Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-22 11:34 -0500 (Mon, 22 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4878
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4593
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 996/2332HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.17.1  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-12-21 13:40 -0500 (Sun, 21 Dec 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: e6c77ab
git_last_commit_date: 2025-11-23 15:13:33 -0500 (Sun, 23 Nov 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    WARNINGS  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for HPiP on nebbiolo1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.17.1
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
StartedAt: 2025-12-22 00:07:09 -0500 (Mon, 22 Dec 2025)
EndedAt: 2025-12-22 00:22:17 -0500 (Mon, 22 Dec 2025)
EllapsedTime: 908.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: HPiP.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
  Code: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 FALSE, filename = "plots.pdf")
  Docs: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 TRUE, filename = "plots.pdf")
  Mismatches in argument default values:
    Name: 'plots' Code: FALSE Docs: TRUE

* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
corr_plot     34.723  0.582  35.377
var_imp       33.627  0.344  34.012
FSmethod      32.708  0.623  33.389
pred_ensembel 12.988  0.119  11.717
enrichfindP    0.576  0.039  15.471
getFASTA       0.439  0.007   7.148
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.17.1’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 101.264292 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.926548 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.840596 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.344191 
iter  10 value 93.773046
final  value 93.772973 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.949482 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.183859 
final  value 94.052434 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.856983 
final  value 94.052434 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.516174 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.870607 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.156656 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.727167 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.007161 
iter  10 value 94.466823
iter  10 value 94.466823
iter  10 value 94.466823
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.790515 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.078428 
final  value 94.139368 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.253273 
iter  10 value 93.809649
iter  10 value 93.809649
iter  10 value 93.809649
final  value 93.809649 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.406796 
iter  10 value 94.487600
iter  20 value 86.699428
iter  30 value 85.494298
iter  40 value 85.358434
iter  50 value 84.747911
iter  60 value 82.265115
iter  70 value 80.967058
iter  80 value 80.494123
iter  90 value 80.258193
iter 100 value 80.224974
final  value 80.224974 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.205538 
iter  10 value 94.058896
iter  20 value 88.154176
iter  30 value 86.511148
iter  40 value 85.880266
iter  50 value 85.770703
iter  60 value 83.005917
iter  70 value 82.598070
iter  80 value 82.180010
iter  90 value 80.965598
iter 100 value 80.140225
final  value 80.140225 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 100.778218 
iter  10 value 93.726806
iter  20 value 93.397792
iter  30 value 90.681487
iter  40 value 90.384272
iter  50 value 88.659076
iter  60 value 83.803528
iter  70 value 83.572948
iter  80 value 82.801828
iter  90 value 81.486247
iter 100 value 80.578812
final  value 80.578812 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.585994 
iter  10 value 94.345787
iter  20 value 87.771650
iter  30 value 83.818836
iter  40 value 83.508512
iter  50 value 81.304143
iter  60 value 80.774470
iter  70 value 80.607793
iter  80 value 80.514286
iter  90 value 80.162609
final  value 80.160548 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.202006 
iter  10 value 94.468866
iter  20 value 90.516618
iter  30 value 87.751055
iter  40 value 87.081943
iter  50 value 86.414374
iter  60 value 83.341904
iter  70 value 81.617611
iter  80 value 81.579035
iter  90 value 81.552731
iter 100 value 80.391680
final  value 80.391680 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 99.857395 
iter  10 value 91.489863
iter  20 value 85.348412
iter  30 value 82.843688
iter  40 value 80.500026
iter  50 value 79.565396
iter  60 value 79.433393
iter  70 value 79.349256
iter  80 value 79.112588
iter  90 value 78.694416
iter 100 value 78.486559
final  value 78.486559 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.037106 
iter  10 value 89.728691
iter  20 value 85.882285
iter  30 value 83.963002
iter  40 value 81.003691
iter  50 value 80.128109
iter  60 value 79.765580
iter  70 value 79.351400
iter  80 value 79.020833
iter  90 value 78.855700
iter 100 value 78.824930
final  value 78.824930 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.270162 
iter  10 value 94.233595
iter  20 value 87.767718
iter  30 value 86.152897
iter  40 value 84.405410
iter  50 value 80.730868
iter  60 value 80.072573
iter  70 value 79.715502
iter  80 value 79.184040
iter  90 value 78.897261
iter 100 value 78.622018
final  value 78.622018 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.092297 
iter  10 value 94.372789
iter  20 value 91.686921
iter  30 value 85.138714
iter  40 value 84.738090
iter  50 value 84.333820
iter  60 value 81.340159
iter  70 value 80.687147
iter  80 value 80.362879
iter  90 value 80.297253
iter 100 value 79.993669
final  value 79.993669 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.293412 
iter  10 value 94.508294
iter  20 value 89.091621
iter  30 value 85.373385
iter  40 value 83.091923
iter  50 value 80.551204
iter  60 value 80.107060
iter  70 value 79.863807
iter  80 value 79.331456
iter  90 value 78.567843
iter 100 value 78.443196
final  value 78.443196 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.380299 
iter  10 value 94.477021
iter  20 value 93.401006
iter  30 value 92.581393
iter  40 value 83.455313
iter  50 value 82.912981
iter  60 value 82.453929
iter  70 value 82.313080
iter  80 value 82.203382
iter  90 value 82.115667
iter 100 value 81.966597
final  value 81.966597 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.219360 
iter  10 value 94.662544
iter  20 value 94.426747
iter  30 value 93.785866
iter  40 value 86.135275
iter  50 value 84.597592
iter  60 value 83.619526
iter  70 value 83.001879
iter  80 value 82.082851
iter  90 value 81.269762
iter 100 value 80.196414
final  value 80.196414 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 124.230379 
iter  10 value 94.432698
iter  20 value 89.679426
iter  30 value 83.628264
iter  40 value 82.177776
iter  50 value 81.495320
iter  60 value 81.288786
iter  70 value 81.070455
iter  80 value 81.021154
iter  90 value 80.255603
iter 100 value 79.388328
final  value 79.388328 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.576473 
iter  10 value 94.211885
iter  20 value 91.141108
iter  30 value 87.601617
iter  40 value 86.365776
iter  50 value 83.295230
iter  60 value 82.348786
iter  70 value 82.001360
iter  80 value 81.038997
iter  90 value 80.126719
iter 100 value 79.917176
final  value 79.917176 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.787308 
iter  10 value 94.659172
iter  20 value 92.612365
iter  30 value 85.918787
iter  40 value 84.534851
iter  50 value 84.288763
iter  60 value 82.747812
iter  70 value 81.268413
iter  80 value 79.339673
iter  90 value 79.204572
iter 100 value 78.947517
final  value 78.947517 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.430151 
final  value 94.485772 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.869641 
final  value 94.485942 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.589782 
iter  10 value 93.811436
iter  20 value 93.808525
iter  30 value 93.793682
iter  40 value 93.793021
iter  40 value 93.793021
iter  40 value 93.793021
final  value 93.793021 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.726153 
iter  10 value 94.466172
iter  20 value 94.054265
iter  30 value 93.379358
iter  40 value 93.231768
iter  50 value 93.231409
iter  60 value 93.230665
iter  70 value 93.230305
iter  70 value 93.230305
final  value 93.230305 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.327482 
iter  10 value 94.484863
final  value 94.484216 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.154384 
iter  10 value 94.057331
iter  20 value 94.052878
iter  30 value 93.297745
iter  40 value 93.273567
iter  50 value 93.273458
final  value 93.273423 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.319889 
iter  10 value 94.489407
iter  20 value 94.488151
iter  30 value 94.479745
iter  40 value 93.649663
iter  50 value 90.079244
iter  60 value 85.660263
iter  70 value 84.840929
iter  80 value 84.764570
final  value 84.762971 
converged
Fitting Repeat 3 

# weights:  305
initial  value 111.431023 
iter  10 value 93.778019
iter  20 value 93.775756
iter  30 value 93.751768
iter  40 value 93.748300
final  value 93.748298 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.044347 
iter  10 value 94.485094
iter  20 value 94.410067
iter  30 value 87.048645
iter  40 value 84.460710
iter  50 value 81.744273
iter  60 value 81.695982
iter  70 value 81.515624
final  value 81.515291 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.251013 
iter  10 value 94.488777
iter  20 value 94.306071
iter  30 value 93.307023
iter  40 value 93.304506
final  value 93.304488 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.557756 
iter  10 value 89.061298
iter  20 value 85.504686
iter  30 value 85.497573
iter  40 value 85.222594
iter  50 value 84.609554
iter  60 value 84.608375
iter  70 value 84.468661
iter  80 value 82.457740
iter  90 value 81.000465
iter 100 value 79.416299
final  value 79.416299 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.394485 
iter  10 value 88.344122
iter  20 value 82.023949
iter  30 value 81.874488
iter  40 value 81.847842
iter  50 value 81.780046
iter  60 value 81.778463
iter  70 value 81.777102
final  value 81.776156 
converged
Fitting Repeat 3 

# weights:  507
initial  value 122.106675 
iter  10 value 94.492345
iter  20 value 94.484915
iter  30 value 92.257659
iter  40 value 92.108025
iter  50 value 81.328581
iter  60 value 81.066641
iter  70 value 81.058253
iter  80 value 81.009620
iter  90 value 81.008305
iter 100 value 81.007376
final  value 81.007376 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.334768 
iter  10 value 93.710705
iter  20 value 88.655771
iter  30 value 81.913203
iter  40 value 81.905422
iter  50 value 81.905251
iter  60 value 81.061597
iter  70 value 81.023098
final  value 81.008411 
converged
Fitting Repeat 5 

# weights:  507
initial  value 120.711416 
iter  10 value 86.142742
iter  20 value 84.510971
iter  30 value 84.184231
iter  40 value 84.058546
iter  50 value 84.057401
iter  60 value 84.053839
iter  70 value 84.049917
iter  80 value 84.038677
iter  90 value 83.723725
iter 100 value 82.750907
final  value 82.750907 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.912895 
final  value 94.484053 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.000185 
final  value 93.772973 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.551202 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.927188 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.605737 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 114.738254 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.535106 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 114.529757 
iter  10 value 93.103484
iter  20 value 92.205982
iter  30 value 92.204560
final  value 92.204558 
converged
Fitting Repeat 4 

# weights:  305
initial  value 110.130659 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.811439 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.641699 
final  value 94.026542 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.102877 
iter  10 value 94.165118
iter  10 value 94.165117
iter  10 value 94.165117
final  value 94.165117 
converged
Fitting Repeat 3 

# weights:  507
initial  value 124.885906 
final  value 93.320225 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.876017 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.626972 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.289586 
iter  10 value 94.399547
iter  20 value 94.080240
iter  30 value 93.442459
iter  40 value 93.140847
iter  50 value 92.715548
iter  60 value 88.430050
iter  70 value 83.336798
iter  80 value 80.927909
iter  90 value 80.892309
iter 100 value 80.887806
final  value 80.887806 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.445209 
iter  10 value 95.075239
iter  20 value 94.481380
iter  30 value 94.218923
iter  40 value 94.137942
iter  50 value 92.992085
iter  60 value 89.319725
iter  70 value 88.540852
iter  80 value 88.040541
iter  90 value 86.682702
iter 100 value 85.848275
final  value 85.848275 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.285583 
iter  10 value 93.894332
iter  20 value 91.865191
iter  30 value 91.257591
iter  40 value 85.637772
iter  50 value 84.533153
iter  60 value 83.976249
iter  70 value 82.963784
iter  80 value 82.080020
iter  90 value 81.355717
iter 100 value 80.987659
final  value 80.987659 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.483607 
iter  10 value 94.144088
iter  20 value 93.675839
iter  30 value 86.193005
iter  40 value 85.693729
iter  50 value 85.581326
iter  60 value 85.552859
final  value 85.552844 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.243918 
iter  10 value 94.484343
iter  20 value 90.225505
iter  30 value 88.763577
iter  40 value 87.374516
iter  50 value 86.311972
iter  60 value 84.298250
iter  70 value 83.652502
iter  80 value 83.627621
final  value 83.627615 
converged
Fitting Repeat 1 

# weights:  305
initial  value 114.981440 
iter  10 value 94.549912
iter  20 value 92.605563
iter  30 value 87.267696
iter  40 value 85.956079
iter  50 value 84.760396
iter  60 value 83.976160
iter  70 value 81.102563
iter  80 value 80.521070
iter  90 value 79.954041
iter 100 value 79.885846
final  value 79.885846 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 126.767094 
iter  10 value 95.821535
iter  20 value 94.784750
iter  30 value 91.913470
iter  40 value 91.157168
iter  50 value 91.043939
iter  60 value 90.542323
iter  70 value 90.245224
iter  80 value 89.539170
iter  90 value 88.822221
iter 100 value 85.065956
final  value 85.065956 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.976683 
iter  10 value 93.682840
iter  20 value 90.064954
iter  30 value 87.740128
iter  40 value 86.973700
iter  50 value 86.386524
iter  60 value 85.292553
iter  70 value 83.091488
iter  80 value 82.054819
iter  90 value 80.104616
iter 100 value 79.612462
final  value 79.612462 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.072788 
iter  10 value 93.719197
iter  20 value 93.575469
iter  30 value 89.979124
iter  40 value 86.517553
iter  50 value 84.961005
iter  60 value 83.171059
iter  70 value 81.250741
iter  80 value 81.018486
iter  90 value 80.849928
iter 100 value 80.465181
final  value 80.465181 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.391786 
iter  10 value 92.553706
iter  20 value 88.649294
iter  30 value 88.033517
iter  40 value 86.094614
iter  50 value 83.329535
iter  60 value 80.444181
iter  70 value 80.128967
iter  80 value 79.910741
iter  90 value 79.902415
iter 100 value 79.898351
final  value 79.898351 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.319903 
iter  10 value 94.515240
iter  20 value 93.280120
iter  30 value 87.750491
iter  40 value 84.302413
iter  50 value 81.753106
iter  60 value 80.968924
iter  70 value 80.635647
iter  80 value 80.037350
iter  90 value 79.972250
iter 100 value 79.960370
final  value 79.960370 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.922989 
iter  10 value 94.959820
iter  20 value 94.403290
iter  30 value 93.632033
iter  40 value 91.567163
iter  50 value 89.110677
iter  60 value 87.911822
iter  70 value 84.188819
iter  80 value 82.053950
iter  90 value 81.204216
iter 100 value 81.114129
final  value 81.114129 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 134.952704 
iter  10 value 94.670753
iter  20 value 93.500094
iter  30 value 92.919067
iter  40 value 86.483519
iter  50 value 83.287686
iter  60 value 80.968872
iter  70 value 80.424413
iter  80 value 80.072755
iter  90 value 79.518305
iter 100 value 79.236779
final  value 79.236779 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 123.359264 
iter  10 value 99.944910
iter  20 value 88.468193
iter  30 value 87.134206
iter  40 value 84.717854
iter  50 value 80.863460
iter  60 value 80.447276
iter  70 value 80.078957
iter  80 value 79.742664
iter  90 value 79.481564
iter 100 value 79.249813
final  value 79.249813 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.789689 
iter  10 value 97.945854
iter  20 value 90.023971
iter  30 value 85.344816
iter  40 value 83.527949
iter  50 value 83.154869
iter  60 value 81.823229
iter  70 value 80.717475
iter  80 value 80.371244
iter  90 value 80.051865
iter 100 value 79.780415
final  value 79.780415 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.666619 
final  value 94.485743 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.668781 
final  value 94.485997 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.926056 
final  value 94.485924 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.811044 
final  value 94.486007 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.223048 
final  value 94.486103 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.036397 
iter  10 value 94.489081
iter  20 value 94.484431
final  value 94.484222 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.506597 
iter  10 value 94.488987
iter  20 value 94.484327
iter  30 value 94.474185
iter  40 value 87.836332
iter  50 value 87.004772
iter  60 value 86.728928
iter  70 value 85.945999
iter  80 value 83.939663
iter  90 value 81.980993
iter 100 value 79.322428
final  value 79.322428 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.196856 
iter  10 value 90.493026
iter  20 value 88.547297
iter  30 value 87.290644
iter  40 value 87.269279
iter  50 value 83.716806
iter  60 value 83.514116
iter  70 value 81.487562
iter  80 value 80.955799
iter  90 value 80.102358
iter 100 value 80.100305
final  value 80.100305 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 95.440043 
iter  10 value 94.031539
iter  20 value 93.975751
final  value 93.974868 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.318923 
iter  10 value 94.489601
iter  20 value 93.907682
iter  30 value 93.661080
final  value 93.659993 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.291490 
iter  10 value 93.328731
iter  20 value 93.306626
iter  30 value 93.247707
iter  40 value 92.103219
iter  50 value 85.102820
iter  60 value 84.982994
iter  70 value 84.532313
iter  80 value 84.524885
iter  90 value 84.519977
iter 100 value 84.265148
final  value 84.265148 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 99.203432 
iter  10 value 93.648673
iter  20 value 93.626155
iter  30 value 93.257953
iter  40 value 93.192303
iter  50 value 90.834893
iter  60 value 90.829939
iter  70 value 90.829806
iter  80 value 90.828860
iter  90 value 90.447530
iter 100 value 83.982970
final  value 83.982970 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.433909 
iter  10 value 94.492378
iter  20 value 94.484198
iter  30 value 93.322582
iter  40 value 93.321757
iter  50 value 93.321461
iter  60 value 93.321009
iter  60 value 93.321009
iter  60 value 93.321009
final  value 93.321009 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.668329 
iter  10 value 93.851739
iter  20 value 93.849547
iter  30 value 93.597285
iter  40 value 93.594259
iter  50 value 93.572392
iter  60 value 93.549996
final  value 93.549537 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.744882 
iter  10 value 93.429630
iter  20 value 93.327804
iter  30 value 92.990346
iter  40 value 87.314584
iter  50 value 85.133490
iter  60 value 84.454947
iter  70 value 84.380235
iter  80 value 84.378576
iter  90 value 83.716800
iter 100 value 83.149376
final  value 83.149376 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.444835 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.766601 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.609340 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.958022 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.691052 
iter  10 value 91.129518
iter  20 value 91.078598
final  value 91.078446 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.759939 
iter  10 value 93.795743
final  value 93.785768 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.791754 
iter  10 value 90.302927
iter  20 value 85.385844
iter  30 value 85.018574
iter  40 value 84.982605
iter  50 value 84.695315
final  value 84.694864 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.653029 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.298448 
iter  10 value 89.544525
iter  20 value 85.473704
iter  30 value 85.390085
final  value 85.387942 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.058757 
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.361627 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.124992 
iter  10 value 90.002023
iter  20 value 89.989660
iter  20 value 89.989659
iter  20 value 89.989659
final  value 89.989659 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.954850 
iter  10 value 93.292481
iter  20 value 93.288895
final  value 93.288890 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.840042 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  507
initial  value 124.685244 
final  value 93.903448 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.708703 
iter  10 value 94.056230
iter  20 value 91.200197
iter  30 value 86.747812
iter  40 value 86.417601
iter  50 value 86.009416
iter  60 value 84.670665
iter  70 value 81.546330
iter  80 value 81.106539
iter  90 value 80.863821
iter 100 value 80.778782
final  value 80.778782 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.029587 
iter  10 value 94.058886
iter  20 value 94.054341
iter  30 value 93.975935
iter  40 value 93.865766
iter  50 value 93.856388
iter  60 value 93.852068
iter  70 value 93.845303
iter  80 value 89.932052
iter  90 value 83.930739
iter 100 value 83.733484
final  value 83.733484 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.440733 
iter  10 value 94.058732
iter  20 value 94.043861
iter  30 value 92.177358
iter  40 value 92.019555
iter  50 value 89.193952
iter  60 value 86.432040
iter  70 value 85.788823
iter  80 value 85.182602
iter  90 value 85.085751
iter 100 value 85.019633
final  value 85.019633 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.235579 
iter  10 value 94.055543
iter  20 value 83.848934
iter  30 value 83.741128
iter  40 value 83.511663
iter  50 value 82.795154
iter  60 value 82.054175
iter  70 value 81.878971
iter  80 value 81.827421
final  value 81.825788 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.734861 
iter  10 value 92.076303
iter  20 value 83.978932
iter  30 value 83.702730
iter  40 value 82.687037
iter  50 value 82.161560
iter  60 value 82.096229
iter  70 value 82.070945
final  value 82.070912 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.003291 
iter  10 value 94.277415
iter  20 value 90.528171
iter  30 value 83.454676
iter  40 value 82.662691
iter  50 value 82.319898
iter  60 value 81.107791
iter  70 value 80.590962
iter  80 value 80.503987
iter  90 value 80.090709
iter 100 value 79.712284
final  value 79.712284 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.931337 
iter  10 value 94.116467
iter  20 value 94.050161
iter  30 value 90.964406
iter  40 value 88.946659
iter  50 value 88.859227
iter  60 value 88.369660
iter  70 value 80.915728
iter  80 value 79.881582
iter  90 value 79.736940
iter 100 value 79.565042
final  value 79.565042 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.305370 
iter  10 value 94.026873
iter  20 value 93.832668
iter  30 value 89.950936
iter  40 value 84.038053
iter  50 value 83.843236
iter  60 value 83.520383
iter  70 value 82.145400
iter  80 value 81.813277
iter  90 value 81.619556
iter 100 value 81.521687
final  value 81.521687 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.555848 
iter  10 value 93.718369
iter  20 value 85.152579
iter  30 value 83.307783
iter  40 value 82.449691
iter  50 value 81.958375
iter  60 value 81.874636
iter  70 value 80.659357
iter  80 value 79.775188
iter  90 value 79.636287
iter 100 value 79.473475
final  value 79.473475 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.911814 
iter  10 value 92.770551
iter  20 value 86.788990
iter  30 value 83.731905
iter  40 value 81.476423
iter  50 value 80.469920
iter  60 value 80.180895
iter  70 value 79.988126
iter  80 value 79.827466
iter  90 value 79.656284
iter 100 value 79.624249
final  value 79.624249 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 117.388203 
iter  10 value 92.242868
iter  20 value 85.843155
iter  30 value 85.094891
iter  40 value 82.406787
iter  50 value 81.740974
iter  60 value 81.414057
iter  70 value 80.962159
iter  80 value 80.127158
iter  90 value 79.788939
iter 100 value 79.492948
final  value 79.492948 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.858516 
iter  10 value 95.861460
iter  20 value 94.068613
iter  30 value 94.017179
iter  40 value 85.433117
iter  50 value 83.965514
iter  60 value 82.736408
iter  70 value 81.844091
iter  80 value 81.346414
iter  90 value 81.052728
iter 100 value 80.928852
final  value 80.928852 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 121.783087 
iter  10 value 95.527906
iter  20 value 93.434782
iter  30 value 91.573052
iter  40 value 91.512810
iter  50 value 90.159677
iter  60 value 87.823158
iter  70 value 86.682772
iter  80 value 82.973102
iter  90 value 80.317009
iter 100 value 79.871466
final  value 79.871466 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.015768 
iter  10 value 93.402876
iter  20 value 85.935427
iter  30 value 83.791689
iter  40 value 82.086323
iter  50 value 80.692395
iter  60 value 80.197682
iter  70 value 79.654481
iter  80 value 79.419552
iter  90 value 79.337916
iter 100 value 79.313121
final  value 79.313121 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.058953 
iter  10 value 95.632496
iter  20 value 94.064040
iter  30 value 88.279793
iter  40 value 85.895984
iter  50 value 83.027139
iter  60 value 82.707196
iter  70 value 82.442955
iter  80 value 82.134313
iter  90 value 81.718253
iter 100 value 81.211454
final  value 81.211454 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.827461 
final  value 94.054566 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.168540 
final  value 94.054589 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.537506 
final  value 94.054702 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.959590 
iter  10 value 94.063816
final  value 94.061524 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.065891 
final  value 94.054424 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.720739 
iter  10 value 94.057140
iter  20 value 91.785823
final  value 91.078937 
converged
Fitting Repeat 2 

# weights:  305
initial  value 93.332665 
iter  10 value 92.049650
iter  20 value 92.047696
iter  30 value 92.046694
iter  40 value 92.044172
iter  50 value 92.043979
iter  50 value 92.043979
final  value 92.043923 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.814609 
iter  10 value 93.840920
iter  20 value 93.837106
iter  30 value 93.156088
iter  40 value 89.975481
iter  50 value 89.918311
iter  60 value 89.918242
iter  70 value 89.857570
iter  80 value 89.426286
final  value 89.425682 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.252275 
iter  10 value 93.841075
iter  20 value 93.836526
iter  30 value 90.988193
iter  40 value 87.960655
iter  50 value 87.773504
iter  60 value 87.772474
iter  70 value 87.772398
iter  80 value 87.772279
iter  90 value 87.772111
final  value 87.772076 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.816284 
iter  10 value 94.057995
iter  20 value 93.938552
final  value 93.810675 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.058613 
iter  10 value 88.633236
iter  20 value 87.652346
iter  30 value 87.649949
iter  40 value 87.629111
iter  50 value 84.749893
iter  60 value 83.849947
iter  70 value 83.641955
iter  80 value 82.511640
iter  90 value 82.113345
iter 100 value 81.784578
final  value 81.784578 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.603162 
iter  10 value 94.017074
iter  20 value 93.854637
iter  30 value 88.236865
iter  40 value 87.810539
iter  50 value 87.638957
final  value 87.630627 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.179353 
iter  10 value 94.036086
iter  20 value 94.028929
iter  30 value 88.096919
iter  40 value 85.263600
iter  50 value 85.247137
iter  60 value 82.969736
iter  70 value 82.933336
final  value 82.932572 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.413512 
iter  10 value 94.060560
final  value 94.053981 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.617402 
iter  10 value 94.061703
iter  20 value 94.053207
iter  30 value 83.251227
iter  40 value 83.136520
iter  50 value 81.518934
iter  60 value 80.315974
iter  70 value 80.136996
iter  80 value 80.131815
iter  90 value 80.131479
iter 100 value 80.113740
final  value 80.113740 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.751111 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.309760 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.537239 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.830159 
iter  10 value 93.206308
final  value 93.135248 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.009892 
iter  10 value 94.280238
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.983024 
final  value 94.046703 
converged
Fitting Repeat 2 

# weights:  305
initial  value 114.502931 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.330577 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.097745 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.988592 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.404592 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.470399 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.911718 
iter  10 value 93.486412
final  value 93.486410 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.027867 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 123.104020 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.082477 
iter  10 value 92.118023
iter  20 value 84.667529
iter  30 value 84.544100
iter  40 value 83.604381
iter  50 value 82.723688
iter  60 value 82.186420
iter  70 value 82.142661
iter  80 value 82.113897
final  value 82.110999 
converged
Fitting Repeat 2 

# weights:  103
initial  value 113.445773 
iter  10 value 94.492888
iter  20 value 91.330813
iter  30 value 84.186186
iter  40 value 83.558467
iter  50 value 82.554186
iter  60 value 82.171904
iter  70 value 82.146179
final  value 82.146042 
converged
Fitting Repeat 3 

# weights:  103
initial  value 109.298252 
iter  10 value 94.221954
iter  20 value 89.012829
iter  30 value 86.742700
iter  40 value 85.874039
iter  50 value 83.893932
iter  60 value 82.582067
iter  70 value 82.184567
iter  80 value 82.152983
final  value 82.146901 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.434791 
iter  10 value 85.601743
iter  20 value 84.151886
iter  30 value 82.576996
iter  40 value 82.169148
final  value 82.164895 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.202619 
iter  10 value 94.517701
iter  20 value 94.401490
iter  30 value 87.175198
iter  40 value 83.949665
iter  50 value 83.071553
iter  60 value 82.600419
iter  70 value 81.794739
iter  80 value 81.548905
iter  90 value 81.498199
iter 100 value 81.278944
final  value 81.278944 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.763875 
iter  10 value 94.436039
iter  20 value 93.578005
iter  30 value 93.359775
iter  40 value 90.760816
iter  50 value 86.105531
iter  60 value 85.409477
iter  70 value 84.184550
iter  80 value 81.395535
iter  90 value 80.699691
iter 100 value 80.188141
final  value 80.188141 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 144.034214 
iter  10 value 94.410219
iter  20 value 91.125554
iter  30 value 84.460322
iter  40 value 82.902504
iter  50 value 81.102388
iter  60 value 80.451485
iter  70 value 79.630041
iter  80 value 79.291458
iter  90 value 79.202201
iter 100 value 79.018780
final  value 79.018780 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 108.454049 
iter  10 value 94.663652
iter  20 value 94.231872
iter  30 value 87.184581
iter  40 value 83.741960
iter  50 value 82.773564
iter  60 value 82.367811
iter  70 value 82.046829
iter  80 value 81.232119
iter  90 value 80.574776
iter 100 value 79.884242
final  value 79.884242 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.270078 
iter  10 value 92.507414
iter  20 value 89.392580
iter  30 value 86.392428
iter  40 value 85.431168
iter  50 value 84.398298
iter  60 value 83.298360
iter  70 value 82.744283
iter  80 value 81.602337
iter  90 value 81.239615
iter 100 value 81.043981
final  value 81.043981 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 116.359771 
iter  10 value 94.846376
iter  20 value 94.514221
iter  30 value 85.823110
iter  40 value 84.898153
iter  50 value 83.813864
iter  60 value 82.368041
iter  70 value 81.292484
iter  80 value 81.090250
iter  90 value 80.920685
iter 100 value 80.882844
final  value 80.882844 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.013783 
iter  10 value 92.913135
iter  20 value 85.864048
iter  30 value 83.557772
iter  40 value 81.990531
iter  50 value 81.179202
iter  60 value 81.014549
iter  70 value 80.904216
iter  80 value 80.870418
iter  90 value 80.824951
iter 100 value 80.684296
final  value 80.684296 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.633484 
iter  10 value 96.449721
iter  20 value 87.649047
iter  30 value 83.029706
iter  40 value 82.490818
iter  50 value 80.698045
iter  60 value 80.321598
iter  70 value 79.996384
iter  80 value 79.568706
iter  90 value 79.471185
iter 100 value 79.367161
final  value 79.367161 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.348371 
iter  10 value 89.206603
iter  20 value 84.375223
iter  30 value 83.129672
iter  40 value 82.632529
iter  50 value 81.762913
iter  60 value 81.508249
iter  70 value 80.269426
iter  80 value 79.686417
iter  90 value 79.595453
iter 100 value 79.568952
final  value 79.568952 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.027350 
iter  10 value 94.706752
iter  20 value 85.905629
iter  30 value 84.442315
iter  40 value 82.046917
iter  50 value 80.878849
iter  60 value 80.542548
iter  70 value 80.111225
iter  80 value 79.802675
iter  90 value 79.382111
iter 100 value 79.194908
final  value 79.194908 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.460975 
iter  10 value 94.539919
iter  20 value 85.157745
iter  30 value 83.971761
iter  40 value 83.243236
iter  50 value 82.626343
iter  60 value 82.231267
iter  70 value 81.572040
iter  80 value 80.545527
iter  90 value 79.937890
iter 100 value 79.769075
final  value 79.769075 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.790677 
final  value 94.485887 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.834096 
final  value 94.486022 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.034882 
iter  10 value 94.276673
iter  20 value 94.171630
iter  30 value 94.167487
iter  40 value 94.117606
final  value 94.117324 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.661355 
iter  10 value 94.485755
iter  20 value 94.295153
iter  30 value 84.484097
iter  40 value 84.483532
final  value 84.483232 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.104331 
iter  10 value 94.485948
iter  20 value 94.327866
final  value 94.229456 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.324208 
iter  10 value 94.489425
iter  20 value 94.484344
final  value 94.484228 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.623509 
iter  10 value 93.847553
iter  20 value 84.494766
iter  30 value 83.043776
iter  40 value 82.824741
iter  50 value 82.821225
iter  60 value 82.818644
final  value 82.818480 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.813928 
iter  10 value 94.488698
iter  20 value 94.314875
iter  30 value 87.225405
iter  40 value 85.878571
iter  50 value 85.756968
iter  60 value 84.976203
iter  70 value 84.975749
final  value 84.975735 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.284057 
iter  10 value 94.489103
iter  20 value 94.439330
iter  30 value 87.928292
iter  40 value 84.636518
iter  50 value 84.626705
iter  60 value 82.428364
iter  70 value 80.987935
iter  80 value 80.854640
iter  90 value 80.828243
final  value 80.828191 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.130511 
iter  10 value 93.875445
iter  20 value 93.814191
iter  30 value 93.806564
iter  40 value 93.438137
iter  50 value 93.289855
iter  60 value 93.237191
iter  70 value 93.236341
iter  80 value 93.229652
iter  90 value 87.538301
iter 100 value 87.281076
final  value 87.281076 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.344144 
iter  10 value 94.426105
iter  20 value 93.277266
iter  30 value 91.747087
iter  40 value 85.169496
iter  50 value 84.164836
iter  60 value 83.983958
iter  70 value 83.959336
iter  80 value 83.406221
iter  90 value 83.212296
iter 100 value 83.207561
final  value 83.207561 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 110.150887 
iter  10 value 94.237754
iter  20 value 94.236736
iter  30 value 94.230397
iter  40 value 94.230152
iter  50 value 94.229297
final  value 94.228975 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.356442 
iter  10 value 94.497157
iter  20 value 94.488797
iter  30 value 94.476943
iter  40 value 94.279986
iter  50 value 94.240722
iter  60 value 93.974110
final  value 93.973796 
converged
Fitting Repeat 4 

# weights:  507
initial  value 113.978014 
iter  10 value 93.605671
iter  20 value 93.583875
iter  30 value 93.417081
iter  40 value 93.098051
final  value 92.955535 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.374720 
iter  10 value 94.283694
iter  20 value 94.276302
iter  30 value 89.465696
iter  40 value 84.223361
iter  50 value 84.036538
iter  60 value 83.962961
iter  70 value 82.120790
iter  80 value 79.991371
iter  90 value 77.999604
iter 100 value 77.858319
final  value 77.858319 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.003896 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.151983 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.610671 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.763833 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.409443 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.717440 
iter  10 value 92.361781
final  value 90.944892 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.874159 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.802934 
final  value 94.052448 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.453829 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.667479 
iter  10 value 91.272693
iter  20 value 90.945527
final  value 90.944891 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.407044 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.965211 
iter  10 value 93.206689
iter  20 value 91.712982
iter  30 value 91.228027
iter  40 value 88.656415
iter  50 value 84.396004
iter  60 value 84.104581
iter  70 value 84.066908
iter  80 value 84.063220
iter  90 value 84.063018
iter 100 value 84.062992
final  value 84.062992 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.437908 
final  value 94.038009 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.238312 
iter  10 value 92.475674
iter  20 value 92.435195
final  value 92.369872 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.249581 
iter  10 value 94.038252
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.171228 
iter  10 value 94.009404
iter  20 value 91.062186
iter  30 value 89.242805
iter  40 value 88.979803
iter  50 value 87.865143
iter  60 value 87.735710
iter  70 value 86.898870
iter  80 value 85.354724
iter  90 value 85.271633
final  value 85.271483 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.073120 
iter  10 value 94.021223
iter  20 value 91.794891
iter  30 value 87.534519
iter  40 value 87.090823
iter  50 value 85.076996
iter  60 value 84.453387
iter  70 value 84.439365
final  value 84.439329 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.889730 
iter  10 value 94.131630
iter  20 value 94.046714
iter  30 value 92.159287
iter  40 value 91.003222
iter  50 value 90.873916
iter  60 value 90.784982
iter  70 value 90.752405
iter  80 value 84.645311
iter  90 value 83.617030
iter 100 value 83.130070
final  value 83.130070 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 107.622498 
iter  10 value 94.042057
iter  20 value 88.702763
iter  30 value 88.187598
iter  40 value 88.086172
iter  50 value 87.511362
iter  60 value 87.227869
final  value 87.227679 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.987510 
iter  10 value 93.952730
iter  20 value 91.854857
iter  30 value 87.181760
iter  40 value 86.806123
iter  50 value 86.563256
iter  60 value 83.719925
iter  70 value 83.669056
iter  80 value 83.665729
iter  90 value 83.665530
final  value 83.665514 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.706347 
iter  10 value 94.075287
iter  20 value 93.728826
iter  30 value 93.272867
iter  40 value 92.783408
iter  50 value 90.853193
iter  60 value 90.730565
iter  70 value 89.942091
iter  80 value 87.070061
iter  90 value 86.243962
iter 100 value 84.692750
final  value 84.692750 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.457489 
iter  10 value 94.063220
iter  20 value 92.522426
iter  30 value 88.461989
iter  40 value 88.172445
iter  50 value 87.239075
iter  60 value 85.684638
iter  70 value 84.870341
iter  80 value 84.407992
iter  90 value 83.251131
iter 100 value 82.617614
final  value 82.617614 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.463176 
iter  10 value 97.113111
iter  20 value 87.473044
iter  30 value 85.827395
iter  40 value 84.779489
iter  50 value 84.118543
iter  60 value 83.057902
iter  70 value 82.536047
iter  80 value 82.361959
iter  90 value 82.182108
iter 100 value 82.050668
final  value 82.050668 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.293585 
iter  10 value 90.617424
iter  20 value 86.585465
iter  30 value 83.993910
iter  40 value 83.816387
iter  50 value 83.681802
iter  60 value 83.487341
iter  70 value 83.428497
iter  80 value 83.327427
iter  90 value 83.175971
iter 100 value 82.840832
final  value 82.840832 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.022923 
iter  10 value 93.508095
iter  20 value 88.317238
iter  30 value 85.222962
iter  40 value 83.322668
iter  50 value 83.026984
iter  60 value 82.661440
iter  70 value 82.042307
iter  80 value 81.889490
iter  90 value 81.778205
iter 100 value 81.760597
final  value 81.760597 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 114.858030 
iter  10 value 101.166347
iter  20 value 88.683120
iter  30 value 87.533861
iter  40 value 86.926818
iter  50 value 85.334838
iter  60 value 82.695376
iter  70 value 82.178794
iter  80 value 81.974903
iter  90 value 81.919514
iter 100 value 81.648466
final  value 81.648466 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 119.371437 
iter  10 value 94.239513
iter  20 value 90.028820
iter  30 value 85.566340
iter  40 value 82.915778
iter  50 value 82.636349
iter  60 value 81.745440
iter  70 value 81.487348
iter  80 value 81.463305
iter  90 value 81.436129
iter 100 value 81.346728
final  value 81.346728 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 123.893560 
iter  10 value 94.236040
iter  20 value 92.247729
iter  30 value 92.035244
iter  40 value 89.038061
iter  50 value 88.381683
iter  60 value 84.934849
iter  70 value 84.255024
iter  80 value 83.054674
iter  90 value 82.077371
iter 100 value 81.724165
final  value 81.724165 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 116.042987 
iter  10 value 95.382739
iter  20 value 94.012300
iter  30 value 91.019786
iter  40 value 85.400138
iter  50 value 84.049473
iter  60 value 82.515181
iter  70 value 81.817400
iter  80 value 81.675718
iter  90 value 81.615079
iter 100 value 81.451031
final  value 81.451031 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.214957 
iter  10 value 92.087235
iter  20 value 85.581701
iter  30 value 83.473473
iter  40 value 83.275918
iter  50 value 82.951293
iter  60 value 82.597824
iter  70 value 82.241525
iter  80 value 82.019546
iter  90 value 81.689959
iter 100 value 81.555502
final  value 81.555502 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.031055 
final  value 94.054621 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.887034 
final  value 94.054586 
converged
Fitting Repeat 3 

# weights:  103
initial  value 109.710038 
final  value 94.054445 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.877290 
final  value 94.054530 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.865796 
iter  10 value 94.039885
iter  20 value 94.038342
iter  30 value 90.993315
final  value 90.945703 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.231302 
iter  10 value 94.042758
iter  20 value 94.038369
final  value 94.038323 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.978235 
iter  10 value 94.058057
iter  20 value 94.054541
iter  30 value 94.046108
iter  40 value 94.044735
iter  50 value 93.532462
iter  60 value 93.050390
iter  70 value 93.030917
final  value 93.030764 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.381542 
iter  10 value 94.058932
iter  20 value 94.054206
iter  30 value 89.562120
iter  40 value 87.945479
iter  50 value 87.944753
iter  60 value 87.943353
iter  70 value 87.055341
iter  80 value 83.701494
iter  90 value 82.277620
iter 100 value 81.970660
final  value 81.970660 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 96.025293 
iter  10 value 94.057682
iter  20 value 94.053188
iter  30 value 92.268835
iter  40 value 87.941980
iter  50 value 86.865195
iter  60 value 86.714490
final  value 86.713930 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.134783 
iter  10 value 94.056779
iter  20 value 94.043672
iter  30 value 94.042735
iter  40 value 94.039413
iter  50 value 86.788748
iter  60 value 86.523908
final  value 86.523717 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.682775 
iter  10 value 93.366123
iter  20 value 92.329015
iter  30 value 91.413536
iter  40 value 91.412844
iter  50 value 91.408024
iter  60 value 91.349993
iter  70 value 91.345295
iter  80 value 91.344344
iter  90 value 91.343425
iter 100 value 91.342033
final  value 91.342033 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.602633 
iter  10 value 94.046028
iter  20 value 94.039328
iter  30 value 93.848425
iter  40 value 93.823846
final  value 93.823698 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.807268 
iter  10 value 93.541402
iter  20 value 92.974041
iter  30 value 86.506169
iter  40 value 86.346678
iter  50 value 84.123196
iter  60 value 84.077139
iter  70 value 84.074908
iter  80 value 84.073816
iter  90 value 83.620982
iter 100 value 83.465931
final  value 83.465931 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.150313 
iter  10 value 88.407719
iter  20 value 86.583861
iter  30 value 86.476656
iter  40 value 86.384552
iter  50 value 86.371818
iter  60 value 86.353514
iter  70 value 85.916722
iter  80 value 85.889062
iter  90 value 85.792716
iter 100 value 85.638448
final  value 85.638448 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 99.061670 
iter  10 value 93.541597
iter  20 value 90.116395
iter  30 value 88.077291
iter  40 value 88.076507
iter  50 value 87.852131
iter  60 value 87.776406
final  value 87.776320 
converged
Fitting Repeat 1 

# weights:  507
initial  value 140.211372 
iter  10 value 118.358018
iter  20 value 118.048681
iter  30 value 117.758660
iter  40 value 117.390189
iter  50 value 114.452972
iter  60 value 112.549984
iter  70 value 111.272599
iter  80 value 109.384781
iter  90 value 105.718372
iter 100 value 104.519307
final  value 104.519307 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 136.407219 
iter  10 value 115.783647
iter  20 value 108.522274
iter  30 value 107.082902
iter  40 value 106.061619
iter  50 value 105.159047
iter  60 value 104.294918
iter  70 value 103.167105
iter  80 value 102.765950
iter  90 value 102.619059
iter 100 value 102.340702
final  value 102.340702 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 143.236802 
iter  10 value 113.836025
iter  20 value 109.402817
iter  30 value 106.960988
iter  40 value 105.905113
iter  50 value 105.125114
iter  60 value 103.742578
iter  70 value 102.899059
iter  80 value 102.794026
iter  90 value 102.089146
iter 100 value 101.914013
final  value 101.914013 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 132.771431 
iter  10 value 119.781814
iter  20 value 110.788352
iter  30 value 107.935964
iter  40 value 106.306046
iter  50 value 105.513527
iter  60 value 103.762947
iter  70 value 102.230513
iter  80 value 101.996414
iter  90 value 101.661738
iter 100 value 101.235304
final  value 101.235304 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 139.251481 
iter  10 value 117.801571
iter  20 value 109.580354
iter  30 value 106.564344
iter  40 value 105.556790
iter  50 value 105.322797
iter  60 value 105.028205
iter  70 value 104.097916
iter  80 value 102.492674
iter  90 value 101.928185
iter 100 value 101.399963
final  value 101.399963 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Mon Dec 22 00:12:25 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 41.211   1.171  85.781 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod32.708 0.62333.389
FreqInteractors0.4400.0310.472
calculateAAC0.0300.0020.033
calculateAutocor0.3170.0150.332
calculateCTDC0.0750.0000.074
calculateCTDD0.4550.0030.458
calculateCTDT0.1370.0010.138
calculateCTriad0.3840.0080.391
calculateDC0.0880.0070.095
calculateF0.3000.0010.301
calculateKSAAP0.1000.0070.107
calculateQD_Sm1.8020.0301.832
calculateTC1.5140.1391.653
calculateTC_Sm0.2950.0050.300
corr_plot34.723 0.58235.377
enrichfindP 0.576 0.03915.471
enrichfind_hp0.0630.0011.075
enrichplot0.4800.0040.483
filter_missing_values0.0000.0010.001
getFASTA0.4390.0077.148
getHPI0.0010.0000.001
get_negativePPI0.0010.0010.002
get_positivePPI000
impute_missing_data0.0020.0010.001
plotPPI0.0830.0020.085
pred_ensembel12.988 0.11911.717
var_imp33.627 0.34434.012