Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-11-28 12:17 -0500 (Thu, 28 Nov 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4748
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4459
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4398
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 972/2272HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.13.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-11-27 13:40 -0500 (Wed, 27 Nov 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 65e718f
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for HPiP on lconway

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.13.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz
StartedAt: 2024-11-27 22:52:13 -0500 (Wed, 27 Nov 2024)
EndedAt: 2024-11-27 23:03:29 -0500 (Wed, 27 Nov 2024)
EllapsedTime: 675.7 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2024-11-20 r87352)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.13.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib:
  cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES'
 OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Unknown package ‘ftrCOOL’ in Rd xrefs
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       27.360  1.628  29.130
corr_plot     25.455  1.416  26.942
FSmethod      24.350  1.296  25.695
pred_ensembel 10.310  0.349   9.089
enrichfindP    0.343  0.055   9.083
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.716220 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.124282 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.043057 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.940973 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.272613 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.992896 
iter  10 value 89.149666
iter  20 value 88.508968
final  value 88.508890 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.842000 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.546015 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 119.122757 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.230648 
iter  10 value 94.338765
final  value 94.338745 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.429279 
iter  10 value 93.798436
iter  20 value 93.512150
final  value 93.511901 
converged
Fitting Repeat 2 

# weights:  507
initial  value 103.500193 
iter  10 value 92.898375
iter  20 value 92.853217
iter  30 value 92.853118
iter  30 value 92.853118
iter  30 value 92.853118
final  value 92.853118 
converged
Fitting Repeat 3 

# weights:  507
initial  value 113.612021 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 120.255411 
iter  10 value 93.837462
iter  10 value 93.837462
iter  10 value 93.837462
final  value 93.837462 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.783306 
final  value 94.354286 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.837731 
iter  10 value 94.486608
iter  20 value 94.434272
iter  30 value 93.448618
iter  40 value 92.049196
iter  50 value 91.998426
iter  60 value 91.962862
iter  70 value 90.915847
iter  80 value 90.861282
iter  90 value 90.851946
final  value 90.851267 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.892116 
iter  10 value 94.384158
iter  20 value 91.124396
iter  30 value 86.696038
iter  40 value 86.339698
iter  50 value 83.861314
iter  60 value 83.627971
iter  70 value 82.194694
iter  80 value 81.677339
iter  90 value 81.598674
iter 100 value 81.490411
final  value 81.490411 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.581894 
iter  10 value 94.482833
iter  20 value 92.313258
iter  30 value 88.009843
iter  40 value 86.837801
iter  50 value 85.965630
iter  60 value 83.368912
iter  70 value 83.350088
iter  80 value 83.344425
iter  90 value 83.308440
iter 100 value 83.305443
final  value 83.305443 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 113.037544 
iter  10 value 94.427132
iter  20 value 94.203707
iter  30 value 87.216054
iter  40 value 86.887569
iter  50 value 86.632674
final  value 86.619165 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.451572 
iter  10 value 94.486478
iter  20 value 94.288194
iter  30 value 85.294855
iter  40 value 83.634655
iter  50 value 83.040137
iter  60 value 82.981914
iter  70 value 82.838059
iter  80 value 82.803140
iter  90 value 82.797048
final  value 82.796138 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.831052 
iter  10 value 94.436902
iter  20 value 91.025856
iter  30 value 87.573625
iter  40 value 86.931652
iter  50 value 86.609850
iter  60 value 86.285313
iter  70 value 84.494184
iter  80 value 82.572065
iter  90 value 80.653824
iter 100 value 80.019051
final  value 80.019051 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.975762 
iter  10 value 94.488231
iter  20 value 85.530043
iter  30 value 84.211333
iter  40 value 83.683712
iter  50 value 83.014550
iter  60 value 82.446774
iter  70 value 82.100730
iter  80 value 80.934252
iter  90 value 80.307474
iter 100 value 80.197415
final  value 80.197415 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.005482 
iter  10 value 94.387942
iter  20 value 88.343519
iter  30 value 84.361826
iter  40 value 84.159938
iter  50 value 83.788383
iter  60 value 82.824426
iter  70 value 81.245298
iter  80 value 80.221074
iter  90 value 80.192410
iter 100 value 80.185439
final  value 80.185439 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 113.694513 
iter  10 value 94.647630
iter  20 value 92.201186
iter  30 value 88.078344
iter  40 value 86.960878
iter  50 value 86.518277
iter  60 value 83.605228
iter  70 value 82.910061
iter  80 value 82.006288
iter  90 value 81.562306
iter 100 value 81.481117
final  value 81.481117 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.639253 
iter  10 value 95.225723
iter  20 value 86.770615
iter  30 value 85.975522
iter  40 value 83.561371
iter  50 value 82.306710
iter  60 value 82.035688
iter  70 value 81.600538
iter  80 value 81.529567
iter  90 value 81.465125
iter 100 value 81.029825
final  value 81.029825 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 141.036164 
iter  10 value 94.295800
iter  20 value 88.419579
iter  30 value 84.058997
iter  40 value 83.284123
iter  50 value 83.066943
iter  60 value 82.141841
iter  70 value 81.844829
iter  80 value 80.547715
iter  90 value 79.809455
iter 100 value 79.499911
final  value 79.499911 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.921699 
iter  10 value 94.624666
iter  20 value 91.181947
iter  30 value 83.229260
iter  40 value 82.531015
iter  50 value 81.633270
iter  60 value 81.524713
iter  70 value 81.308353
iter  80 value 81.010114
iter  90 value 80.834792
iter 100 value 80.804743
final  value 80.804743 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.512692 
iter  10 value 88.595972
iter  20 value 86.540845
iter  30 value 84.767764
iter  40 value 83.162300
iter  50 value 82.984742
iter  60 value 82.562918
iter  70 value 80.966390
iter  80 value 80.376868
iter  90 value 80.074594
iter 100 value 79.976795
final  value 79.976795 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 137.062907 
iter  10 value 94.529406
iter  20 value 94.307418
iter  30 value 93.541794
iter  40 value 86.444868
iter  50 value 82.906342
iter  60 value 82.097803
iter  70 value 81.432110
iter  80 value 81.050514
iter  90 value 80.846816
iter 100 value 80.560425
final  value 80.560425 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.553348 
iter  10 value 93.954458
iter  20 value 89.060775
iter  30 value 87.914474
iter  40 value 84.081075
iter  50 value 81.969816
iter  60 value 81.554108
iter  70 value 80.193838
iter  80 value 79.835509
iter  90 value 79.675764
iter 100 value 79.506151
final  value 79.506151 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.923115 
iter  10 value 94.340099
final  value 94.340084 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.637474 
iter  10 value 94.161333
final  value 94.161322 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.713157 
final  value 94.485781 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.651103 
final  value 94.355876 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.794560 
final  value 94.485757 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.310805 
iter  10 value 94.488678
iter  20 value 94.482792
iter  30 value 93.542775
iter  40 value 87.398975
iter  50 value 85.134003
iter  60 value 84.850153
iter  70 value 84.814616
iter  80 value 84.812742
iter  90 value 84.812120
iter 100 value 84.810619
final  value 84.810619 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.199274 
iter  10 value 94.488982
iter  20 value 94.484366
final  value 94.467129 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.669768 
iter  10 value 94.471521
iter  20 value 94.367476
iter  30 value 85.843059
iter  40 value 85.644269
iter  50 value 82.710055
iter  60 value 82.575919
iter  70 value 82.572593
iter  80 value 82.572239
iter  90 value 82.571829
iter 100 value 82.571747
final  value 82.571747 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.424732 
iter  10 value 94.472356
iter  20 value 94.467993
iter  30 value 94.396392
iter  40 value 93.829652
iter  50 value 86.658100
iter  60 value 83.388941
iter  70 value 81.886679
iter  80 value 81.789392
iter  90 value 81.553483
iter 100 value 81.310275
final  value 81.310275 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.253101 
iter  10 value 94.488526
iter  20 value 92.020096
iter  30 value 89.362578
iter  40 value 85.796868
final  value 85.784137 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.280533 
iter  10 value 94.492829
iter  20 value 94.476136
iter  30 value 82.689692
iter  40 value 82.676030
iter  50 value 82.669912
iter  60 value 82.592156
iter  70 value 82.554181
iter  80 value 82.553501
final  value 82.552420 
converged
Fitting Repeat 2 

# weights:  507
initial  value 115.039060 
iter  10 value 94.545384
iter  20 value 93.134220
iter  30 value 91.706618
iter  40 value 91.699965
iter  50 value 91.683536
iter  60 value 91.651091
iter  70 value 82.807755
iter  80 value 81.259305
iter  90 value 80.692786
iter 100 value 80.295181
final  value 80.295181 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 101.268506 
iter  10 value 94.474786
iter  20 value 94.467836
iter  30 value 94.047050
iter  40 value 94.039159
iter  50 value 93.980190
iter  60 value 91.179271
iter  70 value 91.177633
final  value 91.177610 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.739073 
iter  10 value 93.709764
iter  20 value 93.385999
iter  30 value 90.050537
iter  40 value 82.130634
iter  50 value 81.822446
iter  60 value 81.170874
iter  70 value 81.166555
final  value 81.166338 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.953503 
iter  10 value 89.628411
iter  20 value 85.719131
iter  30 value 85.610788
iter  40 value 85.572196
iter  50 value 85.570240
iter  60 value 85.559730
iter  70 value 85.559301
iter  80 value 82.410212
iter  90 value 81.805718
iter 100 value 81.774152
final  value 81.774152 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.612566 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.600219 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.449680 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.506867 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.913612 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.851986 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 111.111609 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.724661 
final  value 94.354396 
converged
Fitting Repeat 4 

# weights:  305
initial  value 111.705098 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 118.095703 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.393437 
final  value 94.354396 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.977801 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.062579 
iter  10 value 94.354541
final  value 94.350744 
converged
Fitting Repeat 4 

# weights:  507
initial  value 141.486136 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.784022 
iter  10 value 90.260399
iter  20 value 89.927594
final  value 89.919717 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.795671 
iter  10 value 87.026639
iter  20 value 85.473504
iter  30 value 85.112985
iter  40 value 85.048551
iter  50 value 84.566455
iter  60 value 84.104795
iter  70 value 83.256229
iter  80 value 83.188063
final  value 83.188023 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.084516 
iter  10 value 93.508300
iter  20 value 87.729462
iter  30 value 83.947094
iter  40 value 83.255625
iter  50 value 82.877863
iter  60 value 82.443016
iter  70 value 81.813545
iter  80 value 81.578845
iter  90 value 81.569523
iter 100 value 81.406525
final  value 81.406525 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 105.334269 
iter  10 value 94.768249
iter  20 value 94.473765
iter  30 value 87.617782
iter  40 value 84.667079
iter  50 value 83.924224
iter  60 value 83.533942
iter  70 value 83.458129
iter  80 value 82.242393
iter  90 value 81.782235
iter 100 value 81.418408
final  value 81.418408 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 97.920201 
iter  10 value 94.188296
iter  20 value 91.459407
iter  30 value 87.058474
iter  40 value 85.239221
iter  50 value 83.627018
iter  60 value 82.356573
iter  70 value 82.159217
iter  80 value 81.524422
iter  90 value 81.478050
iter 100 value 81.470602
final  value 81.470602 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 104.274352 
iter  10 value 94.510045
iter  20 value 94.489119
iter  30 value 94.423460
iter  40 value 93.947665
iter  50 value 93.784110
iter  60 value 90.453679
iter  70 value 86.502331
iter  80 value 86.275806
iter  90 value 85.484417
iter 100 value 85.356548
final  value 85.356548 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 107.665855 
iter  10 value 94.250396
iter  20 value 92.252588
iter  30 value 86.414804
iter  40 value 85.279458
iter  50 value 84.734151
iter  60 value 83.724252
iter  70 value 82.855898
iter  80 value 81.651005
iter  90 value 81.387939
iter 100 value 81.216953
final  value 81.216953 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.796547 
iter  10 value 94.556945
iter  20 value 91.814204
iter  30 value 87.551968
iter  40 value 86.699140
iter  50 value 86.382343
iter  60 value 85.234162
iter  70 value 84.972504
iter  80 value 84.945776
iter  90 value 84.239381
iter 100 value 83.105536
final  value 83.105536 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.893827 
iter  10 value 94.441595
iter  20 value 90.065823
iter  30 value 86.705634
iter  40 value 84.936442
iter  50 value 82.473342
iter  60 value 80.734584
iter  70 value 80.448803
iter  80 value 80.176002
iter  90 value 80.167334
iter 100 value 80.148966
final  value 80.148966 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 113.920766 
iter  10 value 94.807985
iter  20 value 94.358597
iter  30 value 92.147473
iter  40 value 91.451583
iter  50 value 91.006820
iter  60 value 90.625867
iter  70 value 90.589839
iter  80 value 90.539273
iter  90 value 90.411014
iter 100 value 88.894027
final  value 88.894027 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.090193 
iter  10 value 93.986098
iter  20 value 85.763765
iter  30 value 85.292533
iter  40 value 84.514875
iter  50 value 83.560168
iter  60 value 81.453394
iter  70 value 80.880167
iter  80 value 80.035539
iter  90 value 79.940009
iter 100 value 79.885945
final  value 79.885945 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 114.403227 
iter  10 value 94.458317
iter  20 value 91.642356
iter  30 value 85.706875
iter  40 value 84.952619
iter  50 value 82.763251
iter  60 value 80.818325
iter  70 value 80.260519
iter  80 value 80.015345
iter  90 value 79.931989
iter 100 value 79.816205
final  value 79.816205 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.875760 
iter  10 value 94.759889
iter  20 value 94.145858
iter  30 value 89.417717
iter  40 value 86.198516
iter  50 value 83.907897
iter  60 value 83.245095
iter  70 value 81.626429
iter  80 value 81.259756
iter  90 value 81.069317
iter 100 value 80.929714
final  value 80.929714 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.555867 
iter  10 value 92.557715
iter  20 value 85.700086
iter  30 value 84.707999
iter  40 value 83.295174
iter  50 value 82.698226
iter  60 value 81.811760
iter  70 value 80.913138
iter  80 value 80.121317
iter  90 value 79.994915
iter 100 value 79.964877
final  value 79.964877 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.534969 
iter  10 value 94.341697
iter  20 value 91.273631
iter  30 value 87.203164
iter  40 value 86.190358
iter  50 value 84.443432
iter  60 value 82.579104
iter  70 value 82.081816
iter  80 value 81.566256
iter  90 value 81.031583
iter 100 value 80.315388
final  value 80.315388 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 125.781446 
iter  10 value 98.928267
iter  20 value 87.815555
iter  30 value 85.643683
iter  40 value 84.738608
iter  50 value 82.980252
iter  60 value 82.363865
iter  70 value 82.098112
iter  80 value 81.183820
iter  90 value 80.933443
iter 100 value 80.648738
final  value 80.648738 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.105087 
final  value 94.486076 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.221663 
final  value 94.486061 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.848367 
final  value 94.355863 
converged
Fitting Repeat 4 

# weights:  103
initial  value 113.374796 
iter  10 value 94.485945
iter  20 value 94.484296
final  value 94.484217 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.653663 
final  value 94.485740 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.728646 
iter  10 value 94.487466
iter  20 value 94.482851
iter  30 value 93.880833
final  value 93.809861 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.652881 
iter  10 value 88.782897
iter  20 value 88.179940
iter  30 value 88.012609
iter  40 value 88.011491
iter  50 value 88.011085
iter  60 value 88.009338
iter  70 value 84.466627
iter  80 value 84.459133
final  value 84.459075 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.056469 
iter  10 value 94.359493
iter  20 value 93.278949
iter  30 value 88.828338
iter  40 value 86.718708
iter  50 value 86.373611
iter  60 value 86.366968
iter  70 value 86.365594
iter  70 value 86.365594
final  value 86.365594 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.064006 
iter  10 value 94.489087
iter  20 value 94.484208
iter  30 value 92.478420
iter  40 value 84.863011
iter  50 value 84.848394
iter  60 value 83.717949
iter  70 value 83.556118
iter  80 value 83.555431
iter  80 value 83.555430
iter  80 value 83.555430
final  value 83.555430 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.269405 
iter  10 value 94.489064
iter  20 value 94.358834
iter  30 value 94.257967
iter  40 value 93.807158
iter  50 value 91.124195
iter  60 value 89.754183
iter  70 value 89.428636
iter  80 value 86.769107
iter  90 value 85.323855
iter 100 value 84.786325
final  value 84.786325 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 129.187765 
iter  10 value 92.215185
iter  20 value 84.871058
iter  30 value 84.724373
iter  40 value 84.682041
iter  50 value 84.663870
iter  60 value 82.884420
iter  70 value 82.136854
iter  80 value 81.842301
iter  90 value 81.774491
iter 100 value 81.684113
final  value 81.684113 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.317928 
iter  10 value 94.065230
iter  20 value 92.126703
iter  30 value 89.581308
iter  40 value 85.585104
iter  50 value 84.854318
iter  60 value 84.837083
iter  70 value 84.834601
iter  80 value 84.680036
iter  90 value 83.798270
iter 100 value 82.726740
final  value 82.726740 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 95.657315 
iter  10 value 94.167980
iter  20 value 94.065997
iter  30 value 94.064538
iter  40 value 93.625078
iter  50 value 93.616184
iter  60 value 93.615295
final  value 93.613121 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.934477 
iter  10 value 94.490816
iter  20 value 94.257956
iter  30 value 89.905830
iter  40 value 89.899139
iter  50 value 89.887352
iter  60 value 89.876816
final  value 89.876073 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.212082 
iter  10 value 94.492490
iter  20 value 94.478176
iter  30 value 93.809966
iter  30 value 93.809965
iter  30 value 93.809965
final  value 93.809965 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.225483 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.448247 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.408243 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.982587 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.627861 
final  value 94.052911 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.913508 
final  value 93.810010 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.332599 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 116.205426 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.132710 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 139.383825 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.922641 
final  value 93.991525 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.495651 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.896392 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.705048 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 94.979772 
iter  10 value 93.755974
iter  20 value 93.723931
final  value 93.723857 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.324606 
iter  10 value 94.056119
iter  20 value 94.025233
iter  30 value 94.001372
iter  40 value 88.219464
iter  50 value 85.509334
iter  60 value 85.339205
iter  70 value 84.456879
iter  80 value 84.229333
iter  90 value 84.081278
iter 100 value 83.972764
final  value 83.972764 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 102.109944 
iter  10 value 93.947863
iter  20 value 93.327021
iter  30 value 93.168772
iter  40 value 91.780829
iter  50 value 86.017646
iter  60 value 85.192947
iter  70 value 85.164768
iter  80 value 85.138164
iter  90 value 85.109309
iter 100 value 85.056019
final  value 85.056019 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 110.603643 
iter  10 value 93.583535
iter  20 value 87.090175
iter  30 value 86.051053
iter  40 value 85.379830
iter  50 value 84.477390
iter  60 value 83.985479
iter  70 value 83.933020
iter  80 value 83.926289
iter  80 value 83.926289
iter  80 value 83.926289
final  value 83.926289 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.816672 
iter  10 value 94.035486
iter  20 value 89.740689
iter  30 value 87.806475
iter  40 value 85.582682
iter  50 value 84.877606
iter  60 value 83.982534
iter  70 value 83.835824
iter  80 value 83.833496
iter  90 value 83.805089
iter 100 value 83.782724
final  value 83.782724 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 96.689945 
iter  10 value 94.063392
iter  20 value 93.671915
iter  30 value 88.026692
iter  40 value 86.915127
iter  50 value 85.209614
iter  60 value 85.059554
iter  70 value 84.992616
iter  80 value 84.981377
iter  90 value 84.242428
iter 100 value 83.906528
final  value 83.906528 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 99.321322 
iter  10 value 94.053719
iter  20 value 90.332779
iter  30 value 86.206942
iter  40 value 85.873766
iter  50 value 84.939408
iter  60 value 84.710417
iter  70 value 84.222463
iter  80 value 83.991147
iter  90 value 83.089275
iter 100 value 82.567844
final  value 82.567844 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.886837 
iter  10 value 93.758023
iter  20 value 89.228468
iter  30 value 87.132455
iter  40 value 87.064186
iter  50 value 86.633821
iter  60 value 84.151408
iter  70 value 83.668366
iter  80 value 83.433901
iter  90 value 83.241838
iter 100 value 82.967046
final  value 82.967046 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.618578 
iter  10 value 94.175985
iter  20 value 93.707341
iter  30 value 93.677903
iter  40 value 92.061129
iter  50 value 89.304724
iter  60 value 87.356750
iter  70 value 86.044365
iter  80 value 85.328127
iter  90 value 83.364941
iter 100 value 83.026204
final  value 83.026204 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 114.823554 
iter  10 value 94.108805
iter  20 value 93.822086
iter  30 value 87.308787
iter  40 value 84.966788
iter  50 value 84.321087
iter  60 value 83.962880
iter  70 value 83.877291
iter  80 value 83.545222
iter  90 value 83.505242
iter 100 value 83.476100
final  value 83.476100 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 116.567786 
iter  10 value 93.934461
iter  20 value 89.639926
iter  30 value 87.500893
iter  40 value 84.431853
iter  50 value 83.701037
iter  60 value 83.441675
iter  70 value 83.198596
iter  80 value 82.991045
iter  90 value 82.701971
iter 100 value 82.335034
final  value 82.335034 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.937983 
iter  10 value 93.874245
iter  20 value 89.183547
iter  30 value 86.699215
iter  40 value 86.182004
iter  50 value 84.783914
iter  60 value 84.378329
iter  70 value 84.338088
iter  80 value 84.296890
iter  90 value 83.595760
iter 100 value 83.202045
final  value 83.202045 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.602130 
iter  10 value 94.484690
iter  20 value 94.052347
iter  30 value 90.977127
iter  40 value 87.808341
iter  50 value 87.310515
iter  60 value 86.791010
iter  70 value 83.515356
iter  80 value 83.214394
iter  90 value 83.041963
iter 100 value 82.821743
final  value 82.821743 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 102.905505 
iter  10 value 94.149940
iter  20 value 92.478609
iter  30 value 85.863750
iter  40 value 85.320805
iter  50 value 84.985435
iter  60 value 84.930705
iter  70 value 84.667953
iter  80 value 83.460172
iter  90 value 83.236272
iter 100 value 82.709450
final  value 82.709450 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 136.002531 
iter  10 value 94.322997
iter  20 value 88.312291
iter  30 value 84.887097
iter  40 value 83.838016
iter  50 value 83.507688
iter  60 value 83.244141
iter  70 value 82.757785
iter  80 value 82.443322
iter  90 value 82.328549
iter 100 value 82.219475
final  value 82.219475 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.737142 
iter  10 value 87.928370
iter  20 value 86.685547
iter  30 value 85.442247
iter  40 value 83.430888
iter  50 value 82.640040
iter  60 value 82.529359
iter  70 value 82.268584
iter  80 value 82.116618
iter  90 value 82.100371
iter 100 value 82.083838
final  value 82.083838 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.040363 
final  value 94.054325 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.392332 
final  value 94.054480 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.946120 
final  value 94.054726 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.134072 
final  value 94.054640 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.674007 
final  value 94.054391 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.576418 
iter  10 value 94.056267
iter  20 value 94.048358
iter  30 value 94.010580
iter  40 value 93.864633
iter  50 value 93.749765
iter  60 value 93.731775
final  value 93.731765 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.547066 
iter  10 value 94.057288
iter  20 value 94.019720
iter  30 value 92.908357
iter  40 value 89.967269
iter  50 value 87.336119
iter  60 value 85.092766
iter  70 value 85.054550
iter  70 value 85.054550
final  value 85.054549 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.502692 
iter  10 value 94.057681
iter  20 value 93.998967
iter  30 value 88.915515
iter  40 value 84.061022
iter  50 value 84.043926
iter  60 value 83.993929
iter  70 value 83.842768
iter  80 value 83.840624
iter  90 value 83.823663
iter 100 value 83.195206
final  value 83.195206 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 123.049659 
iter  10 value 93.548711
iter  20 value 93.545532
iter  30 value 93.543891
iter  40 value 93.394252
iter  50 value 93.327421
iter  60 value 92.578429
iter  70 value 92.572132
iter  80 value 92.570334
iter  90 value 92.552232
iter 100 value 92.551433
final  value 92.551433 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.352757 
iter  10 value 94.057212
iter  20 value 93.914391
final  value 93.810281 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.648220 
iter  10 value 94.060804
iter  20 value 94.015619
iter  30 value 93.765507
iter  40 value 89.422954
iter  50 value 84.691291
iter  60 value 84.486217
iter  70 value 83.251241
iter  80 value 82.895096
iter  90 value 81.706324
iter 100 value 81.628732
final  value 81.628732 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 94.603660 
iter  10 value 94.016859
iter  20 value 93.694963
iter  30 value 85.961022
iter  40 value 85.528208
iter  50 value 84.634251
iter  60 value 83.786638
iter  70 value 82.683637
iter  80 value 82.369243
iter  90 value 82.368615
iter 100 value 82.366840
final  value 82.366840 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.773688 
iter  10 value 94.060771
iter  20 value 94.044022
iter  30 value 92.894122
iter  40 value 92.893296
final  value 92.893228 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.587844 
iter  10 value 94.060521
iter  20 value 94.050731
iter  30 value 91.452517
iter  40 value 85.417498
iter  50 value 84.621567
iter  60 value 84.000814
final  value 83.878316 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.643827 
iter  10 value 87.404450
iter  20 value 85.984662
iter  30 value 85.983759
iter  40 value 85.979917
iter  50 value 85.925723
iter  60 value 84.316523
iter  70 value 84.015128
iter  80 value 83.933049
iter  90 value 83.893956
final  value 83.893895 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.255570 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.971573 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.879541 
iter  10 value 93.739879
iter  20 value 93.735446
final  value 93.735441 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.262036 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.040344 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.721788 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.387277 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.861237 
iter  10 value 93.471376
final  value 93.087760 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.832504 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.356230 
iter  10 value 83.605171
iter  20 value 82.308394
final  value 82.306174 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.652380 
iter  10 value 89.615237
iter  20 value 81.609015
iter  30 value 80.584608
final  value 80.584588 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.896355 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 93.908646 
iter  10 value 93.328261
iter  10 value 93.328261
iter  10 value 93.328261
final  value 93.328261 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.955751 
iter  10 value 89.551856
iter  20 value 89.032515
final  value 89.030323 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.630655 
iter  10 value 92.665981
iter  20 value 92.617097
final  value 92.617094 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.386302 
iter  10 value 94.035925
iter  20 value 93.534473
iter  30 value 92.224802
iter  40 value 83.455782
iter  50 value 81.465616
iter  60 value 79.487582
iter  70 value 79.008155
iter  80 value 78.932358
iter  90 value 78.631126
iter 100 value 78.625148
final  value 78.625148 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 105.358290 
iter  10 value 94.056674
iter  20 value 86.093730
iter  30 value 81.903470
iter  40 value 81.085970
iter  50 value 80.537765
iter  60 value 80.065649
iter  70 value 80.058951
final  value 80.058910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.578594 
iter  10 value 94.043329
iter  20 value 93.546266
iter  30 value 93.534377
iter  40 value 93.533688
iter  50 value 84.726320
iter  60 value 83.553537
iter  70 value 83.192083
iter  80 value 80.751732
iter  90 value 80.366697
iter 100 value 80.091853
final  value 80.091853 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 95.769514 
iter  10 value 94.058272
iter  20 value 93.544771
iter  30 value 87.784319
iter  40 value 86.113355
iter  50 value 85.756523
iter  60 value 83.976418
iter  70 value 81.442467
iter  80 value 80.831694
iter  90 value 80.004256
iter 100 value 79.994448
final  value 79.994448 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 95.923083 
iter  10 value 94.049178
iter  20 value 93.779260
iter  30 value 93.726401
iter  40 value 93.684184
iter  50 value 93.540993
iter  60 value 88.623221
iter  70 value 86.066357
iter  80 value 82.908693
iter  90 value 81.615822
iter 100 value 81.442431
final  value 81.442431 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 110.164179 
iter  10 value 93.601441
iter  20 value 89.944676
iter  30 value 84.199229
iter  40 value 81.349313
iter  50 value 80.583931
iter  60 value 79.768304
iter  70 value 79.108171
iter  80 value 77.620155
iter  90 value 77.320834
iter 100 value 77.076922
final  value 77.076922 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 117.532838 
iter  10 value 94.126551
iter  20 value 86.037996
iter  30 value 82.044035
iter  40 value 79.471489
iter  50 value 78.142645
iter  60 value 77.752542
iter  70 value 77.638286
iter  80 value 77.342634
iter  90 value 76.618389
iter 100 value 76.240018
final  value 76.240018 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.226092 
iter  10 value 94.279469
iter  20 value 94.032122
iter  30 value 93.610029
iter  40 value 93.542316
iter  50 value 93.532819
iter  60 value 82.651288
iter  70 value 80.551032
iter  80 value 79.730033
iter  90 value 78.125935
iter 100 value 76.845805
final  value 76.845805 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.055421 
iter  10 value 93.652524
iter  20 value 93.452068
iter  30 value 88.227623
iter  40 value 84.799009
iter  50 value 82.990657
iter  60 value 79.654224
iter  70 value 78.247321
iter  80 value 77.892541
iter  90 value 77.665696
iter 100 value 77.460472
final  value 77.460472 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 127.076908 
iter  10 value 94.084729
iter  20 value 86.966735
iter  30 value 83.849704
iter  40 value 83.287113
iter  50 value 83.022002
iter  60 value 80.750081
iter  70 value 78.712591
iter  80 value 77.326810
iter  90 value 77.091931
iter 100 value 76.955377
final  value 76.955377 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 129.872825 
iter  10 value 93.984481
iter  20 value 84.944897
iter  30 value 82.433905
iter  40 value 80.168180
iter  50 value 78.552329
iter  60 value 77.503740
iter  70 value 77.317079
iter  80 value 76.746724
iter  90 value 76.530441
iter 100 value 76.173604
final  value 76.173604 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.809414 
iter  10 value 96.771864
iter  20 value 94.134183
iter  30 value 85.280982
iter  40 value 83.401790
iter  50 value 80.763420
iter  60 value 77.457125
iter  70 value 76.818993
iter  80 value 76.506143
iter  90 value 76.356970
iter 100 value 76.242205
final  value 76.242205 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.184140 
iter  10 value 94.307522
iter  20 value 93.630132
iter  30 value 86.971430
iter  40 value 82.607566
iter  50 value 80.706939
iter  60 value 78.891497
iter  70 value 77.792741
iter  80 value 77.152634
iter  90 value 76.414477
iter 100 value 76.229583
final  value 76.229583 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.097947 
iter  10 value 94.441857
iter  20 value 89.758566
iter  30 value 85.629027
iter  40 value 80.808214
iter  50 value 78.813741
iter  60 value 78.483359
iter  70 value 78.142254
iter  80 value 77.394770
iter  90 value 77.138280
iter 100 value 76.888839
final  value 76.888839 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.036445 
iter  10 value 88.639113
iter  20 value 82.055281
iter  30 value 81.247738
iter  40 value 78.827052
iter  50 value 77.512432
iter  60 value 77.221556
iter  70 value 76.924948
iter  80 value 76.562139
iter  90 value 76.223227
iter 100 value 76.068262
final  value 76.068262 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.550456 
iter  10 value 94.054536
iter  20 value 94.052923
final  value 94.052917 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.955726 
final  value 94.054782 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.853073 
iter  10 value 93.330640
iter  20 value 93.330319
iter  30 value 93.329007
final  value 93.328975 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.738390 
final  value 94.057075 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.892848 
final  value 94.054415 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.490290 
iter  10 value 94.057695
iter  20 value 87.626375
iter  30 value 84.959059
iter  40 value 82.911156
iter  50 value 82.688461
iter  60 value 82.687525
iter  70 value 82.686283
iter  70 value 82.686283
final  value 82.686283 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.331102 
iter  10 value 94.061660
iter  20 value 94.056526
iter  30 value 87.570966
iter  40 value 86.618052
iter  50 value 86.616235
iter  60 value 86.567926
iter  70 value 86.438191
final  value 86.438145 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.750011 
iter  10 value 85.364407
iter  20 value 85.328095
iter  30 value 85.252884
iter  40 value 85.175907
iter  50 value 85.174857
iter  60 value 85.170720
iter  70 value 79.334422
iter  80 value 78.263785
iter  90 value 77.733567
iter 100 value 77.264818
final  value 77.264818 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 96.370731 
iter  10 value 93.333612
iter  20 value 93.330712
iter  30 value 93.330017
iter  40 value 92.471574
iter  50 value 87.034386
iter  60 value 87.014839
iter  70 value 87.014604
iter  80 value 87.014088
iter  90 value 87.013723
iter 100 value 87.013508
final  value 87.013508 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.033812 
iter  10 value 94.057723
iter  20 value 93.929018
iter  30 value 93.329015
iter  30 value 93.329015
iter  30 value 93.329015
final  value 93.329015 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.175371 
iter  10 value 93.336812
iter  20 value 93.334283
iter  30 value 88.107738
iter  40 value 87.711179
iter  50 value 87.709220
iter  60 value 87.708658
iter  70 value 87.544621
iter  80 value 87.499697
iter  80 value 87.499696
iter  80 value 87.499696
final  value 87.499696 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.052633 
iter  10 value 92.900326
iter  20 value 92.036678
iter  30 value 90.501327
iter  40 value 89.509746
iter  50 value 89.450116
iter  60 value 89.407523
iter  70 value 89.404912
final  value 89.402975 
converged
Fitting Repeat 3 

# weights:  507
initial  value 123.349301 
iter  10 value 93.336679
iter  10 value 93.336679
final  value 93.336679 
converged
Fitting Repeat 4 

# weights:  507
initial  value 120.445389 
iter  10 value 94.060377
iter  20 value 93.629520
final  value 93.328704 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.090872 
iter  10 value 92.342172
iter  20 value 86.632209
iter  30 value 86.589024
final  value 86.588956 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.057695 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.163985 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.858567 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 109.886974 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.508809 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  305
initial  value 124.107990 
iter  10 value 94.466825
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  305
initial  value 128.605675 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.460246 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 122.191476 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.698955 
iter  10 value 93.382489
final  value 93.135238 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.406868 
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.058088 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 120.376949 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.056566 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 110.809518 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.970784 
iter  10 value 94.481113
iter  20 value 94.352313
iter  30 value 93.275955
iter  40 value 89.117435
iter  50 value 88.012670
iter  60 value 86.282102
iter  70 value 86.120490
iter  80 value 85.533947
iter  90 value 84.163906
iter 100 value 83.817207
final  value 83.817207 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 105.923481 
iter  10 value 94.483885
iter  20 value 89.582178
iter  30 value 87.431161
iter  40 value 86.796683
iter  50 value 86.227319
iter  60 value 85.701868
iter  70 value 85.275142
iter  80 value 85.146434
iter  90 value 85.061210
final  value 85.052615 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.344204 
iter  10 value 94.125333
iter  20 value 88.619349
iter  30 value 87.540933
iter  40 value 86.575202
iter  50 value 86.115193
iter  60 value 86.092869
iter  70 value 86.087669
final  value 86.087500 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.350070 
iter  10 value 94.458538
iter  20 value 93.381587
iter  30 value 93.057716
iter  40 value 92.688712
iter  50 value 91.981206
iter  60 value 91.936365
iter  70 value 89.068839
iter  80 value 84.806900
iter  90 value 84.652190
iter 100 value 84.234785
final  value 84.234785 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 96.711173 
iter  10 value 94.473809
iter  20 value 87.865414
iter  30 value 87.481957
iter  40 value 86.086134
iter  50 value 85.590194
iter  60 value 85.557210
final  value 85.557184 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.569798 
iter  10 value 92.046864
iter  20 value 88.884254
iter  30 value 85.554614
iter  40 value 84.843297
iter  50 value 83.867787
iter  60 value 83.316817
iter  70 value 83.048236
iter  80 value 82.945851
iter  90 value 82.798792
iter 100 value 82.788261
final  value 82.788261 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 118.790242 
iter  10 value 94.571566
iter  20 value 94.496693
iter  30 value 91.086293
iter  40 value 86.492286
iter  50 value 86.127002
iter  60 value 85.264917
iter  70 value 84.596701
iter  80 value 83.437016
iter  90 value 82.542577
iter 100 value 82.178210
final  value 82.178210 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.468225 
iter  10 value 94.495723
iter  20 value 92.619458
iter  30 value 88.703335
iter  40 value 87.793145
iter  50 value 87.445667
iter  60 value 84.712114
iter  70 value 83.526832
iter  80 value 82.236942
iter  90 value 81.866609
iter 100 value 81.823348
final  value 81.823348 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.268108 
iter  10 value 93.862335
iter  20 value 89.840593
iter  30 value 89.037819
iter  40 value 88.964437
iter  50 value 86.649223
iter  60 value 86.061708
iter  70 value 83.354324
iter  80 value 82.793728
iter  90 value 82.708173
iter 100 value 82.555780
final  value 82.555780 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.493053 
iter  10 value 94.451035
iter  20 value 88.859395
iter  30 value 87.237716
iter  40 value 87.111703
iter  50 value 86.868944
iter  60 value 86.294819
iter  70 value 83.920096
iter  80 value 83.201432
iter  90 value 83.100837
iter 100 value 83.057872
final  value 83.057872 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.947976 
iter  10 value 91.645951
iter  20 value 85.876521
iter  30 value 83.588985
iter  40 value 82.427216
iter  50 value 82.309117
iter  60 value 82.249089
iter  70 value 82.166268
iter  80 value 82.019234
iter  90 value 81.795514
iter 100 value 81.536234
final  value 81.536234 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.248360 
iter  10 value 94.605544
iter  20 value 89.415948
iter  30 value 86.324838
iter  40 value 85.892777
iter  50 value 85.417062
iter  60 value 85.091274
iter  70 value 84.635802
iter  80 value 84.113058
iter  90 value 83.969745
iter 100 value 83.777295
final  value 83.777295 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 121.058411 
iter  10 value 94.627421
iter  20 value 88.886121
iter  30 value 87.540139
iter  40 value 86.962142
iter  50 value 86.345691
iter  60 value 86.122525
iter  70 value 85.469751
iter  80 value 85.136991
iter  90 value 84.751515
iter 100 value 82.963898
final  value 82.963898 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.194482 
iter  10 value 94.219552
iter  20 value 92.098924
iter  30 value 87.707664
iter  40 value 85.704107
iter  50 value 85.314012
iter  60 value 84.915470
iter  70 value 84.807403
iter  80 value 84.647576
iter  90 value 84.511520
iter 100 value 83.779377
final  value 83.779377 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.569375 
iter  10 value 94.522950
iter  20 value 88.265361
iter  30 value 87.221502
iter  40 value 83.283983
iter  50 value 82.930618
iter  60 value 82.453866
iter  70 value 81.974159
iter  80 value 81.705362
iter  90 value 81.631501
iter 100 value 81.416278
final  value 81.416278 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 110.693300 
final  value 94.485905 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.328812 
iter  10 value 94.485799
final  value 94.484403 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.366850 
iter  10 value 94.486171
iter  20 value 94.484277
final  value 94.484216 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.320143 
iter  10 value 94.485835
final  value 94.484884 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.975665 
iter  10 value 94.470002
iter  20 value 94.468462
final  value 94.466941 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.408023 
iter  10 value 93.878957
iter  20 value 92.828385
iter  30 value 92.825336
final  value 92.825212 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.104316 
iter  10 value 94.488815
iter  20 value 94.484453
iter  30 value 93.252050
iter  40 value 86.402191
iter  50 value 86.400728
iter  60 value 86.364287
final  value 86.364217 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.480738 
iter  10 value 94.489436
iter  20 value 92.273225
iter  30 value 86.920640
iter  40 value 86.657130
iter  50 value 86.460199
iter  60 value 85.662459
iter  70 value 85.600527
iter  80 value 85.598965
iter  80 value 85.598965
iter  80 value 85.598964
final  value 85.598964 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.118492 
iter  10 value 94.315291
iter  20 value 94.311215
iter  30 value 93.264687
iter  40 value 92.127340
iter  50 value 92.113599
iter  60 value 92.113486
iter  70 value 92.108148
iter  80 value 92.092386
iter  80 value 92.092386
final  value 92.092386 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.926449 
iter  10 value 94.489017
iter  20 value 94.456271
iter  30 value 89.015669
iter  40 value 87.067656
iter  50 value 87.059297
final  value 87.059258 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.938622 
iter  10 value 94.491161
iter  20 value 94.475697
iter  30 value 94.182223
iter  40 value 88.620803
iter  50 value 87.537888
final  value 87.534376 
converged
Fitting Repeat 2 

# weights:  507
initial  value 117.542224 
iter  10 value 94.439608
iter  20 value 93.700330
iter  30 value 92.481883
iter  40 value 92.472922
iter  50 value 92.465827
iter  60 value 92.436205
iter  70 value 92.435644
iter  80 value 92.435595
iter  90 value 92.430898
iter 100 value 91.928918
final  value 91.928918 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.323842 
iter  10 value 94.490776
iter  20 value 94.445309
iter  30 value 88.100302
final  value 88.099588 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.357984 
iter  10 value 94.474431
iter  20 value 93.550274
iter  30 value 90.404026
iter  40 value 90.401291
final  value 90.401224 
converged
Fitting Repeat 5 

# weights:  507
initial  value 122.207806 
iter  10 value 94.474409
iter  20 value 94.413604
iter  30 value 94.254828
iter  40 value 94.254352
iter  50 value 94.253925
iter  60 value 94.207088
iter  70 value 91.963781
iter  80 value 88.328516
iter  90 value 88.324532
iter 100 value 87.263074
final  value 87.263074 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 122.245761 
iter  10 value 117.894636
iter  20 value 117.612798
iter  30 value 113.674497
iter  40 value 107.355007
iter  50 value 106.837426
iter  60 value 106.793337
iter  70 value 104.639179
iter  80 value 104.070075
final  value 104.057189 
converged
Fitting Repeat 2 

# weights:  305
initial  value 125.110811 
iter  10 value 106.256006
iter  20 value 105.291523
iter  30 value 105.276683
iter  40 value 105.270009
iter  50 value 105.266696
final  value 105.266324 
converged
Fitting Repeat 3 

# weights:  305
initial  value 147.456790 
iter  10 value 110.261582
iter  20 value 108.423651
iter  30 value 108.328599
iter  40 value 108.325193
iter  50 value 108.185125
iter  60 value 108.173950
final  value 108.173924 
converged
Fitting Repeat 4 

# weights:  305
initial  value 120.067058 
iter  10 value 108.197186
iter  20 value 105.247290
iter  30 value 105.164800
iter  40 value 105.147831
iter  50 value 105.145144
iter  60 value 105.063010
iter  70 value 104.812015
iter  80 value 104.811684
final  value 104.811672 
converged
Fitting Repeat 5 

# weights:  305
initial  value 139.859384 
iter  10 value 117.895191
iter  20 value 117.890363
iter  30 value 112.169786
iter  40 value 107.907516
iter  50 value 104.593136
iter  60 value 102.452100
iter  70 value 101.976660
iter  80 value 101.960481
iter  90 value 101.903186
iter 100 value 101.901115
final  value 101.901115 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Wed Nov 27 23:03:21 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 30.784   1.269  47.539 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod24.350 1.29625.695
FreqInteractors0.1640.0100.176
calculateAAC0.0250.0080.032
calculateAutocor0.2550.0580.314
calculateCTDC0.0520.0060.058
calculateCTDD0.3960.0170.414
calculateCTDT0.1500.0080.159
calculateCTriad0.2410.0240.265
calculateDC0.0600.0060.066
calculateF0.2210.0060.227
calculateKSAAP0.0680.0090.076
calculateQD_Sm1.1190.1071.226
calculateTC1.1400.0881.232
calculateTC_Sm0.1800.0160.195
corr_plot25.455 1.41626.942
enrichfindP0.3430.0559.083
enrichfind_hp0.0500.0201.017
enrichplot0.2800.0060.288
filter_missing_values0.0000.0000.001
getFASTA0.0480.0083.998
getHPI0.0010.0000.000
get_negativePPI0.0010.0000.002
get_positivePPI000
impute_missing_data0.0010.0000.001
plotPPI0.0530.0020.056
pred_ensembel10.310 0.349 9.089
var_imp27.360 1.62829.130