Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2024-11-28 12:17 -0500 (Thu, 28 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" | 4748 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" | 4459 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4398 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 972/2272 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2024-11-27 22:52:13 -0500 (Wed, 27 Nov 2024) |
EndedAt: 2024-11-27 23:03:29 -0500 (Wed, 27 Nov 2024) |
EllapsedTime: 675.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2024-11-20 r87352) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 27.360 1.628 29.130 corr_plot 25.455 1.416 26.942 FSmethod 24.350 1.296 25.695 pred_ensembel 10.310 0.349 9.089 enrichfindP 0.343 0.055 9.083 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.716220 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.124282 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 104.043057 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.940973 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.272613 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.992896 iter 10 value 89.149666 iter 20 value 88.508968 final value 88.508890 converged Fitting Repeat 2 # weights: 305 initial value 113.842000 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 105.546015 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 119.122757 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.230648 iter 10 value 94.338765 final value 94.338745 converged Fitting Repeat 1 # weights: 507 initial value 114.429279 iter 10 value 93.798436 iter 20 value 93.512150 final value 93.511901 converged Fitting Repeat 2 # weights: 507 initial value 103.500193 iter 10 value 92.898375 iter 20 value 92.853217 iter 30 value 92.853118 iter 30 value 92.853118 iter 30 value 92.853118 final value 92.853118 converged Fitting Repeat 3 # weights: 507 initial value 113.612021 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 120.255411 iter 10 value 93.837462 iter 10 value 93.837462 iter 10 value 93.837462 final value 93.837462 converged Fitting Repeat 5 # weights: 507 initial value 99.783306 final value 94.354286 converged Fitting Repeat 1 # weights: 103 initial value 98.837731 iter 10 value 94.486608 iter 20 value 94.434272 iter 30 value 93.448618 iter 40 value 92.049196 iter 50 value 91.998426 iter 60 value 91.962862 iter 70 value 90.915847 iter 80 value 90.861282 iter 90 value 90.851946 final value 90.851267 converged Fitting Repeat 2 # weights: 103 initial value 96.892116 iter 10 value 94.384158 iter 20 value 91.124396 iter 30 value 86.696038 iter 40 value 86.339698 iter 50 value 83.861314 iter 60 value 83.627971 iter 70 value 82.194694 iter 80 value 81.677339 iter 90 value 81.598674 iter 100 value 81.490411 final value 81.490411 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.581894 iter 10 value 94.482833 iter 20 value 92.313258 iter 30 value 88.009843 iter 40 value 86.837801 iter 50 value 85.965630 iter 60 value 83.368912 iter 70 value 83.350088 iter 80 value 83.344425 iter 90 value 83.308440 iter 100 value 83.305443 final value 83.305443 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 113.037544 iter 10 value 94.427132 iter 20 value 94.203707 iter 30 value 87.216054 iter 40 value 86.887569 iter 50 value 86.632674 final value 86.619165 converged Fitting Repeat 5 # weights: 103 initial value 100.451572 iter 10 value 94.486478 iter 20 value 94.288194 iter 30 value 85.294855 iter 40 value 83.634655 iter 50 value 83.040137 iter 60 value 82.981914 iter 70 value 82.838059 iter 80 value 82.803140 iter 90 value 82.797048 final value 82.796138 converged Fitting Repeat 1 # weights: 305 initial value 103.831052 iter 10 value 94.436902 iter 20 value 91.025856 iter 30 value 87.573625 iter 40 value 86.931652 iter 50 value 86.609850 iter 60 value 86.285313 iter 70 value 84.494184 iter 80 value 82.572065 iter 90 value 80.653824 iter 100 value 80.019051 final value 80.019051 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.975762 iter 10 value 94.488231 iter 20 value 85.530043 iter 30 value 84.211333 iter 40 value 83.683712 iter 50 value 83.014550 iter 60 value 82.446774 iter 70 value 82.100730 iter 80 value 80.934252 iter 90 value 80.307474 iter 100 value 80.197415 final value 80.197415 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.005482 iter 10 value 94.387942 iter 20 value 88.343519 iter 30 value 84.361826 iter 40 value 84.159938 iter 50 value 83.788383 iter 60 value 82.824426 iter 70 value 81.245298 iter 80 value 80.221074 iter 90 value 80.192410 iter 100 value 80.185439 final value 80.185439 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.694513 iter 10 value 94.647630 iter 20 value 92.201186 iter 30 value 88.078344 iter 40 value 86.960878 iter 50 value 86.518277 iter 60 value 83.605228 iter 70 value 82.910061 iter 80 value 82.006288 iter 90 value 81.562306 iter 100 value 81.481117 final value 81.481117 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.639253 iter 10 value 95.225723 iter 20 value 86.770615 iter 30 value 85.975522 iter 40 value 83.561371 iter 50 value 82.306710 iter 60 value 82.035688 iter 70 value 81.600538 iter 80 value 81.529567 iter 90 value 81.465125 iter 100 value 81.029825 final value 81.029825 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 141.036164 iter 10 value 94.295800 iter 20 value 88.419579 iter 30 value 84.058997 iter 40 value 83.284123 iter 50 value 83.066943 iter 60 value 82.141841 iter 70 value 81.844829 iter 80 value 80.547715 iter 90 value 79.809455 iter 100 value 79.499911 final value 79.499911 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.921699 iter 10 value 94.624666 iter 20 value 91.181947 iter 30 value 83.229260 iter 40 value 82.531015 iter 50 value 81.633270 iter 60 value 81.524713 iter 70 value 81.308353 iter 80 value 81.010114 iter 90 value 80.834792 iter 100 value 80.804743 final value 80.804743 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.512692 iter 10 value 88.595972 iter 20 value 86.540845 iter 30 value 84.767764 iter 40 value 83.162300 iter 50 value 82.984742 iter 60 value 82.562918 iter 70 value 80.966390 iter 80 value 80.376868 iter 90 value 80.074594 iter 100 value 79.976795 final value 79.976795 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.062907 iter 10 value 94.529406 iter 20 value 94.307418 iter 30 value 93.541794 iter 40 value 86.444868 iter 50 value 82.906342 iter 60 value 82.097803 iter 70 value 81.432110 iter 80 value 81.050514 iter 90 value 80.846816 iter 100 value 80.560425 final value 80.560425 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.553348 iter 10 value 93.954458 iter 20 value 89.060775 iter 30 value 87.914474 iter 40 value 84.081075 iter 50 value 81.969816 iter 60 value 81.554108 iter 70 value 80.193838 iter 80 value 79.835509 iter 90 value 79.675764 iter 100 value 79.506151 final value 79.506151 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.923115 iter 10 value 94.340099 final value 94.340084 converged Fitting Repeat 2 # weights: 103 initial value 95.637474 iter 10 value 94.161333 final value 94.161322 converged Fitting Repeat 3 # weights: 103 initial value 97.713157 final value 94.485781 converged Fitting Repeat 4 # weights: 103 initial value 97.651103 final value 94.355876 converged Fitting Repeat 5 # weights: 103 initial value 97.794560 final value 94.485757 converged Fitting Repeat 1 # weights: 305 initial value 110.310805 iter 10 value 94.488678 iter 20 value 94.482792 iter 30 value 93.542775 iter 40 value 87.398975 iter 50 value 85.134003 iter 60 value 84.850153 iter 70 value 84.814616 iter 80 value 84.812742 iter 90 value 84.812120 iter 100 value 84.810619 final value 84.810619 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.199274 iter 10 value 94.488982 iter 20 value 94.484366 final value 94.467129 converged Fitting Repeat 3 # weights: 305 initial value 98.669768 iter 10 value 94.471521 iter 20 value 94.367476 iter 30 value 85.843059 iter 40 value 85.644269 iter 50 value 82.710055 iter 60 value 82.575919 iter 70 value 82.572593 iter 80 value 82.572239 iter 90 value 82.571829 iter 100 value 82.571747 final value 82.571747 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.424732 iter 10 value 94.472356 iter 20 value 94.467993 iter 30 value 94.396392 iter 40 value 93.829652 iter 50 value 86.658100 iter 60 value 83.388941 iter 70 value 81.886679 iter 80 value 81.789392 iter 90 value 81.553483 iter 100 value 81.310275 final value 81.310275 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.253101 iter 10 value 94.488526 iter 20 value 92.020096 iter 30 value 89.362578 iter 40 value 85.796868 final value 85.784137 converged Fitting Repeat 1 # weights: 507 initial value 111.280533 iter 10 value 94.492829 iter 20 value 94.476136 iter 30 value 82.689692 iter 40 value 82.676030 iter 50 value 82.669912 iter 60 value 82.592156 iter 70 value 82.554181 iter 80 value 82.553501 final value 82.552420 converged Fitting Repeat 2 # weights: 507 initial value 115.039060 iter 10 value 94.545384 iter 20 value 93.134220 iter 30 value 91.706618 iter 40 value 91.699965 iter 50 value 91.683536 iter 60 value 91.651091 iter 70 value 82.807755 iter 80 value 81.259305 iter 90 value 80.692786 iter 100 value 80.295181 final value 80.295181 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.268506 iter 10 value 94.474786 iter 20 value 94.467836 iter 30 value 94.047050 iter 40 value 94.039159 iter 50 value 93.980190 iter 60 value 91.179271 iter 70 value 91.177633 final value 91.177610 converged Fitting Repeat 4 # weights: 507 initial value 101.739073 iter 10 value 93.709764 iter 20 value 93.385999 iter 30 value 90.050537 iter 40 value 82.130634 iter 50 value 81.822446 iter 60 value 81.170874 iter 70 value 81.166555 final value 81.166338 converged Fitting Repeat 5 # weights: 507 initial value 101.953503 iter 10 value 89.628411 iter 20 value 85.719131 iter 30 value 85.610788 iter 40 value 85.572196 iter 50 value 85.570240 iter 60 value 85.559730 iter 70 value 85.559301 iter 80 value 82.410212 iter 90 value 81.805718 iter 100 value 81.774152 final value 81.774152 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.612566 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.600219 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.449680 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.506867 final value 94.354396 converged Fitting Repeat 5 # weights: 103 initial value 97.913612 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.851986 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 111.111609 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 108.724661 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 111.705098 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 118.095703 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.393437 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 105.977801 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.062579 iter 10 value 94.354541 final value 94.350744 converged Fitting Repeat 4 # weights: 507 initial value 141.486136 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 98.784022 iter 10 value 90.260399 iter 20 value 89.927594 final value 89.919717 converged Fitting Repeat 1 # weights: 103 initial value 95.795671 iter 10 value 87.026639 iter 20 value 85.473504 iter 30 value 85.112985 iter 40 value 85.048551 iter 50 value 84.566455 iter 60 value 84.104795 iter 70 value 83.256229 iter 80 value 83.188063 final value 83.188023 converged Fitting Repeat 2 # weights: 103 initial value 105.084516 iter 10 value 93.508300 iter 20 value 87.729462 iter 30 value 83.947094 iter 40 value 83.255625 iter 50 value 82.877863 iter 60 value 82.443016 iter 70 value 81.813545 iter 80 value 81.578845 iter 90 value 81.569523 iter 100 value 81.406525 final value 81.406525 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.334269 iter 10 value 94.768249 iter 20 value 94.473765 iter 30 value 87.617782 iter 40 value 84.667079 iter 50 value 83.924224 iter 60 value 83.533942 iter 70 value 83.458129 iter 80 value 82.242393 iter 90 value 81.782235 iter 100 value 81.418408 final value 81.418408 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.920201 iter 10 value 94.188296 iter 20 value 91.459407 iter 30 value 87.058474 iter 40 value 85.239221 iter 50 value 83.627018 iter 60 value 82.356573 iter 70 value 82.159217 iter 80 value 81.524422 iter 90 value 81.478050 iter 100 value 81.470602 final value 81.470602 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.274352 iter 10 value 94.510045 iter 20 value 94.489119 iter 30 value 94.423460 iter 40 value 93.947665 iter 50 value 93.784110 iter 60 value 90.453679 iter 70 value 86.502331 iter 80 value 86.275806 iter 90 value 85.484417 iter 100 value 85.356548 final value 85.356548 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 107.665855 iter 10 value 94.250396 iter 20 value 92.252588 iter 30 value 86.414804 iter 40 value 85.279458 iter 50 value 84.734151 iter 60 value 83.724252 iter 70 value 82.855898 iter 80 value 81.651005 iter 90 value 81.387939 iter 100 value 81.216953 final value 81.216953 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.796547 iter 10 value 94.556945 iter 20 value 91.814204 iter 30 value 87.551968 iter 40 value 86.699140 iter 50 value 86.382343 iter 60 value 85.234162 iter 70 value 84.972504 iter 80 value 84.945776 iter 90 value 84.239381 iter 100 value 83.105536 final value 83.105536 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.893827 iter 10 value 94.441595 iter 20 value 90.065823 iter 30 value 86.705634 iter 40 value 84.936442 iter 50 value 82.473342 iter 60 value 80.734584 iter 70 value 80.448803 iter 80 value 80.176002 iter 90 value 80.167334 iter 100 value 80.148966 final value 80.148966 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.920766 iter 10 value 94.807985 iter 20 value 94.358597 iter 30 value 92.147473 iter 40 value 91.451583 iter 50 value 91.006820 iter 60 value 90.625867 iter 70 value 90.589839 iter 80 value 90.539273 iter 90 value 90.411014 iter 100 value 88.894027 final value 88.894027 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.090193 iter 10 value 93.986098 iter 20 value 85.763765 iter 30 value 85.292533 iter 40 value 84.514875 iter 50 value 83.560168 iter 60 value 81.453394 iter 70 value 80.880167 iter 80 value 80.035539 iter 90 value 79.940009 iter 100 value 79.885945 final value 79.885945 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.403227 iter 10 value 94.458317 iter 20 value 91.642356 iter 30 value 85.706875 iter 40 value 84.952619 iter 50 value 82.763251 iter 60 value 80.818325 iter 70 value 80.260519 iter 80 value 80.015345 iter 90 value 79.931989 iter 100 value 79.816205 final value 79.816205 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.875760 iter 10 value 94.759889 iter 20 value 94.145858 iter 30 value 89.417717 iter 40 value 86.198516 iter 50 value 83.907897 iter 60 value 83.245095 iter 70 value 81.626429 iter 80 value 81.259756 iter 90 value 81.069317 iter 100 value 80.929714 final value 80.929714 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.555867 iter 10 value 92.557715 iter 20 value 85.700086 iter 30 value 84.707999 iter 40 value 83.295174 iter 50 value 82.698226 iter 60 value 81.811760 iter 70 value 80.913138 iter 80 value 80.121317 iter 90 value 79.994915 iter 100 value 79.964877 final value 79.964877 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.534969 iter 10 value 94.341697 iter 20 value 91.273631 iter 30 value 87.203164 iter 40 value 86.190358 iter 50 value 84.443432 iter 60 value 82.579104 iter 70 value 82.081816 iter 80 value 81.566256 iter 90 value 81.031583 iter 100 value 80.315388 final value 80.315388 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.781446 iter 10 value 98.928267 iter 20 value 87.815555 iter 30 value 85.643683 iter 40 value 84.738608 iter 50 value 82.980252 iter 60 value 82.363865 iter 70 value 82.098112 iter 80 value 81.183820 iter 90 value 80.933443 iter 100 value 80.648738 final value 80.648738 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.105087 final value 94.486076 converged Fitting Repeat 2 # weights: 103 initial value 98.221663 final value 94.486061 converged Fitting Repeat 3 # weights: 103 initial value 102.848367 final value 94.355863 converged Fitting Repeat 4 # weights: 103 initial value 113.374796 iter 10 value 94.485945 iter 20 value 94.484296 final value 94.484217 converged Fitting Repeat 5 # weights: 103 initial value 100.653663 final value 94.485740 converged Fitting Repeat 1 # weights: 305 initial value 96.728646 iter 10 value 94.487466 iter 20 value 94.482851 iter 30 value 93.880833 final value 93.809861 converged Fitting Repeat 2 # weights: 305 initial value 101.652881 iter 10 value 88.782897 iter 20 value 88.179940 iter 30 value 88.012609 iter 40 value 88.011491 iter 50 value 88.011085 iter 60 value 88.009338 iter 70 value 84.466627 iter 80 value 84.459133 final value 84.459075 converged Fitting Repeat 3 # weights: 305 initial value 95.056469 iter 10 value 94.359493 iter 20 value 93.278949 iter 30 value 88.828338 iter 40 value 86.718708 iter 50 value 86.373611 iter 60 value 86.366968 iter 70 value 86.365594 iter 70 value 86.365594 final value 86.365594 converged Fitting Repeat 4 # weights: 305 initial value 102.064006 iter 10 value 94.489087 iter 20 value 94.484208 iter 30 value 92.478420 iter 40 value 84.863011 iter 50 value 84.848394 iter 60 value 83.717949 iter 70 value 83.556118 iter 80 value 83.555431 iter 80 value 83.555430 iter 80 value 83.555430 final value 83.555430 converged Fitting Repeat 5 # weights: 305 initial value 111.269405 iter 10 value 94.489064 iter 20 value 94.358834 iter 30 value 94.257967 iter 40 value 93.807158 iter 50 value 91.124195 iter 60 value 89.754183 iter 70 value 89.428636 iter 80 value 86.769107 iter 90 value 85.323855 iter 100 value 84.786325 final value 84.786325 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.187765 iter 10 value 92.215185 iter 20 value 84.871058 iter 30 value 84.724373 iter 40 value 84.682041 iter 50 value 84.663870 iter 60 value 82.884420 iter 70 value 82.136854 iter 80 value 81.842301 iter 90 value 81.774491 iter 100 value 81.684113 final value 81.684113 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.317928 iter 10 value 94.065230 iter 20 value 92.126703 iter 30 value 89.581308 iter 40 value 85.585104 iter 50 value 84.854318 iter 60 value 84.837083 iter 70 value 84.834601 iter 80 value 84.680036 iter 90 value 83.798270 iter 100 value 82.726740 final value 82.726740 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.657315 iter 10 value 94.167980 iter 20 value 94.065997 iter 30 value 94.064538 iter 40 value 93.625078 iter 50 value 93.616184 iter 60 value 93.615295 final value 93.613121 converged Fitting Repeat 4 # weights: 507 initial value 99.934477 iter 10 value 94.490816 iter 20 value 94.257956 iter 30 value 89.905830 iter 40 value 89.899139 iter 50 value 89.887352 iter 60 value 89.876816 final value 89.876073 converged Fitting Repeat 5 # weights: 507 initial value 97.212082 iter 10 value 94.492490 iter 20 value 94.478176 iter 30 value 93.809966 iter 30 value 93.809965 iter 30 value 93.809965 final value 93.809965 converged Fitting Repeat 1 # weights: 103 initial value 97.225483 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 103.448247 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 106.408243 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.982587 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.627861 final value 94.052911 converged Fitting Repeat 1 # weights: 305 initial value 95.913508 final value 93.810010 converged Fitting Repeat 2 # weights: 305 initial value 102.332599 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 116.205426 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.132710 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 139.383825 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 103.922641 final value 93.991525 converged Fitting Repeat 2 # weights: 507 initial value 97.495651 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.896392 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 100.705048 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 94.979772 iter 10 value 93.755974 iter 20 value 93.723931 final value 93.723857 converged Fitting Repeat 1 # weights: 103 initial value 96.324606 iter 10 value 94.056119 iter 20 value 94.025233 iter 30 value 94.001372 iter 40 value 88.219464 iter 50 value 85.509334 iter 60 value 85.339205 iter 70 value 84.456879 iter 80 value 84.229333 iter 90 value 84.081278 iter 100 value 83.972764 final value 83.972764 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.109944 iter 10 value 93.947863 iter 20 value 93.327021 iter 30 value 93.168772 iter 40 value 91.780829 iter 50 value 86.017646 iter 60 value 85.192947 iter 70 value 85.164768 iter 80 value 85.138164 iter 90 value 85.109309 iter 100 value 85.056019 final value 85.056019 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 110.603643 iter 10 value 93.583535 iter 20 value 87.090175 iter 30 value 86.051053 iter 40 value 85.379830 iter 50 value 84.477390 iter 60 value 83.985479 iter 70 value 83.933020 iter 80 value 83.926289 iter 80 value 83.926289 iter 80 value 83.926289 final value 83.926289 converged Fitting Repeat 4 # weights: 103 initial value 96.816672 iter 10 value 94.035486 iter 20 value 89.740689 iter 30 value 87.806475 iter 40 value 85.582682 iter 50 value 84.877606 iter 60 value 83.982534 iter 70 value 83.835824 iter 80 value 83.833496 iter 90 value 83.805089 iter 100 value 83.782724 final value 83.782724 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.689945 iter 10 value 94.063392 iter 20 value 93.671915 iter 30 value 88.026692 iter 40 value 86.915127 iter 50 value 85.209614 iter 60 value 85.059554 iter 70 value 84.992616 iter 80 value 84.981377 iter 90 value 84.242428 iter 100 value 83.906528 final value 83.906528 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.321322 iter 10 value 94.053719 iter 20 value 90.332779 iter 30 value 86.206942 iter 40 value 85.873766 iter 50 value 84.939408 iter 60 value 84.710417 iter 70 value 84.222463 iter 80 value 83.991147 iter 90 value 83.089275 iter 100 value 82.567844 final value 82.567844 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.886837 iter 10 value 93.758023 iter 20 value 89.228468 iter 30 value 87.132455 iter 40 value 87.064186 iter 50 value 86.633821 iter 60 value 84.151408 iter 70 value 83.668366 iter 80 value 83.433901 iter 90 value 83.241838 iter 100 value 82.967046 final value 82.967046 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.618578 iter 10 value 94.175985 iter 20 value 93.707341 iter 30 value 93.677903 iter 40 value 92.061129 iter 50 value 89.304724 iter 60 value 87.356750 iter 70 value 86.044365 iter 80 value 85.328127 iter 90 value 83.364941 iter 100 value 83.026204 final value 83.026204 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.823554 iter 10 value 94.108805 iter 20 value 93.822086 iter 30 value 87.308787 iter 40 value 84.966788 iter 50 value 84.321087 iter 60 value 83.962880 iter 70 value 83.877291 iter 80 value 83.545222 iter 90 value 83.505242 iter 100 value 83.476100 final value 83.476100 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.567786 iter 10 value 93.934461 iter 20 value 89.639926 iter 30 value 87.500893 iter 40 value 84.431853 iter 50 value 83.701037 iter 60 value 83.441675 iter 70 value 83.198596 iter 80 value 82.991045 iter 90 value 82.701971 iter 100 value 82.335034 final value 82.335034 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.937983 iter 10 value 93.874245 iter 20 value 89.183547 iter 30 value 86.699215 iter 40 value 86.182004 iter 50 value 84.783914 iter 60 value 84.378329 iter 70 value 84.338088 iter 80 value 84.296890 iter 90 value 83.595760 iter 100 value 83.202045 final value 83.202045 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.602130 iter 10 value 94.484690 iter 20 value 94.052347 iter 30 value 90.977127 iter 40 value 87.808341 iter 50 value 87.310515 iter 60 value 86.791010 iter 70 value 83.515356 iter 80 value 83.214394 iter 90 value 83.041963 iter 100 value 82.821743 final value 82.821743 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.905505 iter 10 value 94.149940 iter 20 value 92.478609 iter 30 value 85.863750 iter 40 value 85.320805 iter 50 value 84.985435 iter 60 value 84.930705 iter 70 value 84.667953 iter 80 value 83.460172 iter 90 value 83.236272 iter 100 value 82.709450 final value 82.709450 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.002531 iter 10 value 94.322997 iter 20 value 88.312291 iter 30 value 84.887097 iter 40 value 83.838016 iter 50 value 83.507688 iter 60 value 83.244141 iter 70 value 82.757785 iter 80 value 82.443322 iter 90 value 82.328549 iter 100 value 82.219475 final value 82.219475 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.737142 iter 10 value 87.928370 iter 20 value 86.685547 iter 30 value 85.442247 iter 40 value 83.430888 iter 50 value 82.640040 iter 60 value 82.529359 iter 70 value 82.268584 iter 80 value 82.116618 iter 90 value 82.100371 iter 100 value 82.083838 final value 82.083838 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.040363 final value 94.054325 converged Fitting Repeat 2 # weights: 103 initial value 94.392332 final value 94.054480 converged Fitting Repeat 3 # weights: 103 initial value 99.946120 final value 94.054726 converged Fitting Repeat 4 # weights: 103 initial value 106.134072 final value 94.054640 converged Fitting Repeat 5 # weights: 103 initial value 104.674007 final value 94.054391 converged Fitting Repeat 1 # weights: 305 initial value 109.576418 iter 10 value 94.056267 iter 20 value 94.048358 iter 30 value 94.010580 iter 40 value 93.864633 iter 50 value 93.749765 iter 60 value 93.731775 final value 93.731765 converged Fitting Repeat 2 # weights: 305 initial value 108.547066 iter 10 value 94.057288 iter 20 value 94.019720 iter 30 value 92.908357 iter 40 value 89.967269 iter 50 value 87.336119 iter 60 value 85.092766 iter 70 value 85.054550 iter 70 value 85.054550 final value 85.054549 converged Fitting Repeat 3 # weights: 305 initial value 106.502692 iter 10 value 94.057681 iter 20 value 93.998967 iter 30 value 88.915515 iter 40 value 84.061022 iter 50 value 84.043926 iter 60 value 83.993929 iter 70 value 83.842768 iter 80 value 83.840624 iter 90 value 83.823663 iter 100 value 83.195206 final value 83.195206 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 123.049659 iter 10 value 93.548711 iter 20 value 93.545532 iter 30 value 93.543891 iter 40 value 93.394252 iter 50 value 93.327421 iter 60 value 92.578429 iter 70 value 92.572132 iter 80 value 92.570334 iter 90 value 92.552232 iter 100 value 92.551433 final value 92.551433 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.352757 iter 10 value 94.057212 iter 20 value 93.914391 final value 93.810281 converged Fitting Repeat 1 # weights: 507 initial value 102.648220 iter 10 value 94.060804 iter 20 value 94.015619 iter 30 value 93.765507 iter 40 value 89.422954 iter 50 value 84.691291 iter 60 value 84.486217 iter 70 value 83.251241 iter 80 value 82.895096 iter 90 value 81.706324 iter 100 value 81.628732 final value 81.628732 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.603660 iter 10 value 94.016859 iter 20 value 93.694963 iter 30 value 85.961022 iter 40 value 85.528208 iter 50 value 84.634251 iter 60 value 83.786638 iter 70 value 82.683637 iter 80 value 82.369243 iter 90 value 82.368615 iter 100 value 82.366840 final value 82.366840 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.773688 iter 10 value 94.060771 iter 20 value 94.044022 iter 30 value 92.894122 iter 40 value 92.893296 final value 92.893228 converged Fitting Repeat 4 # weights: 507 initial value 117.587844 iter 10 value 94.060521 iter 20 value 94.050731 iter 30 value 91.452517 iter 40 value 85.417498 iter 50 value 84.621567 iter 60 value 84.000814 final value 83.878316 converged Fitting Repeat 5 # weights: 507 initial value 108.643827 iter 10 value 87.404450 iter 20 value 85.984662 iter 30 value 85.983759 iter 40 value 85.979917 iter 50 value 85.925723 iter 60 value 84.316523 iter 70 value 84.015128 iter 80 value 83.933049 iter 90 value 83.893956 final value 83.893895 converged Fitting Repeat 1 # weights: 103 initial value 96.255570 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.971573 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.879541 iter 10 value 93.739879 iter 20 value 93.735446 final value 93.735441 converged Fitting Repeat 4 # weights: 103 initial value 98.262036 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.040344 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.721788 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.387277 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.861237 iter 10 value 93.471376 final value 93.087760 converged Fitting Repeat 4 # weights: 305 initial value 96.832504 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 101.356230 iter 10 value 83.605171 iter 20 value 82.308394 final value 82.306174 converged Fitting Repeat 1 # weights: 507 initial value 120.652380 iter 10 value 89.615237 iter 20 value 81.609015 iter 30 value 80.584608 final value 80.584588 converged Fitting Repeat 2 # weights: 507 initial value 108.896355 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 93.908646 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 104.955751 iter 10 value 89.551856 iter 20 value 89.032515 final value 89.030323 converged Fitting Repeat 5 # weights: 507 initial value 95.630655 iter 10 value 92.665981 iter 20 value 92.617097 final value 92.617094 converged Fitting Repeat 1 # weights: 103 initial value 99.386302 iter 10 value 94.035925 iter 20 value 93.534473 iter 30 value 92.224802 iter 40 value 83.455782 iter 50 value 81.465616 iter 60 value 79.487582 iter 70 value 79.008155 iter 80 value 78.932358 iter 90 value 78.631126 iter 100 value 78.625148 final value 78.625148 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.358290 iter 10 value 94.056674 iter 20 value 86.093730 iter 30 value 81.903470 iter 40 value 81.085970 iter 50 value 80.537765 iter 60 value 80.065649 iter 70 value 80.058951 final value 80.058910 converged Fitting Repeat 3 # weights: 103 initial value 96.578594 iter 10 value 94.043329 iter 20 value 93.546266 iter 30 value 93.534377 iter 40 value 93.533688 iter 50 value 84.726320 iter 60 value 83.553537 iter 70 value 83.192083 iter 80 value 80.751732 iter 90 value 80.366697 iter 100 value 80.091853 final value 80.091853 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 95.769514 iter 10 value 94.058272 iter 20 value 93.544771 iter 30 value 87.784319 iter 40 value 86.113355 iter 50 value 85.756523 iter 60 value 83.976418 iter 70 value 81.442467 iter 80 value 80.831694 iter 90 value 80.004256 iter 100 value 79.994448 final value 79.994448 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.923083 iter 10 value 94.049178 iter 20 value 93.779260 iter 30 value 93.726401 iter 40 value 93.684184 iter 50 value 93.540993 iter 60 value 88.623221 iter 70 value 86.066357 iter 80 value 82.908693 iter 90 value 81.615822 iter 100 value 81.442431 final value 81.442431 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.164179 iter 10 value 93.601441 iter 20 value 89.944676 iter 30 value 84.199229 iter 40 value 81.349313 iter 50 value 80.583931 iter 60 value 79.768304 iter 70 value 79.108171 iter 80 value 77.620155 iter 90 value 77.320834 iter 100 value 77.076922 final value 77.076922 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.532838 iter 10 value 94.126551 iter 20 value 86.037996 iter 30 value 82.044035 iter 40 value 79.471489 iter 50 value 78.142645 iter 60 value 77.752542 iter 70 value 77.638286 iter 80 value 77.342634 iter 90 value 76.618389 iter 100 value 76.240018 final value 76.240018 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.226092 iter 10 value 94.279469 iter 20 value 94.032122 iter 30 value 93.610029 iter 40 value 93.542316 iter 50 value 93.532819 iter 60 value 82.651288 iter 70 value 80.551032 iter 80 value 79.730033 iter 90 value 78.125935 iter 100 value 76.845805 final value 76.845805 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.055421 iter 10 value 93.652524 iter 20 value 93.452068 iter 30 value 88.227623 iter 40 value 84.799009 iter 50 value 82.990657 iter 60 value 79.654224 iter 70 value 78.247321 iter 80 value 77.892541 iter 90 value 77.665696 iter 100 value 77.460472 final value 77.460472 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 127.076908 iter 10 value 94.084729 iter 20 value 86.966735 iter 30 value 83.849704 iter 40 value 83.287113 iter 50 value 83.022002 iter 60 value 80.750081 iter 70 value 78.712591 iter 80 value 77.326810 iter 90 value 77.091931 iter 100 value 76.955377 final value 76.955377 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.872825 iter 10 value 93.984481 iter 20 value 84.944897 iter 30 value 82.433905 iter 40 value 80.168180 iter 50 value 78.552329 iter 60 value 77.503740 iter 70 value 77.317079 iter 80 value 76.746724 iter 90 value 76.530441 iter 100 value 76.173604 final value 76.173604 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.809414 iter 10 value 96.771864 iter 20 value 94.134183 iter 30 value 85.280982 iter 40 value 83.401790 iter 50 value 80.763420 iter 60 value 77.457125 iter 70 value 76.818993 iter 80 value 76.506143 iter 90 value 76.356970 iter 100 value 76.242205 final value 76.242205 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.184140 iter 10 value 94.307522 iter 20 value 93.630132 iter 30 value 86.971430 iter 40 value 82.607566 iter 50 value 80.706939 iter 60 value 78.891497 iter 70 value 77.792741 iter 80 value 77.152634 iter 90 value 76.414477 iter 100 value 76.229583 final value 76.229583 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.097947 iter 10 value 94.441857 iter 20 value 89.758566 iter 30 value 85.629027 iter 40 value 80.808214 iter 50 value 78.813741 iter 60 value 78.483359 iter 70 value 78.142254 iter 80 value 77.394770 iter 90 value 77.138280 iter 100 value 76.888839 final value 76.888839 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.036445 iter 10 value 88.639113 iter 20 value 82.055281 iter 30 value 81.247738 iter 40 value 78.827052 iter 50 value 77.512432 iter 60 value 77.221556 iter 70 value 76.924948 iter 80 value 76.562139 iter 90 value 76.223227 iter 100 value 76.068262 final value 76.068262 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.550456 iter 10 value 94.054536 iter 20 value 94.052923 final value 94.052917 converged Fitting Repeat 2 # weights: 103 initial value 102.955726 final value 94.054782 converged Fitting Repeat 3 # weights: 103 initial value 104.853073 iter 10 value 93.330640 iter 20 value 93.330319 iter 30 value 93.329007 final value 93.328975 converged Fitting Repeat 4 # weights: 103 initial value 102.738390 final value 94.057075 converged Fitting Repeat 5 # weights: 103 initial value 94.892848 final value 94.054415 converged Fitting Repeat 1 # weights: 305 initial value 96.490290 iter 10 value 94.057695 iter 20 value 87.626375 iter 30 value 84.959059 iter 40 value 82.911156 iter 50 value 82.688461 iter 60 value 82.687525 iter 70 value 82.686283 iter 70 value 82.686283 final value 82.686283 converged Fitting Repeat 2 # weights: 305 initial value 102.331102 iter 10 value 94.061660 iter 20 value 94.056526 iter 30 value 87.570966 iter 40 value 86.618052 iter 50 value 86.616235 iter 60 value 86.567926 iter 70 value 86.438191 final value 86.438145 converged Fitting Repeat 3 # weights: 305 initial value 95.750011 iter 10 value 85.364407 iter 20 value 85.328095 iter 30 value 85.252884 iter 40 value 85.175907 iter 50 value 85.174857 iter 60 value 85.170720 iter 70 value 79.334422 iter 80 value 78.263785 iter 90 value 77.733567 iter 100 value 77.264818 final value 77.264818 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.370731 iter 10 value 93.333612 iter 20 value 93.330712 iter 30 value 93.330017 iter 40 value 92.471574 iter 50 value 87.034386 iter 60 value 87.014839 iter 70 value 87.014604 iter 80 value 87.014088 iter 90 value 87.013723 iter 100 value 87.013508 final value 87.013508 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.033812 iter 10 value 94.057723 iter 20 value 93.929018 iter 30 value 93.329015 iter 30 value 93.329015 iter 30 value 93.329015 final value 93.329015 converged Fitting Repeat 1 # weights: 507 initial value 97.175371 iter 10 value 93.336812 iter 20 value 93.334283 iter 30 value 88.107738 iter 40 value 87.711179 iter 50 value 87.709220 iter 60 value 87.708658 iter 70 value 87.544621 iter 80 value 87.499697 iter 80 value 87.499696 iter 80 value 87.499696 final value 87.499696 converged Fitting Repeat 2 # weights: 507 initial value 112.052633 iter 10 value 92.900326 iter 20 value 92.036678 iter 30 value 90.501327 iter 40 value 89.509746 iter 50 value 89.450116 iter 60 value 89.407523 iter 70 value 89.404912 final value 89.402975 converged Fitting Repeat 3 # weights: 507 initial value 123.349301 iter 10 value 93.336679 iter 10 value 93.336679 final value 93.336679 converged Fitting Repeat 4 # weights: 507 initial value 120.445389 iter 10 value 94.060377 iter 20 value 93.629520 final value 93.328704 converged Fitting Repeat 5 # weights: 507 initial value 108.090872 iter 10 value 92.342172 iter 20 value 86.632209 iter 30 value 86.589024 final value 86.588956 converged Fitting Repeat 1 # weights: 103 initial value 100.057695 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.163985 final value 94.466823 converged Fitting Repeat 3 # weights: 103 initial value 97.858567 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 109.886974 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.508809 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 124.107990 iter 10 value 94.466825 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 128.605675 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 108.460246 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 122.191476 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.698955 iter 10 value 93.382489 final value 93.135238 converged Fitting Repeat 1 # weights: 507 initial value 99.406868 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 107.058088 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 120.376949 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 103.056566 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 110.809518 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 102.970784 iter 10 value 94.481113 iter 20 value 94.352313 iter 30 value 93.275955 iter 40 value 89.117435 iter 50 value 88.012670 iter 60 value 86.282102 iter 70 value 86.120490 iter 80 value 85.533947 iter 90 value 84.163906 iter 100 value 83.817207 final value 83.817207 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.923481 iter 10 value 94.483885 iter 20 value 89.582178 iter 30 value 87.431161 iter 40 value 86.796683 iter 50 value 86.227319 iter 60 value 85.701868 iter 70 value 85.275142 iter 80 value 85.146434 iter 90 value 85.061210 final value 85.052615 converged Fitting Repeat 3 # weights: 103 initial value 97.344204 iter 10 value 94.125333 iter 20 value 88.619349 iter 30 value 87.540933 iter 40 value 86.575202 iter 50 value 86.115193 iter 60 value 86.092869 iter 70 value 86.087669 final value 86.087500 converged Fitting Repeat 4 # weights: 103 initial value 98.350070 iter 10 value 94.458538 iter 20 value 93.381587 iter 30 value 93.057716 iter 40 value 92.688712 iter 50 value 91.981206 iter 60 value 91.936365 iter 70 value 89.068839 iter 80 value 84.806900 iter 90 value 84.652190 iter 100 value 84.234785 final value 84.234785 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.711173 iter 10 value 94.473809 iter 20 value 87.865414 iter 30 value 87.481957 iter 40 value 86.086134 iter 50 value 85.590194 iter 60 value 85.557210 final value 85.557184 converged Fitting Repeat 1 # weights: 305 initial value 101.569798 iter 10 value 92.046864 iter 20 value 88.884254 iter 30 value 85.554614 iter 40 value 84.843297 iter 50 value 83.867787 iter 60 value 83.316817 iter 70 value 83.048236 iter 80 value 82.945851 iter 90 value 82.798792 iter 100 value 82.788261 final value 82.788261 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.790242 iter 10 value 94.571566 iter 20 value 94.496693 iter 30 value 91.086293 iter 40 value 86.492286 iter 50 value 86.127002 iter 60 value 85.264917 iter 70 value 84.596701 iter 80 value 83.437016 iter 90 value 82.542577 iter 100 value 82.178210 final value 82.178210 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.468225 iter 10 value 94.495723 iter 20 value 92.619458 iter 30 value 88.703335 iter 40 value 87.793145 iter 50 value 87.445667 iter 60 value 84.712114 iter 70 value 83.526832 iter 80 value 82.236942 iter 90 value 81.866609 iter 100 value 81.823348 final value 81.823348 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.268108 iter 10 value 93.862335 iter 20 value 89.840593 iter 30 value 89.037819 iter 40 value 88.964437 iter 50 value 86.649223 iter 60 value 86.061708 iter 70 value 83.354324 iter 80 value 82.793728 iter 90 value 82.708173 iter 100 value 82.555780 final value 82.555780 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.493053 iter 10 value 94.451035 iter 20 value 88.859395 iter 30 value 87.237716 iter 40 value 87.111703 iter 50 value 86.868944 iter 60 value 86.294819 iter 70 value 83.920096 iter 80 value 83.201432 iter 90 value 83.100837 iter 100 value 83.057872 final value 83.057872 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.947976 iter 10 value 91.645951 iter 20 value 85.876521 iter 30 value 83.588985 iter 40 value 82.427216 iter 50 value 82.309117 iter 60 value 82.249089 iter 70 value 82.166268 iter 80 value 82.019234 iter 90 value 81.795514 iter 100 value 81.536234 final value 81.536234 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.248360 iter 10 value 94.605544 iter 20 value 89.415948 iter 30 value 86.324838 iter 40 value 85.892777 iter 50 value 85.417062 iter 60 value 85.091274 iter 70 value 84.635802 iter 80 value 84.113058 iter 90 value 83.969745 iter 100 value 83.777295 final value 83.777295 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.058411 iter 10 value 94.627421 iter 20 value 88.886121 iter 30 value 87.540139 iter 40 value 86.962142 iter 50 value 86.345691 iter 60 value 86.122525 iter 70 value 85.469751 iter 80 value 85.136991 iter 90 value 84.751515 iter 100 value 82.963898 final value 82.963898 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.194482 iter 10 value 94.219552 iter 20 value 92.098924 iter 30 value 87.707664 iter 40 value 85.704107 iter 50 value 85.314012 iter 60 value 84.915470 iter 70 value 84.807403 iter 80 value 84.647576 iter 90 value 84.511520 iter 100 value 83.779377 final value 83.779377 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.569375 iter 10 value 94.522950 iter 20 value 88.265361 iter 30 value 87.221502 iter 40 value 83.283983 iter 50 value 82.930618 iter 60 value 82.453866 iter 70 value 81.974159 iter 80 value 81.705362 iter 90 value 81.631501 iter 100 value 81.416278 final value 81.416278 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 110.693300 final value 94.485905 converged Fitting Repeat 2 # weights: 103 initial value 110.328812 iter 10 value 94.485799 final value 94.484403 converged Fitting Repeat 3 # weights: 103 initial value 100.366850 iter 10 value 94.486171 iter 20 value 94.484277 final value 94.484216 converged Fitting Repeat 4 # weights: 103 initial value 101.320143 iter 10 value 94.485835 final value 94.484884 converged Fitting Repeat 5 # weights: 103 initial value 97.975665 iter 10 value 94.470002 iter 20 value 94.468462 final value 94.466941 converged Fitting Repeat 1 # weights: 305 initial value 101.408023 iter 10 value 93.878957 iter 20 value 92.828385 iter 30 value 92.825336 final value 92.825212 converged Fitting Repeat 2 # weights: 305 initial value 105.104316 iter 10 value 94.488815 iter 20 value 94.484453 iter 30 value 93.252050 iter 40 value 86.402191 iter 50 value 86.400728 iter 60 value 86.364287 final value 86.364217 converged Fitting Repeat 3 # weights: 305 initial value 102.480738 iter 10 value 94.489436 iter 20 value 92.273225 iter 30 value 86.920640 iter 40 value 86.657130 iter 50 value 86.460199 iter 60 value 85.662459 iter 70 value 85.600527 iter 80 value 85.598965 iter 80 value 85.598965 iter 80 value 85.598964 final value 85.598964 converged Fitting Repeat 4 # weights: 305 initial value 95.118492 iter 10 value 94.315291 iter 20 value 94.311215 iter 30 value 93.264687 iter 40 value 92.127340 iter 50 value 92.113599 iter 60 value 92.113486 iter 70 value 92.108148 iter 80 value 92.092386 iter 80 value 92.092386 final value 92.092386 converged Fitting Repeat 5 # weights: 305 initial value 103.926449 iter 10 value 94.489017 iter 20 value 94.456271 iter 30 value 89.015669 iter 40 value 87.067656 iter 50 value 87.059297 final value 87.059258 converged Fitting Repeat 1 # weights: 507 initial value 110.938622 iter 10 value 94.491161 iter 20 value 94.475697 iter 30 value 94.182223 iter 40 value 88.620803 iter 50 value 87.537888 final value 87.534376 converged Fitting Repeat 2 # weights: 507 initial value 117.542224 iter 10 value 94.439608 iter 20 value 93.700330 iter 30 value 92.481883 iter 40 value 92.472922 iter 50 value 92.465827 iter 60 value 92.436205 iter 70 value 92.435644 iter 80 value 92.435595 iter 90 value 92.430898 iter 100 value 91.928918 final value 91.928918 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.323842 iter 10 value 94.490776 iter 20 value 94.445309 iter 30 value 88.100302 final value 88.099588 converged Fitting Repeat 4 # weights: 507 initial value 107.357984 iter 10 value 94.474431 iter 20 value 93.550274 iter 30 value 90.404026 iter 40 value 90.401291 final value 90.401224 converged Fitting Repeat 5 # weights: 507 initial value 122.207806 iter 10 value 94.474409 iter 20 value 94.413604 iter 30 value 94.254828 iter 40 value 94.254352 iter 50 value 94.253925 iter 60 value 94.207088 iter 70 value 91.963781 iter 80 value 88.328516 iter 90 value 88.324532 iter 100 value 87.263074 final value 87.263074 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 122.245761 iter 10 value 117.894636 iter 20 value 117.612798 iter 30 value 113.674497 iter 40 value 107.355007 iter 50 value 106.837426 iter 60 value 106.793337 iter 70 value 104.639179 iter 80 value 104.070075 final value 104.057189 converged Fitting Repeat 2 # weights: 305 initial value 125.110811 iter 10 value 106.256006 iter 20 value 105.291523 iter 30 value 105.276683 iter 40 value 105.270009 iter 50 value 105.266696 final value 105.266324 converged Fitting Repeat 3 # weights: 305 initial value 147.456790 iter 10 value 110.261582 iter 20 value 108.423651 iter 30 value 108.328599 iter 40 value 108.325193 iter 50 value 108.185125 iter 60 value 108.173950 final value 108.173924 converged Fitting Repeat 4 # weights: 305 initial value 120.067058 iter 10 value 108.197186 iter 20 value 105.247290 iter 30 value 105.164800 iter 40 value 105.147831 iter 50 value 105.145144 iter 60 value 105.063010 iter 70 value 104.812015 iter 80 value 104.811684 final value 104.811672 converged Fitting Repeat 5 # weights: 305 initial value 139.859384 iter 10 value 117.895191 iter 20 value 117.890363 iter 30 value 112.169786 iter 40 value 107.907516 iter 50 value 104.593136 iter 60 value 102.452100 iter 70 value 101.976660 iter 80 value 101.960481 iter 90 value 101.903186 iter 100 value 101.901115 final value 101.901115 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Nov 27 23:03:21 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 30.784 1.269 47.539
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 24.350 | 1.296 | 25.695 | |
FreqInteractors | 0.164 | 0.010 | 0.176 | |
calculateAAC | 0.025 | 0.008 | 0.032 | |
calculateAutocor | 0.255 | 0.058 | 0.314 | |
calculateCTDC | 0.052 | 0.006 | 0.058 | |
calculateCTDD | 0.396 | 0.017 | 0.414 | |
calculateCTDT | 0.150 | 0.008 | 0.159 | |
calculateCTriad | 0.241 | 0.024 | 0.265 | |
calculateDC | 0.060 | 0.006 | 0.066 | |
calculateF | 0.221 | 0.006 | 0.227 | |
calculateKSAAP | 0.068 | 0.009 | 0.076 | |
calculateQD_Sm | 1.119 | 0.107 | 1.226 | |
calculateTC | 1.140 | 0.088 | 1.232 | |
calculateTC_Sm | 0.180 | 0.016 | 0.195 | |
corr_plot | 25.455 | 1.416 | 26.942 | |
enrichfindP | 0.343 | 0.055 | 9.083 | |
enrichfind_hp | 0.050 | 0.020 | 1.017 | |
enrichplot | 0.280 | 0.006 | 0.288 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.048 | 0.008 | 3.998 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.001 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.053 | 0.002 | 0.056 | |
pred_ensembel | 10.310 | 0.349 | 9.089 | |
var_imp | 27.360 | 1.628 | 29.130 | |