Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-01-11 11:43 -0500 (Sat, 11 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" | 4760 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" | 4479 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4443 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4398 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" | 4391 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 975/2277 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-01-10 21:02:49 -0500 (Fri, 10 Jan 2025) |
EndedAt: 2025-01-10 21:07:54 -0500 (Fri, 10 Jan 2025) |
EllapsedTime: 305.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2024-11-20 r87352) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 33.441 1.634 35.446 FSmethod 32.856 1.587 34.745 corr_plot 32.774 1.615 34.643 pred_ensembel 13.798 0.442 12.262 enrichfindP 0.464 0.060 9.507 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 99.534785 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.695204 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.432105 iter 10 value 94.017442 final value 94.017143 converged Fitting Repeat 4 # weights: 103 initial value 95.337861 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 93.847471 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 1 # weights: 305 initial value 106.947044 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.379688 iter 10 value 87.846200 iter 20 value 87.422846 iter 30 value 87.396216 final value 87.396208 converged Fitting Repeat 3 # weights: 305 initial value 105.254709 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.559970 iter 10 value 92.616821 iter 20 value 92.293926 final value 92.293924 converged Fitting Repeat 5 # weights: 305 initial value 95.635033 iter 10 value 93.711172 iter 20 value 93.709153 final value 93.709151 converged Fitting Repeat 1 # weights: 507 initial value 98.335529 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 119.565377 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 99.464662 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 99.306021 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 97.362559 iter 10 value 89.315460 iter 20 value 88.353568 iter 30 value 88.073211 iter 40 value 87.932734 final value 87.932635 converged Fitting Repeat 1 # weights: 103 initial value 108.869705 iter 10 value 94.087211 iter 20 value 93.985684 iter 30 value 89.621278 iter 40 value 88.545541 iter 50 value 87.025971 iter 60 value 85.627675 iter 70 value 85.167449 iter 80 value 83.881462 iter 90 value 83.184943 iter 100 value 83.116955 final value 83.116955 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.339280 iter 10 value 94.054965 iter 20 value 93.752598 iter 30 value 93.684517 iter 40 value 93.684030 iter 50 value 92.904429 iter 60 value 87.426425 iter 70 value 86.834793 iter 80 value 86.437447 iter 90 value 86.210802 iter 100 value 84.915666 final value 84.915666 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 108.636663 iter 10 value 92.226590 iter 20 value 87.279075 iter 30 value 86.634923 iter 40 value 86.320772 iter 50 value 86.120516 iter 60 value 85.798293 iter 70 value 85.678019 iter 80 value 85.665875 final value 85.665862 converged Fitting Repeat 4 # weights: 103 initial value 103.311995 iter 10 value 94.609266 iter 20 value 94.041668 iter 30 value 91.090992 iter 40 value 86.314397 iter 50 value 85.510833 iter 60 value 85.386691 iter 70 value 84.390893 iter 80 value 83.340593 iter 90 value 83.309220 iter 100 value 83.293160 final value 83.293160 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.391947 iter 10 value 94.056673 iter 20 value 93.845043 iter 30 value 93.712394 iter 40 value 93.688931 iter 50 value 93.431366 iter 60 value 90.147698 iter 70 value 86.844753 iter 80 value 86.327482 iter 90 value 85.392545 iter 100 value 85.372845 final value 85.372845 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.620959 iter 10 value 93.961686 iter 20 value 93.705756 iter 30 value 93.547706 iter 40 value 91.679660 iter 50 value 87.247156 iter 60 value 86.027132 iter 70 value 83.387007 iter 80 value 82.858113 iter 90 value 82.786102 iter 100 value 82.728135 final value 82.728135 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.013693 iter 10 value 93.981768 iter 20 value 87.747354 iter 30 value 86.996211 iter 40 value 86.497686 iter 50 value 86.087330 iter 60 value 83.422702 iter 70 value 82.233128 iter 80 value 81.924167 iter 90 value 81.809199 iter 100 value 81.772466 final value 81.772466 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.681444 iter 10 value 94.004403 iter 20 value 93.253319 iter 30 value 92.555447 iter 40 value 88.936406 iter 50 value 85.945953 iter 60 value 85.133042 iter 70 value 83.946137 iter 80 value 83.206181 iter 90 value 82.275207 iter 100 value 81.985393 final value 81.985393 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.042563 iter 10 value 94.287024 iter 20 value 92.997344 iter 30 value 88.642639 iter 40 value 87.956697 iter 50 value 86.802956 iter 60 value 84.654101 iter 70 value 83.267200 iter 80 value 82.481636 iter 90 value 82.139737 iter 100 value 81.809488 final value 81.809488 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.651060 iter 10 value 94.048480 iter 20 value 88.499531 iter 30 value 86.723477 iter 40 value 85.565973 iter 50 value 84.383937 iter 60 value 83.336915 iter 70 value 83.223073 iter 80 value 83.052892 iter 90 value 83.004597 iter 100 value 82.635791 final value 82.635791 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.763954 iter 10 value 95.806247 iter 20 value 91.661583 iter 30 value 89.116063 iter 40 value 86.240444 iter 50 value 85.015594 iter 60 value 83.065043 iter 70 value 82.704212 iter 80 value 82.473191 iter 90 value 82.220967 iter 100 value 82.136271 final value 82.136271 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.752024 iter 10 value 93.410705 iter 20 value 87.074491 iter 30 value 85.665699 iter 40 value 84.526057 iter 50 value 83.079998 iter 60 value 82.099561 iter 70 value 81.941472 iter 80 value 81.708629 iter 90 value 81.627786 iter 100 value 81.573242 final value 81.573242 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.834798 iter 10 value 94.375884 iter 20 value 93.289329 iter 30 value 92.529862 iter 40 value 91.810129 iter 50 value 90.027899 iter 60 value 87.572862 iter 70 value 86.031338 iter 80 value 85.463553 iter 90 value 84.542720 iter 100 value 83.210485 final value 83.210485 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.561509 iter 10 value 94.024873 iter 20 value 89.975505 iter 30 value 87.318947 iter 40 value 87.011377 iter 50 value 85.822250 iter 60 value 85.126795 iter 70 value 83.364235 iter 80 value 82.680848 iter 90 value 82.505212 iter 100 value 82.313901 final value 82.313901 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.267423 iter 10 value 94.270300 iter 20 value 92.839370 iter 30 value 89.330820 iter 40 value 87.217330 iter 50 value 86.803294 iter 60 value 86.013112 iter 70 value 84.167920 iter 80 value 82.910016 iter 90 value 82.558570 iter 100 value 82.449898 final value 82.449898 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.855744 iter 10 value 93.358821 iter 20 value 93.349109 final value 93.342318 converged Fitting Repeat 2 # weights: 103 initial value 94.879104 final value 94.054923 converged Fitting Repeat 3 # weights: 103 initial value 98.601455 final value 94.054513 converged Fitting Repeat 4 # weights: 103 initial value 103.113931 final value 94.054793 converged Fitting Repeat 5 # weights: 103 initial value 99.117111 final value 94.055359 converged Fitting Repeat 1 # weights: 305 initial value 94.902657 iter 10 value 93.586943 iter 20 value 93.582929 final value 93.582833 converged Fitting Repeat 2 # weights: 305 initial value 98.080572 iter 10 value 93.587575 iter 20 value 93.575842 iter 30 value 89.709233 iter 40 value 86.459882 iter 50 value 85.722983 iter 60 value 85.030469 final value 85.030444 converged Fitting Repeat 3 # weights: 305 initial value 104.127609 iter 10 value 94.057705 iter 20 value 93.926475 iter 30 value 90.228125 iter 40 value 86.145346 iter 50 value 85.662620 iter 60 value 85.506166 final value 85.506122 converged Fitting Repeat 4 # weights: 305 initial value 102.771149 iter 10 value 93.587188 iter 20 value 93.353648 iter 30 value 93.342306 final value 93.342206 converged Fitting Repeat 5 # weights: 305 initial value 101.681242 iter 10 value 94.057728 final value 94.053170 converged Fitting Repeat 1 # weights: 507 initial value 109.965551 iter 10 value 93.590770 iter 20 value 93.584133 iter 30 value 87.536754 iter 40 value 86.800348 iter 50 value 86.505312 iter 60 value 85.622571 iter 70 value 84.471770 iter 80 value 84.083308 iter 90 value 84.063088 iter 100 value 84.055480 final value 84.055480 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.975562 iter 10 value 93.590493 iter 20 value 93.585217 iter 30 value 93.584235 iter 40 value 93.566190 iter 50 value 89.264245 iter 60 value 86.154400 iter 70 value 85.773195 iter 80 value 85.670041 final value 85.669823 converged Fitting Repeat 3 # weights: 507 initial value 101.793548 iter 10 value 94.061513 iter 20 value 91.724205 iter 30 value 88.945223 iter 40 value 88.925967 final value 88.925901 converged Fitting Repeat 4 # weights: 507 initial value 99.730053 iter 10 value 94.060518 iter 20 value 93.541519 iter 30 value 93.342127 iter 40 value 87.177273 iter 50 value 86.262125 iter 60 value 84.616673 iter 70 value 82.988565 iter 80 value 81.621012 iter 90 value 81.324453 iter 100 value 81.312722 final value 81.312722 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.291167 iter 10 value 93.847723 iter 20 value 91.751360 iter 30 value 86.877531 iter 40 value 86.723139 iter 50 value 86.722463 iter 60 value 86.713150 final value 86.711998 converged Fitting Repeat 1 # weights: 103 initial value 102.062395 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.259453 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.171916 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.616070 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.785360 iter 10 value 94.486435 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.340101 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.109775 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.147587 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.906610 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 121.088403 iter 10 value 94.354413 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 109.878087 iter 10 value 94.494272 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.585976 final value 94.088889 converged Fitting Repeat 3 # weights: 507 initial value 103.710349 iter 10 value 93.290145 iter 20 value 91.150963 iter 30 value 91.003008 final value 91.001940 converged Fitting Repeat 4 # weights: 507 initial value 98.539794 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 101.714825 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.144551 iter 10 value 94.487753 iter 20 value 93.272145 iter 30 value 88.803859 iter 40 value 87.059607 iter 50 value 86.147008 iter 60 value 85.976692 iter 70 value 85.885383 iter 80 value 84.423225 iter 90 value 84.328055 final value 84.327934 converged Fitting Repeat 2 # weights: 103 initial value 101.718208 iter 10 value 94.486440 final value 94.486428 converged Fitting Repeat 3 # weights: 103 initial value 99.018061 iter 10 value 94.754427 iter 20 value 94.488324 iter 30 value 94.277330 iter 40 value 94.113884 iter 50 value 94.098271 iter 60 value 94.097119 iter 70 value 89.323216 iter 80 value 88.281776 iter 90 value 88.183810 iter 100 value 86.910049 final value 86.910049 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.199508 iter 10 value 96.153437 iter 20 value 94.488871 iter 30 value 94.240630 iter 40 value 90.791815 iter 50 value 88.996764 iter 60 value 88.785186 iter 70 value 88.240584 iter 80 value 87.696932 iter 90 value 87.209113 iter 100 value 85.245254 final value 85.245254 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.460406 iter 10 value 94.497951 iter 20 value 94.489706 iter 30 value 88.964049 iter 40 value 85.930131 iter 50 value 85.727982 iter 60 value 85.100526 iter 70 value 84.313024 iter 80 value 84.194758 final value 84.194623 converged Fitting Repeat 1 # weights: 305 initial value 109.373665 iter 10 value 93.601362 iter 20 value 89.709704 iter 30 value 88.490914 iter 40 value 87.669946 iter 50 value 87.471595 iter 60 value 84.606079 iter 70 value 83.754009 iter 80 value 83.701325 iter 90 value 83.634980 iter 100 value 83.410744 final value 83.410744 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.386255 iter 10 value 90.861794 iter 20 value 87.765111 iter 30 value 87.687777 iter 40 value 87.012033 iter 50 value 85.151720 iter 60 value 83.011564 iter 70 value 82.732526 iter 80 value 82.608178 iter 90 value 82.379730 iter 100 value 81.913579 final value 81.913579 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.161789 iter 10 value 94.500517 iter 20 value 89.243896 iter 30 value 89.062938 iter 40 value 88.236790 iter 50 value 87.547350 iter 60 value 85.421509 iter 70 value 84.941128 iter 80 value 84.289340 iter 90 value 83.164197 iter 100 value 82.584189 final value 82.584189 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.645655 iter 10 value 94.443668 iter 20 value 92.168800 iter 30 value 90.099963 iter 40 value 89.373807 iter 50 value 87.876023 iter 60 value 85.714133 iter 70 value 85.213497 iter 80 value 84.235686 iter 90 value 83.760258 iter 100 value 83.385391 final value 83.385391 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.447234 iter 10 value 91.559999 iter 20 value 90.015734 iter 30 value 87.747750 iter 40 value 87.654425 iter 50 value 87.184593 iter 60 value 86.809364 iter 70 value 84.857257 iter 80 value 83.418718 iter 90 value 83.063925 iter 100 value 82.994195 final value 82.994195 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.692217 iter 10 value 88.226123 iter 20 value 85.918450 iter 30 value 84.636439 iter 40 value 84.498806 iter 50 value 84.457684 iter 60 value 84.336334 iter 70 value 84.127045 iter 80 value 83.636900 iter 90 value 83.239043 iter 100 value 83.190864 final value 83.190864 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.448903 iter 10 value 94.823065 iter 20 value 90.324420 iter 30 value 84.983698 iter 40 value 83.040634 iter 50 value 82.253181 iter 60 value 82.162407 iter 70 value 81.925277 iter 80 value 81.596747 iter 90 value 81.523435 iter 100 value 81.483470 final value 81.483470 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.532705 iter 10 value 96.292866 iter 20 value 94.301695 iter 30 value 90.997083 iter 40 value 89.981581 iter 50 value 86.954159 iter 60 value 85.969244 iter 70 value 85.548039 iter 80 value 84.733334 iter 90 value 84.323651 iter 100 value 84.052062 final value 84.052062 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.975877 iter 10 value 95.851054 iter 20 value 92.844208 iter 30 value 91.418705 iter 40 value 90.028149 iter 50 value 85.921288 iter 60 value 85.010391 iter 70 value 84.840833 iter 80 value 84.300324 iter 90 value 84.009029 iter 100 value 83.803992 final value 83.803992 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.331769 iter 10 value 94.804661 iter 20 value 94.700136 iter 30 value 88.013671 iter 40 value 85.429982 iter 50 value 84.344467 iter 60 value 83.271431 iter 70 value 82.726903 iter 80 value 82.503729 iter 90 value 81.929846 iter 100 value 81.767880 final value 81.767880 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.618607 iter 10 value 94.356012 iter 20 value 94.355084 final value 94.354799 converged Fitting Repeat 2 # weights: 103 initial value 98.048209 final value 94.486034 converged Fitting Repeat 3 # weights: 103 initial value 98.109582 iter 10 value 94.356222 iter 20 value 94.316004 iter 30 value 87.325157 iter 40 value 87.321421 iter 50 value 87.308783 iter 60 value 87.307996 iter 70 value 87.305299 final value 87.305289 converged Fitting Repeat 4 # weights: 103 initial value 98.399946 final value 94.485812 converged Fitting Repeat 5 # weights: 103 initial value 105.072539 iter 10 value 94.451162 iter 20 value 94.364432 iter 30 value 91.796272 iter 40 value 91.506854 iter 50 value 91.491948 final value 91.491937 converged Fitting Repeat 1 # weights: 305 initial value 97.321476 iter 10 value 93.132469 iter 20 value 90.847274 iter 30 value 90.844272 iter 40 value 88.982152 iter 50 value 87.968142 iter 60 value 87.966071 iter 70 value 87.965722 iter 80 value 87.965336 iter 90 value 87.826144 iter 90 value 87.826143 iter 90 value 87.826143 final value 87.826143 converged Fitting Repeat 2 # weights: 305 initial value 96.402049 iter 10 value 94.488833 iter 20 value 94.478604 final value 94.354651 converged Fitting Repeat 3 # weights: 305 initial value 94.352861 iter 10 value 89.150347 iter 20 value 89.149375 iter 30 value 89.033491 iter 40 value 88.011051 iter 50 value 87.937038 iter 60 value 87.834769 iter 70 value 87.830062 iter 80 value 87.827053 iter 90 value 87.826968 iter 100 value 87.810304 final value 87.810304 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.857403 iter 10 value 94.489412 iter 20 value 94.356999 iter 30 value 91.814930 final value 91.166494 converged Fitting Repeat 5 # weights: 305 initial value 96.609877 iter 10 value 94.489121 iter 20 value 92.562347 iter 30 value 91.154996 iter 40 value 91.151702 iter 50 value 90.745203 iter 60 value 90.552200 iter 70 value 90.223119 iter 80 value 85.258318 iter 90 value 85.064397 iter 100 value 85.062596 final value 85.062596 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.778378 iter 10 value 94.362624 iter 20 value 93.615368 iter 30 value 86.526693 iter 40 value 85.339783 iter 50 value 85.257930 iter 60 value 84.561487 iter 70 value 82.208642 iter 80 value 81.914894 iter 90 value 81.911965 iter 100 value 81.909547 final value 81.909547 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.058985 iter 10 value 94.491461 iter 20 value 94.357187 iter 30 value 94.086455 iter 40 value 88.954162 iter 50 value 88.614032 iter 60 value 88.593665 iter 60 value 88.593664 final value 88.593664 converged Fitting Repeat 3 # weights: 507 initial value 100.484817 iter 10 value 94.362602 final value 94.360815 converged Fitting Repeat 4 # weights: 507 initial value 102.044530 iter 10 value 94.491072 iter 20 value 91.627658 iter 30 value 91.499415 final value 91.498815 converged Fitting Repeat 5 # weights: 507 initial value 106.762158 iter 10 value 87.144664 iter 20 value 86.912603 iter 30 value 86.911706 iter 40 value 86.635154 iter 50 value 86.614216 iter 60 value 86.610159 iter 70 value 86.608558 iter 80 value 86.130384 iter 90 value 85.798257 iter 100 value 85.558295 final value 85.558295 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.283737 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.571702 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.265056 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.180031 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 114.258509 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.090387 final value 94.043244 converged Fitting Repeat 2 # weights: 305 initial value 107.376727 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 106.182704 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.124263 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.125908 final value 94.017143 converged Fitting Repeat 1 # weights: 507 initial value 100.725405 final value 94.039949 converged Fitting Repeat 2 # weights: 507 initial value 100.192174 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 101.863587 iter 10 value 94.043355 final value 94.043243 converged Fitting Repeat 4 # weights: 507 initial value 94.278437 iter 10 value 87.608864 final value 87.571429 converged Fitting Repeat 5 # weights: 507 initial value 141.060291 iter 10 value 86.251987 iter 20 value 85.256867 final value 85.256865 converged Fitting Repeat 1 # weights: 103 initial value 103.306721 iter 10 value 93.783206 iter 20 value 85.446928 iter 30 value 84.219227 iter 40 value 82.391471 iter 50 value 81.792073 iter 60 value 81.277681 iter 70 value 81.262482 final value 81.260027 converged Fitting Repeat 2 # weights: 103 initial value 113.629854 iter 10 value 93.593834 iter 20 value 84.962369 iter 30 value 84.456974 iter 40 value 83.321358 iter 50 value 82.506678 iter 60 value 82.368821 iter 70 value 81.924278 iter 80 value 81.678922 iter 90 value 81.650949 iter 100 value 81.649093 final value 81.649093 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.453951 iter 10 value 94.009228 iter 20 value 85.304977 iter 30 value 82.581203 iter 40 value 81.982437 iter 50 value 81.740040 iter 60 value 81.243715 iter 70 value 80.838861 iter 80 value 80.794279 iter 90 value 80.678595 final value 80.677344 converged Fitting Repeat 4 # weights: 103 initial value 119.942200 iter 10 value 93.848409 iter 20 value 87.698547 iter 30 value 82.330783 iter 40 value 81.911724 iter 50 value 81.293585 iter 60 value 81.169497 iter 70 value 80.789239 iter 80 value 80.607414 iter 90 value 80.602438 final value 80.602363 converged Fitting Repeat 5 # weights: 103 initial value 102.700641 iter 10 value 94.069207 iter 20 value 92.056848 iter 30 value 85.520424 iter 40 value 82.847006 iter 50 value 82.630221 iter 60 value 82.187244 iter 70 value 81.917067 iter 80 value 81.289082 iter 90 value 81.260027 iter 90 value 81.260027 iter 90 value 81.260027 final value 81.260027 converged Fitting Repeat 1 # weights: 305 initial value 113.613945 iter 10 value 94.082495 iter 20 value 92.270029 iter 30 value 89.874892 iter 40 value 85.950726 iter 50 value 85.058920 iter 60 value 81.418091 iter 70 value 79.389953 iter 80 value 79.062839 iter 90 value 79.008120 iter 100 value 78.556546 final value 78.556546 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.176046 iter 10 value 93.929037 iter 20 value 85.546175 iter 30 value 83.546184 iter 40 value 83.105310 iter 50 value 81.478231 iter 60 value 81.391331 iter 70 value 81.365621 iter 80 value 81.304643 iter 90 value 80.982643 iter 100 value 79.220333 final value 79.220333 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.635723 iter 10 value 91.411435 iter 20 value 85.494280 iter 30 value 82.051454 iter 40 value 81.640776 iter 50 value 80.554870 iter 60 value 80.028325 iter 70 value 79.706393 iter 80 value 79.673211 iter 90 value 79.604568 iter 100 value 79.496484 final value 79.496484 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.926522 iter 10 value 93.694609 iter 20 value 88.669216 iter 30 value 88.401765 iter 40 value 88.097552 iter 50 value 82.970166 iter 60 value 81.298927 iter 70 value 80.170304 iter 80 value 78.390255 iter 90 value 78.065048 iter 100 value 77.972627 final value 77.972627 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.902219 iter 10 value 94.333661 iter 20 value 85.790367 iter 30 value 85.252964 iter 40 value 83.685630 iter 50 value 83.001160 iter 60 value 81.464279 iter 70 value 80.224276 iter 80 value 79.488032 iter 90 value 79.079582 iter 100 value 78.978638 final value 78.978638 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.806558 iter 10 value 94.089432 iter 20 value 90.198664 iter 30 value 88.558060 iter 40 value 81.927904 iter 50 value 79.162000 iter 60 value 78.202949 iter 70 value 77.851493 iter 80 value 77.571144 iter 90 value 77.393202 iter 100 value 77.240523 final value 77.240523 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.468022 iter 10 value 94.005043 iter 20 value 81.600230 iter 30 value 81.006094 iter 40 value 80.938924 iter 50 value 80.775099 iter 60 value 79.397874 iter 70 value 78.428746 iter 80 value 77.555569 iter 90 value 77.419298 iter 100 value 77.356214 final value 77.356214 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.397448 iter 10 value 90.335849 iter 20 value 80.967495 iter 30 value 79.764119 iter 40 value 78.940323 iter 50 value 78.570920 iter 60 value 77.835197 iter 70 value 77.663826 iter 80 value 77.461251 iter 90 value 77.236776 iter 100 value 77.158864 final value 77.158864 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.883981 iter 10 value 93.947862 iter 20 value 87.672826 iter 30 value 83.638392 iter 40 value 82.136747 iter 50 value 81.569742 iter 60 value 80.474567 iter 70 value 79.270480 iter 80 value 79.043288 iter 90 value 78.408194 iter 100 value 78.005019 final value 78.005019 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.513756 iter 10 value 94.169856 iter 20 value 83.154614 iter 30 value 82.651118 iter 40 value 81.385847 iter 50 value 78.029646 iter 60 value 77.507968 iter 70 value 77.333305 iter 80 value 77.271894 iter 90 value 77.241151 iter 100 value 77.154518 final value 77.154518 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.632614 final value 94.054742 converged Fitting Repeat 2 # weights: 103 initial value 102.213586 iter 10 value 94.054617 iter 20 value 94.052313 final value 94.043261 converged Fitting Repeat 3 # weights: 103 initial value 96.110038 iter 10 value 94.023249 iter 20 value 94.019021 iter 30 value 94.018320 iter 40 value 94.017834 iter 50 value 91.657365 iter 60 value 90.330226 iter 70 value 89.526469 iter 80 value 89.469942 final value 89.469520 converged Fitting Repeat 4 # weights: 103 initial value 103.630786 final value 94.054535 converged Fitting Repeat 5 # weights: 103 initial value 97.123102 final value 94.044924 converged Fitting Repeat 1 # weights: 305 initial value 103.398425 iter 10 value 94.057408 iter 20 value 84.881202 iter 30 value 81.167060 iter 40 value 80.615976 iter 50 value 80.155575 iter 60 value 80.121186 final value 80.120985 converged Fitting Repeat 2 # weights: 305 initial value 101.302384 iter 10 value 94.057520 iter 20 value 94.047564 iter 30 value 82.913731 iter 40 value 81.669075 final value 81.645317 converged Fitting Repeat 3 # weights: 305 initial value 105.678874 iter 10 value 94.047979 iter 20 value 94.043999 iter 30 value 94.043293 iter 40 value 82.102885 iter 50 value 81.506669 iter 60 value 81.367117 iter 70 value 81.261692 final value 81.257116 converged Fitting Repeat 4 # weights: 305 initial value 95.415728 iter 10 value 94.057309 iter 20 value 93.253372 iter 30 value 92.251320 final value 92.073591 converged Fitting Repeat 5 # weights: 305 initial value 95.161799 iter 10 value 94.057877 iter 20 value 94.051602 iter 30 value 89.303789 iter 40 value 89.000618 final value 89.000203 converged Fitting Repeat 1 # weights: 507 initial value 96.228984 iter 10 value 92.964583 iter 20 value 92.940317 iter 30 value 85.943115 iter 40 value 85.510015 iter 50 value 85.508257 iter 60 value 85.054450 iter 70 value 83.713063 iter 80 value 83.539791 iter 90 value 82.975012 iter 100 value 82.784520 final value 82.784520 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 150.978983 iter 10 value 94.060728 iter 20 value 94.038762 iter 30 value 93.009403 iter 40 value 82.498476 iter 50 value 82.468166 iter 60 value 82.278765 iter 70 value 82.266230 iter 80 value 82.266122 final value 82.266120 converged Fitting Repeat 3 # weights: 507 initial value 96.000571 iter 10 value 94.060356 iter 20 value 94.042664 iter 30 value 85.580417 iter 40 value 85.508261 iter 40 value 85.508261 iter 50 value 85.490915 iter 60 value 79.603025 iter 70 value 77.708008 iter 80 value 76.958709 iter 90 value 76.746084 iter 100 value 76.508510 final value 76.508510 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.803751 iter 10 value 94.061928 iter 20 value 93.872151 iter 30 value 84.463502 iter 40 value 84.230660 iter 50 value 84.199560 iter 50 value 84.199560 final value 84.199560 converged Fitting Repeat 5 # weights: 507 initial value 99.137582 iter 10 value 94.052289 iter 20 value 94.010687 iter 30 value 94.008784 iter 40 value 94.005745 iter 50 value 94.005033 iter 60 value 93.999278 iter 70 value 85.904456 iter 80 value 85.443151 final value 85.441770 converged Fitting Repeat 1 # weights: 103 initial value 106.542644 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.568770 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.866448 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.493197 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.010590 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.661918 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.180285 iter 10 value 93.523633 final value 93.520939 converged Fitting Repeat 3 # weights: 305 initial value 111.450489 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 111.132977 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.383023 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.049775 iter 10 value 93.795085 final value 93.794996 converged Fitting Repeat 2 # weights: 507 initial value 97.492251 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 105.648437 final value 94.026542 converged Fitting Repeat 4 # weights: 507 initial value 107.226754 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 103.149296 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 113.062055 iter 10 value 94.488393 iter 10 value 94.488392 iter 20 value 93.638746 iter 30 value 93.615759 iter 40 value 86.311016 iter 50 value 84.979864 iter 60 value 84.664968 iter 70 value 83.720084 iter 80 value 83.128717 iter 90 value 82.593433 iter 100 value 82.071426 final value 82.071426 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 116.414879 iter 10 value 94.405378 iter 20 value 87.654560 iter 30 value 86.331646 iter 40 value 85.870473 iter 50 value 85.360415 iter 60 value 81.564044 iter 70 value 80.799614 iter 80 value 80.797423 iter 90 value 80.785777 iter 100 value 80.712134 final value 80.712134 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.984721 iter 10 value 94.488596 iter 20 value 93.777078 iter 30 value 93.688599 iter 40 value 92.056533 iter 50 value 86.749070 iter 60 value 86.274896 iter 70 value 86.045417 iter 80 value 86.025137 iter 90 value 81.926780 iter 100 value 81.512677 final value 81.512677 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.886733 iter 10 value 94.349573 iter 20 value 91.510381 iter 30 value 87.302347 iter 40 value 85.118128 iter 50 value 82.850890 iter 60 value 82.226862 iter 70 value 82.041438 iter 80 value 81.659546 iter 90 value 81.511953 final value 81.511947 converged Fitting Repeat 5 # weights: 103 initial value 100.456427 iter 10 value 94.490332 iter 20 value 94.486809 iter 30 value 94.339166 iter 40 value 85.039315 iter 50 value 83.729135 iter 60 value 82.954922 iter 70 value 82.237874 iter 80 value 81.894931 iter 90 value 81.535690 final value 81.511947 converged Fitting Repeat 1 # weights: 305 initial value 109.873819 iter 10 value 93.954608 iter 20 value 85.834977 iter 30 value 83.140376 iter 40 value 81.866514 iter 50 value 81.418069 iter 60 value 81.314092 iter 70 value 80.998743 iter 80 value 79.889796 iter 90 value 79.218820 iter 100 value 79.073789 final value 79.073789 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.659680 iter 10 value 93.787718 iter 20 value 85.050899 iter 30 value 84.088399 iter 40 value 82.719842 iter 50 value 82.211926 iter 60 value 81.580332 iter 70 value 81.450390 iter 80 value 80.945221 iter 90 value 80.834746 iter 100 value 80.727658 final value 80.727658 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.164773 iter 10 value 93.960031 iter 20 value 86.641089 iter 30 value 83.897503 iter 40 value 83.132177 iter 50 value 82.197556 iter 60 value 79.760144 iter 70 value 79.525803 iter 80 value 79.425887 iter 90 value 79.347516 iter 100 value 79.289299 final value 79.289299 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.621159 iter 10 value 95.527420 iter 20 value 87.809634 iter 30 value 83.823745 iter 40 value 82.879775 iter 50 value 81.860607 iter 60 value 81.484118 iter 70 value 81.233196 iter 80 value 80.424120 iter 90 value 79.884564 iter 100 value 79.803467 final value 79.803467 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.042602 iter 10 value 95.508312 iter 20 value 84.985311 iter 30 value 84.145162 iter 40 value 83.973183 iter 50 value 82.213178 iter 60 value 80.372548 iter 70 value 79.539196 iter 80 value 79.451784 iter 90 value 79.332782 iter 100 value 78.993473 final value 78.993473 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.608596 iter 10 value 96.212968 iter 20 value 88.875969 iter 30 value 84.502711 iter 40 value 82.666311 iter 50 value 81.967136 iter 60 value 81.715776 iter 70 value 81.224473 iter 80 value 80.080897 iter 90 value 79.792937 iter 100 value 79.595262 final value 79.595262 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.758087 iter 10 value 87.467495 iter 20 value 85.914689 iter 30 value 84.767055 iter 40 value 83.113267 iter 50 value 82.598470 iter 60 value 82.373330 iter 70 value 82.029917 iter 80 value 81.331754 iter 90 value 79.384847 iter 100 value 79.125274 final value 79.125274 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.967200 iter 10 value 95.055789 iter 20 value 94.524470 iter 30 value 93.292903 iter 40 value 90.183751 iter 50 value 89.031168 iter 60 value 86.857266 iter 70 value 86.349686 iter 80 value 85.433138 iter 90 value 85.048806 iter 100 value 84.527370 final value 84.527370 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.847702 iter 10 value 94.615046 iter 20 value 90.971455 iter 30 value 86.168296 iter 40 value 81.710206 iter 50 value 79.628712 iter 60 value 79.121000 iter 70 value 78.945974 iter 80 value 78.861212 iter 90 value 78.813418 iter 100 value 78.756858 final value 78.756858 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.814844 iter 10 value 95.165879 iter 20 value 90.113559 iter 30 value 88.173397 iter 40 value 87.330146 iter 50 value 84.704373 iter 60 value 81.983679 iter 70 value 81.531144 iter 80 value 81.144396 iter 90 value 80.710044 iter 100 value 80.434885 final value 80.434885 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.023212 final value 94.485676 converged Fitting Repeat 2 # weights: 103 initial value 95.252136 final value 94.485898 converged Fitting Repeat 3 # weights: 103 initial value 98.318192 final value 94.485930 converged Fitting Repeat 4 # weights: 103 initial value 104.544842 final value 94.485771 converged Fitting Repeat 5 # weights: 103 initial value 104.392083 final value 94.485824 converged Fitting Repeat 1 # weights: 305 initial value 95.765628 iter 10 value 93.562751 iter 20 value 93.561313 iter 30 value 93.555999 iter 40 value 89.133322 iter 50 value 89.076594 iter 60 value 88.897365 iter 70 value 88.879529 iter 80 value 84.395853 iter 90 value 84.392017 final value 84.391853 converged Fitting Repeat 2 # weights: 305 initial value 96.630091 final value 93.814430 converged Fitting Repeat 3 # weights: 305 initial value 110.418133 iter 10 value 94.488452 iter 20 value 93.746566 iter 30 value 92.581313 iter 40 value 88.774732 iter 50 value 86.181501 iter 60 value 80.618303 iter 70 value 79.915022 iter 80 value 79.530167 iter 90 value 79.161806 iter 100 value 79.146304 final value 79.146304 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 94.471379 iter 10 value 91.107924 iter 20 value 91.036103 iter 30 value 91.025872 final value 91.025685 converged Fitting Repeat 5 # weights: 305 initial value 96.310791 iter 10 value 94.488681 iter 20 value 94.484311 iter 30 value 91.701627 iter 40 value 81.973651 iter 50 value 81.313211 iter 60 value 81.309625 iter 70 value 81.242833 iter 80 value 81.238262 iter 90 value 81.230030 iter 100 value 81.229835 final value 81.229835 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.801297 iter 10 value 94.035061 iter 20 value 94.029587 iter 30 value 85.762555 iter 40 value 82.263929 final value 82.263927 converged Fitting Repeat 2 # weights: 507 initial value 105.224661 iter 10 value 93.710740 iter 20 value 93.610465 iter 30 value 93.126136 iter 40 value 91.286383 iter 50 value 90.933165 iter 60 value 90.623318 iter 70 value 81.808677 iter 80 value 81.502386 iter 90 value 81.501947 iter 100 value 81.497997 final value 81.497997 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.653682 iter 10 value 93.590355 iter 20 value 93.531526 iter 30 value 93.525243 iter 40 value 93.515419 final value 93.507430 converged Fitting Repeat 4 # weights: 507 initial value 108.143682 iter 10 value 94.376199 iter 20 value 94.375204 iter 30 value 93.573236 iter 40 value 87.016011 iter 50 value 85.779402 final value 85.776909 converged Fitting Repeat 5 # weights: 507 initial value 116.916968 iter 10 value 94.068044 iter 20 value 94.032282 iter 30 value 94.027651 iter 40 value 93.587340 iter 50 value 88.516096 iter 60 value 85.428650 iter 70 value 85.175972 final value 85.175929 converged Fitting Repeat 1 # weights: 103 initial value 105.775866 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.163574 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.910607 final value 94.467391 converged Fitting Repeat 4 # weights: 103 initial value 102.390421 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.739627 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.860057 final value 93.809648 converged Fitting Repeat 2 # weights: 305 initial value 105.587114 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.860872 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 98.016953 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 113.400026 iter 10 value 94.434757 iter 20 value 94.434200 iter 20 value 94.434199 iter 20 value 94.434199 final value 94.434199 converged Fitting Repeat 1 # weights: 507 initial value 106.508027 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 122.325101 iter 10 value 93.695378 final value 93.681320 converged Fitting Repeat 3 # weights: 507 initial value 99.398490 final value 94.086550 converged Fitting Repeat 4 # weights: 507 initial value 115.396606 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 107.458796 iter 10 value 94.467437 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 97.166324 iter 10 value 94.495844 iter 20 value 94.476386 iter 30 value 90.888397 iter 40 value 84.449557 iter 50 value 84.046398 iter 60 value 83.618133 iter 70 value 83.574782 iter 80 value 81.242415 iter 90 value 80.513363 iter 100 value 80.413959 final value 80.413959 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.574701 iter 10 value 91.763264 iter 20 value 83.379129 iter 30 value 83.221385 iter 40 value 83.199156 iter 50 value 82.248693 final value 82.156794 converged Fitting Repeat 3 # weights: 103 initial value 99.639775 iter 10 value 93.902717 iter 20 value 84.930245 iter 30 value 83.659150 iter 40 value 83.601955 iter 50 value 83.571358 iter 60 value 83.563733 iter 70 value 82.850771 iter 80 value 82.732245 iter 80 value 82.732245 iter 80 value 82.732245 final value 82.732245 converged Fitting Repeat 4 # weights: 103 initial value 97.659155 iter 10 value 90.413237 iter 20 value 84.501112 iter 30 value 83.493290 iter 40 value 82.818851 iter 50 value 82.741769 iter 60 value 82.732959 final value 82.732245 converged Fitting Repeat 5 # weights: 103 initial value 97.457132 iter 10 value 94.488094 iter 20 value 93.938731 iter 30 value 93.781759 iter 40 value 92.055251 iter 50 value 84.561940 iter 60 value 83.690996 iter 70 value 82.968525 iter 80 value 82.733222 final value 82.732245 converged Fitting Repeat 1 # weights: 305 initial value 107.507953 iter 10 value 94.487749 iter 20 value 93.936894 iter 30 value 84.416622 iter 40 value 82.335399 iter 50 value 81.987883 iter 60 value 81.732517 iter 70 value 81.602513 iter 80 value 81.545329 iter 90 value 80.875159 iter 100 value 79.523461 final value 79.523461 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.527519 iter 10 value 94.470156 iter 20 value 85.584583 iter 30 value 83.241233 iter 40 value 83.207231 iter 50 value 82.169951 iter 60 value 82.107748 iter 70 value 81.057175 iter 80 value 80.469904 iter 90 value 80.152711 iter 100 value 79.611456 final value 79.611456 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.238834 iter 10 value 94.471270 iter 20 value 93.896717 iter 30 value 86.719022 iter 40 value 84.222618 iter 50 value 83.901927 iter 60 value 83.682195 iter 70 value 82.295464 iter 80 value 81.959343 iter 90 value 81.016176 iter 100 value 80.140073 final value 80.140073 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.439990 iter 10 value 94.391517 iter 20 value 86.056470 iter 30 value 83.542023 iter 40 value 83.383173 iter 50 value 82.478665 iter 60 value 82.006741 iter 70 value 81.907721 iter 80 value 81.671079 iter 90 value 81.005166 iter 100 value 79.683135 final value 79.683135 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.036956 iter 10 value 94.502416 iter 20 value 88.545081 iter 30 value 86.652167 iter 40 value 86.047452 iter 50 value 85.198267 iter 60 value 84.887096 iter 70 value 81.632056 iter 80 value 80.600738 iter 90 value 80.344179 iter 100 value 80.111677 final value 80.111677 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.879644 iter 10 value 95.664902 iter 20 value 94.651833 iter 30 value 94.381597 iter 40 value 87.418657 iter 50 value 84.156624 iter 60 value 82.394841 iter 70 value 79.891341 iter 80 value 78.855254 iter 90 value 78.472116 iter 100 value 78.197313 final value 78.197313 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.292459 iter 10 value 96.198071 iter 20 value 92.792317 iter 30 value 87.752463 iter 40 value 84.362353 iter 50 value 80.333752 iter 60 value 79.014276 iter 70 value 78.275218 iter 80 value 78.228213 iter 90 value 78.197926 iter 100 value 78.183967 final value 78.183967 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.245798 iter 10 value 94.464806 iter 20 value 93.960715 iter 30 value 92.067637 iter 40 value 82.911131 iter 50 value 82.481689 iter 60 value 81.800161 iter 70 value 81.417007 iter 80 value 80.701775 iter 90 value 79.679487 iter 100 value 79.083241 final value 79.083241 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.145618 iter 10 value 94.533402 iter 20 value 94.159165 iter 30 value 84.758339 iter 40 value 83.722220 iter 50 value 82.381692 iter 60 value 80.489579 iter 70 value 80.128313 iter 80 value 80.040492 iter 90 value 80.034224 iter 100 value 79.701233 final value 79.701233 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.985682 iter 10 value 93.839421 iter 20 value 84.996333 iter 30 value 81.586123 iter 40 value 81.278598 iter 50 value 80.490106 iter 60 value 79.961874 iter 70 value 79.610652 iter 80 value 78.923049 iter 90 value 78.792993 iter 100 value 78.699569 final value 78.699569 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.103827 final value 94.485721 converged Fitting Repeat 2 # weights: 103 initial value 107.443658 final value 94.468681 converged Fitting Repeat 3 # weights: 103 initial value 95.574848 final value 94.485877 converged Fitting Repeat 4 # weights: 103 initial value 95.251029 final value 94.485797 converged Fitting Repeat 5 # weights: 103 initial value 100.616156 final value 94.487384 converged Fitting Repeat 1 # weights: 305 initial value 106.451625 iter 10 value 94.488836 iter 20 value 94.025496 final value 93.811237 converged Fitting Repeat 2 # weights: 305 initial value 95.098590 iter 10 value 94.207391 iter 20 value 93.216552 iter 30 value 93.215843 iter 40 value 93.213053 iter 50 value 93.148301 iter 60 value 93.148145 final value 93.148139 converged Fitting Repeat 3 # weights: 305 initial value 100.595607 iter 10 value 94.489392 iter 20 value 94.484250 final value 94.484237 converged Fitting Repeat 4 # weights: 305 initial value 96.688215 iter 10 value 94.488285 iter 20 value 92.933654 iter 30 value 91.041795 iter 40 value 90.678718 iter 50 value 89.490385 iter 60 value 88.885637 iter 70 value 88.884140 final value 88.884007 converged Fitting Repeat 5 # weights: 305 initial value 101.824388 iter 10 value 94.488839 iter 20 value 94.316980 iter 30 value 90.964863 iter 40 value 84.671830 iter 50 value 83.827956 iter 60 value 82.309504 iter 70 value 82.308118 final value 82.307540 converged Fitting Repeat 1 # weights: 507 initial value 123.404882 iter 10 value 93.928538 iter 20 value 93.809009 iter 30 value 93.695926 iter 40 value 90.563400 iter 50 value 85.052373 iter 60 value 83.360199 iter 70 value 83.353618 iter 80 value 83.241732 iter 90 value 83.237481 final value 83.237249 converged Fitting Repeat 2 # weights: 507 initial value 113.075028 iter 10 value 94.234220 iter 20 value 84.282427 iter 30 value 83.010251 iter 40 value 82.997600 iter 50 value 82.058227 iter 60 value 81.972705 iter 70 value 81.968971 iter 80 value 81.968041 final value 81.967396 converged Fitting Repeat 3 # weights: 507 initial value 98.008238 iter 10 value 94.492143 iter 20 value 94.071408 iter 30 value 82.810428 iter 40 value 77.109664 iter 50 value 76.488942 iter 60 value 75.988722 iter 70 value 75.771063 iter 80 value 75.656282 iter 90 value 75.632075 iter 100 value 75.626310 final value 75.626310 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.887111 iter 10 value 93.810155 iter 20 value 93.802532 iter 30 value 83.680815 iter 40 value 83.248034 iter 50 value 83.237942 iter 60 value 83.237627 iter 70 value 83.236265 final value 83.236132 converged Fitting Repeat 5 # weights: 507 initial value 104.045168 iter 10 value 94.303313 iter 20 value 94.295083 final value 94.293891 converged Fitting Repeat 1 # weights: 305 initial value 140.235240 iter 10 value 117.895628 iter 20 value 117.890563 iter 30 value 116.568986 iter 40 value 115.299117 final value 115.298979 converged Fitting Repeat 2 # weights: 305 initial value 128.698809 iter 10 value 117.763625 iter 20 value 117.759365 final value 117.759354 converged Fitting Repeat 3 # weights: 305 initial value 139.961621 iter 10 value 117.763899 iter 20 value 117.748944 iter 30 value 109.466166 iter 40 value 105.604953 iter 50 value 105.540890 iter 60 value 105.429878 iter 70 value 105.184857 iter 80 value 103.258970 iter 90 value 100.984232 iter 100 value 100.971878 final value 100.971878 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.430994 iter 10 value 114.239202 iter 20 value 112.884455 iter 30 value 112.882700 iter 40 value 112.878331 iter 50 value 111.656296 iter 60 value 111.496863 final value 111.496364 converged Fitting Repeat 5 # weights: 305 initial value 122.900482 iter 10 value 117.735800 iter 20 value 113.683398 iter 30 value 105.605235 iter 40 value 104.842666 iter 50 value 104.811025 iter 60 value 104.807885 iter 70 value 104.807751 iter 80 value 104.426475 iter 90 value 103.556884 iter 100 value 103.460237 final value 103.460237 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 10 21:07:44 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.504 1.577 61.872
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.856 | 1.587 | 34.745 | |
FreqInteractors | 0.249 | 0.014 | 0.266 | |
calculateAAC | 0.045 | 0.006 | 0.052 | |
calculateAutocor | 0.365 | 0.061 | 0.434 | |
calculateCTDC | 0.086 | 0.005 | 0.092 | |
calculateCTDD | 0.634 | 0.029 | 0.667 | |
calculateCTDT | 0.232 | 0.011 | 0.245 | |
calculateCTriad | 0.362 | 0.022 | 0.388 | |
calculateDC | 0.103 | 0.012 | 0.116 | |
calculateF | 0.365 | 0.016 | 0.383 | |
calculateKSAAP | 0.102 | 0.009 | 0.112 | |
calculateQD_Sm | 1.759 | 0.108 | 1.882 | |
calculateTC | 1.766 | 0.157 | 1.938 | |
calculateTC_Sm | 0.257 | 0.014 | 0.274 | |
corr_plot | 32.774 | 1.615 | 34.643 | |
enrichfindP | 0.464 | 0.060 | 9.507 | |
enrichfind_hp | 0.075 | 0.029 | 1.017 | |
enrichplot | 0.376 | 0.008 | 0.386 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.070 | 0.010 | 3.669 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.002 | |
plotPPI | 0.075 | 0.002 | 0.077 | |
pred_ensembel | 13.798 | 0.442 | 12.262 | |
var_imp | 33.441 | 1.634 | 35.446 | |