Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-02-03 12:38 -0500 (Mon, 03 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4704 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" | 4467 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" | 4478 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 977/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-02-03 01:52:59 -0500 (Mon, 03 Feb 2025) |
EndedAt: 2025-02-03 01:59:20 -0500 (Mon, 03 Feb 2025) |
EllapsedTime: 380.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck' * using R Under development (unstable) (2025-01-21 r87610 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.13.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 36.11 1.41 37.53 FSmethod 35.55 1.72 37.43 corr_plot 32.89 1.55 34.43 pred_ensembel 14.48 0.39 13.50 enrichfindP 0.73 0.06 14.74 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.13.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.413804 final value 94.448052 converged Fitting Repeat 2 # weights: 103 initial value 101.913784 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.722338 final value 94.448052 converged Fitting Repeat 4 # weights: 103 initial value 103.619280 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.008580 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 119.469124 final value 93.922222 converged Fitting Repeat 2 # weights: 305 initial value 103.234780 iter 10 value 94.409357 iter 10 value 94.409357 iter 10 value 94.409357 final value 94.409357 converged Fitting Repeat 3 # weights: 305 initial value 95.850996 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 106.017576 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.488536 iter 10 value 87.684455 iter 20 value 84.399455 iter 30 value 83.947843 iter 40 value 83.842900 iter 50 value 83.153451 iter 60 value 83.152731 final value 83.152730 converged Fitting Repeat 1 # weights: 507 initial value 112.348618 iter 10 value 94.112906 final value 94.112903 converged Fitting Repeat 2 # weights: 507 initial value 104.492403 final value 94.443243 converged Fitting Repeat 3 # weights: 507 initial value 100.606189 final value 94.448052 converged Fitting Repeat 4 # weights: 507 initial value 98.782476 iter 10 value 91.449637 final value 91.427076 converged Fitting Repeat 5 # weights: 507 initial value 114.570231 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.838225 iter 10 value 94.488894 iter 20 value 94.437216 iter 30 value 93.562680 iter 40 value 85.347885 iter 50 value 84.501848 iter 60 value 83.984982 iter 70 value 83.127536 iter 80 value 82.426540 iter 90 value 82.413880 iter 100 value 81.938731 final value 81.938731 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.363033 iter 10 value 94.488462 iter 20 value 92.412550 iter 30 value 85.936128 iter 40 value 85.320093 iter 50 value 84.954914 iter 60 value 84.323121 iter 70 value 84.261580 iter 80 value 84.242805 final value 84.242247 converged Fitting Repeat 3 # weights: 103 initial value 107.784846 iter 10 value 94.494541 iter 20 value 94.234581 iter 30 value 93.740390 iter 40 value 87.404746 iter 50 value 85.032659 iter 60 value 84.259027 iter 70 value 83.438770 iter 80 value 82.448989 iter 90 value 81.883853 iter 100 value 81.597840 final value 81.597840 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.126582 iter 10 value 94.486740 iter 20 value 86.562563 iter 30 value 85.332479 final value 85.244431 converged Fitting Repeat 5 # weights: 103 initial value 103.761915 iter 10 value 94.402885 iter 20 value 91.974901 iter 30 value 91.451763 iter 40 value 91.443048 iter 50 value 91.442977 iter 50 value 91.442977 iter 50 value 91.442977 final value 91.442977 converged Fitting Repeat 1 # weights: 305 initial value 102.617718 iter 10 value 94.428206 iter 20 value 92.240606 iter 30 value 91.761157 iter 40 value 90.399135 iter 50 value 87.728617 iter 60 value 86.801004 iter 70 value 82.288375 iter 80 value 81.039181 iter 90 value 80.609777 iter 100 value 80.411991 final value 80.411991 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.262188 iter 10 value 94.625014 iter 20 value 93.875986 iter 30 value 86.664205 iter 40 value 85.283823 iter 50 value 83.062377 iter 60 value 82.597020 iter 70 value 81.701006 iter 80 value 81.464245 iter 90 value 81.309862 iter 100 value 80.897853 final value 80.897853 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.332890 iter 10 value 93.272219 iter 20 value 92.061977 iter 30 value 88.801037 iter 40 value 86.884261 iter 50 value 84.231147 iter 60 value 83.176806 iter 70 value 81.804435 iter 80 value 81.040642 iter 90 value 80.703184 iter 100 value 80.396798 final value 80.396798 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.325195 iter 10 value 94.321951 iter 20 value 86.233651 iter 30 value 85.329059 iter 40 value 84.314183 iter 50 value 81.230261 iter 60 value 80.519600 iter 70 value 80.312131 iter 80 value 80.272565 iter 90 value 80.230092 iter 100 value 80.164949 final value 80.164949 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.599098 iter 10 value 97.549149 iter 20 value 94.527000 iter 30 value 94.408438 iter 40 value 94.158619 iter 50 value 93.887135 iter 60 value 90.907983 iter 70 value 85.343991 iter 80 value 83.334775 iter 90 value 82.782165 iter 100 value 82.419885 final value 82.419885 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 136.123654 iter 10 value 95.851327 iter 20 value 91.606774 iter 30 value 89.781705 iter 40 value 86.052094 iter 50 value 84.141473 iter 60 value 83.397365 iter 70 value 82.906610 iter 80 value 81.606291 iter 90 value 80.850212 iter 100 value 80.480637 final value 80.480637 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.067379 iter 10 value 94.129448 iter 20 value 87.341217 iter 30 value 81.990944 iter 40 value 81.190073 iter 50 value 80.907813 iter 60 value 80.857833 iter 70 value 80.836846 iter 80 value 80.808230 iter 90 value 80.572772 iter 100 value 80.122606 final value 80.122606 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.482721 iter 10 value 94.981871 iter 20 value 91.626318 iter 30 value 91.279749 iter 40 value 90.694919 iter 50 value 87.841831 iter 60 value 86.960392 iter 70 value 84.896185 iter 80 value 82.774933 iter 90 value 80.809657 iter 100 value 80.708853 final value 80.708853 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.713245 iter 10 value 94.535246 iter 20 value 94.081133 iter 30 value 94.009759 iter 40 value 93.672395 iter 50 value 91.845293 iter 60 value 88.534575 iter 70 value 84.474570 iter 80 value 83.293477 iter 90 value 82.052701 iter 100 value 81.606247 final value 81.606247 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.372797 iter 10 value 95.633996 iter 20 value 91.801551 iter 30 value 88.039346 iter 40 value 84.795077 iter 50 value 83.714416 iter 60 value 82.914272 iter 70 value 81.408508 iter 80 value 80.561989 iter 90 value 80.062957 iter 100 value 79.903518 final value 79.903518 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.032859 final value 94.486020 converged Fitting Repeat 2 # weights: 103 initial value 107.258415 iter 10 value 93.775229 iter 20 value 93.774413 iter 30 value 92.652556 iter 40 value 84.957798 iter 50 value 83.380018 final value 83.212214 converged Fitting Repeat 3 # weights: 103 initial value 96.767475 iter 10 value 94.444954 iter 20 value 94.443722 iter 30 value 94.443306 iter 40 value 92.473837 final value 92.422232 converged Fitting Repeat 4 # weights: 103 initial value 98.688043 final value 94.485529 converged Fitting Repeat 5 # weights: 103 initial value 94.645226 final value 94.485658 converged Fitting Repeat 1 # weights: 305 initial value 96.049572 iter 10 value 94.489165 iter 20 value 94.484547 iter 20 value 94.484546 iter 20 value 94.484546 final value 94.484546 converged Fitting Repeat 2 # weights: 305 initial value 98.085719 iter 10 value 94.448300 iter 20 value 94.316001 iter 30 value 91.791983 iter 40 value 88.394346 iter 50 value 88.374160 iter 60 value 87.941678 iter 70 value 87.858454 iter 80 value 87.858223 iter 90 value 87.839004 iter 100 value 87.838651 final value 87.838651 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.844597 iter 10 value 94.482872 iter 20 value 94.138378 iter 30 value 87.486007 iter 40 value 86.789453 iter 50 value 86.767219 final value 86.767170 converged Fitting Repeat 4 # weights: 305 initial value 100.720289 iter 10 value 94.489301 iter 20 value 94.456517 final value 93.922567 converged Fitting Repeat 5 # weights: 305 initial value 100.051268 iter 10 value 93.927576 iter 20 value 93.924283 iter 30 value 93.869822 iter 40 value 90.539214 iter 50 value 83.709332 iter 60 value 82.856032 iter 70 value 82.799088 final value 82.798387 converged Fitting Repeat 1 # weights: 507 initial value 103.052595 iter 10 value 94.491973 final value 94.484802 converged Fitting Repeat 2 # weights: 507 initial value 97.300054 iter 10 value 92.990558 iter 20 value 92.981315 iter 30 value 92.974573 iter 40 value 92.969799 iter 50 value 92.939460 iter 60 value 90.580477 iter 70 value 90.547415 iter 80 value 90.289084 iter 90 value 90.026158 iter 100 value 90.011815 final value 90.011815 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.839612 iter 10 value 94.119328 iter 20 value 93.049201 iter 30 value 91.946238 iter 40 value 91.845973 iter 50 value 91.838330 iter 60 value 87.883034 iter 70 value 85.573825 iter 80 value 85.489359 iter 90 value 85.488776 final value 85.488737 converged Fitting Repeat 4 # weights: 507 initial value 101.999146 iter 10 value 94.451589 iter 20 value 93.794126 iter 30 value 84.477612 final value 84.474977 converged Fitting Repeat 5 # weights: 507 initial value 117.558443 iter 10 value 94.452624 iter 20 value 94.445507 iter 30 value 86.649312 iter 40 value 86.135104 iter 50 value 85.824573 iter 60 value 85.620355 iter 70 value 85.614574 final value 85.614418 converged Fitting Repeat 1 # weights: 103 initial value 106.977242 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.645733 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.669363 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.999628 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.494070 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.909966 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 101.108484 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 111.459378 final value 94.449438 converged Fitting Repeat 4 # weights: 305 initial value 107.063881 iter 10 value 93.066104 iter 10 value 93.066104 iter 10 value 93.066104 final value 93.066104 converged Fitting Repeat 5 # weights: 305 initial value 97.086695 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 98.602750 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 97.740573 final value 94.275362 converged Fitting Repeat 3 # weights: 507 initial value 123.878088 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 106.502665 final value 94.399989 converged Fitting Repeat 5 # weights: 507 initial value 106.223314 iter 10 value 94.262839 iter 20 value 93.662632 iter 20 value 93.662632 iter 20 value 93.662632 final value 93.662632 converged Fitting Repeat 1 # weights: 103 initial value 98.986388 iter 10 value 94.500488 iter 20 value 87.728387 iter 30 value 86.190085 iter 40 value 86.125238 iter 50 value 85.966665 iter 60 value 85.753511 iter 70 value 85.280205 iter 80 value 84.233535 iter 90 value 84.212000 iter 100 value 83.368535 final value 83.368535 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.439361 iter 10 value 94.511089 iter 20 value 94.487300 iter 30 value 94.487014 iter 40 value 94.433587 iter 50 value 92.853993 iter 60 value 87.580317 iter 70 value 86.896546 iter 80 value 86.308922 iter 90 value 85.541022 iter 100 value 84.936588 final value 84.936588 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.996822 iter 10 value 94.474821 iter 20 value 94.093317 iter 30 value 92.196676 iter 40 value 88.450282 iter 50 value 84.901091 iter 60 value 84.426728 iter 70 value 83.590789 iter 80 value 83.244986 iter 90 value 82.894699 iter 100 value 82.662843 final value 82.662843 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.576611 iter 10 value 94.416126 iter 20 value 88.767876 iter 30 value 87.086074 iter 40 value 86.304704 iter 50 value 85.197883 iter 60 value 84.896830 iter 70 value 84.409081 iter 80 value 84.318138 final value 84.317826 converged Fitting Repeat 5 # weights: 103 initial value 123.701305 iter 10 value 94.719588 iter 20 value 94.440175 iter 30 value 94.164174 iter 40 value 87.289214 iter 50 value 85.637059 iter 60 value 85.279574 iter 70 value 83.161884 iter 80 value 81.809226 iter 90 value 80.906717 iter 100 value 80.880596 final value 80.880596 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.421454 iter 10 value 94.777644 iter 20 value 89.519804 iter 30 value 85.470670 iter 40 value 84.850983 iter 50 value 83.376317 iter 60 value 82.732770 iter 70 value 82.634490 iter 80 value 82.402094 iter 90 value 81.103706 iter 100 value 80.986256 final value 80.986256 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.815492 iter 10 value 93.584663 iter 20 value 87.341771 iter 30 value 83.180569 iter 40 value 82.842802 iter 50 value 82.794372 iter 60 value 82.728426 iter 70 value 82.463611 iter 80 value 80.899040 iter 90 value 80.101402 iter 100 value 79.904497 final value 79.904497 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.420147 iter 10 value 94.494276 iter 20 value 93.977772 iter 30 value 93.124440 iter 40 value 88.836805 iter 50 value 86.990109 iter 60 value 86.642928 iter 70 value 83.297817 iter 80 value 80.790099 iter 90 value 80.192805 iter 100 value 79.861133 final value 79.861133 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.942137 iter 10 value 94.252194 iter 20 value 87.849356 iter 30 value 83.971043 iter 40 value 81.980436 iter 50 value 81.483901 iter 60 value 81.242305 iter 70 value 80.472938 iter 80 value 80.147292 iter 90 value 79.519274 iter 100 value 79.073969 final value 79.073969 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 122.710191 iter 10 value 88.122662 iter 20 value 84.635776 iter 30 value 84.092416 iter 40 value 83.485608 iter 50 value 81.871871 iter 60 value 81.568433 iter 70 value 81.247972 iter 80 value 81.130148 iter 90 value 80.823923 iter 100 value 80.428352 final value 80.428352 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.044045 iter 10 value 94.439674 iter 20 value 91.403282 iter 30 value 85.987287 iter 40 value 84.967506 iter 50 value 82.445857 iter 60 value 81.266771 iter 70 value 80.254168 iter 80 value 79.937160 iter 90 value 79.679203 iter 100 value 79.644130 final value 79.644130 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.793947 iter 10 value 94.815306 iter 20 value 94.452878 iter 30 value 94.084132 iter 40 value 85.895066 iter 50 value 84.143050 iter 60 value 80.089010 iter 70 value 79.723680 iter 80 value 79.606439 iter 90 value 79.465852 iter 100 value 79.372859 final value 79.372859 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.855091 iter 10 value 94.691992 iter 20 value 88.678055 iter 30 value 83.956026 iter 40 value 80.945276 iter 50 value 80.554967 iter 60 value 80.397720 iter 70 value 80.130295 iter 80 value 79.937680 iter 90 value 79.762026 iter 100 value 79.431044 final value 79.431044 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.986193 iter 10 value 94.247527 iter 20 value 90.621652 iter 30 value 82.809545 iter 40 value 81.822734 iter 50 value 80.399881 iter 60 value 79.836430 iter 70 value 79.739176 iter 80 value 79.634742 iter 90 value 79.558835 iter 100 value 79.546703 final value 79.546703 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.081287 iter 10 value 94.590789 iter 20 value 94.126256 iter 30 value 92.020275 iter 40 value 88.135199 iter 50 value 83.491270 iter 60 value 82.121285 iter 70 value 81.947206 iter 80 value 81.070640 iter 90 value 80.305405 iter 100 value 80.135341 final value 80.135341 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.614049 final value 94.486010 converged Fitting Repeat 2 # weights: 103 initial value 105.643605 iter 10 value 94.401841 iter 20 value 94.326595 iter 30 value 94.275963 final value 94.275843 converged Fitting Repeat 3 # weights: 103 initial value 95.939041 iter 10 value 94.103171 final value 94.073374 converged Fitting Repeat 4 # weights: 103 initial value 100.492320 iter 10 value 94.486105 final value 94.484220 converged Fitting Repeat 5 # weights: 103 initial value 98.565125 final value 94.485757 converged Fitting Repeat 1 # weights: 305 initial value 104.596056 iter 10 value 94.489010 iter 20 value 94.484229 iter 30 value 94.334036 final value 94.275443 converged Fitting Repeat 2 # weights: 305 initial value 97.778532 iter 10 value 94.488938 iter 20 value 94.443354 iter 30 value 89.890556 iter 40 value 86.057222 iter 50 value 86.054109 iter 60 value 85.928114 iter 70 value 85.303702 iter 80 value 85.277475 iter 90 value 84.703636 iter 100 value 84.641877 final value 84.641877 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.872082 iter 10 value 92.070322 iter 20 value 92.068705 iter 30 value 92.066331 iter 40 value 90.155228 iter 50 value 84.319778 iter 60 value 83.976449 iter 70 value 83.851163 iter 80 value 83.735118 iter 90 value 83.734045 iter 100 value 83.733179 final value 83.733179 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.802980 iter 10 value 94.280509 iter 20 value 94.275960 final value 94.275688 converged Fitting Repeat 5 # weights: 305 initial value 94.178412 iter 10 value 90.732065 iter 20 value 89.863702 iter 30 value 88.330738 iter 40 value 87.941452 iter 50 value 87.281154 iter 60 value 87.279564 iter 70 value 87.278963 final value 87.278567 converged Fitting Repeat 1 # weights: 507 initial value 115.460845 iter 10 value 94.283378 iter 20 value 94.276365 iter 30 value 94.275475 iter 40 value 94.229382 iter 50 value 92.486687 iter 60 value 81.536775 iter 70 value 80.284042 iter 80 value 80.037469 final value 80.037424 converged Fitting Repeat 2 # weights: 507 initial value 106.858506 iter 10 value 94.256014 iter 20 value 90.589177 iter 30 value 84.020972 iter 40 value 82.887002 iter 50 value 82.734600 iter 60 value 82.090180 iter 70 value 80.165372 iter 80 value 79.737850 iter 90 value 79.702642 iter 100 value 79.702590 final value 79.702590 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.279969 iter 10 value 93.868026 iter 20 value 93.861763 iter 30 value 93.800777 iter 40 value 85.498190 iter 50 value 85.333846 iter 60 value 84.050127 iter 70 value 83.858876 iter 80 value 83.837220 iter 90 value 83.837011 final value 83.836618 converged Fitting Repeat 4 # weights: 507 initial value 116.351882 iter 10 value 94.491648 iter 20 value 94.487374 iter 30 value 94.278395 iter 40 value 94.275730 final value 94.275699 converged Fitting Repeat 5 # weights: 507 initial value 95.532077 iter 10 value 90.711549 iter 20 value 84.765512 iter 30 value 83.595190 iter 40 value 83.319409 iter 50 value 83.276137 iter 60 value 83.275184 iter 70 value 83.271603 final value 83.270208 converged Fitting Repeat 1 # weights: 103 initial value 99.558573 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 106.089291 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.828836 iter 10 value 94.035095 final value 94.035091 converged Fitting Repeat 4 # weights: 103 initial value 98.508002 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.765322 final value 94.022599 converged Fitting Repeat 1 # weights: 305 initial value 99.250549 iter 10 value 86.688769 iter 20 value 86.638414 iter 30 value 86.611924 iter 40 value 86.607910 final value 86.607906 converged Fitting Repeat 2 # weights: 305 initial value 96.339314 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 109.677246 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 105.561769 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 96.522015 iter 10 value 93.806086 final value 93.804329 converged Fitting Repeat 1 # weights: 507 initial value 111.545759 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 118.876890 iter 10 value 93.921280 final value 93.921213 converged Fitting Repeat 3 # weights: 507 initial value 97.664072 iter 10 value 93.875057 iter 20 value 93.864168 final value 93.862937 converged Fitting Repeat 4 # weights: 507 initial value 125.732400 iter 10 value 87.510264 iter 20 value 86.998265 iter 30 value 86.997170 final value 86.997168 converged Fitting Repeat 5 # weights: 507 initial value 97.570080 final value 94.050051 converged Fitting Repeat 1 # weights: 103 initial value 96.589535 iter 10 value 94.017680 iter 20 value 90.760162 iter 30 value 89.592913 iter 40 value 88.312496 iter 50 value 86.294685 iter 60 value 85.163636 iter 70 value 85.126337 iter 80 value 84.946941 final value 84.939489 converged Fitting Repeat 2 # weights: 103 initial value 106.040901 iter 10 value 94.038209 iter 20 value 89.310300 iter 30 value 87.476956 iter 40 value 85.089583 iter 50 value 84.960571 iter 60 value 84.949024 iter 70 value 84.854568 final value 84.849966 converged Fitting Repeat 3 # weights: 103 initial value 101.447320 iter 10 value 93.435998 iter 20 value 89.139850 iter 30 value 87.715297 iter 40 value 86.656949 iter 50 value 85.196547 iter 60 value 85.180522 final value 85.180514 converged Fitting Repeat 4 # weights: 103 initial value 103.592596 iter 10 value 94.055891 iter 20 value 88.897728 iter 30 value 87.837963 iter 40 value 86.484447 iter 50 value 85.662627 iter 60 value 85.556172 iter 70 value 85.454037 iter 80 value 85.355654 final value 85.355607 converged Fitting Repeat 5 # weights: 103 initial value 98.963177 iter 10 value 89.848857 iter 20 value 85.766870 iter 30 value 84.999727 iter 40 value 84.952513 iter 50 value 84.942544 iter 60 value 84.881656 final value 84.849966 converged Fitting Repeat 1 # weights: 305 initial value 112.341375 iter 10 value 94.332764 iter 20 value 93.750254 iter 30 value 85.762408 iter 40 value 84.988049 iter 50 value 84.253914 iter 60 value 83.368457 iter 70 value 83.120776 iter 80 value 83.071707 iter 90 value 82.959206 iter 100 value 82.902595 final value 82.902595 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.070102 iter 10 value 93.745937 iter 20 value 93.489255 iter 30 value 86.316085 iter 40 value 85.658473 iter 50 value 85.337354 iter 60 value 85.308754 iter 70 value 85.196289 iter 80 value 84.998355 iter 90 value 84.626041 iter 100 value 83.444132 final value 83.444132 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.091765 iter 10 value 94.068889 iter 20 value 93.478152 iter 30 value 87.463423 iter 40 value 87.109958 iter 50 value 86.017401 iter 60 value 85.661180 iter 70 value 85.257233 iter 80 value 83.214379 iter 90 value 82.845670 iter 100 value 82.706145 final value 82.706145 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.268636 iter 10 value 93.399803 iter 20 value 87.118345 iter 30 value 85.331327 iter 40 value 84.649449 iter 50 value 84.341671 iter 60 value 82.934831 iter 70 value 82.324149 iter 80 value 82.208336 iter 90 value 82.075759 iter 100 value 81.958062 final value 81.958062 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.890133 iter 10 value 93.968729 iter 20 value 89.579468 iter 30 value 88.874322 iter 40 value 87.010332 iter 50 value 86.982618 iter 60 value 86.856951 iter 70 value 86.300571 iter 80 value 83.997566 iter 90 value 82.741884 iter 100 value 82.158075 final value 82.158075 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.044800 iter 10 value 94.040826 iter 20 value 87.001595 iter 30 value 85.917270 iter 40 value 84.317460 iter 50 value 83.787344 iter 60 value 83.326732 iter 70 value 82.974913 iter 80 value 82.380973 iter 90 value 81.853516 iter 100 value 81.708751 final value 81.708751 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.755674 iter 10 value 93.722059 iter 20 value 88.927212 iter 30 value 87.354427 iter 40 value 85.204006 iter 50 value 82.499790 iter 60 value 82.285318 iter 70 value 81.993382 iter 80 value 81.908439 iter 90 value 81.828975 iter 100 value 81.603845 final value 81.603845 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.918586 iter 10 value 94.029050 iter 20 value 92.218705 iter 30 value 88.370857 iter 40 value 87.899792 iter 50 value 86.684914 iter 60 value 85.921398 iter 70 value 84.572473 iter 80 value 83.566550 iter 90 value 83.319247 iter 100 value 83.254417 final value 83.254417 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.165371 iter 10 value 94.174258 iter 20 value 90.586477 iter 30 value 87.358333 iter 40 value 87.139104 iter 50 value 84.588578 iter 60 value 83.102759 iter 70 value 82.850916 iter 80 value 81.932789 iter 90 value 81.633115 iter 100 value 81.581853 final value 81.581853 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.363561 iter 10 value 93.313916 iter 20 value 89.147914 iter 30 value 86.621067 iter 40 value 85.649285 iter 50 value 85.133194 iter 60 value 84.634015 iter 70 value 84.314901 iter 80 value 84.202501 iter 90 value 84.127696 iter 100 value 83.848332 final value 83.848332 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.168024 final value 94.054409 converged Fitting Repeat 2 # weights: 103 initial value 96.233969 iter 10 value 94.034924 iter 20 value 94.033110 iter 30 value 88.348773 final value 88.348048 converged Fitting Repeat 3 # weights: 103 initial value 102.766006 iter 10 value 94.054568 iter 20 value 94.033456 final value 94.033028 converged Fitting Repeat 4 # weights: 103 initial value 95.096789 final value 94.054763 converged Fitting Repeat 5 # weights: 103 initial value 110.206072 final value 94.054487 converged Fitting Repeat 1 # weights: 305 initial value 97.217051 iter 10 value 94.054830 iter 20 value 93.948554 iter 30 value 93.905176 iter 40 value 93.805022 final value 93.804920 converged Fitting Repeat 2 # weights: 305 initial value 96.085353 iter 10 value 94.057303 iter 20 value 94.035529 iter 30 value 94.033226 iter 40 value 89.302327 iter 50 value 85.107408 iter 60 value 85.106122 iter 70 value 85.089725 final value 85.089230 converged Fitting Repeat 3 # weights: 305 initial value 99.961183 iter 10 value 94.057748 iter 20 value 94.047965 iter 30 value 90.615609 iter 40 value 85.234759 iter 50 value 84.488366 iter 60 value 84.452774 iter 70 value 84.399990 iter 80 value 84.394706 iter 90 value 84.388618 iter 100 value 84.217432 final value 84.217432 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.706704 iter 10 value 94.057810 iter 20 value 93.995798 iter 30 value 93.863052 final value 93.863050 converged Fitting Repeat 5 # weights: 305 initial value 96.667611 iter 10 value 94.188479 iter 20 value 94.126587 iter 30 value 90.436844 iter 40 value 87.085097 iter 50 value 86.818859 iter 60 value 86.406125 iter 70 value 82.930193 iter 80 value 82.632390 iter 90 value 82.608722 iter 100 value 82.587497 final value 82.587497 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.311585 iter 10 value 86.564456 iter 20 value 86.278867 iter 30 value 86.272809 iter 40 value 85.622358 iter 50 value 85.593546 iter 60 value 85.593197 final value 85.593190 converged Fitting Repeat 2 # weights: 507 initial value 104.334520 iter 10 value 94.044470 iter 20 value 94.039520 iter 30 value 93.962087 iter 40 value 90.882237 iter 50 value 86.270117 iter 60 value 84.841564 iter 70 value 84.840345 final value 84.840330 converged Fitting Repeat 3 # weights: 507 initial value 109.730170 iter 10 value 94.051792 iter 20 value 94.041238 iter 30 value 94.033550 iter 40 value 93.650921 iter 50 value 92.758967 final value 92.758749 converged Fitting Repeat 4 # weights: 507 initial value 106.219890 iter 10 value 94.057668 iter 20 value 94.020022 iter 30 value 85.037005 final value 84.811807 converged Fitting Repeat 5 # weights: 507 initial value 99.032249 iter 10 value 94.060063 iter 20 value 93.976567 iter 30 value 93.862997 iter 40 value 85.584920 iter 50 value 85.076557 iter 60 value 84.241422 iter 70 value 84.079358 final value 84.078513 converged Fitting Repeat 1 # weights: 103 initial value 96.394866 final value 93.915746 converged Fitting Repeat 2 # weights: 103 initial value 99.169786 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.404851 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.143409 iter 10 value 93.697143 iter 10 value 93.697143 iter 10 value 93.697143 final value 93.697143 converged Fitting Repeat 5 # weights: 103 initial value 102.525393 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.780538 final value 94.052911 converged Fitting Repeat 2 # weights: 305 initial value 103.712395 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 94.382092 iter 10 value 92.599715 final value 92.599711 converged Fitting Repeat 4 # weights: 305 initial value 102.566694 iter 10 value 92.360872 final value 92.360695 converged Fitting Repeat 5 # weights: 305 initial value 103.648033 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 104.424073 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 115.796956 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 104.046130 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 104.111897 iter 10 value 93.901246 iter 20 value 93.866107 iter 30 value 93.863102 final value 93.863073 converged Fitting Repeat 5 # weights: 507 initial value 109.731424 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 116.055513 iter 10 value 93.553961 iter 20 value 86.768836 iter 30 value 84.651471 iter 40 value 83.452838 iter 50 value 82.918324 iter 60 value 82.850770 final value 82.842773 converged Fitting Repeat 2 # weights: 103 initial value 101.864626 iter 10 value 92.334219 iter 20 value 83.820928 iter 30 value 83.478979 iter 40 value 83.110918 iter 50 value 83.053042 iter 60 value 82.845572 final value 82.842773 converged Fitting Repeat 3 # weights: 103 initial value 98.946739 iter 10 value 93.239444 iter 20 value 90.145420 iter 30 value 85.126767 iter 40 value 83.138557 iter 50 value 82.715879 iter 60 value 82.615027 iter 70 value 82.437545 iter 80 value 82.416987 final value 82.416397 converged Fitting Repeat 4 # weights: 103 initial value 96.555703 iter 10 value 93.983710 iter 20 value 88.323611 iter 30 value 85.261570 iter 40 value 81.616868 iter 50 value 79.909179 iter 60 value 79.434133 iter 70 value 79.421092 iter 80 value 79.391352 final value 79.391213 converged Fitting Repeat 5 # weights: 103 initial value 98.365006 iter 10 value 93.926728 iter 20 value 91.945178 iter 30 value 87.419981 iter 40 value 86.808755 iter 50 value 86.684537 iter 60 value 86.669665 iter 70 value 86.667738 iter 80 value 86.633900 iter 90 value 82.909035 iter 100 value 82.523575 final value 82.523575 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.632539 iter 10 value 94.064464 iter 20 value 93.751990 iter 30 value 84.783352 iter 40 value 83.675266 iter 50 value 82.937253 iter 60 value 81.138495 iter 70 value 80.619680 iter 80 value 80.293154 iter 90 value 79.908181 iter 100 value 78.927471 final value 78.927471 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.750974 iter 10 value 93.055991 iter 20 value 90.926449 iter 30 value 85.836667 iter 40 value 83.324319 iter 50 value 81.439650 iter 60 value 80.111236 iter 70 value 79.443874 iter 80 value 79.083079 iter 90 value 78.864595 iter 100 value 78.483653 final value 78.483653 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.834895 iter 10 value 93.365877 iter 20 value 84.759061 iter 30 value 83.364743 iter 40 value 83.173134 iter 50 value 82.096603 iter 60 value 80.451002 iter 70 value 80.047790 iter 80 value 79.502497 iter 90 value 79.275764 iter 100 value 78.498098 final value 78.498098 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.671731 iter 10 value 94.061474 iter 20 value 92.446467 iter 30 value 88.364821 iter 40 value 80.910022 iter 50 value 80.509765 iter 60 value 80.012091 iter 70 value 78.945714 iter 80 value 78.392904 iter 90 value 78.044049 iter 100 value 77.816634 final value 77.816634 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.182390 iter 10 value 93.977365 iter 20 value 93.945869 iter 30 value 93.816676 iter 40 value 85.506276 iter 50 value 82.800844 iter 60 value 82.613401 iter 70 value 82.555121 iter 80 value 82.362394 iter 90 value 81.535174 iter 100 value 81.425746 final value 81.425746 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.205102 iter 10 value 91.998849 iter 20 value 84.797128 iter 30 value 81.431176 iter 40 value 80.085158 iter 50 value 79.523308 iter 60 value 79.210816 iter 70 value 78.851583 iter 80 value 78.291705 iter 90 value 77.965604 iter 100 value 77.835924 final value 77.835924 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.210007 iter 10 value 93.960230 iter 20 value 90.863856 iter 30 value 87.029549 iter 40 value 83.693202 iter 50 value 80.144072 iter 60 value 80.007898 iter 70 value 79.884388 iter 80 value 79.232258 iter 90 value 78.483195 iter 100 value 78.116907 final value 78.116907 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.462367 iter 10 value 93.920849 iter 20 value 89.780678 iter 30 value 85.596357 iter 40 value 82.147991 iter 50 value 81.510757 iter 60 value 81.025714 iter 70 value 79.690329 iter 80 value 79.588622 iter 90 value 79.545216 iter 100 value 79.146110 final value 79.146110 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.567265 iter 10 value 94.651655 iter 20 value 94.006927 iter 30 value 88.604807 iter 40 value 87.539185 iter 50 value 86.136502 iter 60 value 86.006116 iter 70 value 84.454314 iter 80 value 80.728602 iter 90 value 78.329843 iter 100 value 77.807799 final value 77.807799 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.411074 iter 10 value 94.222021 iter 20 value 86.880859 iter 30 value 84.605546 iter 40 value 82.787314 iter 50 value 79.979683 iter 60 value 79.290587 iter 70 value 78.936728 iter 80 value 78.552468 iter 90 value 78.412692 iter 100 value 78.208329 final value 78.208329 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.865170 final value 94.054274 converged Fitting Repeat 2 # weights: 103 initial value 104.418783 final value 94.054631 converged Fitting Repeat 3 # weights: 103 initial value 102.959105 iter 10 value 94.054605 iter 20 value 94.052914 iter 30 value 93.839626 iter 40 value 93.697357 final value 93.697306 converged Fitting Repeat 4 # weights: 103 initial value 98.574975 iter 10 value 94.054673 iter 20 value 93.993850 iter 30 value 84.475500 iter 40 value 84.475291 iter 50 value 83.700961 iter 60 value 81.944964 final value 81.904762 converged Fitting Repeat 5 # weights: 103 initial value 110.656873 final value 94.054255 converged Fitting Repeat 1 # weights: 305 initial value 101.833880 iter 10 value 84.607157 iter 20 value 82.409217 iter 30 value 81.807829 iter 40 value 81.649712 iter 50 value 81.647809 iter 60 value 81.644395 final value 81.644286 converged Fitting Repeat 2 # weights: 305 initial value 102.362195 iter 10 value 94.057844 iter 20 value 93.754455 final value 93.697255 converged Fitting Repeat 3 # weights: 305 initial value 95.236886 iter 10 value 94.057666 iter 20 value 94.045066 iter 30 value 85.033521 iter 40 value 84.000753 iter 50 value 84.000346 final value 84.000240 converged Fitting Repeat 4 # weights: 305 initial value 97.026264 iter 10 value 94.057815 iter 20 value 92.879218 iter 30 value 92.703374 iter 40 value 87.894581 iter 50 value 83.503745 iter 60 value 83.194859 iter 70 value 83.170977 iter 80 value 82.105825 iter 90 value 81.448114 iter 100 value 81.420655 final value 81.420655 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 94.357830 iter 10 value 93.920426 iter 20 value 93.915903 final value 93.915882 converged Fitting Repeat 1 # weights: 507 initial value 101.193519 iter 10 value 94.061049 iter 20 value 94.052931 iter 30 value 88.875986 iter 40 value 82.625667 iter 50 value 82.006943 iter 60 value 80.180525 iter 70 value 78.325794 iter 80 value 78.106447 iter 90 value 78.087009 final value 78.086831 converged Fitting Repeat 2 # weights: 507 initial value 100.419381 iter 10 value 93.924955 iter 20 value 93.845569 iter 30 value 83.490029 iter 40 value 80.432349 iter 50 value 80.406429 iter 60 value 80.097791 final value 80.096926 converged Fitting Repeat 3 # weights: 507 initial value 108.204444 iter 10 value 94.060688 iter 20 value 94.019421 iter 30 value 93.305604 iter 40 value 89.567914 iter 50 value 88.798691 final value 88.798575 converged Fitting Repeat 4 # weights: 507 initial value 95.898211 iter 10 value 93.923494 iter 20 value 93.836407 iter 30 value 86.496773 iter 40 value 85.572050 iter 40 value 85.572050 iter 40 value 85.572050 final value 85.572050 converged Fitting Repeat 5 # weights: 507 initial value 114.648334 iter 10 value 88.965380 iter 20 value 81.895528 iter 30 value 77.766359 iter 40 value 77.145239 iter 50 value 77.142761 iter 60 value 77.134055 iter 70 value 77.086416 iter 80 value 76.913916 iter 90 value 76.501130 iter 100 value 76.360976 final value 76.360976 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.407200 final value 94.275362 converged Fitting Repeat 2 # weights: 103 initial value 96.648425 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.735513 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.723980 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.509579 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.072125 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 96.060469 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.040729 iter 10 value 93.920382 final value 93.907003 converged Fitting Repeat 4 # weights: 305 initial value 109.425549 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.555273 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 115.719767 final value 93.701657 converged Fitting Repeat 2 # weights: 507 initial value 110.195226 final value 94.165746 converged Fitting Repeat 3 # weights: 507 initial value 102.537953 final value 93.701657 converged Fitting Repeat 4 # weights: 507 initial value 113.283128 iter 10 value 93.804409 iter 20 value 93.781865 iter 20 value 93.781865 iter 20 value 93.781865 final value 93.781865 converged Fitting Repeat 5 # weights: 507 initial value 114.359240 iter 10 value 91.631883 iter 20 value 91.576564 final value 91.576471 converged Fitting Repeat 1 # weights: 103 initial value 100.566322 iter 10 value 93.603442 iter 20 value 86.997729 iter 30 value 86.831628 iter 40 value 85.983906 iter 50 value 85.722251 iter 60 value 85.581533 iter 70 value 85.478468 final value 85.465284 converged Fitting Repeat 2 # weights: 103 initial value 103.584894 iter 10 value 94.487296 iter 20 value 94.435108 iter 30 value 93.861884 iter 40 value 93.846519 iter 50 value 93.846362 iter 60 value 93.549056 iter 70 value 91.811243 iter 80 value 89.730718 iter 90 value 88.529711 iter 100 value 86.141697 final value 86.141697 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.316261 iter 10 value 94.488998 iter 20 value 91.530729 iter 30 value 88.066292 iter 40 value 87.443900 iter 50 value 87.074420 iter 60 value 87.010499 iter 70 value 86.754098 iter 80 value 86.387673 iter 90 value 86.349141 final value 86.349001 converged Fitting Repeat 4 # weights: 103 initial value 100.102899 iter 10 value 94.318845 iter 20 value 89.363099 iter 30 value 88.242702 iter 40 value 86.659397 iter 50 value 85.469802 iter 60 value 84.567635 iter 70 value 84.075226 iter 80 value 83.180964 iter 90 value 82.969509 iter 100 value 82.702301 final value 82.702301 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.346843 iter 10 value 93.919356 iter 20 value 87.089050 iter 30 value 86.568513 iter 40 value 86.307830 iter 50 value 86.005470 iter 60 value 85.649189 iter 70 value 85.466019 final value 85.465284 converged Fitting Repeat 1 # weights: 305 initial value 103.457355 iter 10 value 95.243112 iter 20 value 94.582845 iter 30 value 89.908088 iter 40 value 87.186734 iter 50 value 86.746255 iter 60 value 85.977411 iter 70 value 85.697085 iter 80 value 85.161254 iter 90 value 84.636964 iter 100 value 83.323788 final value 83.323788 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.509103 iter 10 value 94.561132 iter 20 value 93.293161 iter 30 value 87.614310 iter 40 value 84.342713 iter 50 value 82.276587 iter 60 value 81.854080 iter 70 value 81.729800 iter 80 value 81.696848 iter 90 value 81.687617 iter 100 value 81.674046 final value 81.674046 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.280876 iter 10 value 94.427430 iter 20 value 93.859791 iter 30 value 93.429957 iter 40 value 89.996734 iter 50 value 86.393381 iter 60 value 85.534903 iter 70 value 84.996787 iter 80 value 84.241421 iter 90 value 83.702073 iter 100 value 83.437151 final value 83.437151 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.932227 iter 10 value 94.405110 iter 20 value 88.978887 iter 30 value 85.723624 iter 40 value 85.235086 iter 50 value 84.758318 iter 60 value 84.658285 iter 70 value 84.619073 iter 80 value 84.553743 iter 90 value 84.459036 iter 100 value 83.123107 final value 83.123107 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.431507 iter 10 value 93.870950 iter 20 value 88.619508 iter 30 value 88.155659 iter 40 value 87.554078 iter 50 value 85.360296 iter 60 value 84.671659 iter 70 value 84.375772 iter 80 value 83.738798 iter 90 value 83.208823 iter 100 value 82.957887 final value 82.957887 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.271898 iter 10 value 94.491228 iter 20 value 93.834134 iter 30 value 89.799156 iter 40 value 86.859468 iter 50 value 86.619600 iter 60 value 85.497419 iter 70 value 83.431517 iter 80 value 82.379429 iter 90 value 81.712600 iter 100 value 81.510642 final value 81.510642 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.815897 iter 10 value 91.162137 iter 20 value 87.750617 iter 30 value 84.261525 iter 40 value 83.393646 iter 50 value 83.018630 iter 60 value 82.451591 iter 70 value 82.067219 iter 80 value 81.957525 iter 90 value 81.878701 iter 100 value 81.814600 final value 81.814600 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.321652 iter 10 value 94.386404 iter 20 value 89.468073 iter 30 value 86.540613 iter 40 value 86.326270 iter 50 value 85.644346 iter 60 value 83.062384 iter 70 value 82.327812 iter 80 value 82.168873 iter 90 value 82.115131 iter 100 value 81.986889 final value 81.986889 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.264112 iter 10 value 94.219209 iter 20 value 93.577815 iter 30 value 87.523778 iter 40 value 85.555379 iter 50 value 85.023507 iter 60 value 84.352439 iter 70 value 83.705035 iter 80 value 83.222712 iter 90 value 82.669281 iter 100 value 82.170709 final value 82.170709 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.552561 iter 10 value 94.805045 iter 20 value 87.756050 iter 30 value 84.947396 iter 40 value 84.287002 iter 50 value 83.896393 iter 60 value 83.786411 iter 70 value 83.671441 iter 80 value 83.326957 iter 90 value 83.211154 iter 100 value 82.784283 final value 82.784283 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.251805 final value 94.485804 converged Fitting Repeat 2 # weights: 103 initial value 95.565593 iter 10 value 85.717600 iter 20 value 85.393485 iter 30 value 85.319839 final value 85.309433 converged Fitting Repeat 3 # weights: 103 initial value 95.214735 iter 10 value 94.486025 iter 20 value 94.484073 iter 30 value 86.861635 iter 40 value 86.497459 iter 50 value 86.497430 iter 60 value 86.093691 iter 70 value 86.092290 final value 86.092193 converged Fitting Repeat 4 # weights: 103 initial value 102.268271 iter 10 value 93.775878 iter 20 value 93.695360 iter 30 value 88.392128 iter 40 value 88.356051 iter 50 value 88.355457 iter 60 value 88.354469 iter 70 value 85.364119 iter 80 value 85.349888 iter 90 value 85.316192 iter 100 value 84.938144 final value 84.938144 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.171355 final value 94.485922 converged Fitting Repeat 1 # weights: 305 initial value 111.257263 iter 10 value 94.488801 iter 20 value 92.792719 iter 30 value 88.222569 iter 40 value 88.215291 iter 50 value 88.214439 final value 88.213672 converged Fitting Repeat 2 # weights: 305 initial value 110.597211 iter 10 value 94.280547 iter 20 value 94.276140 iter 30 value 88.738200 iter 40 value 85.368134 iter 50 value 84.739516 iter 60 value 84.736843 iter 70 value 84.543859 iter 80 value 84.518148 iter 90 value 84.129579 iter 100 value 83.509040 final value 83.509040 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.981379 iter 10 value 94.488885 iter 20 value 94.484267 iter 30 value 94.275531 iter 30 value 94.275531 iter 30 value 94.275531 final value 94.275531 converged Fitting Repeat 4 # weights: 305 initial value 103.750769 iter 10 value 94.489245 iter 20 value 94.484200 iter 30 value 92.896471 iter 40 value 85.414271 iter 50 value 85.397816 iter 60 value 85.397107 iter 70 value 85.396596 iter 80 value 85.395017 iter 90 value 85.218234 iter 100 value 85.218184 final value 85.218184 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.604029 iter 10 value 93.378244 iter 20 value 93.219291 iter 30 value 93.214155 iter 40 value 93.146834 iter 50 value 93.114282 iter 60 value 93.113479 final value 93.113224 converged Fitting Repeat 1 # weights: 507 initial value 99.195089 iter 10 value 91.906349 iter 20 value 90.728985 iter 30 value 90.703673 iter 40 value 90.700036 final value 90.698492 converged Fitting Repeat 2 # weights: 507 initial value 101.395045 iter 10 value 93.795903 iter 20 value 93.788692 iter 30 value 93.786231 iter 40 value 93.784323 iter 50 value 87.614965 iter 60 value 85.393167 iter 70 value 84.791482 iter 80 value 84.746598 final value 84.746455 converged Fitting Repeat 3 # weights: 507 initial value 104.031879 iter 10 value 94.492804 iter 20 value 94.399939 iter 30 value 87.510496 iter 40 value 85.585303 iter 50 value 85.317505 final value 85.316429 converged Fitting Repeat 4 # weights: 507 initial value 96.854188 iter 10 value 94.276871 iter 20 value 93.730923 iter 30 value 91.446372 iter 40 value 91.422635 iter 50 value 91.288698 iter 60 value 91.283356 iter 70 value 88.144533 iter 80 value 88.015290 iter 90 value 88.011631 iter 100 value 87.958639 final value 87.958639 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.334595 iter 10 value 93.916299 iter 20 value 93.792961 iter 30 value 93.785141 iter 40 value 93.784232 iter 50 value 92.825391 iter 60 value 89.289896 iter 70 value 84.522447 iter 80 value 83.389671 iter 90 value 83.020265 iter 100 value 82.862573 final value 82.862573 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 133.707379 iter 10 value 117.894966 iter 20 value 117.776074 iter 30 value 113.640928 iter 40 value 112.300295 iter 50 value 104.754785 iter 60 value 103.741605 iter 70 value 103.630703 iter 80 value 103.625939 iter 90 value 103.625636 final value 103.625547 converged Fitting Repeat 2 # weights: 305 initial value 122.167893 iter 10 value 117.895453 iter 20 value 115.699730 iter 30 value 115.304363 iter 40 value 115.229724 iter 50 value 115.227016 final value 115.225970 converged Fitting Repeat 3 # weights: 305 initial value 124.523147 iter 10 value 117.870789 iter 20 value 117.866336 iter 30 value 117.753220 iter 40 value 108.843567 iter 50 value 104.880938 iter 60 value 103.921639 iter 70 value 103.918328 iter 80 value 103.887778 iter 90 value 103.803829 iter 100 value 103.801951 final value 103.801951 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 135.042891 iter 10 value 117.776052 iter 20 value 117.734489 iter 30 value 117.731538 iter 40 value 117.516644 iter 50 value 117.511331 iter 50 value 117.511331 final value 117.511331 converged Fitting Repeat 5 # weights: 305 initial value 120.968098 iter 10 value 117.894942 iter 20 value 117.647060 iter 30 value 115.616419 iter 40 value 114.915750 final value 114.915351 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Feb 3 01:59:08 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.96 1.37 126.04
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.55 | 1.72 | 37.43 | |
FreqInteractors | 0.31 | 0.03 | 0.37 | |
calculateAAC | 0.05 | 0.00 | 0.05 | |
calculateAutocor | 0.50 | 0.08 | 0.58 | |
calculateCTDC | 0.11 | 0.00 | 0.11 | |
calculateCTDD | 0.70 | 0.05 | 0.75 | |
calculateCTDT | 0.41 | 0.00 | 0.40 | |
calculateCTriad | 0.50 | 0.05 | 0.55 | |
calculateDC | 0.14 | 0.00 | 0.14 | |
calculateF | 0.41 | 0.00 | 0.41 | |
calculateKSAAP | 0.12 | 0.01 | 0.14 | |
calculateQD_Sm | 2.16 | 0.20 | 2.36 | |
calculateTC | 2.01 | 0.18 | 2.19 | |
calculateTC_Sm | 0.25 | 0.01 | 0.27 | |
corr_plot | 32.89 | 1.55 | 34.43 | |
enrichfindP | 0.73 | 0.06 | 14.74 | |
enrichfind_hp | 0.11 | 0.00 | 1.03 | |
enrichplot | 0.48 | 0.00 | 0.48 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.04 | 0.00 | 2.47 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.12 | 0.00 | 0.17 | |
pred_ensembel | 14.48 | 0.39 | 13.50 | |
var_imp | 36.11 | 1.41 | 37.53 | |