Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-01-28 11:47 -0500 (Tue, 28 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4659 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" | 4454 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" | 4465 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4419 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" | 4409 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 977/2286 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.13.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-01-28 11:32:53 -0000 (Tue, 28 Jan 2025) |
EndedAt: 2025-01-28 11:39:45 -0000 (Tue, 28 Jan 2025) |
EllapsedTime: 411.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2024-11-24 r87369) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ...Warning: program compiled against libxml 212 using older 211 OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.780 0.391 40.248 FSmethod 37.468 0.331 37.873 corr_plot 37.417 0.247 37.726 pred_ensembel 18.467 0.547 17.817 enrichfindP 0.520 0.020 21.235 getFASTA 0.134 0.020 5.513 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 104.934288 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 110.477843 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.730001 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.895040 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.698230 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 1 # weights: 305 initial value 97.967276 iter 10 value 93.198556 iter 20 value 92.959535 final value 92.959524 converged Fitting Repeat 2 # weights: 305 initial value 121.035461 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 111.497698 iter 10 value 93.328264 final value 93.328261 converged Fitting Repeat 4 # weights: 305 initial value 98.779080 iter 10 value 93.329237 iter 20 value 93.328307 final value 93.328261 converged Fitting Repeat 5 # weights: 305 initial value 94.713692 iter 10 value 87.520139 iter 20 value 87.287312 final value 87.285265 converged Fitting Repeat 1 # weights: 507 initial value 101.525804 iter 10 value 93.482768 final value 93.482759 converged Fitting Repeat 2 # weights: 507 initial value 95.055697 iter 10 value 85.042580 iter 20 value 83.481119 iter 30 value 81.490210 iter 40 value 81.027357 iter 50 value 80.916368 iter 60 value 80.915666 final value 80.915599 converged Fitting Repeat 3 # weights: 507 initial value 101.067806 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 104.824123 iter 10 value 93.354249 final value 93.187808 converged Fitting Repeat 5 # weights: 507 initial value 97.882446 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.494624 iter 10 value 94.057798 iter 20 value 90.435908 iter 30 value 87.560345 iter 40 value 84.897373 iter 50 value 83.979092 iter 60 value 83.964152 iter 70 value 83.960527 final value 83.960245 converged Fitting Repeat 2 # weights: 103 initial value 96.697445 iter 10 value 94.027023 iter 20 value 93.279886 iter 30 value 92.414395 iter 40 value 89.675818 iter 50 value 89.317121 iter 60 value 87.989089 iter 70 value 87.683542 iter 80 value 86.145708 iter 90 value 85.353307 iter 100 value 84.666346 final value 84.666346 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 104.459315 iter 10 value 93.947302 iter 20 value 91.372906 iter 30 value 87.977744 iter 40 value 86.918942 iter 50 value 86.661181 iter 60 value 85.633839 iter 70 value 84.017535 iter 80 value 83.964870 iter 90 value 83.960253 final value 83.960245 converged Fitting Repeat 4 # weights: 103 initial value 99.322334 iter 10 value 94.054880 iter 20 value 93.345674 iter 30 value 93.203952 iter 40 value 93.189113 iter 50 value 93.173384 iter 60 value 86.631928 iter 70 value 84.803636 iter 80 value 84.281030 iter 90 value 84.076563 iter 100 value 83.974385 final value 83.974385 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.877933 iter 10 value 93.964768 iter 20 value 92.035580 iter 30 value 91.110111 iter 40 value 91.002692 iter 50 value 90.999241 iter 60 value 90.997654 final value 90.996877 converged Fitting Repeat 1 # weights: 305 initial value 109.238082 iter 10 value 93.489987 iter 20 value 91.712147 iter 30 value 87.644437 iter 40 value 84.579687 iter 50 value 83.755112 iter 60 value 82.856132 iter 70 value 82.281907 iter 80 value 81.851023 iter 90 value 81.450853 iter 100 value 80.953376 final value 80.953376 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.268355 iter 10 value 94.081543 iter 20 value 93.422074 iter 30 value 90.858792 iter 40 value 87.716046 iter 50 value 86.404376 iter 60 value 86.119762 iter 70 value 84.749598 iter 80 value 84.227987 iter 90 value 84.117238 iter 100 value 83.775349 final value 83.775349 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.206800 iter 10 value 93.322753 iter 20 value 89.332758 iter 30 value 87.716285 iter 40 value 84.863164 iter 50 value 83.941642 iter 60 value 83.172035 iter 70 value 82.864751 iter 80 value 82.689921 iter 90 value 82.491990 iter 100 value 82.320929 final value 82.320929 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.351781 iter 10 value 93.991177 iter 20 value 93.233525 iter 30 value 93.060566 iter 40 value 93.036813 iter 50 value 92.888751 iter 60 value 87.196052 iter 70 value 85.527521 iter 80 value 85.062909 iter 90 value 84.208545 iter 100 value 83.718806 final value 83.718806 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.054350 iter 10 value 94.023724 iter 20 value 86.182623 iter 30 value 84.746897 iter 40 value 83.240678 iter 50 value 81.535656 iter 60 value 81.241938 iter 70 value 81.145812 iter 80 value 81.082089 iter 90 value 80.771964 iter 100 value 80.593245 final value 80.593245 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.100849 iter 10 value 89.013499 iter 20 value 84.815050 iter 30 value 84.535036 iter 40 value 83.774463 iter 50 value 83.144674 iter 60 value 81.790640 iter 70 value 81.426328 iter 80 value 81.049891 iter 90 value 80.776672 iter 100 value 80.555961 final value 80.555961 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.506911 iter 10 value 93.553882 iter 20 value 85.776006 iter 30 value 84.015296 iter 40 value 83.322251 iter 50 value 82.075597 iter 60 value 81.613963 iter 70 value 80.968806 iter 80 value 80.862185 iter 90 value 80.693571 iter 100 value 80.414840 final value 80.414840 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.522677 iter 10 value 94.053686 iter 20 value 93.287839 iter 30 value 85.721970 iter 40 value 82.858300 iter 50 value 81.904711 iter 60 value 80.928451 iter 70 value 80.722980 iter 80 value 80.567786 iter 90 value 80.297045 iter 100 value 80.240474 final value 80.240474 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.043008 iter 10 value 93.076971 iter 20 value 89.015621 iter 30 value 83.569081 iter 40 value 83.048730 iter 50 value 82.461991 iter 60 value 82.180521 iter 70 value 81.902684 iter 80 value 81.146041 iter 90 value 80.787210 iter 100 value 80.668374 final value 80.668374 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 140.463047 iter 10 value 93.873381 iter 20 value 93.363399 iter 30 value 86.864999 iter 40 value 86.242654 iter 50 value 86.002340 iter 60 value 83.757892 iter 70 value 82.979426 iter 80 value 81.546211 iter 90 value 80.579964 iter 100 value 80.293759 final value 80.293759 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.273969 iter 10 value 93.330396 final value 93.330323 converged Fitting Repeat 2 # weights: 103 initial value 123.680490 iter 10 value 93.330582 iter 20 value 93.330322 iter 30 value 93.217580 final value 93.217376 converged Fitting Repeat 3 # weights: 103 initial value 98.128312 final value 94.054710 converged Fitting Repeat 4 # weights: 103 initial value 101.729867 final value 94.054365 converged Fitting Repeat 5 # weights: 103 initial value 95.910674 final value 94.054577 converged Fitting Repeat 1 # weights: 305 initial value 99.790467 iter 10 value 93.119774 iter 20 value 93.092053 iter 30 value 93.087514 iter 40 value 90.803994 iter 50 value 86.020539 final value 86.009475 converged Fitting Repeat 2 # weights: 305 initial value 109.802421 iter 10 value 94.057880 iter 20 value 94.052928 iter 30 value 93.290184 final value 93.226321 converged Fitting Repeat 3 # weights: 305 initial value 109.277645 iter 10 value 93.333764 iter 20 value 93.330455 iter 30 value 93.216943 iter 40 value 93.216560 iter 50 value 93.216539 final value 93.216524 converged Fitting Repeat 4 # weights: 305 initial value 118.508638 iter 10 value 94.058424 iter 20 value 94.053538 iter 30 value 93.651299 iter 40 value 89.898943 iter 50 value 85.052994 iter 60 value 84.638073 iter 70 value 84.558597 iter 80 value 84.061154 iter 90 value 83.453061 iter 100 value 83.425100 final value 83.425100 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.952312 iter 10 value 94.057755 final value 94.053084 converged Fitting Repeat 1 # weights: 507 initial value 124.312123 iter 10 value 93.343954 iter 20 value 93.336111 iter 30 value 93.330504 iter 40 value 93.323608 iter 50 value 93.131987 iter 60 value 92.159181 iter 70 value 90.478403 final value 90.475621 converged Fitting Repeat 2 # weights: 507 initial value 111.076341 iter 10 value 93.970315 iter 20 value 93.752488 iter 30 value 93.519846 iter 40 value 86.569757 iter 50 value 86.539037 iter 60 value 85.642035 iter 70 value 82.377817 iter 80 value 81.201851 iter 90 value 79.774862 iter 100 value 79.108064 final value 79.108064 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.102664 iter 10 value 93.379517 iter 20 value 89.908929 iter 30 value 85.084065 iter 40 value 84.552311 iter 50 value 84.538800 iter 60 value 84.533603 iter 70 value 84.531050 iter 80 value 84.530970 final value 84.530952 converged Fitting Repeat 4 # weights: 507 initial value 104.747105 iter 10 value 94.054342 iter 20 value 93.708350 iter 30 value 92.252144 iter 40 value 91.866489 final value 91.565101 converged Fitting Repeat 5 # weights: 507 initial value 105.447639 iter 10 value 93.337045 iter 20 value 93.334696 iter 30 value 93.053158 iter 40 value 91.763948 iter 50 value 87.434635 iter 60 value 87.075784 iter 70 value 84.973692 iter 80 value 83.387026 iter 90 value 82.907916 iter 100 value 82.907527 final value 82.907527 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.049166 final value 94.476471 converged Fitting Repeat 2 # weights: 103 initial value 94.740274 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 104.484287 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 109.406718 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.473302 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.810460 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.922563 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 110.564125 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.792012 iter 10 value 93.796861 iter 20 value 93.783163 final value 93.783150 converged Fitting Repeat 5 # weights: 305 initial value 94.712754 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.778590 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 117.685972 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 95.653469 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.953206 iter 10 value 92.832893 iter 20 value 92.525855 final value 92.525851 converged Fitting Repeat 5 # weights: 507 initial value 96.267937 final value 94.484216 converged Fitting Repeat 1 # weights: 103 initial value 97.805769 iter 10 value 94.487678 iter 20 value 93.571460 iter 30 value 91.821416 iter 40 value 91.389687 iter 50 value 84.634572 iter 60 value 84.344013 iter 70 value 83.287275 iter 80 value 83.178294 iter 90 value 83.005942 iter 100 value 82.539160 final value 82.539160 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.754941 iter 10 value 94.305937 iter 20 value 89.845743 iter 30 value 87.327415 iter 40 value 87.037857 iter 50 value 86.292208 iter 60 value 80.557961 iter 70 value 80.249957 iter 80 value 80.060675 iter 90 value 80.023269 iter 100 value 79.950460 final value 79.950460 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.902052 iter 10 value 94.491669 iter 20 value 94.488570 iter 30 value 94.294686 iter 40 value 87.471823 iter 50 value 86.359871 iter 60 value 86.102279 iter 70 value 83.056306 iter 80 value 82.871342 iter 90 value 82.517841 iter 100 value 82.444897 final value 82.444897 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 108.513645 iter 10 value 92.387237 iter 20 value 85.179568 iter 30 value 84.763319 iter 40 value 83.883257 iter 50 value 82.316867 iter 60 value 81.716052 iter 70 value 81.701975 iter 80 value 81.701549 iter 90 value 81.696833 iter 100 value 81.694907 final value 81.694907 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.472490 iter 10 value 94.486831 iter 20 value 93.573064 iter 30 value 90.427089 iter 40 value 87.280320 iter 50 value 86.502367 iter 60 value 86.237857 iter 70 value 82.479375 iter 80 value 81.483473 iter 90 value 81.361071 iter 100 value 81.338503 final value 81.338503 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 115.784661 iter 10 value 94.625424 iter 20 value 91.350943 iter 30 value 86.572684 iter 40 value 83.464307 iter 50 value 82.565250 iter 60 value 82.111081 iter 70 value 82.071822 iter 80 value 81.310606 iter 90 value 80.236275 iter 100 value 79.912808 final value 79.912808 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.951673 iter 10 value 94.822995 iter 20 value 93.144891 iter 30 value 86.604343 iter 40 value 82.437963 iter 50 value 82.188833 iter 60 value 82.156288 iter 70 value 82.013689 iter 80 value 81.230439 iter 90 value 79.566741 iter 100 value 78.979850 final value 78.979850 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.426333 iter 10 value 94.407297 iter 20 value 85.058352 iter 30 value 82.335468 iter 40 value 81.099422 iter 50 value 80.758098 iter 60 value 80.184193 iter 70 value 79.646795 iter 80 value 79.554040 iter 90 value 79.318174 iter 100 value 79.129728 final value 79.129728 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.538082 iter 10 value 94.477960 iter 20 value 85.666286 iter 30 value 84.753365 iter 40 value 83.433972 iter 50 value 82.088629 iter 60 value 81.977911 iter 70 value 81.882427 iter 80 value 81.591532 iter 90 value 81.342906 iter 100 value 79.905019 final value 79.905019 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.273881 iter 10 value 88.941080 iter 20 value 83.884246 iter 30 value 82.926663 iter 40 value 81.743485 iter 50 value 81.580853 iter 60 value 80.383666 iter 70 value 80.040061 iter 80 value 80.027845 iter 90 value 79.906894 iter 100 value 79.645709 final value 79.645709 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.371575 iter 10 value 93.117988 iter 20 value 86.272076 iter 30 value 83.903066 iter 40 value 82.381092 iter 50 value 81.161182 iter 60 value 80.375271 iter 70 value 79.757422 iter 80 value 79.269089 iter 90 value 79.023180 iter 100 value 78.936095 final value 78.936095 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.889578 iter 10 value 94.519469 iter 20 value 92.471555 iter 30 value 88.884879 iter 40 value 84.032200 iter 50 value 80.968748 iter 60 value 80.503526 iter 70 value 79.858476 iter 80 value 79.496553 iter 90 value 79.130013 iter 100 value 78.982255 final value 78.982255 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.367558 iter 10 value 94.519081 iter 20 value 94.317141 iter 30 value 84.738899 iter 40 value 84.062693 iter 50 value 83.899009 iter 60 value 81.560590 iter 70 value 79.673550 iter 80 value 79.394253 iter 90 value 78.877417 iter 100 value 78.685945 final value 78.685945 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.103811 iter 10 value 94.696632 iter 20 value 93.369317 iter 30 value 85.990211 iter 40 value 84.796646 iter 50 value 82.656771 iter 60 value 81.972613 iter 70 value 81.797257 iter 80 value 81.767222 iter 90 value 81.584653 iter 100 value 80.707313 final value 80.707313 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.017135 iter 10 value 94.444462 iter 20 value 90.623084 iter 30 value 83.440593 iter 40 value 83.118695 iter 50 value 82.305647 iter 60 value 80.360902 iter 70 value 79.788879 iter 80 value 79.516583 iter 90 value 79.449237 iter 100 value 79.117558 final value 79.117558 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.656968 final value 94.486033 converged Fitting Repeat 2 # weights: 103 initial value 99.032211 final value 94.485642 converged Fitting Repeat 3 # weights: 103 initial value 103.567034 final value 94.485856 converged Fitting Repeat 4 # weights: 103 initial value 104.389228 final value 94.486113 converged Fitting Repeat 5 # weights: 103 initial value 99.129839 final value 94.485789 converged Fitting Repeat 1 # weights: 305 initial value 103.658188 iter 10 value 94.484784 final value 94.484741 converged Fitting Repeat 2 # weights: 305 initial value 95.811358 iter 10 value 94.484710 final value 94.484360 converged Fitting Repeat 3 # weights: 305 initial value 103.791245 iter 10 value 94.359363 iter 20 value 92.806863 iter 30 value 91.548214 iter 40 value 87.802254 iter 50 value 87.644811 iter 60 value 87.639916 final value 87.639867 converged Fitting Repeat 4 # weights: 305 initial value 121.420927 iter 10 value 94.359326 iter 20 value 94.354657 iter 30 value 94.028067 iter 40 value 84.422684 iter 50 value 84.313688 iter 60 value 84.022030 final value 84.020993 converged Fitting Repeat 5 # weights: 305 initial value 96.043516 iter 10 value 81.845961 iter 20 value 81.066263 iter 30 value 81.019029 iter 40 value 81.015952 iter 50 value 80.972187 iter 60 value 80.526074 iter 70 value 80.137486 iter 80 value 80.135844 final value 80.135842 converged Fitting Repeat 1 # weights: 507 initial value 107.191822 iter 10 value 93.949060 iter 20 value 92.111231 iter 30 value 92.067579 iter 40 value 91.997850 iter 50 value 91.960713 iter 60 value 91.960020 iter 70 value 88.470914 iter 80 value 87.530622 iter 90 value 84.644640 iter 100 value 84.168743 final value 84.168743 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.150203 iter 10 value 90.815732 iter 20 value 90.556568 iter 30 value 89.950100 iter 40 value 83.276211 iter 50 value 83.265721 iter 60 value 83.184424 iter 70 value 83.050902 final value 83.048893 converged Fitting Repeat 3 # weights: 507 initial value 107.835503 iter 10 value 94.362691 iter 20 value 94.356142 iter 30 value 94.164739 iter 40 value 92.859799 iter 50 value 85.823256 iter 60 value 82.474050 iter 70 value 80.401687 iter 80 value 79.378568 iter 90 value 78.812841 iter 100 value 78.521138 final value 78.521138 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.145879 iter 10 value 94.489573 iter 20 value 94.113050 iter 30 value 90.966672 iter 40 value 90.397959 iter 50 value 82.581795 iter 60 value 81.606461 iter 70 value 81.063520 iter 80 value 81.021960 iter 90 value 81.016777 final value 81.013983 converged Fitting Repeat 5 # weights: 507 initial value 94.628190 iter 10 value 92.535354 iter 20 value 92.531951 iter 30 value 92.495649 iter 40 value 92.033231 iter 50 value 91.939532 iter 60 value 91.938850 iter 70 value 91.927513 iter 80 value 91.864038 final value 91.855877 converged Fitting Repeat 1 # weights: 103 initial value 96.523197 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.412948 iter 10 value 94.210184 iter 20 value 94.209545 iter 20 value 94.209544 iter 20 value 94.209544 final value 94.209544 converged Fitting Repeat 3 # weights: 103 initial value 94.934909 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.024865 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.457825 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.224416 iter 10 value 94.430450 iter 20 value 94.354286 iter 20 value 94.354286 iter 20 value 94.354286 final value 94.354286 converged Fitting Repeat 2 # weights: 305 initial value 113.830106 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.933636 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.647793 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 107.335135 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 118.687064 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 102.490647 iter 10 value 94.508520 iter 20 value 92.414500 iter 30 value 92.311345 iter 40 value 92.303760 iter 50 value 92.303658 iter 60 value 89.419830 final value 89.330621 converged Fitting Repeat 3 # weights: 507 initial value 98.181087 final value 92.608648 converged Fitting Repeat 4 # weights: 507 initial value 105.131651 final value 94.330952 converged Fitting Repeat 5 # weights: 507 initial value 109.141846 iter 10 value 94.408013 final value 94.405644 converged Fitting Repeat 1 # weights: 103 initial value 96.029651 iter 10 value 93.339686 iter 20 value 87.567865 iter 30 value 86.861839 iter 40 value 84.979971 iter 50 value 84.801642 iter 60 value 83.903605 iter 70 value 83.825140 iter 80 value 83.817708 final value 83.817587 converged Fitting Repeat 2 # weights: 103 initial value 108.709955 iter 10 value 94.433000 iter 20 value 94.267262 iter 30 value 91.644935 iter 40 value 87.641213 iter 50 value 85.497722 iter 60 value 84.830566 iter 70 value 84.323730 iter 80 value 84.190227 final value 84.177696 converged Fitting Repeat 3 # weights: 103 initial value 100.615241 iter 10 value 94.447705 iter 20 value 93.608713 iter 30 value 93.274375 iter 40 value 93.223650 iter 50 value 91.522684 iter 60 value 91.475876 final value 91.467530 converged Fitting Repeat 4 # weights: 103 initial value 100.589858 iter 10 value 94.456751 iter 20 value 93.888590 iter 30 value 90.272942 iter 40 value 88.629178 iter 50 value 87.711621 iter 60 value 87.657500 iter 70 value 87.543439 iter 80 value 87.512104 iter 90 value 87.507733 final value 87.507493 converged Fitting Repeat 5 # weights: 103 initial value 101.144374 iter 10 value 94.047610 iter 20 value 87.416971 iter 30 value 87.001103 iter 40 value 85.791884 iter 50 value 84.764658 iter 60 value 84.180147 iter 70 value 83.857735 iter 80 value 83.817589 final value 83.817587 converged Fitting Repeat 1 # weights: 305 initial value 100.513322 iter 10 value 93.822151 iter 20 value 90.195690 iter 30 value 89.339117 iter 40 value 87.092991 iter 50 value 84.665338 iter 60 value 84.483536 iter 70 value 84.357386 iter 80 value 84.303559 iter 90 value 83.934458 iter 100 value 83.754437 final value 83.754437 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.824566 iter 10 value 93.939890 iter 20 value 89.878472 iter 30 value 88.464828 iter 40 value 87.329276 iter 50 value 85.227459 iter 60 value 84.243542 iter 70 value 83.631512 iter 80 value 83.390115 iter 90 value 83.318075 iter 100 value 83.224041 final value 83.224041 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.214077 iter 10 value 94.491154 iter 20 value 94.199659 iter 30 value 93.850357 iter 40 value 90.716957 iter 50 value 85.469993 iter 60 value 84.127708 iter 70 value 83.665471 iter 80 value 83.460385 iter 90 value 83.220162 iter 100 value 83.117589 final value 83.117589 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.234269 iter 10 value 94.521404 iter 20 value 91.147964 iter 30 value 88.444268 iter 40 value 88.134774 iter 50 value 86.493442 iter 60 value 85.993289 iter 70 value 85.331156 iter 80 value 85.133900 iter 90 value 84.876464 iter 100 value 84.578080 final value 84.578080 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.120136 iter 10 value 89.008232 iter 20 value 86.433304 iter 30 value 84.957195 iter 40 value 84.189694 iter 50 value 83.775047 iter 60 value 83.739520 iter 70 value 83.454069 iter 80 value 83.335884 iter 90 value 83.132733 iter 100 value 83.082246 final value 83.082246 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.095538 iter 10 value 94.448376 iter 20 value 93.082724 iter 30 value 91.622204 iter 40 value 88.186787 iter 50 value 87.390945 iter 60 value 84.732655 iter 70 value 83.755165 iter 80 value 83.165522 iter 90 value 83.055588 iter 100 value 83.010060 final value 83.010060 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.471985 iter 10 value 95.072784 iter 20 value 93.594750 iter 30 value 91.525479 iter 40 value 88.826091 iter 50 value 87.400600 iter 60 value 86.429936 iter 70 value 86.328918 iter 80 value 86.197056 iter 90 value 86.092487 iter 100 value 85.378218 final value 85.378218 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.002086 iter 10 value 94.468346 iter 20 value 94.221789 iter 30 value 93.588441 iter 40 value 89.371370 iter 50 value 88.283311 iter 60 value 87.783235 iter 70 value 85.124257 iter 80 value 84.319743 iter 90 value 84.032979 iter 100 value 83.955066 final value 83.955066 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.656368 iter 10 value 93.345878 iter 20 value 91.207809 iter 30 value 87.106527 iter 40 value 85.585204 iter 50 value 85.256305 iter 60 value 84.994204 iter 70 value 84.791990 iter 80 value 84.174130 iter 90 value 83.471139 iter 100 value 82.796744 final value 82.796744 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.019982 iter 10 value 94.943810 iter 20 value 91.112656 iter 30 value 86.535518 iter 40 value 84.221836 iter 50 value 83.013514 iter 60 value 82.966764 iter 70 value 82.870532 iter 80 value 82.827382 iter 90 value 82.710728 iter 100 value 82.416118 final value 82.416118 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.957814 final value 94.468443 converged Fitting Repeat 2 # weights: 103 initial value 95.476843 final value 94.485664 converged Fitting Repeat 3 # weights: 103 initial value 97.226905 final value 94.485893 converged Fitting Repeat 4 # weights: 103 initial value 99.348549 final value 94.485864 converged Fitting Repeat 5 # weights: 103 initial value 107.190572 final value 94.485690 converged Fitting Repeat 1 # weights: 305 initial value 104.561983 iter 10 value 94.471585 iter 20 value 90.808045 iter 30 value 89.858053 iter 40 value 89.418882 iter 50 value 89.412082 iter 60 value 89.389322 iter 70 value 87.971198 final value 87.919707 converged Fitting Repeat 2 # weights: 305 initial value 116.478187 iter 10 value 94.489689 iter 20 value 94.421883 iter 30 value 89.423510 iter 40 value 87.650007 iter 50 value 87.587848 iter 60 value 87.582409 final value 87.581908 converged Fitting Repeat 3 # weights: 305 initial value 99.939583 iter 10 value 94.471856 iter 20 value 93.638983 iter 30 value 89.412860 iter 30 value 89.412859 iter 30 value 89.412859 final value 89.412859 converged Fitting Repeat 4 # weights: 305 initial value 114.107198 iter 10 value 94.471352 iter 20 value 94.391159 iter 30 value 87.301477 iter 40 value 86.506665 iter 50 value 86.331526 iter 60 value 86.180836 final value 86.180829 converged Fitting Repeat 5 # weights: 305 initial value 95.808200 iter 10 value 94.488080 final value 94.484740 converged Fitting Repeat 1 # weights: 507 initial value 95.472077 iter 10 value 94.491503 iter 20 value 94.419617 iter 30 value 93.854935 iter 40 value 93.826485 final value 93.826282 converged Fitting Repeat 2 # weights: 507 initial value 100.839796 iter 10 value 94.491797 iter 20 value 94.479977 iter 30 value 91.080647 iter 40 value 90.064153 iter 50 value 87.654192 iter 60 value 87.646113 iter 70 value 87.598450 iter 80 value 86.894183 iter 90 value 83.918297 iter 100 value 83.340460 final value 83.340460 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.930532 iter 10 value 94.491399 iter 20 value 94.484225 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.665546 iter 10 value 93.928928 iter 20 value 92.011900 iter 30 value 91.833123 iter 40 value 91.783871 iter 50 value 91.447441 iter 60 value 91.402413 iter 70 value 91.400988 iter 80 value 91.218127 iter 90 value 86.254677 iter 100 value 86.170578 final value 86.170578 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 159.458070 iter 10 value 94.480591 iter 20 value 93.225249 iter 30 value 88.892109 iter 40 value 88.695823 iter 50 value 88.650567 iter 60 value 88.626467 iter 70 value 88.605859 iter 80 value 88.604688 iter 90 value 88.604320 iter 100 value 88.603604 final value 88.603604 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.106649 iter 10 value 90.088387 iter 20 value 85.391983 final value 85.357733 converged Fitting Repeat 2 # weights: 103 initial value 95.730545 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.273197 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.755868 final value 94.423529 converged Fitting Repeat 5 # weights: 103 initial value 95.987886 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.680663 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 112.701180 iter 10 value 94.597763 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 131.496158 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 99.362766 iter 10 value 94.425347 iter 20 value 94.423553 iter 20 value 94.423553 final value 94.423549 converged Fitting Repeat 5 # weights: 305 initial value 96.809500 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.333787 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 126.395435 iter 10 value 94.584468 iter 20 value 94.469881 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 97.554623 iter 10 value 86.934443 iter 20 value 86.886962 final value 86.886850 converged Fitting Repeat 4 # weights: 507 initial value 101.404889 iter 10 value 91.920796 iter 20 value 85.991496 iter 30 value 85.919344 iter 40 value 85.911266 final value 85.911215 converged Fitting Repeat 5 # weights: 507 initial value 94.820781 iter 10 value 94.423984 iter 20 value 94.423532 final value 94.423530 converged Fitting Repeat 1 # weights: 103 initial value 98.831448 iter 10 value 94.629457 iter 20 value 94.488585 iter 30 value 88.640955 iter 40 value 84.345222 iter 50 value 83.550377 iter 60 value 83.135998 iter 70 value 82.303359 iter 80 value 80.963239 iter 90 value 80.397584 iter 100 value 80.393734 final value 80.393734 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.956127 iter 10 value 94.486979 iter 20 value 94.175230 iter 30 value 85.200494 iter 40 value 84.005868 iter 50 value 83.513760 iter 60 value 83.406245 iter 70 value 83.081979 iter 80 value 82.962968 iter 90 value 82.366300 iter 100 value 81.794678 final value 81.794678 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.290939 iter 10 value 94.443454 iter 20 value 91.651708 iter 30 value 86.487805 iter 40 value 83.369220 iter 50 value 83.130194 iter 60 value 82.781508 iter 70 value 82.733429 iter 80 value 82.342206 iter 90 value 82.238777 iter 100 value 80.978296 final value 80.978296 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.446332 iter 10 value 94.588231 iter 20 value 94.487133 iter 30 value 93.843399 iter 40 value 92.649980 iter 50 value 88.225454 iter 60 value 85.900248 iter 70 value 84.293071 iter 80 value 82.595280 iter 90 value 82.272422 iter 100 value 82.241252 final value 82.241252 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.091143 iter 10 value 94.488010 iter 20 value 94.472528 iter 30 value 90.453046 iter 40 value 87.099750 iter 50 value 86.638557 iter 60 value 86.497538 iter 70 value 84.748559 iter 80 value 83.135832 iter 90 value 82.772208 final value 82.769179 converged Fitting Repeat 1 # weights: 305 initial value 103.639842 iter 10 value 92.662767 iter 20 value 86.893445 iter 30 value 85.959647 iter 40 value 83.286530 iter 50 value 81.972285 iter 60 value 81.483283 iter 70 value 81.218466 iter 80 value 80.424646 iter 90 value 79.416337 iter 100 value 79.161308 final value 79.161308 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.820959 iter 10 value 94.536557 iter 20 value 85.954258 iter 30 value 84.075388 iter 40 value 81.910357 iter 50 value 80.801561 iter 60 value 80.344149 iter 70 value 79.947309 iter 80 value 79.584319 iter 90 value 79.367535 iter 100 value 79.174003 final value 79.174003 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.121216 iter 10 value 95.461824 iter 20 value 91.496340 iter 30 value 89.582898 iter 40 value 83.829829 iter 50 value 83.043299 iter 60 value 82.404110 iter 70 value 82.060761 iter 80 value 81.598056 iter 90 value 81.328541 iter 100 value 80.063511 final value 80.063511 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 125.640791 iter 10 value 94.518265 iter 20 value 92.904022 iter 30 value 86.289866 iter 40 value 84.148600 iter 50 value 82.058796 iter 60 value 81.117000 iter 70 value 80.817924 iter 80 value 80.633357 iter 90 value 80.442419 iter 100 value 80.206958 final value 80.206958 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.292724 iter 10 value 94.467049 iter 20 value 88.912726 iter 30 value 85.690976 iter 40 value 85.273282 iter 50 value 84.673198 iter 60 value 81.054063 iter 70 value 80.435888 iter 80 value 80.089652 iter 90 value 79.436704 iter 100 value 79.160858 final value 79.160858 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.043036 iter 10 value 93.853131 iter 20 value 90.528087 iter 30 value 83.550535 iter 40 value 82.979083 iter 50 value 81.388188 iter 60 value 80.694304 iter 70 value 80.016685 iter 80 value 79.743067 iter 90 value 79.489143 iter 100 value 79.334716 final value 79.334716 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.428065 iter 10 value 94.718718 iter 20 value 89.720849 iter 30 value 87.045219 iter 40 value 83.137447 iter 50 value 81.827053 iter 60 value 80.432262 iter 70 value 80.301961 iter 80 value 80.202449 iter 90 value 80.060429 iter 100 value 79.685096 final value 79.685096 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 141.383839 iter 10 value 94.514931 iter 20 value 92.668539 iter 30 value 86.732715 iter 40 value 85.884565 iter 50 value 84.208187 iter 60 value 81.818250 iter 70 value 79.927484 iter 80 value 79.643499 iter 90 value 79.379213 iter 100 value 79.260149 final value 79.260149 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.639242 iter 10 value 94.056013 iter 20 value 90.276386 iter 30 value 86.738384 iter 40 value 84.791504 iter 50 value 81.648951 iter 60 value 80.852302 iter 70 value 79.972339 iter 80 value 79.465920 iter 90 value 79.387877 iter 100 value 79.150049 final value 79.150049 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.224044 iter 10 value 94.740639 iter 20 value 94.555571 iter 30 value 87.213159 iter 40 value 84.106585 iter 50 value 83.416150 iter 60 value 82.694915 iter 70 value 80.034780 iter 80 value 79.730182 iter 90 value 79.490228 iter 100 value 79.446915 final value 79.446915 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.471796 final value 94.485702 converged Fitting Repeat 2 # weights: 103 initial value 99.141708 final value 94.485977 converged Fitting Repeat 3 # weights: 103 initial value 107.828330 final value 94.485802 converged Fitting Repeat 4 # weights: 103 initial value 97.364298 iter 10 value 94.486127 final value 94.484265 converged Fitting Repeat 5 # weights: 103 initial value 100.136911 final value 94.485765 converged Fitting Repeat 1 # weights: 305 initial value 109.481911 iter 10 value 94.489465 iter 20 value 94.486212 iter 30 value 87.217225 iter 40 value 86.640174 iter 50 value 86.639171 final value 86.638830 converged Fitting Repeat 2 # weights: 305 initial value 105.674754 iter 10 value 94.135186 iter 20 value 94.070187 iter 30 value 88.412061 iter 40 value 83.110410 iter 50 value 82.356165 iter 60 value 82.299232 iter 70 value 81.712507 iter 80 value 81.584222 iter 90 value 81.584142 iter 100 value 81.583729 final value 81.583729 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 94.565101 final value 94.489124 converged Fitting Repeat 4 # weights: 305 initial value 102.788647 iter 10 value 94.488872 iter 20 value 94.476167 iter 30 value 94.238655 iter 40 value 92.107493 iter 50 value 90.561981 iter 60 value 80.784591 iter 70 value 80.611881 iter 80 value 80.355220 iter 90 value 80.327232 iter 100 value 80.324985 final value 80.324985 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.736381 iter 10 value 94.472306 iter 20 value 94.467491 final value 94.467414 converged Fitting Repeat 1 # weights: 507 initial value 97.322004 iter 10 value 89.429588 iter 20 value 88.389238 iter 30 value 88.385879 iter 40 value 83.582890 iter 50 value 83.394946 iter 60 value 82.802593 iter 70 value 82.785092 iter 80 value 82.259505 iter 90 value 82.128690 iter 100 value 82.124763 final value 82.124763 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.527132 iter 10 value 94.475313 iter 20 value 90.324547 iter 30 value 89.680770 iter 40 value 87.013259 iter 50 value 86.935021 iter 60 value 85.946237 iter 70 value 83.467279 iter 80 value 83.459839 iter 90 value 83.147749 iter 100 value 83.069878 final value 83.069878 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.678822 iter 10 value 94.475366 iter 20 value 94.467924 iter 30 value 92.677419 iter 40 value 83.463993 iter 50 value 80.688313 iter 60 value 80.112115 iter 70 value 80.035679 iter 80 value 79.369362 iter 90 value 79.285102 iter 100 value 79.270404 final value 79.270404 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.210768 iter 10 value 94.492052 iter 20 value 92.701999 iter 30 value 88.469191 iter 40 value 88.468340 iter 50 value 86.842624 iter 60 value 82.483942 iter 70 value 82.482006 iter 80 value 82.477510 iter 90 value 82.474351 iter 100 value 82.472887 final value 82.472887 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.266765 iter 10 value 94.032431 iter 20 value 94.030723 iter 30 value 94.029935 iter 40 value 93.995727 iter 50 value 83.420400 iter 60 value 83.073410 iter 70 value 81.650103 iter 80 value 81.437426 final value 81.436474 converged Fitting Repeat 1 # weights: 103 initial value 101.553719 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.333521 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 108.408878 final value 93.869755 converged Fitting Repeat 4 # weights: 103 initial value 96.352444 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.894390 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 108.282039 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.720556 iter 10 value 93.399020 final value 93.399016 converged Fitting Repeat 3 # weights: 305 initial value 113.468039 iter 10 value 93.653870 iter 10 value 93.653870 iter 10 value 93.653870 final value 93.653870 converged Fitting Repeat 4 # weights: 305 initial value 95.730564 final value 93.426574 converged Fitting Repeat 5 # weights: 305 initial value 103.749422 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 116.276251 iter 10 value 91.824180 final value 91.824176 converged Fitting Repeat 2 # weights: 507 initial value 121.401341 final value 93.836064 converged Fitting Repeat 3 # weights: 507 initial value 94.571899 iter 10 value 93.605336 final value 93.604520 converged Fitting Repeat 4 # weights: 507 initial value 98.656901 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 102.494715 iter 10 value 87.177462 iter 20 value 85.819860 iter 30 value 85.799081 final value 85.798885 converged Fitting Repeat 1 # weights: 103 initial value 96.121908 iter 10 value 94.057010 iter 20 value 86.614549 iter 30 value 82.241253 iter 40 value 82.044887 iter 50 value 81.897701 final value 81.879910 converged Fitting Repeat 2 # weights: 103 initial value 106.447065 iter 10 value 94.023700 iter 20 value 93.475450 iter 30 value 93.447420 iter 40 value 92.691272 iter 50 value 88.621648 iter 60 value 86.368297 iter 70 value 82.614783 iter 80 value 81.147084 iter 90 value 81.081651 iter 100 value 81.028292 final value 81.028292 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 108.903920 iter 10 value 94.054840 iter 20 value 93.488250 iter 30 value 93.453705 iter 40 value 92.522275 iter 50 value 88.085161 iter 60 value 86.252208 iter 70 value 79.717387 iter 80 value 78.792193 iter 90 value 78.479851 iter 100 value 78.427389 final value 78.427389 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 94.595208 iter 10 value 84.707952 iter 20 value 83.174001 iter 30 value 81.096939 iter 40 value 81.068325 iter 50 value 81.030515 iter 60 value 81.027533 final value 81.027528 converged Fitting Repeat 5 # weights: 103 initial value 97.310713 iter 10 value 93.937228 iter 20 value 92.692414 iter 30 value 81.648861 iter 40 value 79.801993 iter 50 value 78.887657 iter 60 value 78.605416 iter 70 value 78.135864 iter 80 value 78.078103 iter 90 value 78.054657 final value 78.054652 converged Fitting Repeat 1 # weights: 305 initial value 108.398930 iter 10 value 94.970202 iter 20 value 91.376341 iter 30 value 82.467847 iter 40 value 81.058692 iter 50 value 79.733376 iter 60 value 79.381885 iter 70 value 79.175550 iter 80 value 78.434430 iter 90 value 77.704122 iter 100 value 77.110287 final value 77.110287 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.753223 iter 10 value 93.986535 iter 20 value 87.339143 iter 30 value 86.820176 iter 40 value 85.345097 iter 50 value 81.097710 iter 60 value 80.874581 iter 70 value 80.737382 iter 80 value 80.426733 iter 90 value 80.414868 iter 100 value 80.388095 final value 80.388095 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.028515 iter 10 value 93.109044 iter 20 value 88.847704 iter 30 value 85.541536 iter 40 value 85.112250 iter 50 value 82.009420 iter 60 value 81.942903 iter 70 value 81.694544 iter 80 value 80.986761 iter 90 value 80.687793 iter 100 value 80.160766 final value 80.160766 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.849649 iter 10 value 93.937044 iter 20 value 84.168641 iter 30 value 83.672132 iter 40 value 81.861117 iter 50 value 79.934846 iter 60 value 79.262477 iter 70 value 78.222443 iter 80 value 77.431975 iter 90 value 77.364620 iter 100 value 77.326175 final value 77.326175 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.344008 iter 10 value 94.011355 iter 20 value 87.683533 iter 30 value 85.513622 iter 40 value 79.983231 iter 50 value 79.352426 iter 60 value 78.758738 iter 70 value 78.270828 iter 80 value 77.973446 iter 90 value 77.910851 iter 100 value 77.874934 final value 77.874934 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.729567 iter 10 value 93.741944 iter 20 value 85.431233 iter 30 value 84.977109 iter 40 value 83.874249 iter 50 value 83.272723 iter 60 value 83.101656 iter 70 value 82.629151 iter 80 value 82.483251 iter 90 value 81.603748 iter 100 value 79.017909 final value 79.017909 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.832841 iter 10 value 94.350497 iter 20 value 91.323255 iter 30 value 90.584163 iter 40 value 86.521222 iter 50 value 80.188753 iter 60 value 78.593967 iter 70 value 78.312453 iter 80 value 77.735573 iter 90 value 77.042625 iter 100 value 76.775127 final value 76.775127 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.059116 iter 10 value 94.681109 iter 20 value 92.750562 iter 30 value 83.554598 iter 40 value 81.501003 iter 50 value 80.338095 iter 60 value 79.782046 iter 70 value 78.919700 iter 80 value 78.727439 iter 90 value 78.534181 iter 100 value 78.255839 final value 78.255839 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.815947 iter 10 value 93.373266 iter 20 value 82.883758 iter 30 value 80.713434 iter 40 value 79.362274 iter 50 value 78.979447 iter 60 value 78.418651 iter 70 value 77.821222 iter 80 value 77.503976 iter 90 value 76.970897 iter 100 value 76.670973 final value 76.670973 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.513705 iter 10 value 94.139057 iter 20 value 93.573158 iter 30 value 90.622350 iter 40 value 85.600755 iter 50 value 84.163517 iter 60 value 79.903521 iter 70 value 78.963772 iter 80 value 78.442459 iter 90 value 77.514414 iter 100 value 77.164019 final value 77.164019 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.340382 final value 94.054371 converged Fitting Repeat 2 # weights: 103 initial value 100.081517 final value 94.054325 converged Fitting Repeat 3 # weights: 103 initial value 106.153656 iter 10 value 94.054693 iter 20 value 94.052979 iter 30 value 94.032268 final value 93.654241 converged Fitting Repeat 4 # weights: 103 initial value 95.712396 iter 10 value 86.064948 iter 20 value 82.154636 iter 30 value 82.152908 iter 40 value 82.012985 iter 50 value 81.962151 final value 81.961808 converged Fitting Repeat 5 # weights: 103 initial value 97.403296 final value 94.054508 converged Fitting Repeat 1 # weights: 305 initial value 117.193860 iter 10 value 94.057368 iter 20 value 94.053095 final value 94.052921 converged Fitting Repeat 2 # weights: 305 initial value 98.629317 iter 10 value 93.840981 iter 20 value 93.498963 iter 30 value 93.410512 iter 40 value 93.393806 iter 50 value 93.378124 iter 60 value 93.377654 iter 70 value 93.377564 iter 70 value 93.377563 iter 70 value 93.377563 final value 93.377563 converged Fitting Repeat 3 # weights: 305 initial value 99.402194 iter 10 value 93.690298 iter 20 value 93.637460 iter 30 value 93.631737 iter 40 value 83.401309 iter 50 value 81.359310 iter 60 value 81.230589 iter 70 value 81.109043 iter 80 value 81.048238 final value 81.042135 converged Fitting Repeat 4 # weights: 305 initial value 102.387755 iter 10 value 94.058272 iter 20 value 93.436549 iter 30 value 93.381333 final value 93.378653 converged Fitting Repeat 5 # weights: 305 initial value 102.111138 iter 10 value 94.055904 iter 20 value 93.899027 iter 30 value 86.116712 iter 40 value 84.074424 final value 84.074420 converged Fitting Repeat 1 # weights: 507 initial value 95.666752 iter 10 value 89.120619 iter 20 value 83.965979 iter 30 value 79.869265 iter 40 value 79.857485 iter 50 value 79.854146 iter 60 value 79.667753 iter 70 value 78.012549 iter 80 value 77.215250 iter 90 value 77.179424 iter 100 value 75.807060 final value 75.807060 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.156126 iter 10 value 93.588240 iter 20 value 89.671373 iter 30 value 86.637215 iter 40 value 86.634555 iter 50 value 86.630776 iter 60 value 85.910822 iter 70 value 84.948540 iter 80 value 80.164148 iter 90 value 76.725745 iter 100 value 76.645864 final value 76.645864 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.645500 iter 10 value 90.663775 iter 20 value 88.296831 iter 30 value 88.074388 iter 40 value 86.603834 iter 50 value 86.257977 iter 60 value 86.257387 iter 70 value 86.163887 iter 80 value 86.163385 iter 90 value 84.312855 iter 100 value 83.921298 final value 83.921298 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 141.290961 iter 10 value 84.774609 iter 20 value 81.545979 iter 30 value 81.470824 final value 81.470349 converged Fitting Repeat 5 # weights: 507 initial value 96.385328 iter 10 value 92.720827 iter 20 value 82.884866 iter 30 value 82.017346 iter 40 value 81.709609 final value 81.706776 converged Fitting Repeat 1 # weights: 305 initial value 133.067670 iter 10 value 114.494677 iter 20 value 114.423309 iter 30 value 114.418544 iter 40 value 114.319314 iter 50 value 114.315118 iter 60 value 113.350164 iter 70 value 113.342411 iter 80 value 113.309317 iter 90 value 110.340829 iter 100 value 108.335466 final value 108.335466 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 135.001643 iter 10 value 117.895125 iter 20 value 117.886626 iter 30 value 117.203734 iter 40 value 107.648190 iter 50 value 107.647137 iter 60 value 106.914970 iter 70 value 106.108558 iter 80 value 105.352635 iter 90 value 105.351738 iter 100 value 105.140092 final value 105.140092 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 120.236760 iter 10 value 115.337126 iter 20 value 115.300338 iter 30 value 114.909634 iter 40 value 114.422846 iter 50 value 114.418545 iter 60 value 114.417980 iter 60 value 114.417980 final value 114.417980 converged Fitting Repeat 4 # weights: 305 initial value 122.537977 iter 10 value 117.894966 iter 20 value 117.889731 iter 30 value 107.444137 final value 107.003634 converged Fitting Repeat 5 # weights: 305 initial value 129.110092 iter 10 value 117.554922 iter 20 value 117.552369 iter 30 value 117.356561 iter 40 value 113.756242 iter 50 value 111.708833 iter 60 value 111.659882 iter 70 value 111.659396 iter 80 value 106.126131 iter 90 value 105.775343 iter 100 value 105.773269 final value 105.773269 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Jan 28 11:39:40 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 53.791 1.722 136.769
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 37.468 | 0.331 | 37.873 | |
FreqInteractors | 0.297 | 0.004 | 0.302 | |
calculateAAC | 0.037 | 0.012 | 0.049 | |
calculateAutocor | 0.723 | 0.024 | 0.750 | |
calculateCTDC | 0.089 | 0.004 | 0.094 | |
calculateCTDD | 0.734 | 0.000 | 0.736 | |
calculateCTDT | 0.256 | 0.000 | 0.256 | |
calculateCTriad | 0.479 | 0.012 | 0.491 | |
calculateDC | 0.119 | 0.004 | 0.124 | |
calculateF | 0.425 | 0.004 | 0.430 | |
calculateKSAAP | 0.141 | 0.000 | 0.142 | |
calculateQD_Sm | 2.251 | 0.012 | 2.268 | |
calculateTC | 2.425 | 0.044 | 2.474 | |
calculateTC_Sm | 0.288 | 0.008 | 0.297 | |
corr_plot | 37.417 | 0.247 | 37.726 | |
enrichfindP | 0.520 | 0.020 | 21.235 | |
enrichfind_hp | 0.091 | 0.000 | 1.947 | |
enrichplot | 0.514 | 0.004 | 0.519 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.134 | 0.020 | 5.513 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.000 | 0.002 | |
plotPPI | 0.088 | 0.004 | 0.092 | |
pred_ensembel | 18.467 | 0.547 | 17.817 | |
var_imp | 39.780 | 0.391 | 40.248 | |