.438253 iter 40 value 88.151435 iter 50 value 87.656741 iter 60 value 86.308929 iter 70 value 85.966586 iter 80 value 85.908920 iter 90 value 83.246752 iter 100 value 83.084370 final value 83.084370 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.952161 iter 10 value 94.766532 iter 20 value 94.494326 iter 30 value 94.311937 iter 40 value 94.218419 iter 50 value 87.654253 iter 60 value 85.941776 iter 70 value 84.215970 iter 80 value 83.641772 iter 90 value 82.942525 iter 100 value 82.078475 final value 82.078475 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.785569 iter 10 value 94.666478 iter 20 value 87.286300 iter 30 value 83.897517 iter 40 value 83.321001 iter 50 value 83.049028 iter 60 value 82.894345 iter 70 value 82.872196 iter 80 value 82.758131 iter 90 value 81.980460 iter 100 value 81.857889 final value 81.857889 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.716480 iter 10 value 94.961723 iter 20 value 94.135445 iter 30 value 86.135390 iter 40 value 84.950724 iter 50 value 84.328492 iter 60 value 83.371828 iter 70 value 81.440114 iter 80 value 80.585226 iter 90 value 80.425619 iter 100 value 80.304021 final value 80.304021 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.097392 iter 10 value 93.773294 iter 20 value 84.914999 iter 30 value 82.778972 iter 40 value 82.505043 iter 50 value 82.312285 iter 60 value 81.674464 iter 70 value 81.532053 iter 80 value 81.201801 iter 90 value 80.449884 iter 100 value 80.274615 final value 80.274615 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.805154 iter 10 value 94.323070 iter 20 value 84.805428 iter 30 value 83.114815 iter 40 value 82.010458 iter 50 value 80.834657 iter 60 value 79.770647 iter 70 value 79.349080 iter 80 value 79.176348 iter 90 value 79.152204 iter 100 value 79.145325 final value 79.145325 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.652309 iter 10 value 94.619795 iter 20 value 87.449552 iter 30 value 84.486445 iter 40 value 82.620065 iter 50 value 81.813488 iter 60 value 81.280766 iter 70 value 81.203420 iter 80 value 81.114652 iter 90 value 80.695408 iter 100 value 80.273872 final value 80.273872 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.547608 iter 10 value 94.614927 iter 20 value 84.677431 iter 30 value 83.973461 iter 40 value 82.085833 iter 50 value 81.209114 iter 60 value 80.555946 iter 70 value 80.318256 iter 80 value 80.011200 iter 90 value 79.740984 iter 100 value 79.678325 final value 79.678325 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.614384 iter 10 value 97.725400 iter 20 value 87.619097 iter 30 value 87.242974 iter 40 value 84.752761 iter 50 value 81.440542 iter 60 value 80.902924 iter 70 value 80.746678 iter 80 value 80.516424 iter 90 value 80.082198 iter 100 value 79.973039 final value 79.973039 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.443821 iter 10 value 88.407378 iter 20 value 84.072501 iter 30 value 82.208857 iter 40 value 82.032258 iter 50 value 81.200496 iter 60 value 80.467209 iter 70 value 80.234221 iter 80 value 79.644593 iter 90 value 79.410396 iter 100 value 79.269324 final value 79.269324 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.568673 iter 10 value 89.715397 iter 20 value 85.295440 iter 30 value 84.330433 iter 40 value 82.759098 iter 50 value 82.578556 iter 60 value 80.994706 iter 70 value 80.423115 iter 80 value 80.081741 iter 90 value 79.662322 iter 100 value 79.420235 final value 79.420235 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.711065 iter 10 value 88.346588 iter 20 value 84.883746 iter 30 value 84.770972 iter 40 value 84.768241 iter 50 value 84.762203 iter 60 value 84.347543 iter 70 value 84.346463 final value 84.346453 converged Fitting Repeat 2 # weights: 103 initial value 106.452329 final value 94.485917 converged Fitting Repeat 3 # weights: 103 initial value 111.422933 final value 94.485887 converged Fitting Repeat 4 # weights: 103 initial value 101.999083 iter 10 value 85.962257 iter 20 value 85.957730 final value 85.957212 converged Fitting Repeat 5 # weights: 103 initial value 107.883866 final value 94.485948 converged Fitting Repeat 1 # weights: 305 initial value 96.193945 iter 10 value 94.304448 iter 20 value 94.301182 iter 30 value 94.299214 iter 40 value 94.298926 iter 50 value 93.878825 iter 60 value 91.542381 iter 70 value 83.800672 iter 80 value 83.479157 iter 90 value 83.477765 iter 100 value 82.914578 final value 82.914578 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.853901 iter 10 value 94.489269 iter 20 value 94.484470 iter 30 value 94.107372 iter 40 value 83.957423 iter 50 value 83.156979 iter 60 value 82.850785 iter 70 value 82.789883 final value 82.789308 converged Fitting Repeat 3 # weights: 305 initial value 100.585215 iter 10 value 94.488864 iter 20 value 94.484273 iter 30 value 94.131849 iter 40 value 84.617029 iter 50 value 82.233677 iter 60 value 82.214176 iter 70 value 82.213263 iter 80 value 82.212373 iter 90 value 82.181216 iter 100 value 82.176577 final value 82.176577 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.114330 iter 10 value 94.488983 iter 20 value 93.030287 iter 30 value 91.195510 iter 40 value 91.194752 final value 91.193825 converged Fitting Repeat 5 # weights: 305 initial value 119.893858 iter 10 value 94.359342 iter 20 value 94.354528 iter 30 value 93.653458 iter 40 value 83.577158 iter 50 value 83.473501 iter 60 value 83.472315 iter 70 value 83.471945 iter 80 value 83.461389 final value 83.461387 converged Fitting Repeat 1 # weights: 507 initial value 101.502262 iter 10 value 93.606933 iter 20 value 93.546015 iter 30 value 86.959286 iter 40 value 86.121383 iter 50 value 86.068519 iter 60 value 86.056762 final value 86.056545 converged Fitting Repeat 2 # weights: 507 initial value 97.983469 iter 10 value 94.362697 iter 20 value 94.359233 iter 30 value 94.355185 iter 40 value 94.244941 iter 50 value 92.289894 iter 60 value 92.034101 iter 70 value 84.931418 iter 80 value 84.177173 iter 90 value 83.770126 iter 100 value 83.728475 final value 83.728475 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.276472 iter 10 value 94.494580 iter 20 value 94.484769 iter 30 value 94.356893 iter 40 value 94.250678 iter 50 value 84.831678 iter 60 value 83.030319 iter 60 value 83.030318 iter 60 value 83.030318 final value 83.030318 converged Fitting Repeat 4 # weights: 507 initial value 106.714334 iter 10 value 94.263054 iter 20 value 94.256617 iter 30 value 94.255081 iter 40 value 94.254917 iter 50 value 83.618082 iter 60 value 83.394425 iter 70 value 83.393777 final value 83.393762 converged Fitting Repeat 5 # weights: 507 initial value 116.278974 iter 10 value 90.311422 iter 20 value 90.307634 iter 30 value 88.557565 iter 40 value 86.069394 iter 50 value 84.723641 iter 60 value 80.969008 iter 70 value 80.628230 iter 80 value 80.524816 iter 90 value 80.250330 iter 100 value 79.548352 final value 79.548352 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.106616 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.245243 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.812486 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.327550 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.547977 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.532156 iter 10 value 93.312378 final value 93.288889 converged Fitting Repeat 2 # weights: 305 initial value 98.374485 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 118.188391 iter 10 value 93.352162 final value 93.328261 converged Fitting Repeat 4 # weights: 305 initial value 100.298227 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 5 # weights: 305 initial value 118.945980 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 110.834137 iter 10 value 93.328269 final value 93.328261 converged Fitting Repeat 2 # weights: 507 initial value 93.896130 iter 10 value 93.328296 final value 93.328261 converged Fitting Repeat 3 # weights: 507 initial value 130.254951 iter 10 value 93.332618 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 98.787901 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 98.833493 iter 10 value 93.791434 iter 20 value 90.367176 iter 30 value 85.668912 iter 40 value 85.440051 iter 50 value 85.415892 iter 60 value 85.407711 final value 85.407697 converged Fitting Repeat 1 # weights: 103 initial value 96.798378 iter 10 value 93.988163 iter 20 value 89.693204 iter 30 value 88.102907 iter 40 value 86.976200 iter 50 value 83.372708 iter 60 value 82.369095 iter 70 value 81.090955 iter 80 value 80.547820 iter 90 value 79.701916 iter 100 value 79.530512 final value 79.530512 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.980367 iter 10 value 94.016556 iter 20 value 86.698397 iter 30 value 81.894777 iter 40 value 81.411838 iter 50 value 81.344646 iter 60 value 81.197059 iter 70 value 81.171843 final value 81.171800 converged Fitting Repeat 3 # weights: 103 initial value 103.527484 iter 10 value 94.057514 iter 20 value 93.995714 iter 30 value 93.701622 iter 40 value 93.676388 iter 50 value 93.386170 iter 60 value 93.381567 iter 70 value 90.754833 iter 80 value 87.633732 iter 90 value 87.037919 iter 100 value 86.637766 final value 86.637766 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.742532 iter 10 value 94.067475 iter 20 value 94.057155 iter 30 value 84.104083 iter 40 value 81.766000 iter 50 value 80.966808 iter 60 value 80.813584 iter 70 value 80.669950 iter 80 value 80.645550 iter 80 value 80.645549 iter 80 value 80.645549 final value 80.645549 converged Fitting Repeat 5 # weights: 103 initial value 95.926741 iter 10 value 94.055323 iter 20 value 93.588210 iter 30 value 93.408684 iter 40 value 86.686682 iter 50 value 83.477851 iter 60 value 83.138968 iter 70 value 82.911574 iter 80 value 81.406382 iter 90 value 81.196733 iter 100 value 81.185857 final value 81.185857 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 119.455913 iter 10 value 94.181289 iter 20 value 89.508193 iter 30 value 82.030893 iter 40 value 81.329356 iter 50 value 81.050808 iter 60 value 80.854082 iter 70 value 80.771609 iter 80 value 80.301877 iter 90 value 79.378473 iter 100 value 78.218072 final value 78.218072 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.820886 iter 10 value 89.325759 iter 20 value 85.043941 iter 30 value 83.027772 iter 40 value 81.454869 iter 50 value 79.294959 iter 60 value 78.617192 iter 70 value 78.411323 iter 80 value 78.196527 iter 90 value 78.169901 iter 100 value 78.114017 final value 78.114017 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.107394 iter 10 value 93.384299 iter 20 value 88.993229 iter 30 value 84.970704 iter 40 value 84.002447 iter 50 value 82.650009 iter 60 value 80.693775 iter 70 value 80.048173 iter 80 value 79.705797 iter 90 value 79.072377 iter 100 value 78.203501 final value 78.203501 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.545174 iter 10 value 94.068371 iter 20 value 93.940704 iter 30 value 86.041976 iter 40 value 85.111537 iter 50 value 81.704308 iter 60 value 79.765227 iter 70 value 78.764003 iter 80 value 78.553807 iter 90 value 78.422178 iter 100 value 78.053912 final value 78.053912 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.971067 iter 10 value 94.136891 iter 20 value 93.878882 iter 30 value 91.656478 iter 40 value 82.980226 iter 50 value 82.483505 iter 60 value 81.461261 iter 70 value 80.978001 iter 80 value 80.756767 iter 90 value 80.642364 iter 100 value 80.637863 final value 80.637863 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.432144 iter 10 value 97.932151 iter 20 value 91.088527 iter 30 value 90.045073 iter 40 value 85.030523 iter 50 value 80.389977 iter 60 value 79.440989 iter 70 value 78.844605 iter 80 value 78.277578 iter 90 value 78.093792 iter 100 value 77.984319 final value 77.984319 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.888871 iter 10 value 94.776342 iter 20 value 86.440189 iter 30 value 82.288872 iter 40 value 81.277649 iter 50 value 79.613649 iter 60 value 78.960547 iter 70 value 78.010632 iter 80 value 77.432379 iter 90 value 77.338341 iter 100 value 77.246498 final value 77.246498 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.196535 iter 10 value 93.575976 iter 20 value 84.578585 iter 30 value 82.279245 iter 40 value 81.024220 iter 50 value 80.267249 iter 60 value 79.663766 iter 70 value 79.140075 iter 80 value 78.871379 iter 90 value 78.598669 iter 100 value 78.415896 final value 78.415896 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.347737 iter 10 value 94.191273 iter 20 value 93.979867 iter 30 value 93.910857 iter 40 value 92.756418 iter 50 value 86.196429 iter 60 value 83.397280 iter 70 value 80.153207 iter 80 value 79.889684 iter 90 value 79.223442 iter 100 value 78.982433 final value 78.982433 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.909961 iter 10 value 99.021571 iter 20 value 95.802880 iter 30 value 93.463429 iter 40 value 92.410656 iter 50 value 89.864892 iter 60 value 87.715104 iter 70 value 83.637118 iter 80 value 80.317524 iter 90 value 78.630052 iter 100 value 78.050778 final value 78.050778 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.138284 final value 94.054700 converged Fitting Repeat 2 # weights: 103 initial value 105.484963 final value 94.054753 converged Fitting Repeat 3 # weights: 103 initial value 96.225630 final value 94.054634 converged Fitting Repeat 4 # weights: 103 initial value 103.131157 iter 10 value 93.496088 iter 20 value 85.238893 iter 30 value 83.955698 iter 40 value 83.846960 iter 50 value 83.732348 iter 60 value 83.607763 iter 70 value 83.607228 final value 83.607074 converged Fitting Repeat 5 # weights: 103 initial value 94.168999 iter 10 value 93.330813 iter 20 value 93.330181 iter 30 value 92.650880 iter 40 value 87.968139 final value 87.924328 converged Fitting Repeat 1 # weights: 305 initial value 96.822399 iter 10 value 93.333631 iter 20 value 93.332626 iter 30 value 93.299169 iter 40 value 93.285659 iter 50 value 93.285522 final value 93.285371 converged Fitting Repeat 2 # weights: 305 initial value 102.533894 iter 10 value 94.058072 iter 20 value 94.052954 iter 20 value 94.052954 iter 20 value 94.052954 final value 94.052954 converged Fitting Repeat 3 # weights: 305 initial value 104.832098 iter 10 value 94.057986 iter 20 value 85.853582 iter 30 value 82.531368 iter 40 value 80.745460 iter 50 value 79.723697 iter 60 value 78.505992 iter 70 value 78.498413 iter 80 value 77.591520 iter 90 value 77.091858 iter 100 value 76.754935 final value 76.754935 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.831332 iter 10 value 93.290101 iter 20 value 93.289542 iter 30 value 93.118680 iter 40 value 85.645110 iter 50 value 82.432735 final value 82.319939 converged Fitting Repeat 5 # weights: 305 initial value 120.088397 iter 10 value 94.057644 iter 20 value 93.977296 iter 30 value 93.481619 iter 40 value 92.538440 iter 50 value 85.513920 iter 60 value 82.719165 iter 70 value 82.371085 iter 80 value 82.235869 iter 90 value 81.141457 iter 100 value 80.895506 final value 80.895506 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.458217 iter 10 value 93.353635 iter 20 value 93.292672 iter 30 value 93.288225 iter 40 value 93.150137 iter 50 value 92.889358 iter 60 value 86.089672 iter 70 value 81.641730 iter 80 value 79.408760 iter 90 value 78.358948 iter 100 value 78.342676 final value 78.342676 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.114379 iter 10 value 94.061087 iter 20 value 94.037530 iter 30 value 91.595757 iter 40 value 80.193877 iter 50 value 80.103796 iter 60 value 80.101598 iter 70 value 80.100493 iter 80 value 80.001536 iter 90 value 79.823711 iter 100 value 76.950395 final value 76.950395 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.975609 iter 10 value 93.336826 iter 20 value 93.329442 iter 30 value 93.328627 final value 93.328625 converged Fitting Repeat 4 # weights: 507 initial value 104.081988 iter 10 value 93.847294 iter 20 value 93.297116 iter 30 value 89.220935 iter 40 value 84.160469 iter 40 value 84.160469 iter 40 value 84.160469 final value 84.160469 converged Fitting Repeat 5 # weights: 507 initial value 98.177461 iter 10 value 93.517819 iter 20 value 93.389157 iter 30 value 93.175741 iter 40 value 90.775115 iter 50 value 90.689399 iter 60 value 90.689344 final value 90.689310 converged Fitting Repeat 1 # weights: 103 initial value 94.763277 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.211644 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 116.385463 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.474868 final value 94.466823 converged Fitting Repeat 5 # weights: 103 initial value 95.328445 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.822486 iter 10 value 92.053547 iter 20 value 89.207359 iter 30 value 89.151370 iter 40 value 87.752901 iter 50 value 85.561803 final value 85.522090 converged Fitting Repeat 2 # weights: 305 initial value 105.179001 final value 94.445714 converged Fitting Repeat 3 # weights: 305 initial value 96.797608 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 111.077490 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 95.252504 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.844338 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 115.479950 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 126.188503 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 103.394039 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 99.295690 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 109.757461 iter 10 value 94.492220 iter 20 value 94.121181 iter 30 value 93.682574 iter 40 value 88.203924 iter 50 value 85.923643 iter 60 value 83.846063 iter 70 value 82.753404 iter 80 value 82.280692 final value 82.275793 converged Fitting Repeat 2 # weights: 103 initial value 97.236381 iter 10 value 94.491710 iter 20 value 94.387507 iter 30 value 92.709444 iter 40 value 87.726855 iter 50 value 85.947619 iter 60 value 83.375706 iter 70 value 82.637868 iter 80 value 81.773978 iter 90 value 80.962173 iter 100 value 80.492745 final value 80.492745 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.523675 iter 10 value 94.487073 iter 20 value 93.622949 iter 30 value 91.642026 iter 40 value 91.395888 iter 50 value 90.598442 iter 60 value 90.211431 iter 70 value 90.056351 iter 80 value 87.272302 iter 90 value 82.521331 iter 100 value 80.978937 final value 80.978937 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.445694 iter 10 value 94.478235 iter 20 value 88.941946 iter 30 value 84.177163 iter 40 value 83.887768 iter 50 value 83.384440 iter 60 value 83.338868 iter 70 value 82.637670 iter 80 value 82.295048 iter 90 value 82.275986 final value 82.275793 converged Fitting Repeat 5 # weights: 103 initial value 102.048322 iter 10 value 94.505672 iter 20 value 85.958265 iter 30 value 84.227673 iter 40 value 83.227881 iter 50 value 82.232141 iter 60 value 81.209139 iter 70 value 80.526326 final value 80.515366 converged Fitting Repeat 1 # weights: 305 initial value 124.145578 iter 10 value 94.217510 iter 20 value 84.189598 iter 30 value 82.650368 iter 40 value 81.792313 iter 50 value 81.473736 iter 60 value 81.463050 iter 70 value 81.332063 iter 80 value 80.066053 iter 90 value 79.057634 iter 100 value 78.889467 final value 78.889467 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.641756 iter 10 value 95.434339 iter 20 value 94.334656 iter 30 value 90.634802 iter 40 value 87.568744 iter 50 value 85.197555 iter 60 value 83.990516 iter 70 value 82.716008 iter 80 value 80.241770 iter 90 value 79.474197 final value 79.413211 converged Fitting Repeat 3 # weights: 305 initial value 103.810562 iter 10 value 94.139171 iter 20 value 91.242243 iter 30 value 90.098987 iter 40 value 89.867171 iter 50 value 86.538127 iter 60 value 82.545686 iter 70 value 79.469961 iter 80 value 78.777697 iter 90 value 78.490581 iter 100 value 78.247541 final value 78.247541 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.741657 iter 10 value 94.522953 iter 20 value 94.477371 iter 30 value 94.338271 iter 40 value 84.455078 iter 50 value 83.976572 iter 60 value 83.180946 iter 70 value 81.447361 iter 80 value 79.954892 iter 90 value 78.459522 iter 100 value 78.143180 final value 78.143180 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.067214 iter 10 value 93.140955 iter 20 value 88.646728 iter 30 value 84.058094 iter 40 value 82.435434 iter 50 value 81.476126 iter 60 value 80.772515 iter 70 value 79.830656 iter 80 value 79.592144 iter 90 value 79.002188 iter 100 value 78.333693 final value 78.333693 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.270439 iter 10 value 95.219390 iter 20 value 87.766205 iter 30 value 86.425457 iter 40 value 86.238311 iter 50 value 85.450573 iter 60 value 84.448404 iter 70 value 82.007520 iter 80 value 78.666444 iter 90 value 77.857567 iter 100 value 77.464111 final value 77.464111 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.215924 iter 10 value 94.439383 iter 20 value 92.648384 iter 30 value 85.169652 iter 40 value 84.669807 iter 50 value 83.082818 iter 60 value 79.758800 iter 70 value 78.638780 iter 80 value 77.661232 iter 90 value 77.553952 iter 100 value 77.506229 final value 77.506229 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 136.125386 iter 10 value 90.561652 iter 20 value 88.239977 iter 30 value 88.014917 iter 40 value 83.665582 iter 50 value 82.751014 iter 60 value 80.714440 iter 70 value 79.637779 iter 80 value 79.486782 iter 90 value 79.403319 iter 100 value 79.328406 final value 79.328406 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.987285 iter 10 value 94.102132 iter 20 value 91.471028 iter 30 value 88.298857 iter 40 value 86.373999 iter 50 value 84.109202 iter 60 value 83.031345 iter 70 value 82.051933 iter 80 value 81.111624 iter 90 value 80.420364 iter 100 value 79.284050 final value 79.284050 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.589397 iter 10 value 94.741801 iter 20 value 87.456366 iter 30 value 84.179991 iter 40 value 79.950337 iter 50 value 79.304096 iter 60 value 79.053821 iter 70 value 78.738155 iter 80 value 78.111248 iter 90 value 77.988730 iter 100 value 77.928027 final value 77.928027 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.972277 final value 94.485945 converged Fitting Repeat 2 # weights: 103 initial value 99.260272 final value 94.485766 converged Fitting Repeat 3 # weights: 103 initial value 96.148267 final value 94.485638 converged Fitting Repeat 4 # weights: 103 initial value 104.505837 final value 94.468363 converged Fitting Repeat 5 # weights: 103 initial value 98.103192 final value 94.485928 converged Fitting Repeat 1 # weights: 305 initial value 100.118351 iter 10 value 94.482741 iter 20 value 94.479560 iter 30 value 94.478635 iter 40 value 94.466903 iter 50 value 92.470237 iter 60 value 84.667565 iter 70 value 83.768365 iter 80 value 83.727456 iter 90 value 83.726591 iter 100 value 83.723596 final value 83.723596 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.442545 iter 10 value 94.488939 iter 20 value 94.439205 iter 30 value 90.506842 iter 40 value 88.896045 iter 50 value 88.884533 iter 60 value 87.174054 iter 70 value 86.046434 iter 80 value 86.045635 final value 86.045120 converged Fitting Repeat 3 # weights: 305 initial value 95.976292 iter 10 value 94.488392 iter 20 value 94.257120 iter 30 value 90.363191 iter 40 value 90.359570 iter 50 value 90.343277 iter 60 value 90.322501 iter 70 value 85.283391 iter 80 value 83.046295 iter 90 value 82.538777 iter 100 value 82.535152 final value 82.535152 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.314790 iter 10 value 91.506714 iter 20 value 91.006176 iter 30 value 91.003727 iter 40 value 90.838645 iter 50 value 90.177222 iter 60 value 90.176709 final value 90.176687 converged Fitting Repeat 5 # weights: 305 initial value 95.945888 iter 10 value 94.466609 iter 20 value 94.466146 iter 30 value 94.461747 iter 40 value 93.299138 iter 50 value 89.477576 iter 60 value 81.575111 iter 70 value 81.443608 iter 80 value 81.103773 iter 90 value 80.120024 iter 100 value 79.514678 final value 79.514678 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.035609 iter 10 value 94.492539 iter 20 value 94.277641 iter 30 value 93.664374 iter 40 value 83.133904 iter 50 value 82.235589 iter 60 value 82.028763 iter 70 value 82.028082 iter 80 value 79.279832 iter 90 value 77.323913 iter 100 value 76.481487 final value 76.481487 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.804745 iter 10 value 94.491388 iter 20 value 94.308964 iter 30 value 91.101249 iter 40 value 90.631878 iter 50 value 88.485815 iter 60 value 88.149375 iter 70 value 88.060479 iter 80 value 82.477100 iter 90 value 79.650430 iter 100 value 79.080827 final value 79.080827 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.566883 iter 10 value 94.475908 iter 20 value 94.471179 iter 30 value 94.469615 iter 40 value 94.466951 iter 50 value 93.737942 iter 60 value 91.008231 iter 70 value 90.998594 iter 80 value 90.997261 final value 90.997259 converged Fitting Repeat 4 # weights: 507 initial value 106.522741 iter 10 value 94.300708 iter 20 value 94.111716 iter 30 value 87.359062 iter 40 value 85.338832 iter 50 value 80.717650 iter 60 value 78.281539 iter 70 value 76.782878 iter 80 value 76.149493 iter 90 value 76.097473 iter 100 value 76.096288 final value 76.096288 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.941845 iter 10 value 94.492106 iter 20 value 92.099417 iter 30 value 90.761677 iter 40 value 90.752144 iter 50 value 90.725577 final value 90.714397 converged Fitting Repeat 1 # weights: 507 initial value 163.134174 iter 10 value 118.237587 iter 20 value 117.209043 iter 30 value 106.672806 iter 40 value 106.097631 iter 50 value 105.858768 iter 60 value 105.174132 iter 70 value 104.876431 iter 80 value 104.775611 iter 90 value 104.743133 iter 100 value 104.696367 final value 104.696367 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 149.875992 iter 10 value 118.115575 iter 20 value 113.700472 iter 30 value 105.576998 iter 40 value 105.202715 iter 50 value 104.449120 iter 60 value 103.387832 iter 70 value 102.282159 iter 80 value 102.160050 iter 90 value 101.642000 iter 100 value 101.117776 final value 101.117776 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.622155 iter 10 value 117.867127 iter 20 value 116.092066 iter 30 value 108.941275 iter 40 value 106.038981 iter 50 value 104.176090 iter 60 value 103.428592 iter 70 value 102.453540 iter 80 value 101.519600 iter 90 value 101.376060 iter 100 value 101.278586 final value 101.278586 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.970998 iter 10 value 117.803170 iter 20 value 106.283371 iter 30 value 104.612945 iter 40 value 103.569536 iter 50 value 102.895779 iter 60 value 102.239655 iter 70 value 101.779916 iter 80 value 101.641378 iter 90 value 101.399304 iter 100 value 101.168090 final value 101.168090 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.395774 iter 10 value 118.312077 iter 20 value 117.277955 iter 30 value 106.449224 iter 40 value 104.151506 iter 50 value 102.455392 iter 60 value 101.941568 iter 70 value 101.707250 iter 80 value 101.441152 iter 90 value 101.185980 iter 100 value 100.789665 final value 100.789665 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Aug 21 21:31:08 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.962 1.652 115.727
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.253 | 1.670 | 35.157 | |
FreqInteractors | 0.246 | 0.010 | 0.258 | |
calculateAAC | 0.037 | 0.006 | 0.043 | |
calculateAutocor | 0.341 | 0.062 | 0.406 | |
calculateCTDC | 0.087 | 0.004 | 0.092 | |
calculateCTDD | 0.622 | 0.028 | 0.653 | |
calculateCTDT | 0.227 | 0.010 | 0.238 | |
calculateCTriad | 0.410 | 0.033 | 0.447 | |
calculateDC | 0.099 | 0.010 | 0.110 | |
calculateF | 0.369 | 0.016 | 0.387 | |
calculateKSAAP | 0.099 | 0.009 | 0.107 | |
calculateQD_Sm | 1.718 | 0.103 | 1.836 | |
calculateTC | 1.884 | 0.168 | 2.068 | |
calculateTC_Sm | 0.241 | 0.016 | 0.260 | |
corr_plot | 33.151 | 1.714 | 35.122 | |
enrichfindP | 0.453 | 0.054 | 8.068 | |
enrichfind_hp | 0.073 | 0.025 | 1.033 | |
enrichplot | 0.410 | 0.007 | 0.421 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.067 | 0.013 | 3.715 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.066 | 0.004 | 0.070 | |
pred_ensembel | 13.602 | 0.432 | 12.082 | |
var_imp | 35.306 | 1.808 | 37.496 | |