Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-12-24 11:41 -0500 (Tue, 24 Dec 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4754
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4472
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4426
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4381
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch64R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" 4373
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 973/2274HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.13.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-12-23 13:40 -0500 (Mon, 23 Dec 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 65e718f
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino7

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.13.0
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
StartedAt: 2024-12-24 01:39:50 -0500 (Tue, 24 Dec 2024)
EndedAt: 2024-12-24 01:45:00 -0500 (Tue, 24 Dec 2024)
EllapsedTime: 310.1 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck'
* using R Under development (unstable) (2024-10-26 r87273 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.13.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       34.81   1.32   36.13
FSmethod      34.25   1.78   36.14
corr_plot     32.06   1.46   33.53
pred_ensembel 14.14   0.39   13.04
enrichfindP    0.61   0.09   13.43
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 100.063846 
iter  10 value 94.049694
final  value 93.976244 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.455378 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.063224 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.977638 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.198283 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.086772 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.102180 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.313847 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.299460 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 114.254119 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.523429 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.618965 
iter  10 value 93.708639
iter  20 value 87.222289
iter  30 value 86.266509
iter  40 value 86.262478
final  value 86.262472 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.030894 
final  value 94.052432 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.877832 
final  value 94.026542 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.562154 
iter  10 value 93.983141
final  value 93.976244 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.112672 
iter  10 value 94.488257
iter  20 value 94.379858
iter  30 value 94.048225
iter  40 value 93.895392
iter  50 value 90.851510
iter  60 value 89.095227
iter  70 value 88.960316
iter  80 value 88.602314
iter  90 value 87.988877
iter 100 value 82.550853
final  value 82.550853 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.839248 
iter  10 value 94.573194
iter  20 value 93.194429
iter  30 value 85.881128
iter  40 value 85.578105
iter  50 value 85.236020
iter  60 value 84.026192
iter  70 value 83.660489
iter  80 value 83.632982
iter  90 value 83.403634
iter 100 value 83.160288
final  value 83.160288 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 106.732185 
iter  10 value 94.565843
iter  20 value 94.273685
iter  30 value 87.867729
iter  40 value 87.161873
iter  50 value 84.564473
iter  60 value 84.178367
iter  70 value 84.166027
final  value 84.166023 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.473045 
iter  10 value 94.466947
iter  20 value 94.103363
iter  30 value 94.079091
iter  40 value 94.071843
iter  50 value 93.515754
iter  60 value 89.598102
iter  70 value 86.364819
iter  80 value 86.124749
iter  90 value 85.684851
iter 100 value 85.330671
final  value 85.330671 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 117.167105 
iter  10 value 94.488115
iter  10 value 94.488115
iter  20 value 94.387765
iter  30 value 93.117788
iter  40 value 90.338863
iter  50 value 85.988048
iter  60 value 84.535920
iter  70 value 84.426424
iter  80 value 83.452412
iter  90 value 83.123491
iter 100 value 83.080043
final  value 83.080043 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.130177 
iter  10 value 95.258953
iter  20 value 92.936322
iter  30 value 89.539546
iter  40 value 87.469580
iter  50 value 84.799211
iter  60 value 83.512828
iter  70 value 83.346393
iter  80 value 83.000640
iter  90 value 81.937035
iter 100 value 81.252752
final  value 81.252752 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.517509 
iter  10 value 94.509193
iter  20 value 91.479201
iter  30 value 85.949594
iter  40 value 82.506909
iter  50 value 81.950780
iter  60 value 81.753922
iter  70 value 81.641929
iter  80 value 81.526051
iter  90 value 81.287378
iter 100 value 80.885169
final  value 80.885169 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.948420 
iter  10 value 94.266933
iter  20 value 87.119400
iter  30 value 85.967723
iter  40 value 84.016363
iter  50 value 83.616086
iter  60 value 83.469476
iter  70 value 83.426820
iter  80 value 82.696620
iter  90 value 81.091604
iter 100 value 80.749995
final  value 80.749995 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.727011 
iter  10 value 94.516630
iter  20 value 89.077822
iter  30 value 86.905413
iter  40 value 85.272693
iter  50 value 82.962363
iter  60 value 82.216444
iter  70 value 81.465966
iter  80 value 80.885602
iter  90 value 80.813325
iter 100 value 80.630186
final  value 80.630186 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 111.351602 
iter  10 value 94.415604
iter  20 value 93.138683
iter  30 value 87.489382
iter  40 value 85.952108
iter  50 value 85.641201
iter  60 value 83.893616
iter  70 value 82.194846
iter  80 value 80.827690
iter  90 value 80.505127
iter 100 value 80.372428
final  value 80.372428 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 136.192865 
iter  10 value 94.506328
iter  20 value 91.115571
iter  30 value 86.191989
iter  40 value 84.970876
iter  50 value 82.015922
iter  60 value 81.450591
iter  70 value 81.350868
iter  80 value 81.273715
iter  90 value 81.181251
iter 100 value 80.722226
final  value 80.722226 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.369646 
iter  10 value 94.377866
iter  20 value 88.850437
iter  30 value 88.120613
iter  40 value 87.727213
iter  50 value 86.449804
iter  60 value 83.846296
iter  70 value 81.558858
iter  80 value 81.091831
iter  90 value 80.763520
iter 100 value 80.523817
final  value 80.523817 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 117.791998 
iter  10 value 94.454535
iter  20 value 90.707797
iter  30 value 83.319623
iter  40 value 82.545660
iter  50 value 82.009486
iter  60 value 81.891978
iter  70 value 81.157655
iter  80 value 80.824403
iter  90 value 80.563852
iter 100 value 80.444653
final  value 80.444653 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.973075 
iter  10 value 96.842936
iter  20 value 90.725985
iter  30 value 84.786583
iter  40 value 84.403043
iter  50 value 84.172248
iter  60 value 83.458392
iter  70 value 82.348580
iter  80 value 81.955045
iter  90 value 81.777758
iter 100 value 81.173376
final  value 81.173376 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.502759 
iter  10 value 94.339245
iter  20 value 90.027696
iter  30 value 83.771932
iter  40 value 82.755946
iter  50 value 82.281606
iter  60 value 80.945275
iter  70 value 80.567237
iter  80 value 80.231098
iter  90 value 79.930821
iter 100 value 79.835713
final  value 79.835713 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.031202 
final  value 94.485945 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.200594 
final  value 94.483588 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.520377 
final  value 94.485843 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.761954 
final  value 94.486901 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.590889 
final  value 94.485586 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.385092 
iter  10 value 94.489338
iter  20 value 94.474925
iter  30 value 94.318097
iter  40 value 86.198719
iter  50 value 85.984252
iter  60 value 85.530797
iter  70 value 85.371077
iter  80 value 85.366549
iter  90 value 85.355435
iter 100 value 85.351386
final  value 85.351386 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.676994 
iter  10 value 94.327668
iter  20 value 94.071512
iter  30 value 86.557416
final  value 86.550252 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.358533 
iter  10 value 94.485285
iter  20 value 94.484232
final  value 94.484222 
converged
Fitting Repeat 4 

# weights:  305
initial  value 113.188574 
iter  10 value 94.031621
iter  20 value 94.008066
iter  30 value 93.853860
iter  40 value 87.489418
iter  50 value 86.582007
iter  60 value 83.672227
iter  70 value 83.327760
iter  80 value 82.683314
iter  90 value 82.356205
iter 100 value 82.318018
final  value 82.318018 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.424857 
iter  10 value 94.454050
iter  20 value 94.449586
iter  30 value 94.309995
iter  40 value 83.580361
iter  50 value 81.964926
iter  60 value 81.958917
iter  70 value 81.902989
iter  80 value 81.890094
final  value 81.889998 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.230268 
iter  10 value 94.037371
iter  20 value 94.033650
iter  30 value 94.029951
iter  40 value 93.562998
iter  50 value 92.168087
iter  60 value 92.096392
final  value 92.095892 
converged
Fitting Repeat 2 

# weights:  507
initial  value 129.866431 
iter  10 value 90.232847
iter  20 value 88.287929
iter  30 value 86.362717
iter  40 value 86.361578
iter  50 value 86.359608
iter  60 value 85.604022
iter  70 value 85.592995
iter  80 value 85.589145
iter  90 value 84.940222
iter 100 value 84.762839
final  value 84.762839 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 98.591970 
iter  10 value 93.812417
iter  20 value 92.675940
iter  30 value 92.476517
iter  40 value 92.473854
iter  50 value 92.472654
iter  60 value 92.472028
iter  70 value 91.739367
iter  80 value 83.089836
iter  90 value 82.421797
iter 100 value 81.225769
final  value 81.225769 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.876602 
iter  10 value 94.491611
iter  20 value 92.315063
iter  30 value 87.394480
iter  40 value 87.300337
iter  50 value 85.617109
iter  60 value 82.586482
iter  70 value 81.876647
iter  80 value 81.337235
iter  90 value 80.080627
iter 100 value 79.880748
final  value 79.880748 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.553954 
iter  10 value 88.417108
iter  20 value 86.747432
iter  30 value 86.620108
iter  40 value 86.136437
iter  50 value 86.117282
final  value 86.116400 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.103199 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.767124 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.746392 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.911418 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.715573 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.633549 
final  value 94.032967 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.576130 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.716678 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.304188 
iter  10 value 93.909035
iter  20 value 93.702598
final  value 93.702234 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.537587 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.134339 
iter  10 value 93.484215
final  value 93.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.113282 
iter  10 value 94.032968
iter  10 value 94.032967
iter  10 value 94.032967
final  value 94.032967 
converged
Fitting Repeat 3 

# weights:  507
initial  value 119.008680 
final  value 94.032967 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.908295 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.529783 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.999789 
iter  10 value 91.941667
iter  20 value 86.173555
iter  30 value 85.183407
iter  40 value 83.112875
iter  50 value 81.056181
iter  60 value 80.488479
iter  70 value 79.870158
iter  80 value 79.745270
iter  90 value 79.517975
final  value 79.470344 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.348334 
iter  10 value 94.027896
iter  20 value 93.812763
iter  30 value 92.512365
iter  40 value 92.233407
iter  50 value 89.853730
iter  60 value 82.455146
iter  70 value 81.234502
iter  80 value 80.544580
iter  90 value 79.957540
iter 100 value 79.751409
final  value 79.751409 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.058424 
iter  10 value 94.056900
iter  20 value 94.054776
iter  30 value 88.786374
iter  40 value 86.449326
iter  50 value 85.620349
iter  60 value 85.184678
iter  70 value 84.807635
iter  80 value 84.612503
iter  90 value 82.181004
iter 100 value 82.175812
final  value 82.175812 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 107.404820 
iter  10 value 94.067490
iter  20 value 94.044641
iter  30 value 83.935575
iter  40 value 83.123356
iter  50 value 82.695558
iter  60 value 82.368174
iter  70 value 82.294930
iter  80 value 82.155386
iter  90 value 82.116903
final  value 82.116711 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.378472 
iter  10 value 91.447770
iter  20 value 83.693507
iter  30 value 83.064256
iter  40 value 82.725833
iter  50 value 82.538409
iter  60 value 82.172342
iter  70 value 82.116721
final  value 82.116711 
converged
Fitting Repeat 1 

# weights:  305
initial  value 130.381197 
iter  10 value 94.123456
iter  20 value 94.034150
iter  30 value 87.596626
iter  40 value 82.541328
iter  50 value 82.118236
iter  60 value 82.036733
iter  70 value 82.003630
iter  80 value 81.900512
iter  90 value 81.867074
iter 100 value 81.837471
final  value 81.837471 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.050949 
iter  10 value 94.060989
iter  20 value 87.174791
iter  30 value 85.498739
iter  40 value 83.680552
iter  50 value 80.765935
iter  60 value 79.319581
iter  70 value 78.698535
iter  80 value 78.126704
iter  90 value 77.703828
iter 100 value 77.552289
final  value 77.552289 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.418549 
iter  10 value 94.250772
iter  20 value 91.439928
iter  30 value 85.981417
iter  40 value 83.767453
iter  50 value 82.397718
iter  60 value 81.480640
iter  70 value 81.401627
iter  80 value 81.328500
iter  90 value 81.264906
iter 100 value 81.262963
final  value 81.262963 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.553397 
iter  10 value 94.069922
iter  20 value 87.629894
iter  30 value 83.006001
iter  40 value 82.186663
iter  50 value 81.410660
iter  60 value 79.175713
iter  70 value 78.451358
iter  80 value 78.301172
iter  90 value 77.861728
iter 100 value 77.642590
final  value 77.642590 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.854226 
iter  10 value 94.094707
iter  20 value 93.973367
iter  30 value 84.181981
iter  40 value 83.585419
iter  50 value 82.117988
iter  60 value 81.368719
iter  70 value 80.716618
iter  80 value 80.121750
iter  90 value 78.942997
iter 100 value 77.915191
final  value 77.915191 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.174215 
iter  10 value 94.057602
iter  20 value 86.112820
iter  30 value 83.333803
iter  40 value 82.325412
iter  50 value 81.883657
iter  60 value 81.667754
iter  70 value 81.565709
iter  80 value 80.916569
iter  90 value 80.311571
iter 100 value 79.595682
final  value 79.595682 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.815068 
iter  10 value 92.809801
iter  20 value 84.126367
iter  30 value 82.382258
iter  40 value 80.447309
iter  50 value 80.071116
iter  60 value 79.059183
iter  70 value 78.104010
iter  80 value 77.526776
iter  90 value 77.208035
iter 100 value 77.047622
final  value 77.047622 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.197627 
iter  10 value 94.119624
iter  20 value 93.958648
iter  30 value 86.719760
iter  40 value 85.565370
iter  50 value 85.436904
iter  60 value 84.689734
iter  70 value 80.549606
iter  80 value 79.467841
iter  90 value 78.016090
iter 100 value 77.669002
final  value 77.669002 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.888109 
iter  10 value 94.211232
iter  20 value 93.806985
iter  30 value 86.162502
iter  40 value 84.678166
iter  50 value 80.338077
iter  60 value 79.743527
iter  70 value 79.451261
iter  80 value 79.367440
iter  90 value 79.335383
iter 100 value 79.324723
final  value 79.324723 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.410767 
iter  10 value 96.609878
iter  20 value 94.027219
iter  30 value 93.241276
iter  40 value 92.814233
iter  50 value 91.727552
iter  60 value 91.503637
iter  70 value 90.609574
iter  80 value 85.584011
iter  90 value 83.771091
iter 100 value 82.878418
final  value 82.878418 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 109.340813 
final  value 94.034502 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.359237 
final  value 94.054724 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.579584 
final  value 94.054443 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.589583 
iter  10 value 94.054594
iter  20 value 94.052920
iter  20 value 94.052919
iter  20 value 94.052919
final  value 94.052919 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.804089 
iter  10 value 94.054630
iter  20 value 94.052705
iter  30 value 84.702699
iter  40 value 84.659736
iter  50 value 83.534523
iter  60 value 83.490895
iter  70 value 83.327877
iter  80 value 81.170647
iter  90 value 81.157080
final  value 81.157049 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.268806 
iter  10 value 94.057821
iter  20 value 93.470834
iter  30 value 91.325530
iter  40 value 91.280294
iter  50 value 87.998266
iter  60 value 84.255915
iter  70 value 84.252932
iter  80 value 84.120744
final  value 84.120257 
converged
Fitting Repeat 2 

# weights:  305
initial  value 119.206349 
iter  10 value 94.037991
iter  20 value 94.036396
iter  30 value 94.036153
iter  40 value 94.035418
iter  50 value 94.000623
iter  60 value 93.969158
iter  70 value 85.306916
final  value 84.655806 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.196925 
iter  10 value 94.058145
iter  20 value 93.872414
iter  30 value 87.016547
iter  40 value 87.009908
iter  50 value 86.801467
iter  60 value 85.827823
iter  70 value 84.094505
iter  80 value 83.366878
iter  90 value 82.163665
iter 100 value 82.093849
final  value 82.093849 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.890123 
iter  10 value 94.057637
iter  20 value 91.877942
iter  30 value 85.190571
iter  40 value 85.160363
iter  50 value 85.143524
iter  60 value 85.143217
final  value 85.143159 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.749229 
iter  10 value 94.057903
iter  20 value 94.052961
iter  20 value 94.052960
iter  20 value 94.052960
final  value 94.052960 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.997356 
iter  10 value 94.040612
iter  20 value 94.034227
iter  30 value 93.981586
iter  40 value 84.666834
iter  50 value 84.662398
iter  60 value 84.660283
iter  70 value 84.658624
iter  80 value 84.466299
iter  90 value 82.673298
iter 100 value 78.653445
final  value 78.653445 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 127.246095 
iter  10 value 93.581124
iter  20 value 84.130200
iter  30 value 83.280594
iter  40 value 83.277164
iter  50 value 83.200542
iter  60 value 83.197667
iter  70 value 82.549080
iter  80 value 82.496111
iter  90 value 82.475186
iter 100 value 81.376391
final  value 81.376391 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 116.240999 
iter  10 value 93.976955
iter  20 value 93.970325
iter  30 value 93.394255
iter  40 value 82.735111
iter  50 value 80.226295
iter  60 value 78.127085
iter  70 value 78.100384
iter  80 value 77.077081
iter  90 value 76.985778
iter 100 value 76.985482
final  value 76.985482 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.486824 
iter  10 value 94.040824
iter  20 value 93.955467
iter  30 value 89.540767
iter  40 value 87.055096
iter  50 value 83.454503
iter  60 value 83.212170
iter  70 value 82.844201
iter  80 value 82.820661
iter  90 value 82.820535
final  value 82.820517 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.062453 
iter  10 value 93.977272
iter  20 value 93.876361
iter  30 value 88.425645
iter  40 value 87.396823
iter  50 value 87.366322
iter  60 value 87.365881
final  value 87.365864 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.259741 
final  value 94.052909 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.464708 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.563681 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.547673 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.617714 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.295163 
final  value 93.904720 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.193230 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.658564 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.653406 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.633113 
final  value 94.043234 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.321855 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.884900 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 126.964679 
iter  10 value 94.043253
final  value 94.043243 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.077438 
iter  10 value 93.887628
final  value 93.887626 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.306031 
iter  10 value 93.954701
final  value 93.887627 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.219775 
iter  10 value 94.095932
iter  20 value 94.054051
iter  30 value 88.945559
iter  40 value 88.678478
iter  50 value 88.627857
iter  60 value 86.074454
iter  70 value 85.547754
iter  80 value 85.129629
iter  90 value 85.116571
final  value 85.115742 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.393439 
iter  10 value 93.048532
iter  20 value 86.908603
iter  30 value 86.136181
iter  40 value 86.122995
iter  50 value 86.018199
iter  60 value 86.007823
final  value 86.007816 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.137630 
iter  10 value 93.814310
iter  20 value 89.964461
iter  30 value 87.935180
iter  40 value 85.250296
iter  50 value 85.220687
final  value 85.219730 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.638682 
iter  10 value 94.056688
iter  20 value 93.873512
iter  30 value 93.796754
iter  40 value 93.787437
iter  50 value 93.603707
iter  60 value 92.151067
iter  70 value 86.781394
iter  80 value 85.055692
iter  90 value 84.705095
iter 100 value 84.651586
final  value 84.651586 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 95.988674 
iter  10 value 94.119653
iter  20 value 88.642736
iter  30 value 84.989213
iter  40 value 84.395162
iter  50 value 83.837154
iter  60 value 83.564553
iter  70 value 83.338378
iter  80 value 83.296821
iter  80 value 83.296821
iter  80 value 83.296821
final  value 83.296821 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.923690 
iter  10 value 94.058262
iter  20 value 89.032741
iter  30 value 88.258884
iter  40 value 84.655887
iter  50 value 83.384336
iter  60 value 82.671335
iter  70 value 82.455454
iter  80 value 82.230757
iter  90 value 82.166495
iter 100 value 81.984226
final  value 81.984226 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 114.047463 
iter  10 value 94.093849
iter  20 value 89.284056
iter  30 value 85.614646
iter  40 value 84.356162
iter  50 value 83.697263
iter  60 value 83.365339
iter  70 value 83.257477
iter  80 value 83.216326
iter  90 value 83.204975
iter 100 value 83.052111
final  value 83.052111 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.686832 
iter  10 value 94.806845
iter  20 value 86.402385
iter  30 value 86.072090
iter  40 value 86.037041
iter  50 value 85.891570
iter  60 value 84.668879
iter  70 value 84.118683
iter  80 value 82.957697
iter  90 value 82.760422
iter 100 value 82.715640
final  value 82.715640 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.063616 
iter  10 value 94.521160
iter  20 value 92.439147
iter  30 value 88.443423
iter  40 value 86.424205
iter  50 value 86.260131
iter  60 value 85.511981
iter  70 value 84.429528
iter  80 value 82.787658
iter  90 value 82.452460
iter 100 value 82.174710
final  value 82.174710 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 117.915683 
iter  10 value 94.041656
iter  20 value 92.201367
iter  30 value 85.898722
iter  40 value 84.889877
iter  50 value 83.506290
iter  60 value 83.041765
iter  70 value 82.076057
iter  80 value 81.914696
iter  90 value 81.825633
iter 100 value 81.781191
final  value 81.781191 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.333056 
iter  10 value 95.066471
iter  20 value 93.611142
iter  30 value 90.535426
iter  40 value 86.793431
iter  50 value 83.559549
iter  60 value 82.885755
iter  70 value 82.663925
iter  80 value 82.515183
iter  90 value 82.317332
iter 100 value 82.201719
final  value 82.201719 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.438764 
iter  10 value 95.850382
iter  20 value 89.338396
iter  30 value 86.240523
iter  40 value 85.291018
iter  50 value 84.930603
iter  60 value 84.844950
iter  70 value 84.006845
iter  80 value 83.333996
iter  90 value 82.894811
iter 100 value 82.291291
final  value 82.291291 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 120.825059 
iter  10 value 94.411294
iter  20 value 93.560802
iter  30 value 86.823874
iter  40 value 86.277202
iter  50 value 86.235687
iter  60 value 85.814282
iter  70 value 83.637350
iter  80 value 82.415676
iter  90 value 82.360134
iter 100 value 82.159226
final  value 82.159226 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 127.601706 
iter  10 value 94.481311
iter  20 value 94.133119
iter  30 value 90.948935
iter  40 value 88.734248
iter  50 value 85.167041
iter  60 value 84.264290
iter  70 value 83.411369
iter  80 value 82.850808
iter  90 value 82.419401
iter 100 value 82.277527
final  value 82.277527 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.697607 
iter  10 value 93.956143
iter  20 value 88.445465
iter  30 value 86.200444
iter  40 value 85.994476
iter  50 value 85.640673
iter  60 value 83.385710
iter  70 value 82.877500
iter  80 value 82.635236
iter  90 value 82.458014
iter 100 value 82.302379
final  value 82.302379 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.769274 
final  value 94.054589 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.552503 
iter  10 value 88.430233
iter  20 value 88.197315
iter  30 value 88.196772
iter  40 value 87.915857
final  value 87.885929 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.464682 
iter  10 value 94.044901
iter  20 value 94.043508
final  value 94.043267 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.196218 
iter  10 value 94.054667
iter  20 value 94.052733
iter  30 value 85.635681
iter  40 value 85.634344
iter  50 value 85.633343
iter  60 value 85.632274
iter  70 value 85.245586
final  value 85.245521 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.368131 
final  value 94.054537 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.742198 
iter  10 value 94.056895
final  value 94.053685 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.702834 
iter  10 value 94.047880
iter  20 value 94.037085
iter  30 value 93.382740
iter  40 value 93.180534
iter  50 value 93.157870
iter  60 value 93.157625
iter  60 value 93.157625
final  value 93.157625 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.853384 
iter  10 value 94.048835
iter  20 value 94.044328
final  value 94.044176 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.616350 
iter  10 value 94.057410
iter  20 value 92.716304
iter  30 value 86.126032
iter  40 value 86.073546
iter  50 value 86.069468
iter  60 value 86.068823
iter  70 value 86.067165
iter  80 value 86.066957
iter  90 value 85.253957
iter 100 value 85.232723
final  value 85.232723 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.908004 
iter  10 value 90.283469
iter  20 value 86.753256
iter  30 value 86.746107
iter  40 value 86.743432
iter  50 value 86.716732
iter  60 value 86.700977
iter  70 value 86.700835
final  value 86.700815 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.776447 
iter  10 value 94.060753
iter  20 value 94.035368
iter  30 value 92.158163
iter  40 value 85.461475
iter  50 value 83.413681
iter  60 value 83.180158
final  value 83.168743 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.623723 
iter  10 value 94.060891
iter  20 value 91.978078
iter  30 value 87.832287
iter  40 value 85.534149
final  value 85.534140 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.104415 
iter  10 value 93.908994
iter  20 value 93.908421
iter  30 value 91.828189
iter  40 value 86.798774
iter  50 value 86.775115
iter  60 value 86.749225
final  value 86.748906 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.264140 
iter  10 value 94.060434
iter  20 value 93.971602
iter  30 value 93.541172
iter  40 value 93.529044
final  value 93.528927 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.240794 
iter  10 value 93.908280
iter  20 value 93.900577
iter  30 value 92.315549
iter  40 value 88.465702
iter  40 value 88.465702
iter  40 value 88.465702
final  value 88.465702 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.729033 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.845104 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.224695 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.319567 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.642679 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.353153 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.782697 
iter  10 value 91.477127
iter  20 value 84.535773
iter  30 value 84.245910
iter  40 value 84.244441
iter  50 value 84.215778
iter  60 value 82.703148
iter  70 value 81.615199
final  value 81.614943 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.256506 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.206034 
iter  10 value 93.313566
final  value 93.313054 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.756941 
final  value 94.305882 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.282890 
iter  10 value 94.305873
iter  10 value 94.305873
final  value 94.305873 
converged
Fitting Repeat 2 

# weights:  507
initial  value 113.205129 
iter  10 value 90.337281
iter  20 value 89.574653
iter  30 value 89.394375
final  value 89.392231 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.240670 
final  value 92.906854 
converged
Fitting Repeat 4 

# weights:  507
initial  value 147.313238 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 110.030927 
iter  10 value 93.972249
final  value 93.969901 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.887441 
iter  10 value 94.471738
iter  20 value 93.962093
iter  30 value 91.425286
iter  40 value 90.236878
iter  50 value 89.593364
iter  60 value 89.121906
iter  70 value 88.516840
iter  80 value 87.307648
iter  90 value 83.897646
iter 100 value 83.611969
final  value 83.611969 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 104.810649 
iter  10 value 94.459404
iter  20 value 93.345832
iter  30 value 93.159449
iter  40 value 93.072247
iter  50 value 91.253116
iter  60 value 83.219841
iter  70 value 82.404838
iter  80 value 81.073012
iter  90 value 80.890309
final  value 80.882854 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.260104 
iter  10 value 94.488395
iter  20 value 92.654806
iter  30 value 86.232884
iter  40 value 84.770801
iter  50 value 84.407871
iter  60 value 83.789505
iter  70 value 83.386197
iter  80 value 83.268442
final  value 83.260900 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.214671 
iter  10 value 94.538283
iter  20 value 94.358445
iter  30 value 93.629065
iter  40 value 90.858956
iter  50 value 90.068898
iter  60 value 89.962494
iter  70 value 88.407078
iter  80 value 86.431147
iter  90 value 84.590552
iter 100 value 83.517556
final  value 83.517556 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 101.268606 
iter  10 value 94.494830
iter  20 value 93.941763
iter  30 value 91.703144
iter  40 value 90.376292
iter  50 value 89.694462
iter  60 value 89.449338
iter  70 value 89.379653
iter  80 value 89.378689
iter  80 value 89.378688
iter  80 value 89.378688
final  value 89.378688 
converged
Fitting Repeat 1 

# weights:  305
initial  value 121.820930 
iter  10 value 94.453772
iter  20 value 93.829138
iter  30 value 89.880189
iter  40 value 87.664683
iter  50 value 86.995756
iter  60 value 84.547480
iter  70 value 80.884149
iter  80 value 80.490991
iter  90 value 80.234680
iter 100 value 80.165290
final  value 80.165290 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.172298 
iter  10 value 94.578327
iter  20 value 89.119405
iter  30 value 84.782710
iter  40 value 84.655773
iter  50 value 84.231809
iter  60 value 83.460817
iter  70 value 80.984704
iter  80 value 80.213116
iter  90 value 79.957494
iter 100 value 79.868950
final  value 79.868950 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.924671 
iter  10 value 94.518720
iter  20 value 93.660220
iter  30 value 90.674650
iter  40 value 84.777524
iter  50 value 83.432278
iter  60 value 80.881514
iter  70 value 80.203822
iter  80 value 79.955428
iter  90 value 79.802095
iter 100 value 79.756466
final  value 79.756466 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 118.104998 
iter  10 value 94.340878
iter  20 value 88.778773
iter  30 value 85.145243
iter  40 value 80.807975
iter  50 value 80.055839
iter  60 value 79.941605
iter  70 value 79.732968
iter  80 value 79.277242
iter  90 value 79.201640
iter 100 value 79.180880
final  value 79.180880 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 121.361576 
iter  10 value 93.602070
iter  20 value 87.223946
iter  30 value 86.967584
iter  40 value 86.234062
iter  50 value 81.313703
iter  60 value 80.605348
iter  70 value 80.276121
iter  80 value 79.859752
iter  90 value 79.758565
iter 100 value 79.625208
final  value 79.625208 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.248970 
iter  10 value 94.611031
iter  20 value 94.006549
iter  30 value 86.531958
iter  40 value 85.437278
iter  50 value 84.217221
iter  60 value 82.040525
iter  70 value 80.382034
iter  80 value 79.812375
iter  90 value 79.291356
iter 100 value 79.214205
final  value 79.214205 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.438602 
iter  10 value 94.424246
iter  20 value 93.449371
iter  30 value 84.702819
iter  40 value 84.173004
iter  50 value 82.355254
iter  60 value 81.454786
iter  70 value 81.049481
iter  80 value 80.720937
iter  90 value 80.652580
iter 100 value 80.631831
final  value 80.631831 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.007268 
iter  10 value 96.600744
iter  20 value 92.489450
iter  30 value 85.102135
iter  40 value 84.938457
iter  50 value 84.396226
iter  60 value 83.066470
iter  70 value 80.329922
iter  80 value 79.716261
iter  90 value 79.617674
iter 100 value 79.383607
final  value 79.383607 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.950251 
iter  10 value 94.625487
iter  20 value 86.634381
iter  30 value 84.393834
iter  40 value 81.819077
iter  50 value 81.176469
iter  60 value 80.425860
iter  70 value 80.150657
iter  80 value 80.022218
iter  90 value 79.887217
iter 100 value 79.626107
final  value 79.626107 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.173995 
iter  10 value 95.602275
iter  20 value 94.161885
iter  30 value 86.621346
iter  40 value 85.353184
iter  50 value 83.481504
iter  60 value 83.199872
iter  70 value 81.685441
iter  80 value 81.389585
iter  90 value 81.189076
iter 100 value 80.974496
final  value 80.974496 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.698475 
final  value 93.301979 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.990950 
final  value 94.486167 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.008769 
iter  10 value 94.486069
final  value 94.484237 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.809110 
iter  10 value 92.588984
iter  20 value 92.574522
iter  30 value 92.574391
final  value 92.574154 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.330954 
final  value 94.485705 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.893822 
iter  10 value 94.031319
iter  20 value 94.009715
iter  30 value 88.983711
final  value 88.912594 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.083403 
iter  10 value 94.488256
iter  20 value 93.051498
iter  30 value 86.048813
iter  40 value 85.263050
iter  50 value 84.756999
iter  60 value 84.204990
final  value 84.173244 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.521946 
iter  10 value 92.172491
iter  20 value 84.339399
iter  30 value 84.225349
iter  40 value 84.224579
iter  50 value 84.222651
iter  60 value 83.282759
iter  70 value 81.454718
iter  80 value 80.581370
iter  90 value 80.580603
final  value 80.580442 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.681848 
iter  10 value 94.489175
iter  20 value 94.484223
final  value 94.484217 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.937951 
iter  10 value 93.077220
iter  20 value 83.511281
iter  30 value 82.776032
iter  40 value 82.775042
final  value 82.773912 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.811631 
iter  10 value 94.493122
iter  20 value 94.484539
iter  30 value 94.023065
iter  40 value 92.373226
iter  50 value 88.337405
iter  60 value 88.324185
iter  70 value 88.320512
iter  80 value 88.319845
iter  90 value 88.318820
iter 100 value 87.545037
final  value 87.545037 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 99.983425 
iter  10 value 94.491939
iter  20 value 94.484236
final  value 94.484232 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.979431 
iter  10 value 90.720064
iter  20 value 88.428193
iter  30 value 88.427262
iter  40 value 88.425001
iter  50 value 88.421486
iter  60 value 86.595900
iter  70 value 79.785498
iter  80 value 79.421064
iter  90 value 79.311832
iter 100 value 79.190672
final  value 79.190672 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.347800 
iter  10 value 94.400419
iter  20 value 94.037222
iter  30 value 94.034733
iter  40 value 94.029093
iter  50 value 94.027755
iter  60 value 93.717305
iter  70 value 90.753669
iter  80 value 89.748214
iter  90 value 89.707851
iter 100 value 89.706044
final  value 89.706044 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.337315 
iter  10 value 94.035550
iter  20 value 94.032451
iter  30 value 94.031592
final  value 94.031577 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.389222 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.829863 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.247461 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.903646 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 112.553709 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.567149 
iter  10 value 91.190406
iter  20 value 91.158566
iter  30 value 91.158462
final  value 91.158461 
converged
Fitting Repeat 2 

# weights:  305
initial  value 109.906872 
iter  10 value 89.230097
iter  20 value 87.936711
final  value 87.936688 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.387650 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.117433 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.961763 
iter  10 value 93.141328
iter  20 value 87.686379
iter  30 value 85.689386
iter  40 value 84.214521
final  value 84.114374 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.284998 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.394846 
iter  10 value 93.868542
final  value 91.683261 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.458704 
final  value 94.484210 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.401515 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 116.227046 
iter  10 value 93.885022
iter  20 value 87.397150
iter  30 value 82.159169
iter  40 value 80.591580
iter  50 value 80.416189
final  value 80.416055 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.539633 
iter  10 value 94.492171
iter  20 value 94.173930
iter  30 value 89.288057
iter  40 value 86.139322
iter  50 value 83.673516
iter  60 value 83.192847
iter  70 value 82.428159
iter  80 value 82.270162
iter  90 value 81.962520
iter 100 value 81.779084
final  value 81.779084 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.175287 
iter  10 value 94.480201
iter  20 value 87.185457
iter  30 value 86.317596
iter  40 value 86.134067
iter  50 value 85.068975
iter  60 value 84.180059
iter  70 value 84.024649
iter  80 value 83.972707
final  value 83.971800 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.859506 
iter  10 value 94.488294
iter  20 value 86.259988
iter  30 value 84.965107
iter  40 value 84.914171
iter  50 value 84.674288
iter  60 value 84.394097
iter  70 value 84.352588
iter  80 value 84.345185
final  value 84.345172 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.101159 
iter  10 value 94.486470
iter  10 value 94.486469
iter  20 value 91.063625
iter  30 value 87.828094
iter  40 value 86.923123
iter  50 value 84.736299
iter  60 value 84.357829
iter  70 value 84.351475
iter  80 value 84.345190
final  value 84.345172 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.360293 
iter  10 value 94.486625
iter  20 value 94.486461
iter  30 value 88.342843
iter  40 value 85.944017
iter  50 value 84.646212
iter  60 value 84.156300
iter  70 value 84.017257
iter  80 value 83.990617
iter  80 value 83.990616
iter  80 value 83.990616
final  value 83.990616 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.253662 
iter  10 value 94.525471
iter  20 value 94.456830
iter  30 value 94.195041
iter  40 value 92.120590
iter  50 value 83.921447
iter  60 value 82.967666
iter  70 value 81.921434
iter  80 value 81.299488
iter  90 value 81.274216
iter 100 value 81.200733
final  value 81.200733 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.858257 
iter  10 value 94.842951
iter  20 value 94.482645
iter  30 value 93.435795
iter  40 value 92.906610
iter  50 value 85.293033
iter  60 value 84.399290
iter  70 value 83.408798
iter  80 value 83.175073
iter  90 value 82.866818
iter 100 value 81.799116
final  value 81.799116 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.956651 
iter  10 value 94.615778
iter  20 value 85.142313
iter  30 value 84.230709
iter  40 value 82.790913
iter  50 value 81.748458
iter  60 value 81.347690
iter  70 value 81.026354
iter  80 value 80.911752
iter  90 value 80.863302
iter 100 value 80.850697
final  value 80.850697 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.949260 
iter  10 value 94.050186
iter  20 value 87.358983
iter  30 value 85.200753
iter  40 value 84.497564
iter  50 value 84.331821
iter  60 value 84.191222
iter  70 value 84.152317
iter  80 value 84.084912
iter  90 value 82.490501
iter 100 value 81.835193
final  value 81.835193 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.899281 
iter  10 value 94.357547
iter  20 value 88.271833
iter  30 value 85.041425
iter  40 value 84.307493
iter  50 value 83.103124
iter  60 value 82.292595
iter  70 value 81.951952
iter  80 value 81.840319
iter  90 value 81.654882
iter 100 value 81.639107
final  value 81.639107 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.000125 
iter  10 value 94.471506
iter  20 value 92.587439
iter  30 value 89.627984
iter  40 value 85.543597
iter  50 value 83.433664
iter  60 value 82.282627
iter  70 value 81.709805
iter  80 value 81.476137
iter  90 value 81.204068
iter 100 value 81.011208
final  value 81.011208 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.679382 
iter  10 value 94.527195
iter  20 value 86.210503
iter  30 value 85.091164
iter  40 value 84.767263
iter  50 value 83.470715
iter  60 value 82.681742
iter  70 value 81.490433
iter  80 value 80.901513
iter  90 value 80.671160
iter 100 value 80.643572
final  value 80.643572 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.830110 
iter  10 value 94.776401
iter  20 value 94.209213
iter  30 value 88.137997
iter  40 value 85.652167
iter  50 value 85.318927
iter  60 value 84.505603
iter  70 value 83.493741
iter  80 value 83.402543
iter  90 value 82.846610
iter 100 value 82.341480
final  value 82.341480 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.701845 
iter  10 value 94.522913
iter  20 value 88.530073
iter  30 value 85.739714
iter  40 value 83.565560
iter  50 value 82.999624
iter  60 value 82.517120
iter  70 value 82.157685
iter  80 value 81.895478
iter  90 value 81.211973
iter 100 value 80.954976
final  value 80.954976 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.336512 
iter  10 value 93.789691
iter  20 value 85.692718
iter  30 value 85.340507
iter  40 value 84.968402
iter  50 value 84.610662
iter  60 value 83.080936
iter  70 value 81.762420
iter  80 value 81.439359
iter  90 value 80.506250
iter 100 value 80.342879
final  value 80.342879 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.894346 
iter  10 value 94.485859
iter  20 value 94.483504
iter  30 value 84.218980
iter  40 value 82.387340
iter  50 value 82.289412
iter  60 value 81.679132
iter  70 value 81.425721
iter  80 value 81.425134
final  value 81.424613 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.756190 
final  value 94.485818 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.338349 
final  value 94.485808 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.723749 
final  value 94.485853 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.193936 
iter  10 value 94.485917
iter  20 value 94.484214
iter  30 value 94.145982
iter  40 value 91.963072
iter  40 value 91.963071
iter  40 value 91.963071
final  value 91.963071 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.432047 
iter  10 value 94.488527
iter  20 value 94.483951
iter  30 value 94.214089
final  value 94.214077 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.018016 
iter  10 value 94.488595
iter  20 value 94.466414
iter  30 value 89.547645
iter  40 value 88.390037
iter  50 value 85.739526
iter  60 value 85.621834
iter  70 value 84.893708
iter  80 value 84.858746
iter  90 value 84.850884
iter 100 value 84.842432
final  value 84.842432 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 96.941238 
iter  10 value 94.263347
iter  20 value 94.217188
iter  30 value 94.214652
iter  40 value 89.269897
iter  50 value 89.229410
iter  60 value 89.227995
iter  70 value 89.179357
iter  80 value 87.813356
iter  90 value 87.770978
iter 100 value 87.770381
final  value 87.770381 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 94.855985 
iter  10 value 93.150679
iter  20 value 93.115666
iter  30 value 93.054636
iter  40 value 90.638632
iter  50 value 90.334646
final  value 90.334563 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.580560 
iter  10 value 94.480504
iter  20 value 94.434114
iter  30 value 94.429461
final  value 94.428916 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.435299 
iter  10 value 94.492717
iter  20 value 94.433607
iter  30 value 89.183432
iter  40 value 88.686361
iter  50 value 81.829890
iter  60 value 81.273161
iter  70 value 81.235463
iter  80 value 81.138875
iter  90 value 81.131960
iter 100 value 81.127371
final  value 81.127371 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 99.185770 
iter  10 value 93.487379
iter  20 value 93.302301
iter  30 value 86.460005
iter  40 value 86.458428
iter  50 value 86.456945
iter  60 value 86.455028
iter  70 value 86.453414
iter  80 value 86.452974
iter  90 value 86.444007
iter 100 value 86.443407
final  value 86.443407 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 98.372462 
iter  10 value 89.857681
iter  20 value 86.025455
iter  30 value 83.861558
iter  40 value 83.671387
final  value 83.671220 
converged
Fitting Repeat 4 

# weights:  507
initial  value 113.114405 
iter  10 value 94.417873
iter  20 value 90.005362
iter  30 value 86.768780
iter  40 value 83.815841
final  value 83.815594 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.774417 
iter  10 value 94.475049
iter  20 value 93.787155
iter  30 value 84.722626
iter  40 value 83.531085
iter  50 value 83.500301
iter  60 value 83.461860
iter  70 value 83.457039
iter  80 value 83.013950
iter  90 value 81.498281
iter 100 value 81.135063
final  value 81.135063 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 126.188927 
iter  10 value 117.898252
iter  20 value 117.715471
iter  30 value 114.333667
iter  40 value 114.327047
final  value 114.326748 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.651775 
iter  10 value 117.213558
iter  20 value 117.208458
final  value 117.208381 
converged
Fitting Repeat 3 

# weights:  507
initial  value 126.929213 
iter  10 value 117.698780
iter  20 value 117.602407
iter  30 value 117.542995
iter  40 value 117.542458
iter  50 value 117.471253
iter  60 value 117.469867
iter  70 value 106.764390
iter  80 value 102.094761
iter  90 value 101.611142
iter 100 value 101.460599
final  value 101.460599 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 152.752782 
iter  10 value 117.898472
iter  20 value 117.881632
iter  30 value 117.553830
iter  40 value 109.489729
iter  50 value 107.459760
iter  60 value 106.626976
iter  70 value 105.239108
iter  80 value 104.893282
iter  90 value 104.891930
iter 100 value 104.877830
final  value 104.877830 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 133.670407 
iter  10 value 117.892168
iter  20 value 117.798801
iter  30 value 117.209055
iter  40 value 115.709939
final  value 113.781513 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Tue Dec 24 01:44:48 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  42.93    1.32   58.29 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.25 1.7836.14
FreqInteractors0.340.020.39
calculateAAC0.030.010.05
calculateAutocor0.360.090.45
calculateCTDC0.090.000.10
calculateCTDD0.610.070.67
calculateCTDT0.330.010.34
calculateCTriad0.420.000.42
calculateDC0.120.020.14
calculateF0.440.000.44
calculateKSAAP0.10.00.1
calculateQD_Sm2.230.202.43
calculateTC1.910.132.03
calculateTC_Sm0.250.070.33
corr_plot32.06 1.4633.53
enrichfindP 0.61 0.0913.43
enrichfind_hp0.050.021.01
enrichplot0.370.010.39
filter_missing_values000
getFASTA0.000.031.95
getHPI0.020.000.02
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.110.000.16
pred_ensembel14.14 0.3913.04
var_imp34.81 1.3236.13