| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-01 11:35 -0500 (Mon, 01 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4866 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4572 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 994/2328 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-12-01 00:35:34 -0500 (Mon, 01 Dec 2025) |
| EndedAt: 2025-12-01 00:50:39 -0500 (Mon, 01 Dec 2025) |
| EllapsedTime: 904.4 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 34.270 0.482 34.765
var_imp 33.371 0.444 33.819
FSmethod 32.604 0.590 33.195
pred_ensembel 12.811 0.128 11.549
enrichfindP 0.565 0.037 14.364
getFASTA 0.479 0.008 6.768
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.759128
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 104.495818
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.455701
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 106.627305
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.357192
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.475093
final value 94.038251
converged
Fitting Repeat 2
# weights: 305
initial value 96.242149
iter 10 value 93.839506
iter 10 value 93.839506
iter 10 value 93.839506
final value 93.839506
converged
Fitting Repeat 3
# weights: 305
initial value 103.416839
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 94.531822
final value 94.012725
converged
Fitting Repeat 5
# weights: 305
initial value 100.045045
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 107.235995
iter 10 value 94.025289
iter 10 value 94.025289
iter 10 value 94.025289
final value 94.025289
converged
Fitting Repeat 2
# weights: 507
initial value 98.114947
final value 94.038251
converged
Fitting Repeat 3
# weights: 507
initial value 126.780849
iter 10 value 91.756562
iter 20 value 90.804168
iter 30 value 90.800061
final value 90.800001
converged
Fitting Repeat 4
# weights: 507
initial value 107.721452
iter 10 value 94.038251
iter 10 value 94.038251
iter 10 value 94.038251
final value 94.038251
converged
Fitting Repeat 5
# weights: 507
initial value 106.272145
iter 10 value 91.813483
iter 20 value 91.812660
final value 91.809803
converged
Fitting Repeat 1
# weights: 103
initial value 95.958539
iter 10 value 93.432525
iter 20 value 86.222971
iter 30 value 83.726871
iter 40 value 83.519502
iter 50 value 83.387378
iter 60 value 83.025924
iter 70 value 82.991533
final value 82.991529
converged
Fitting Repeat 2
# weights: 103
initial value 98.711844
iter 10 value 94.052500
iter 20 value 92.005107
iter 30 value 85.196137
iter 40 value 84.896151
iter 50 value 84.343806
iter 60 value 84.202767
iter 70 value 83.452854
iter 80 value 83.245367
iter 90 value 82.998877
final value 82.991529
converged
Fitting Repeat 3
# weights: 103
initial value 110.576675
iter 10 value 93.725151
iter 20 value 87.596444
iter 30 value 86.223190
iter 40 value 85.953391
iter 50 value 83.287640
iter 60 value 81.033115
iter 70 value 80.872800
iter 80 value 80.196323
iter 90 value 80.017320
final value 80.017049
converged
Fitting Repeat 4
# weights: 103
initial value 97.820044
iter 10 value 93.876903
iter 20 value 89.671102
iter 30 value 86.362721
iter 40 value 86.217183
iter 50 value 85.892123
iter 60 value 84.844685
iter 70 value 83.367103
iter 80 value 83.062833
iter 90 value 82.991747
final value 82.991529
converged
Fitting Repeat 5
# weights: 103
initial value 102.926259
iter 10 value 94.107459
iter 20 value 91.607683
iter 30 value 84.352596
iter 40 value 83.739705
iter 50 value 83.566666
iter 60 value 83.255397
iter 70 value 83.119697
iter 80 value 83.000028
final value 82.991529
converged
Fitting Repeat 1
# weights: 305
initial value 119.924781
iter 10 value 93.718573
iter 20 value 84.445409
iter 30 value 83.555215
iter 40 value 80.958245
iter 50 value 80.012446
iter 60 value 79.658286
iter 70 value 79.233232
iter 80 value 79.212387
iter 90 value 79.203802
iter 100 value 79.184192
final value 79.184192
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.572142
iter 10 value 94.100292
iter 20 value 87.587205
iter 30 value 84.078511
iter 40 value 83.316758
iter 50 value 82.938363
iter 60 value 82.728713
iter 70 value 82.618983
iter 80 value 82.583001
iter 90 value 81.156812
iter 100 value 80.571862
final value 80.571862
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.573404
iter 10 value 94.438286
iter 20 value 93.518295
iter 30 value 92.616887
iter 40 value 85.217841
iter 50 value 80.209553
iter 60 value 79.638770
iter 70 value 79.476645
iter 80 value 79.270964
iter 90 value 79.187097
iter 100 value 79.131057
final value 79.131057
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.264546
iter 10 value 94.073017
iter 20 value 87.367050
iter 30 value 86.568843
iter 40 value 85.270989
iter 50 value 84.442324
iter 60 value 83.258253
iter 70 value 82.738102
iter 80 value 81.209851
iter 90 value 80.844768
iter 100 value 80.465900
final value 80.465900
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.926821
iter 10 value 94.207944
iter 20 value 94.020227
iter 30 value 86.989856
iter 40 value 84.979203
iter 50 value 83.152262
iter 60 value 79.849151
iter 70 value 79.189613
iter 80 value 78.698629
iter 90 value 78.472334
iter 100 value 78.453336
final value 78.453336
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.513874
iter 10 value 93.396684
iter 20 value 87.269127
iter 30 value 83.569470
iter 40 value 81.219308
iter 50 value 80.058868
iter 60 value 79.380153
iter 70 value 79.127713
iter 80 value 78.828049
iter 90 value 78.650395
iter 100 value 78.565822
final value 78.565822
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.456082
iter 10 value 93.527758
iter 20 value 88.633993
iter 30 value 84.343721
iter 40 value 82.252743
iter 50 value 80.745664
iter 60 value 80.155357
iter 70 value 79.517098
iter 80 value 79.367799
iter 90 value 79.189512
iter 100 value 78.746316
final value 78.746316
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 115.649266
iter 10 value 94.075660
iter 20 value 88.973035
iter 30 value 86.636091
iter 40 value 83.565527
iter 50 value 82.976443
iter 60 value 82.101958
iter 70 value 80.439103
iter 80 value 80.391205
iter 90 value 80.354789
iter 100 value 79.861038
final value 79.861038
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.656909
iter 10 value 92.089020
iter 20 value 83.914744
iter 30 value 82.677796
iter 40 value 82.161365
iter 50 value 80.645623
iter 60 value 80.109080
iter 70 value 79.557831
iter 80 value 79.319604
iter 90 value 78.956244
iter 100 value 78.601067
final value 78.601067
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 152.084890
iter 10 value 95.746055
iter 20 value 88.644710
iter 30 value 87.583719
iter 40 value 86.002754
iter 50 value 83.380568
iter 60 value 82.139683
iter 70 value 81.846036
iter 80 value 81.236801
iter 90 value 80.452091
iter 100 value 79.316543
final value 79.316543
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.549904
final value 94.054308
converged
Fitting Repeat 2
# weights: 103
initial value 104.961163
final value 94.054610
converged
Fitting Repeat 3
# weights: 103
initial value 102.047004
final value 94.054805
converged
Fitting Repeat 4
# weights: 103
initial value 100.012449
final value 94.054618
converged
Fitting Repeat 5
# weights: 103
initial value 109.789233
final value 94.040043
converged
Fitting Repeat 1
# weights: 305
initial value 107.453287
iter 10 value 94.058054
iter 20 value 94.052923
iter 30 value 93.487158
iter 40 value 84.529833
iter 50 value 83.487149
iter 60 value 82.722949
iter 70 value 82.718929
iter 80 value 80.807472
iter 90 value 80.613431
iter 100 value 80.489520
final value 80.489520
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 95.044653
iter 10 value 94.057404
iter 20 value 94.052928
iter 30 value 94.051518
iter 40 value 88.571364
iter 50 value 86.587724
iter 60 value 86.586385
iter 60 value 86.586384
iter 60 value 86.586384
final value 86.586384
converged
Fitting Repeat 3
# weights: 305
initial value 98.213315
iter 10 value 94.057357
iter 20 value 93.919848
iter 30 value 92.117684
iter 40 value 84.561371
iter 50 value 83.925872
iter 60 value 83.891113
final value 83.888229
converged
Fitting Repeat 4
# weights: 305
initial value 95.833141
iter 10 value 94.056219
iter 20 value 92.297957
iter 30 value 87.050539
iter 40 value 87.047393
iter 50 value 87.045126
iter 60 value 87.044691
iter 70 value 86.741122
final value 86.741005
converged
Fitting Repeat 5
# weights: 305
initial value 117.023002
iter 10 value 94.057707
iter 20 value 93.021397
iter 30 value 86.308485
iter 40 value 85.978162
final value 85.977999
converged
Fitting Repeat 1
# weights: 507
initial value 104.485467
iter 10 value 94.060893
iter 20 value 94.045822
iter 30 value 94.025652
final value 94.025608
converged
Fitting Repeat 2
# weights: 507
initial value 96.117994
iter 10 value 94.059634
iter 20 value 93.952757
iter 30 value 89.876039
iter 40 value 83.270888
iter 50 value 82.555981
iter 60 value 81.893388
iter 70 value 80.964323
iter 80 value 80.920150
iter 90 value 80.815863
iter 100 value 80.814776
final value 80.814776
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 98.453820
iter 10 value 94.061346
iter 20 value 94.046134
iter 30 value 91.610631
iter 40 value 83.447857
iter 50 value 82.971403
iter 60 value 82.702096
iter 70 value 79.558835
iter 80 value 79.176339
iter 90 value 78.526556
iter 100 value 78.173991
final value 78.173991
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.736912
iter 10 value 93.818459
iter 20 value 93.760716
iter 30 value 93.159384
final value 92.820703
converged
Fitting Repeat 5
# weights: 507
initial value 102.255820
iter 10 value 94.046549
iter 20 value 93.553530
iter 30 value 85.041756
iter 40 value 82.733761
iter 50 value 82.430031
iter 60 value 79.484396
iter 70 value 78.299410
iter 80 value 78.067221
iter 90 value 78.004727
iter 100 value 77.977288
final value 77.977288
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 107.357317
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.234812
iter 10 value 94.354810
final value 94.354396
converged
Fitting Repeat 3
# weights: 103
initial value 105.850273
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.222104
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.763271
final value 94.484212
converged
Fitting Repeat 1
# weights: 305
initial value 106.464120
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 95.360762
final value 94.354396
converged
Fitting Repeat 3
# weights: 305
initial value 105.111160
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 99.532936
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 98.761754
final value 94.484212
converged
Fitting Repeat 1
# weights: 507
initial value 108.715352
iter 10 value 94.240481
final value 94.093952
converged
Fitting Repeat 2
# weights: 507
initial value 101.068213
iter 10 value 93.477765
iter 20 value 93.475616
final value 93.475602
converged
Fitting Repeat 3
# weights: 507
initial value 111.695104
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 99.640791
iter 10 value 92.709433
iter 20 value 85.358075
iter 30 value 85.355260
final value 85.355257
converged
Fitting Repeat 5
# weights: 507
initial value 99.810966
iter 10 value 89.710418
final value 88.800000
converged
Fitting Repeat 1
# weights: 103
initial value 106.229479
iter 10 value 94.409338
iter 20 value 93.877526
iter 30 value 90.711196
iter 40 value 89.299694
iter 50 value 88.576418
iter 60 value 87.238525
iter 70 value 86.219979
iter 80 value 85.367988
iter 90 value 85.326297
final value 85.323952
converged
Fitting Repeat 2
# weights: 103
initial value 99.119637
iter 10 value 94.487095
iter 20 value 93.298201
iter 30 value 86.672603
iter 40 value 86.370527
iter 50 value 86.255248
iter 60 value 85.484939
iter 70 value 85.324808
final value 85.323952
converged
Fitting Repeat 3
# weights: 103
initial value 103.340580
iter 10 value 94.494552
iter 20 value 94.446215
iter 30 value 87.908643
iter 40 value 87.499748
iter 50 value 87.173288
iter 60 value 84.543153
iter 70 value 84.534877
iter 70 value 84.534877
iter 70 value 84.534877
final value 84.534877
converged
Fitting Repeat 4
# weights: 103
initial value 106.536048
iter 10 value 94.471431
iter 20 value 94.113924
iter 30 value 94.088345
iter 40 value 92.309040
iter 50 value 87.242656
iter 60 value 86.533673
iter 70 value 85.792524
iter 80 value 84.417832
iter 90 value 84.019436
iter 100 value 83.216736
final value 83.216736
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 102.702803
iter 10 value 95.586503
iter 20 value 94.488577
iter 30 value 94.204849
iter 40 value 86.910914
iter 50 value 84.841484
iter 60 value 84.609618
iter 70 value 84.543389
iter 80 value 84.360837
iter 90 value 82.884654
iter 100 value 82.597117
final value 82.597117
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 111.263481
iter 10 value 94.405069
iter 20 value 94.074159
iter 30 value 92.482292
iter 40 value 86.822552
iter 50 value 84.700078
iter 60 value 84.458774
iter 70 value 82.884825
iter 80 value 82.700557
iter 90 value 82.597343
iter 100 value 82.572367
final value 82.572367
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.601370
iter 10 value 94.462425
iter 20 value 94.151698
iter 30 value 94.005852
iter 40 value 87.015001
iter 50 value 85.786464
iter 60 value 85.059244
iter 70 value 83.620594
iter 80 value 82.184418
iter 90 value 81.865575
iter 100 value 81.738831
final value 81.738831
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 132.581013
iter 10 value 94.546506
iter 20 value 90.858232
iter 30 value 88.167421
iter 40 value 84.553618
iter 50 value 83.514912
iter 60 value 83.030741
iter 70 value 82.533661
iter 80 value 82.337480
iter 90 value 82.156156
iter 100 value 82.051176
final value 82.051176
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.165348
iter 10 value 94.285042
iter 20 value 88.263105
iter 30 value 85.455987
iter 40 value 84.504077
iter 50 value 84.070676
iter 60 value 83.014541
iter 70 value 82.372267
iter 80 value 82.041057
iter 90 value 81.912382
iter 100 value 81.713078
final value 81.713078
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 120.931374
iter 10 value 94.130951
iter 20 value 89.511994
iter 30 value 88.674564
iter 40 value 87.845159
iter 50 value 85.265351
iter 60 value 82.514214
iter 70 value 82.241358
iter 80 value 82.088409
iter 90 value 82.017095
iter 100 value 81.715971
final value 81.715971
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.624562
iter 10 value 93.825108
iter 20 value 86.931122
iter 30 value 86.387565
iter 40 value 85.957604
iter 50 value 84.929845
iter 60 value 84.172165
iter 70 value 83.394730
iter 80 value 82.636989
iter 90 value 81.370222
iter 100 value 81.050899
final value 81.050899
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.787132
iter 10 value 97.098426
iter 20 value 91.941875
iter 30 value 87.517711
iter 40 value 85.856119
iter 50 value 82.522564
iter 60 value 82.355068
iter 70 value 82.079859
iter 80 value 82.015358
iter 90 value 81.941822
iter 100 value 81.912208
final value 81.912208
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.232243
iter 10 value 93.477364
iter 20 value 85.543974
iter 30 value 85.187719
iter 40 value 84.996619
iter 50 value 83.857980
iter 60 value 83.209800
iter 70 value 81.812837
iter 80 value 81.482852
iter 90 value 81.123878
iter 100 value 81.006457
final value 81.006457
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.938869
iter 10 value 96.220788
iter 20 value 92.752756
iter 30 value 86.884987
iter 40 value 85.315885
iter 50 value 83.986866
iter 60 value 83.309357
iter 70 value 82.407880
iter 80 value 81.781949
iter 90 value 81.505959
iter 100 value 81.456751
final value 81.456751
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.664242
iter 10 value 94.212189
iter 20 value 87.191210
iter 30 value 86.629037
iter 40 value 86.412378
iter 50 value 85.219492
iter 60 value 83.334728
iter 70 value 82.700866
iter 80 value 82.637050
iter 90 value 82.346641
iter 100 value 81.495634
final value 81.495634
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.908531
final value 94.485904
converged
Fitting Repeat 2
# weights: 103
initial value 96.715913
final value 94.486091
converged
Fitting Repeat 3
# weights: 103
initial value 95.931030
final value 94.355973
converged
Fitting Repeat 4
# weights: 103
initial value 99.153976
final value 94.485836
converged
Fitting Repeat 5
# weights: 103
initial value 96.955431
final value 94.485760
converged
Fitting Repeat 1
# weights: 305
initial value 97.833063
iter 10 value 94.362874
iter 20 value 94.358202
iter 30 value 94.355110
final value 94.354670
converged
Fitting Repeat 2
# weights: 305
initial value 96.870742
iter 10 value 94.359687
iter 20 value 94.125124
iter 30 value 92.632033
final value 92.631449
converged
Fitting Repeat 3
# weights: 305
initial value 96.165495
iter 10 value 94.359881
iter 20 value 94.078748
iter 30 value 92.616089
final value 92.616086
converged
Fitting Repeat 4
# weights: 305
initial value 99.313523
iter 10 value 94.109270
iter 20 value 94.106234
iter 30 value 94.105627
iter 40 value 94.104821
iter 50 value 94.104178
iter 60 value 91.704076
iter 70 value 88.523188
iter 80 value 87.681060
iter 90 value 85.356305
iter 100 value 83.531802
final value 83.531802
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.145464
iter 10 value 94.483406
iter 20 value 90.106611
iter 30 value 85.838459
iter 40 value 83.940248
final value 83.939063
converged
Fitting Repeat 1
# weights: 507
initial value 120.634760
iter 10 value 94.491654
iter 20 value 94.114488
iter 30 value 94.109113
iter 40 value 94.107654
iter 50 value 94.106920
iter 60 value 94.095381
iter 70 value 90.291329
iter 80 value 87.813425
iter 90 value 86.304006
iter 100 value 83.836253
final value 83.836253
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.201811
iter 10 value 93.661560
iter 20 value 92.568223
iter 30 value 92.547384
iter 40 value 92.545809
iter 50 value 92.541665
iter 60 value 92.522523
iter 70 value 92.287412
iter 80 value 85.809028
iter 90 value 85.264293
iter 100 value 85.251362
final value 85.251362
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.450991
iter 10 value 94.492374
iter 20 value 94.403879
iter 30 value 93.387088
iter 40 value 86.306631
iter 50 value 85.521860
iter 60 value 85.492004
iter 70 value 83.651386
iter 80 value 83.455389
iter 90 value 83.451564
iter 100 value 83.451389
final value 83.451389
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.999050
iter 10 value 94.492798
iter 20 value 93.981843
iter 30 value 86.168325
iter 40 value 86.162846
iter 50 value 86.159846
iter 60 value 86.130854
iter 70 value 86.127545
iter 80 value 86.126934
iter 90 value 86.108671
iter 100 value 83.912623
final value 83.912623
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.184265
iter 10 value 94.543544
iter 20 value 93.484997
iter 30 value 93.480034
iter 40 value 90.526123
iter 50 value 84.805720
iter 60 value 84.368490
iter 70 value 84.365486
iter 80 value 84.107581
iter 90 value 82.640739
iter 100 value 81.556152
final value 81.556152
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.053592
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.250781
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.718985
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 113.191267
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 103.040049
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.134868
final value 94.275362
converged
Fitting Repeat 2
# weights: 305
initial value 99.854385
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 97.010386
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 100.594569
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 109.794630
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.928288
final value 94.428839
converged
Fitting Repeat 2
# weights: 507
initial value 103.147938
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.535073
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 103.711260
iter 10 value 94.020205
final value 93.976192
converged
Fitting Repeat 5
# weights: 507
initial value 96.639531
iter 10 value 93.493279
final value 93.481595
converged
Fitting Repeat 1
# weights: 103
initial value 97.664929
iter 10 value 94.469384
iter 20 value 91.860125
iter 30 value 87.171983
iter 40 value 86.624579
iter 50 value 86.285591
iter 60 value 85.109003
iter 70 value 85.033465
final value 85.031477
converged
Fitting Repeat 2
# weights: 103
initial value 100.590114
iter 10 value 94.499909
iter 20 value 93.156245
iter 30 value 88.278623
iter 40 value 86.657198
iter 50 value 85.880172
iter 60 value 83.507138
iter 70 value 83.364850
iter 80 value 83.048055
iter 90 value 82.596599
iter 100 value 82.535274
final value 82.535274
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.324879
iter 10 value 94.486540
iter 20 value 94.239584
iter 30 value 94.024710
iter 40 value 90.092400
iter 50 value 87.742231
iter 60 value 84.981271
iter 70 value 84.748855
final value 84.747368
converged
Fitting Repeat 4
# weights: 103
initial value 101.810874
iter 10 value 94.506651
iter 20 value 94.444294
iter 30 value 92.389959
iter 40 value 92.154113
iter 50 value 92.142076
final value 92.142004
converged
Fitting Repeat 5
# weights: 103
initial value 99.582062
iter 10 value 94.349400
iter 20 value 91.166642
iter 30 value 88.344662
iter 40 value 86.995515
iter 50 value 84.176605
iter 60 value 83.313240
iter 70 value 82.906138
iter 80 value 82.599659
iter 90 value 82.533366
iter 100 value 82.500469
final value 82.500469
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 103.015803
iter 10 value 95.301837
iter 20 value 87.821258
iter 30 value 85.605752
iter 40 value 84.224904
iter 50 value 83.486161
iter 60 value 82.728172
iter 70 value 81.882757
iter 80 value 81.500018
iter 90 value 81.213177
iter 100 value 81.134532
final value 81.134532
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 112.962772
iter 10 value 94.365374
iter 20 value 91.245762
iter 30 value 86.422408
iter 40 value 84.995274
iter 50 value 84.304798
iter 60 value 83.973180
iter 70 value 83.559024
iter 80 value 83.081828
iter 90 value 82.646832
iter 100 value 82.459420
final value 82.459420
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.587207
iter 10 value 94.382764
iter 20 value 90.371215
iter 30 value 84.386386
iter 40 value 83.028892
iter 50 value 82.739710
iter 60 value 82.527451
iter 70 value 82.339994
iter 80 value 82.178631
iter 90 value 81.970699
iter 100 value 81.874820
final value 81.874820
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.428291
iter 10 value 95.113786
iter 20 value 88.784293
iter 30 value 86.999890
iter 40 value 86.610502
iter 50 value 86.146824
iter 60 value 85.493086
iter 70 value 85.077485
iter 80 value 84.189023
iter 90 value 82.487436
iter 100 value 81.205137
final value 81.205137
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.814684
iter 10 value 94.799479
iter 20 value 93.491814
iter 30 value 90.729745
iter 40 value 89.451365
iter 50 value 87.601231
iter 60 value 86.289304
iter 70 value 85.830002
iter 80 value 83.326323
iter 90 value 82.172241
iter 100 value 81.459719
final value 81.459719
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.404751
iter 10 value 93.431398
iter 20 value 87.626165
iter 30 value 85.351501
iter 40 value 84.659302
iter 50 value 82.924072
iter 60 value 82.107768
iter 70 value 81.675985
iter 80 value 81.369266
iter 90 value 81.228431
iter 100 value 81.165889
final value 81.165889
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.375653
iter 10 value 95.935646
iter 20 value 87.893128
iter 30 value 85.450425
iter 40 value 84.093436
iter 50 value 83.020830
iter 60 value 82.801702
iter 70 value 82.340145
iter 80 value 82.107206
iter 90 value 82.000575
iter 100 value 81.670334
final value 81.670334
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.125232
iter 10 value 94.431801
iter 20 value 90.897410
iter 30 value 89.067402
iter 40 value 88.884608
iter 50 value 86.085427
iter 60 value 85.001432
iter 70 value 83.832791
iter 80 value 82.991028
iter 90 value 81.840407
iter 100 value 81.575826
final value 81.575826
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.599897
iter 10 value 98.372884
iter 20 value 87.310224
iter 30 value 85.000532
iter 40 value 83.897760
iter 50 value 83.397868
iter 60 value 82.866605
iter 70 value 82.734213
iter 80 value 82.299234
iter 90 value 81.402338
iter 100 value 81.062173
final value 81.062173
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.843824
iter 10 value 93.048882
iter 20 value 86.147199
iter 30 value 85.040732
iter 40 value 84.354853
iter 50 value 84.247057
iter 60 value 84.211186
iter 70 value 84.059899
iter 80 value 83.371464
iter 90 value 82.512355
iter 100 value 81.376095
final value 81.376095
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.082081
final value 94.486014
converged
Fitting Repeat 2
# weights: 103
initial value 95.334902
final value 94.277044
converged
Fitting Repeat 3
# weights: 103
initial value 94.856066
final value 94.276827
converged
Fitting Repeat 4
# weights: 103
initial value 112.353626
iter 10 value 94.485827
iter 20 value 94.481441
final value 94.275498
converged
Fitting Repeat 5
# weights: 103
initial value 101.177495
final value 94.485809
converged
Fitting Repeat 1
# weights: 305
initial value 111.993841
iter 10 value 94.280016
iter 20 value 93.997277
iter 30 value 93.994190
iter 40 value 93.991593
iter 50 value 93.978431
iter 60 value 93.977681
iter 70 value 93.432674
iter 80 value 85.126870
iter 90 value 82.931850
iter 100 value 82.072065
final value 82.072065
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.834016
iter 10 value 94.476922
iter 20 value 93.020259
iter 30 value 89.438930
iter 40 value 88.410548
iter 50 value 88.348089
iter 60 value 88.345577
iter 70 value 87.092838
iter 80 value 86.719595
iter 90 value 86.531979
iter 100 value 86.115306
final value 86.115306
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.393176
iter 10 value 91.520893
iter 20 value 91.370682
iter 30 value 91.298771
iter 40 value 91.288839
iter 50 value 91.287840
iter 60 value 91.285233
iter 70 value 87.562318
iter 80 value 85.009451
iter 90 value 85.002611
final value 85.001724
converged
Fitting Repeat 4
# weights: 305
initial value 99.718762
iter 10 value 94.487585
iter 20 value 93.928383
iter 30 value 93.923026
final value 93.922887
converged
Fitting Repeat 5
# weights: 305
initial value 104.728543
iter 10 value 94.280562
iter 20 value 94.219891
iter 30 value 86.047640
iter 40 value 85.781224
iter 40 value 85.781223
iter 40 value 85.781223
final value 85.781223
converged
Fitting Repeat 1
# weights: 507
initial value 103.165388
iter 10 value 94.492339
iter 20 value 94.482445
iter 30 value 93.974645
final value 93.843226
converged
Fitting Repeat 2
# weights: 507
initial value 105.370729
iter 10 value 94.283282
iter 20 value 94.275617
iter 30 value 94.006998
iter 40 value 93.694263
iter 50 value 85.176804
iter 60 value 84.895937
iter 70 value 84.833935
iter 80 value 84.790874
final value 84.789970
converged
Fitting Repeat 3
# weights: 507
initial value 118.425130
iter 10 value 94.238082
iter 20 value 93.889059
iter 30 value 93.817400
iter 40 value 93.811225
iter 50 value 93.809363
iter 60 value 89.523862
iter 70 value 88.664060
iter 80 value 88.510847
iter 90 value 88.510327
iter 100 value 87.154785
final value 87.154785
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.389153
iter 10 value 93.551034
iter 20 value 93.532449
iter 30 value 93.530927
iter 40 value 93.528916
iter 50 value 92.782056
iter 60 value 92.563168
iter 70 value 92.560962
iter 80 value 92.087159
iter 90 value 83.100961
iter 100 value 82.508647
final value 82.508647
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.633982
iter 10 value 94.492791
iter 20 value 94.432864
iter 30 value 88.841153
iter 40 value 85.456915
iter 50 value 85.449325
iter 60 value 84.892447
iter 70 value 83.999077
final value 83.920308
converged
Fitting Repeat 1
# weights: 103
initial value 97.673887
final value 94.354396
converged
Fitting Repeat 2
# weights: 103
initial value 97.489570
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.929492
final value 94.354396
converged
Fitting Repeat 4
# weights: 103
initial value 101.331851
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 110.655730
final value 94.484137
converged
Fitting Repeat 1
# weights: 305
initial value 95.754746
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 101.132073
final value 94.354396
converged
Fitting Repeat 3
# weights: 305
initial value 104.014859
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 98.889625
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.771584
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.215143
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 94.584698
iter 10 value 93.849743
iter 20 value 93.847833
final value 93.847813
converged
Fitting Repeat 3
# weights: 507
initial value 108.870645
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 95.464980
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 113.629616
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 96.606599
iter 10 value 94.495908
iter 20 value 91.825782
iter 30 value 84.605641
iter 40 value 83.011829
iter 50 value 82.530136
iter 60 value 82.141610
iter 70 value 81.955982
iter 80 value 81.767486
final value 81.765159
converged
Fitting Repeat 2
# weights: 103
initial value 105.006435
iter 10 value 94.559825
iter 20 value 94.488819
iter 30 value 94.422463
iter 40 value 93.376290
iter 50 value 91.831961
iter 60 value 91.763572
iter 70 value 91.595199
iter 80 value 91.473910
iter 90 value 91.410741
iter 90 value 91.410740
iter 90 value 91.410740
final value 91.410740
converged
Fitting Repeat 3
# weights: 103
initial value 110.028594
iter 10 value 94.508640
iter 20 value 94.486924
iter 30 value 93.168787
iter 40 value 88.657221
iter 50 value 87.094912
iter 60 value 85.332614
iter 70 value 84.633442
iter 80 value 84.627461
final value 84.627257
converged
Fitting Repeat 4
# weights: 103
initial value 97.669485
iter 10 value 94.484388
iter 20 value 93.294422
iter 30 value 90.875419
iter 40 value 90.771934
iter 50 value 85.589829
iter 60 value 85.087101
iter 70 value 84.731450
iter 80 value 84.629101
final value 84.629065
converged
Fitting Repeat 5
# weights: 103
initial value 101.111832
iter 10 value 94.227289
iter 20 value 87.213854
iter 30 value 86.504972
iter 40 value 86.105245
iter 50 value 84.724770
iter 60 value 83.971128
iter 70 value 83.590227
iter 80 value 83.106898
iter 90 value 83.076358
iter 90 value 83.076357
iter 90 value 83.076357
final value 83.076357
converged
Fitting Repeat 1
# weights: 305
initial value 112.102881
iter 10 value 94.476387
iter 20 value 87.127772
iter 30 value 85.213340
iter 40 value 83.835322
iter 50 value 83.500400
iter 60 value 83.266511
iter 70 value 82.311287
iter 80 value 81.591420
iter 90 value 81.582534
iter 100 value 81.444873
final value 81.444873
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 119.025052
iter 10 value 94.726916
iter 20 value 88.442578
iter 30 value 87.714855
iter 40 value 87.459327
iter 50 value 87.219557
iter 60 value 87.092028
iter 70 value 86.737324
iter 80 value 83.960441
iter 90 value 81.729726
iter 100 value 81.333926
final value 81.333926
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.607294
iter 10 value 94.055477
iter 20 value 87.481189
iter 30 value 84.504093
iter 40 value 83.861397
iter 50 value 80.946417
iter 60 value 79.962570
iter 70 value 79.790830
iter 80 value 79.701714
iter 90 value 79.626901
iter 100 value 79.538240
final value 79.538240
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.167833
iter 10 value 94.622669
iter 20 value 94.506346
iter 30 value 94.222526
iter 40 value 92.974750
iter 50 value 92.567460
iter 60 value 89.313540
iter 70 value 88.166115
iter 80 value 87.748372
iter 90 value 87.188890
iter 100 value 83.455722
final value 83.455722
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 119.057119
iter 10 value 94.524712
iter 20 value 94.391635
iter 30 value 94.286698
iter 40 value 88.638393
iter 50 value 86.481477
iter 60 value 82.914157
iter 70 value 80.791967
iter 80 value 80.385766
iter 90 value 80.313158
iter 100 value 80.082473
final value 80.082473
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.165315
iter 10 value 95.247361
iter 20 value 90.734030
iter 30 value 88.838775
iter 40 value 88.052202
iter 50 value 86.530368
iter 60 value 86.302143
iter 70 value 85.212779
iter 80 value 82.259222
iter 90 value 81.177931
iter 100 value 80.977052
final value 80.977052
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.015238
iter 10 value 94.176276
iter 20 value 93.847628
iter 30 value 86.699770
iter 40 value 83.368519
iter 50 value 81.979350
iter 60 value 81.126002
iter 70 value 80.200661
iter 80 value 79.844225
iter 90 value 79.511041
iter 100 value 79.192076
final value 79.192076
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.539445
iter 10 value 94.748940
iter 20 value 86.204580
iter 30 value 85.134442
iter 40 value 83.823980
iter 50 value 83.248284
iter 60 value 82.046783
iter 70 value 81.353486
iter 80 value 81.288675
iter 90 value 80.968192
iter 100 value 80.574177
final value 80.574177
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.287656
iter 10 value 93.837200
iter 20 value 86.068828
iter 30 value 84.358317
iter 40 value 81.838575
iter 50 value 81.337992
iter 60 value 80.880741
iter 70 value 80.315939
iter 80 value 80.064184
iter 90 value 79.813381
iter 100 value 79.561768
final value 79.561768
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.203417
iter 10 value 95.066433
iter 20 value 86.691640
iter 30 value 85.792346
iter 40 value 84.694578
iter 50 value 84.543916
iter 60 value 84.334742
iter 70 value 83.747453
iter 80 value 82.543378
iter 90 value 81.804921
iter 100 value 81.261298
final value 81.261298
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.817051
final value 94.484946
converged
Fitting Repeat 2
# weights: 103
initial value 98.273470
final value 94.485848
converged
Fitting Repeat 3
# weights: 103
initial value 101.915255
final value 94.485641
converged
Fitting Repeat 4
# weights: 103
initial value 114.538181
final value 94.485830
converged
Fitting Repeat 5
# weights: 103
initial value 100.709265
final value 94.485733
converged
Fitting Repeat 1
# weights: 305
initial value 98.918386
iter 10 value 94.359428
iter 20 value 94.355488
iter 30 value 94.355204
iter 40 value 94.354790
final value 94.354787
converged
Fitting Repeat 2
# weights: 305
initial value 104.747870
iter 10 value 94.211465
iter 20 value 87.656448
iter 30 value 85.707070
iter 40 value 85.706783
iter 50 value 85.148559
iter 60 value 83.614429
iter 70 value 82.767145
iter 80 value 82.761833
iter 90 value 82.761528
iter 100 value 82.752100
final value 82.752100
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.868524
iter 10 value 94.358473
iter 20 value 94.354171
final value 94.354054
converged
Fitting Repeat 4
# weights: 305
initial value 101.463373
iter 10 value 93.245237
iter 20 value 93.213216
iter 30 value 93.209206
iter 40 value 92.820714
iter 50 value 92.242756
iter 60 value 92.129064
iter 70 value 92.128918
final value 92.128908
converged
Fitting Repeat 5
# weights: 305
initial value 119.440923
iter 10 value 94.489484
iter 20 value 94.484298
iter 30 value 93.480353
iter 40 value 84.888844
iter 50 value 84.844341
iter 60 value 84.538735
iter 70 value 84.382097
iter 80 value 81.831974
iter 90 value 81.054574
iter 100 value 80.965101
final value 80.965101
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.009132
iter 10 value 94.495263
iter 20 value 94.214653
iter 30 value 94.212000
iter 40 value 94.207335
iter 50 value 94.006335
iter 60 value 91.937013
final value 91.916359
converged
Fitting Repeat 2
# weights: 507
initial value 120.313508
iter 10 value 94.362471
iter 20 value 94.355177
iter 30 value 94.354420
iter 40 value 93.411648
iter 50 value 86.782447
iter 60 value 86.346363
iter 70 value 85.842694
iter 80 value 84.212469
iter 90 value 83.973883
iter 100 value 83.971365
final value 83.971365
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.225696
iter 10 value 94.492532
iter 20 value 94.427954
iter 30 value 91.099393
iter 40 value 90.661240
final value 90.660081
converged
Fitting Repeat 4
# weights: 507
initial value 102.382658
iter 10 value 94.492856
iter 20 value 94.333868
iter 30 value 89.935248
iter 40 value 88.959441
iter 50 value 87.249501
iter 60 value 87.136387
iter 70 value 87.118665
iter 80 value 85.430266
iter 90 value 84.910506
iter 100 value 84.899985
final value 84.899985
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 94.880298
iter 10 value 94.362213
iter 20 value 94.300825
iter 30 value 88.412041
iter 40 value 88.398336
iter 50 value 85.714156
final value 85.521296
converged
Fitting Repeat 1
# weights: 103
initial value 103.858854
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 98.794188
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.597572
final value 93.672973
converged
Fitting Repeat 4
# weights: 103
initial value 104.620318
final value 93.672973
converged
Fitting Repeat 5
# weights: 103
initial value 95.248214
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 96.726644
final value 93.867392
converged
Fitting Repeat 2
# weights: 305
initial value 95.897432
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 93.051933
iter 10 value 90.240169
iter 20 value 90.050736
iter 30 value 84.527284
iter 40 value 83.475995
iter 50 value 83.475805
final value 83.475785
converged
Fitting Repeat 4
# weights: 305
initial value 99.373270
iter 10 value 93.904546
iter 20 value 93.903449
iter 20 value 93.903449
iter 20 value 93.903449
final value 93.903449
converged
Fitting Repeat 5
# weights: 305
initial value 99.818538
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 100.151623
iter 10 value 92.831594
iter 20 value 92.075658
iter 30 value 91.194491
iter 40 value 90.752993
iter 50 value 90.750377
iter 60 value 90.750329
final value 90.750321
converged
Fitting Repeat 2
# weights: 507
initial value 94.195778
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 96.551403
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 102.045737
final value 94.025289
converged
Fitting Repeat 5
# weights: 507
initial value 98.891156
final value 93.994013
converged
Fitting Repeat 1
# weights: 103
initial value 108.814136
iter 10 value 94.054915
iter 20 value 93.703487
iter 30 value 93.579866
iter 40 value 93.570324
iter 50 value 93.568798
iter 50 value 93.568797
iter 50 value 93.568797
final value 93.568797
converged
Fitting Repeat 2
# weights: 103
initial value 100.054144
iter 10 value 93.966658
iter 20 value 88.919599
iter 30 value 86.798702
iter 40 value 85.750756
iter 50 value 85.010148
iter 60 value 84.280046
iter 70 value 82.915062
iter 80 value 82.737722
iter 90 value 82.734745
final value 82.734734
converged
Fitting Repeat 3
# weights: 103
initial value 101.653771
iter 10 value 94.057034
iter 20 value 93.922182
iter 30 value 93.678661
iter 40 value 93.661178
iter 50 value 89.132141
iter 60 value 86.490570
iter 70 value 86.037423
iter 80 value 82.837744
iter 90 value 82.226500
iter 100 value 82.133956
final value 82.133956
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.774344
iter 10 value 93.990362
iter 20 value 92.093698
iter 30 value 87.120189
iter 40 value 83.200300
iter 50 value 82.284176
iter 60 value 81.707220
iter 70 value 80.867471
final value 80.817105
converged
Fitting Repeat 5
# weights: 103
initial value 101.522424
iter 10 value 93.251079
iter 20 value 90.707050
iter 30 value 88.734408
iter 40 value 84.330358
iter 50 value 82.591112
iter 60 value 81.884245
iter 70 value 81.568026
iter 80 value 81.098888
iter 90 value 80.819241
final value 80.817105
converged
Fitting Repeat 1
# weights: 305
initial value 118.174401
iter 10 value 94.009048
iter 20 value 93.650494
iter 30 value 93.437646
iter 40 value 92.290358
iter 50 value 90.492458
iter 60 value 85.719158
iter 70 value 83.401749
iter 80 value 81.997427
iter 90 value 81.920695
iter 100 value 81.463670
final value 81.463670
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.026420
iter 10 value 94.092260
iter 20 value 93.023169
iter 30 value 84.813109
iter 40 value 84.275228
iter 50 value 81.184458
iter 60 value 80.257072
iter 70 value 80.022628
iter 80 value 79.626046
iter 90 value 79.455311
iter 100 value 79.332392
final value 79.332392
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.194716
iter 10 value 92.291807
iter 20 value 88.469463
iter 30 value 87.213112
iter 40 value 83.758082
iter 50 value 83.033149
iter 60 value 82.406071
iter 70 value 81.584475
iter 80 value 80.850218
iter 90 value 80.015229
iter 100 value 79.302129
final value 79.302129
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.158618
iter 10 value 94.096957
iter 20 value 88.461990
iter 30 value 86.494715
iter 40 value 84.916458
iter 50 value 82.842612
iter 60 value 80.457449
iter 70 value 80.102242
iter 80 value 80.066551
iter 90 value 79.981278
iter 100 value 79.933758
final value 79.933758
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.885322
iter 10 value 93.872220
iter 20 value 89.548026
iter 30 value 87.289948
iter 40 value 85.066167
iter 50 value 84.767839
iter 60 value 81.580353
iter 70 value 80.097596
iter 80 value 79.847614
iter 90 value 79.575386
iter 100 value 79.315747
final value 79.315747
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.804421
iter 10 value 93.941403
iter 20 value 90.709722
iter 30 value 85.243279
iter 40 value 81.963632
iter 50 value 80.592902
iter 60 value 80.281069
iter 70 value 79.974637
iter 80 value 79.770160
iter 90 value 79.399612
iter 100 value 79.174050
final value 79.174050
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 123.819434
iter 10 value 86.793811
iter 20 value 83.438387
iter 30 value 82.506452
iter 40 value 81.191744
iter 50 value 80.691864
iter 60 value 79.955838
iter 70 value 79.614574
iter 80 value 79.430221
iter 90 value 79.209234
iter 100 value 78.999409
final value 78.999409
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.203951
iter 10 value 93.998487
iter 20 value 93.152495
iter 30 value 87.450819
iter 40 value 86.451613
iter 50 value 83.972329
iter 60 value 83.174308
iter 70 value 82.551203
iter 80 value 81.200753
iter 90 value 80.213358
iter 100 value 79.507629
final value 79.507629
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.511718
iter 10 value 93.915024
iter 20 value 89.892370
iter 30 value 87.548455
iter 40 value 85.990584
iter 50 value 82.324575
iter 60 value 81.831419
iter 70 value 80.871417
iter 80 value 79.832869
iter 90 value 79.253680
iter 100 value 79.057477
final value 79.057477
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.401458
iter 10 value 94.887638
iter 20 value 86.853363
iter 30 value 83.880670
iter 40 value 83.135782
iter 50 value 80.641995
iter 60 value 79.548284
iter 70 value 79.299951
iter 80 value 79.256795
iter 90 value 79.193834
iter 100 value 79.176003
final value 79.176003
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.313200
final value 94.054658
converged
Fitting Repeat 2
# weights: 103
initial value 124.129310
final value 94.054461
converged
Fitting Repeat 3
# weights: 103
initial value 95.659498
final value 94.054513
converged
Fitting Repeat 4
# weights: 103
initial value 100.210745
final value 94.054246
converged
Fitting Repeat 5
# weights: 103
initial value 101.505301
iter 10 value 93.726720
iter 20 value 93.722031
iter 30 value 92.909853
iter 40 value 91.946723
iter 50 value 89.412075
iter 60 value 82.769144
final value 82.769121
converged
Fitting Repeat 1
# weights: 305
initial value 106.809913
iter 10 value 93.929990
iter 20 value 93.664248
iter 30 value 93.477041
iter 40 value 91.156861
iter 50 value 84.248678
final value 84.246273
converged
Fitting Repeat 2
# weights: 305
initial value 110.475588
iter 10 value 94.057944
iter 20 value 94.052943
iter 30 value 93.673363
final value 93.673245
converged
Fitting Repeat 3
# weights: 305
initial value 94.858304
iter 10 value 94.057944
iter 20 value 93.854297
iter 30 value 89.722764
iter 40 value 88.692974
iter 50 value 88.347132
final value 88.346208
converged
Fitting Repeat 4
# weights: 305
initial value 114.436715
iter 10 value 94.057850
iter 20 value 94.053840
iter 30 value 93.980307
iter 40 value 92.311866
iter 50 value 92.218741
iter 60 value 92.218323
iter 70 value 92.218132
iter 80 value 91.137588
iter 90 value 85.607954
iter 100 value 85.607081
final value 85.607081
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.382477
iter 10 value 94.057136
iter 20 value 93.957764
iter 30 value 93.513204
iter 40 value 87.617511
iter 50 value 87.616066
iter 60 value 87.615018
iter 70 value 86.346996
final value 86.336210
converged
Fitting Repeat 1
# weights: 507
initial value 107.818111
iter 10 value 93.448546
iter 20 value 93.447810
final value 93.447492
converged
Fitting Repeat 2
# weights: 507
initial value 110.664264
iter 10 value 86.131716
iter 20 value 84.689448
iter 30 value 84.431655
iter 40 value 84.327306
iter 50 value 84.326773
iter 60 value 84.325921
iter 70 value 84.321909
final value 84.319645
converged
Fitting Repeat 3
# weights: 507
initial value 96.930195
iter 10 value 94.033460
iter 20 value 93.891212
iter 30 value 93.800835
iter 40 value 91.572119
iter 50 value 84.838606
iter 60 value 83.151557
iter 70 value 80.733853
iter 80 value 78.924665
iter 90 value 78.788478
iter 100 value 78.714234
final value 78.714234
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 100.805160
iter 10 value 93.681037
iter 20 value 93.676116
iter 30 value 84.458431
iter 40 value 82.483136
iter 50 value 82.482177
final value 82.482005
converged
Fitting Repeat 5
# weights: 507
initial value 97.127817
iter 10 value 93.659114
iter 20 value 92.623738
iter 30 value 86.434102
iter 40 value 86.407739
iter 50 value 84.502895
iter 60 value 84.495783
iter 70 value 84.343525
iter 80 value 84.090138
iter 90 value 84.087231
iter 100 value 83.998597
final value 83.998597
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 125.555092
iter 10 value 117.763791
iter 20 value 117.759332
iter 20 value 117.759331
final value 117.759138
converged
Fitting Repeat 2
# weights: 305
initial value 135.356479
iter 10 value 117.896040
iter 20 value 117.888512
iter 30 value 113.118615
iter 40 value 112.059884
iter 50 value 112.008424
iter 60 value 109.865341
iter 70 value 109.083806
iter 80 value 109.079251
iter 90 value 109.070301
iter 100 value 108.963538
final value 108.963538
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 125.599752
iter 10 value 117.210779
iter 20 value 114.075320
iter 30 value 113.637055
iter 40 value 113.353537
iter 50 value 113.352571
final value 113.352103
converged
Fitting Repeat 4
# weights: 305
initial value 128.705997
iter 10 value 117.529066
iter 20 value 116.945052
iter 30 value 116.943657
iter 40 value 116.940361
final value 116.940102
converged
Fitting Repeat 5
# weights: 305
initial value 118.754008
iter 10 value 117.895006
iter 20 value 117.693307
iter 30 value 110.805041
iter 40 value 110.338566
iter 50 value 108.759356
iter 60 value 108.723190
iter 70 value 108.721801
iter 80 value 108.720361
iter 90 value 106.462194
iter 100 value 105.936322
final value 105.936322
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Dec 1 00:40:48 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
40.486 1.194 83.803
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 32.604 | 0.590 | 33.195 | |
| FreqInteractors | 0.438 | 0.031 | 0.467 | |
| calculateAAC | 0.032 | 0.001 | 0.033 | |
| calculateAutocor | 0.268 | 0.019 | 0.287 | |
| calculateCTDC | 0.069 | 0.000 | 0.070 | |
| calculateCTDD | 0.441 | 0.002 | 0.444 | |
| calculateCTDT | 0.135 | 0.001 | 0.136 | |
| calculateCTriad | 0.378 | 0.007 | 0.384 | |
| calculateDC | 0.084 | 0.007 | 0.092 | |
| calculateF | 0.297 | 0.001 | 0.297 | |
| calculateKSAAP | 0.101 | 0.007 | 0.108 | |
| calculateQD_Sm | 1.729 | 0.027 | 1.756 | |
| calculateTC | 1.483 | 0.143 | 1.627 | |
| calculateTC_Sm | 0.237 | 0.006 | 0.244 | |
| corr_plot | 34.270 | 0.482 | 34.765 | |
| enrichfindP | 0.565 | 0.037 | 14.364 | |
| enrichfind_hp | 0.038 | 0.004 | 1.017 | |
| enrichplot | 0.479 | 0.001 | 0.480 | |
| filter_missing_values | 0.001 | 0.000 | 0.002 | |
| getFASTA | 0.479 | 0.008 | 6.768 | |
| getHPI | 0.000 | 0.001 | 0.002 | |
| get_negativePPI | 0.003 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.001 | 0.003 | |
| plotPPI | 0.125 | 0.002 | 0.127 | |
| pred_ensembel | 12.811 | 0.128 | 11.549 | |
| var_imp | 33.371 | 0.444 | 33.819 | |