Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-08-21 11:42 -0400 (Thu, 21 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4604 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4545 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4579 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.14.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-08-19 10:08:54 -0000 (Tue, 19 Aug 2025) |
EndedAt: 2025-08-19 10:15:23 -0000 (Tue, 19 Aug 2025) |
EllapsedTime: 389.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-02-19 r87757) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.436 0.335 39.841 corr_plot 37.187 0.320 37.582 FSmethod 36.730 0.228 37.029 pred_ensembel 18.006 0.556 17.360 enrichfindP 0.514 0.019 19.596 getFASTA 0.080 0.004 5.227 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.621339 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.646015 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 108.179398 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 113.996264 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.045045 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 110.253459 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 104.949248 final value 94.052895 converged Fitting Repeat 3 # weights: 305 initial value 104.094453 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.786956 iter 10 value 93.328267 final value 93.328261 converged Fitting Repeat 5 # weights: 305 initial value 102.615083 final value 93.328261 converged Fitting Repeat 1 # weights: 507 initial value 101.659703 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 2 # weights: 507 initial value 95.367503 iter 10 value 91.038936 final value 91.038932 converged Fitting Repeat 3 # weights: 507 initial value 129.951030 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 113.910149 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.148834 iter 10 value 93.328263 final value 93.328261 converged Fitting Repeat 1 # weights: 103 initial value 100.596602 iter 10 value 94.067835 iter 20 value 90.905654 iter 30 value 85.515280 iter 40 value 80.033388 iter 50 value 77.411800 iter 60 value 77.020688 iter 70 value 76.986550 iter 80 value 76.209608 iter 90 value 75.833310 iter 100 value 75.814275 final value 75.814275 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.897226 iter 10 value 94.126239 iter 20 value 93.401710 iter 30 value 93.312067 iter 40 value 90.887350 iter 50 value 80.404149 iter 60 value 78.801169 iter 70 value 77.331754 iter 80 value 76.393874 iter 90 value 75.635302 iter 100 value 75.619281 final value 75.619281 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.945681 iter 10 value 93.361973 iter 20 value 93.288852 iter 30 value 87.088602 iter 40 value 85.310903 iter 50 value 79.782090 iter 60 value 77.434984 iter 70 value 75.972923 iter 80 value 75.628045 iter 90 value 75.618428 final value 75.618342 converged Fitting Repeat 4 # weights: 103 initial value 98.527829 iter 10 value 94.043483 iter 20 value 93.173949 iter 30 value 93.144563 iter 40 value 92.290068 iter 50 value 84.932048 iter 60 value 79.478756 iter 70 value 78.553496 iter 80 value 76.596402 iter 90 value 75.832493 iter 100 value 75.814242 final value 75.814242 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.595597 iter 10 value 92.712604 iter 20 value 84.924501 iter 30 value 80.032248 iter 40 value 78.488360 iter 50 value 78.138724 iter 60 value 77.805373 final value 77.803879 converged Fitting Repeat 1 # weights: 305 initial value 120.536796 iter 10 value 95.052553 iter 20 value 85.194762 iter 30 value 82.965477 iter 40 value 82.336048 iter 50 value 80.652673 iter 60 value 79.369367 iter 70 value 76.511152 iter 80 value 75.873670 iter 90 value 75.165049 iter 100 value 74.963057 final value 74.963057 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.315942 iter 10 value 92.855942 iter 20 value 91.485978 iter 30 value 84.368371 iter 40 value 79.288501 iter 50 value 75.549295 iter 60 value 75.175471 iter 70 value 75.133793 iter 80 value 74.633036 iter 90 value 74.025955 iter 100 value 73.918583 final value 73.918583 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.151361 iter 10 value 93.887607 iter 20 value 81.886619 iter 30 value 80.301292 iter 40 value 78.972885 iter 50 value 78.730516 iter 60 value 77.250144 iter 70 value 76.059680 iter 80 value 75.949439 iter 90 value 75.895246 iter 100 value 75.541983 final value 75.541983 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.234500 iter 10 value 93.766473 iter 20 value 83.422403 iter 30 value 80.431977 iter 40 value 76.662281 iter 50 value 76.064462 iter 60 value 75.531087 iter 70 value 75.211719 iter 80 value 74.994530 iter 90 value 74.813833 iter 100 value 74.621746 final value 74.621746 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.679605 iter 10 value 93.807912 iter 20 value 88.186909 iter 30 value 80.049741 iter 40 value 78.655714 iter 50 value 76.511301 iter 60 value 75.190223 iter 70 value 74.552118 iter 80 value 74.470462 iter 90 value 74.375553 iter 100 value 74.330373 final value 74.330373 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.512030 iter 10 value 89.821795 iter 20 value 81.672659 iter 30 value 79.471789 iter 40 value 78.776652 iter 50 value 78.666645 iter 60 value 78.442512 iter 70 value 76.751620 iter 80 value 75.942819 iter 90 value 75.639861 iter 100 value 75.083918 final value 75.083918 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.263431 iter 10 value 93.858417 iter 20 value 90.518567 iter 30 value 84.328756 iter 40 value 80.000640 iter 50 value 77.479679 iter 60 value 77.130568 iter 70 value 76.529029 iter 80 value 76.191242 iter 90 value 76.000165 iter 100 value 75.752116 final value 75.752116 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.052475 iter 10 value 93.280604 iter 20 value 91.155794 iter 30 value 86.958005 iter 40 value 84.180142 iter 50 value 81.603869 iter 60 value 79.729706 iter 70 value 79.195081 iter 80 value 78.525061 iter 90 value 78.232213 iter 100 value 77.942902 final value 77.942902 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.671883 iter 10 value 93.633579 iter 20 value 84.329297 iter 30 value 80.257005 iter 40 value 77.930001 iter 50 value 77.409124 iter 60 value 77.028688 iter 70 value 76.608587 iter 80 value 74.901600 iter 90 value 74.714350 iter 100 value 74.588938 final value 74.588938 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.731331 iter 10 value 94.050828 iter 20 value 93.120130 iter 30 value 87.689691 iter 40 value 82.926561 iter 50 value 80.992913 iter 60 value 78.680467 iter 70 value 77.104233 iter 80 value 75.752526 iter 90 value 74.832100 iter 100 value 74.539774 final value 74.539774 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.649766 iter 10 value 94.054608 iter 20 value 94.052774 iter 30 value 93.329077 final value 93.329071 converged Fitting Repeat 2 # weights: 103 initial value 100.969523 final value 94.054554 converged Fitting Repeat 3 # weights: 103 initial value 94.411913 iter 10 value 93.330389 iter 20 value 93.330127 iter 30 value 93.329158 iter 40 value 93.329007 final value 93.328984 converged Fitting Repeat 4 # weights: 103 initial value 100.521831 iter 10 value 84.022619 iter 20 value 83.984284 iter 30 value 83.023254 iter 40 value 83.020741 iter 50 value 83.006356 iter 60 value 81.750005 iter 70 value 78.815559 iter 80 value 78.682275 iter 80 value 78.682274 iter 80 value 78.682274 final value 78.682274 converged Fitting Repeat 5 # weights: 103 initial value 113.573322 iter 10 value 94.054782 iter 20 value 94.052919 final value 94.052915 converged Fitting Repeat 1 # weights: 305 initial value 101.317344 iter 10 value 94.032178 iter 20 value 94.026502 iter 30 value 83.575435 iter 40 value 82.583242 iter 50 value 82.583051 iter 60 value 81.533963 final value 81.174745 converged Fitting Repeat 2 # weights: 305 initial value 96.006628 iter 10 value 94.057850 iter 20 value 93.912965 iter 30 value 82.613062 iter 40 value 81.655905 iter 50 value 81.607611 iter 60 value 81.598921 final value 81.597133 converged Fitting Repeat 3 # weights: 305 initial value 101.747357 iter 10 value 94.058026 iter 20 value 94.029707 iter 30 value 93.235532 iter 40 value 84.964843 iter 50 value 84.941161 final value 84.941085 converged Fitting Repeat 4 # weights: 305 initial value 96.670871 iter 10 value 94.057908 iter 20 value 92.441726 iter 30 value 92.259750 final value 92.259722 converged Fitting Repeat 5 # weights: 305 initial value 105.053458 iter 10 value 93.314493 iter 20 value 93.313511 iter 30 value 85.792730 iter 40 value 81.038656 iter 50 value 80.100988 iter 60 value 80.059026 iter 70 value 79.999409 iter 80 value 79.987305 iter 90 value 79.219691 iter 100 value 79.099121 final value 79.099121 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.541535 iter 10 value 87.628392 iter 20 value 79.631024 iter 30 value 79.626476 iter 40 value 79.259463 iter 50 value 78.561351 iter 60 value 78.535391 iter 70 value 78.481324 iter 80 value 77.648321 iter 90 value 77.527596 iter 100 value 77.467147 final value 77.467147 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.125554 iter 10 value 94.061190 iter 20 value 93.946459 iter 30 value 86.007287 iter 40 value 85.523817 final value 85.280218 converged Fitting Repeat 3 # weights: 507 initial value 96.225622 iter 10 value 92.933575 iter 20 value 92.930163 iter 30 value 92.924343 iter 40 value 86.465707 iter 50 value 86.127174 iter 60 value 86.125975 iter 70 value 83.706401 iter 80 value 77.900957 iter 90 value 74.241363 iter 100 value 73.653425 final value 73.653425 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.468342 iter 10 value 94.061248 iter 20 value 94.052376 iter 30 value 90.754311 iter 40 value 85.966307 iter 50 value 84.850450 iter 60 value 84.848198 iter 70 value 84.050387 iter 80 value 81.806582 iter 90 value 81.710343 iter 100 value 81.687374 final value 81.687374 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.449317 iter 10 value 84.090603 iter 20 value 83.462404 iter 30 value 83.460344 iter 40 value 83.456896 iter 50 value 81.220283 iter 60 value 77.764814 iter 70 value 77.757590 iter 80 value 77.757230 iter 90 value 77.755799 iter 100 value 77.620296 final value 77.620296 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.594405 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.694656 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.451705 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 107.753488 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.678432 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.181258 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.317995 final value 94.291892 converged Fitting Repeat 3 # weights: 305 initial value 98.834384 final value 94.291892 converged Fitting Repeat 4 # weights: 305 initial value 98.208484 final value 94.479532 converged Fitting Repeat 5 # weights: 305 initial value 100.491316 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.681374 final value 94.291892 converged Fitting Repeat 2 # weights: 507 initial value 101.492255 iter 10 value 86.605092 iter 20 value 86.466440 iter 30 value 86.460074 final value 86.460017 converged Fitting Repeat 3 # weights: 507 initial value 101.319286 final value 94.291892 converged Fitting Repeat 4 # weights: 507 initial value 96.162592 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 98.101463 iter 10 value 93.937040 iter 20 value 93.250655 iter 30 value 91.694390 iter 40 value 91.683395 final value 91.683258 converged Fitting Repeat 1 # weights: 103 initial value 103.129423 iter 10 value 94.344286 iter 20 value 91.631879 iter 30 value 91.285484 iter 40 value 91.111541 iter 50 value 91.065242 iter 60 value 90.739662 iter 70 value 90.736079 iter 70 value 90.736078 iter 70 value 90.736078 final value 90.736078 converged Fitting Repeat 2 # weights: 103 initial value 97.265763 iter 10 value 94.175171 iter 20 value 93.916730 iter 30 value 93.894014 iter 40 value 92.592342 iter 50 value 91.834933 iter 60 value 89.075677 iter 70 value 85.817613 iter 80 value 85.543774 iter 90 value 85.044417 iter 100 value 84.850365 final value 84.850365 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.820542 iter 10 value 94.473432 iter 20 value 94.352180 iter 30 value 90.782943 iter 40 value 86.735609 iter 50 value 86.286568 iter 60 value 85.237597 iter 70 value 85.119967 final value 85.119864 converged Fitting Repeat 4 # weights: 103 initial value 99.322905 iter 10 value 94.487647 iter 20 value 94.076317 iter 30 value 93.938642 iter 40 value 93.929357 iter 50 value 93.925991 iter 60 value 93.660972 iter 70 value 87.309528 iter 80 value 85.043913 iter 90 value 83.960400 iter 100 value 82.650085 final value 82.650085 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.629594 iter 10 value 94.581448 iter 20 value 94.105339 iter 30 value 84.666465 iter 40 value 84.339728 iter 50 value 84.232905 iter 60 value 83.225699 iter 70 value 82.059366 iter 80 value 81.561758 iter 90 value 81.549457 final value 81.549451 converged Fitting Repeat 1 # weights: 305 initial value 99.380144 iter 10 value 94.498952 iter 20 value 94.463650 iter 30 value 89.986701 iter 40 value 87.635659 iter 50 value 87.221145 iter 60 value 87.061239 iter 70 value 84.370343 iter 80 value 84.329260 iter 90 value 84.277911 iter 100 value 83.624751 final value 83.624751 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.456898 iter 10 value 93.482419 iter 20 value 85.998890 iter 30 value 85.629726 iter 40 value 84.418641 iter 50 value 83.707737 iter 60 value 82.805425 iter 70 value 81.952940 iter 80 value 80.860092 iter 90 value 80.594097 iter 100 value 80.502505 final value 80.502505 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.266207 iter 10 value 94.516563 iter 20 value 87.566123 iter 30 value 86.808735 iter 40 value 86.296337 iter 50 value 83.623320 iter 60 value 81.783461 iter 70 value 81.141174 iter 80 value 80.580211 iter 90 value 80.526426 iter 100 value 80.440040 final value 80.440040 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.431769 iter 10 value 97.535221 iter 20 value 94.561749 iter 30 value 94.003090 iter 40 value 90.735488 iter 50 value 87.558044 iter 60 value 86.702546 iter 70 value 83.182016 iter 80 value 82.120988 iter 90 value 81.535281 iter 100 value 81.453867 final value 81.453867 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.709709 iter 10 value 94.687644 iter 20 value 91.666342 iter 30 value 88.718302 iter 40 value 85.827884 iter 50 value 85.131923 iter 60 value 82.772412 iter 70 value 82.478652 iter 80 value 81.984272 iter 90 value 81.696820 iter 100 value 80.847395 final value 80.847395 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 131.814261 iter 10 value 95.894683 iter 20 value 86.413615 iter 30 value 84.453463 iter 40 value 84.044895 iter 50 value 83.761148 iter 60 value 82.112085 iter 70 value 80.923640 iter 80 value 80.523700 iter 90 value 80.417540 iter 100 value 80.336899 final value 80.336899 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.410005 iter 10 value 95.153107 iter 20 value 88.211861 iter 30 value 87.862262 iter 40 value 87.736108 iter 50 value 87.669351 iter 60 value 86.969444 iter 70 value 83.513151 iter 80 value 81.946287 iter 90 value 81.572273 iter 100 value 81.190779 final value 81.190779 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.483529 iter 10 value 95.064367 iter 20 value 91.950519 iter 30 value 86.843067 iter 40 value 85.587988 iter 50 value 85.230562 iter 60 value 83.702766 iter 70 value 82.015759 iter 80 value 80.804514 iter 90 value 80.647047 iter 100 value 80.436881 final value 80.436881 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.433374 iter 10 value 95.055497 iter 20 value 94.585300 iter 30 value 94.251330 iter 40 value 87.936226 iter 50 value 86.494285 iter 60 value 82.877962 iter 70 value 81.701500 iter 80 value 81.492753 iter 90 value 80.723649 iter 100 value 80.255919 final value 80.255919 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.732602 iter 10 value 94.388526 iter 20 value 85.477204 iter 30 value 83.434517 iter 40 value 82.964607 iter 50 value 82.897863 iter 60 value 82.279206 iter 70 value 81.424545 iter 80 value 80.679196 iter 90 value 80.468348 iter 100 value 80.214590 final value 80.214590 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.011312 final value 94.485960 converged Fitting Repeat 2 # weights: 103 initial value 101.162341 final value 94.487862 converged Fitting Repeat 3 # weights: 103 initial value 95.643602 final value 94.293653 converged Fitting Repeat 4 # weights: 103 initial value 97.171150 iter 10 value 94.485685 iter 20 value 94.484193 iter 30 value 94.291978 iter 30 value 94.291978 iter 30 value 94.291978 final value 94.291978 converged Fitting Repeat 5 # weights: 103 initial value 95.803889 final value 94.293410 converged Fitting Repeat 1 # weights: 305 initial value 112.402948 iter 10 value 94.489485 iter 20 value 94.420026 iter 30 value 90.282226 iter 40 value 90.246140 iter 50 value 90.213765 iter 60 value 89.937538 iter 70 value 89.920627 iter 80 value 89.920488 iter 90 value 89.182676 iter 100 value 89.182390 final value 89.182390 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.189410 iter 10 value 94.489160 iter 20 value 94.472516 iter 30 value 91.071415 iter 40 value 88.418250 iter 50 value 88.411468 final value 88.411458 converged Fitting Repeat 3 # weights: 305 initial value 108.341542 iter 10 value 93.665117 iter 20 value 93.061310 iter 30 value 93.029073 iter 40 value 92.515337 iter 50 value 92.226250 iter 60 value 92.055533 iter 70 value 92.027614 iter 80 value 92.025346 iter 90 value 92.023874 final value 92.023747 converged Fitting Repeat 4 # weights: 305 initial value 114.428525 iter 10 value 94.489185 iter 20 value 94.481945 iter 30 value 85.783623 iter 40 value 85.176052 iter 50 value 83.733087 iter 60 value 83.340221 iter 70 value 83.288585 final value 83.288411 converged Fitting Repeat 5 # weights: 305 initial value 116.936397 iter 10 value 94.488997 iter 20 value 94.484862 iter 30 value 94.263469 iter 40 value 90.979553 iter 50 value 85.867974 iter 60 value 84.843426 iter 70 value 83.233165 iter 80 value 83.232541 final value 83.232313 converged Fitting Repeat 1 # weights: 507 initial value 106.579640 iter 10 value 94.492318 iter 20 value 91.815000 iter 30 value 87.475665 iter 40 value 87.057617 iter 50 value 86.218401 iter 60 value 86.217730 iter 70 value 86.216837 final value 86.216570 converged Fitting Repeat 2 # weights: 507 initial value 105.757598 iter 10 value 94.300385 iter 20 value 94.292466 final value 94.292197 converged Fitting Repeat 3 # weights: 507 initial value 99.873701 iter 10 value 94.299612 iter 20 value 94.292695 final value 94.292257 converged Fitting Repeat 4 # weights: 507 initial value 99.648287 iter 10 value 94.299928 iter 20 value 94.292065 iter 30 value 94.136235 iter 40 value 90.640893 iter 50 value 87.268948 iter 60 value 87.225343 iter 70 value 87.225006 iter 80 value 86.908870 iter 90 value 85.728724 iter 100 value 85.557905 final value 85.557905 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.678435 iter 10 value 94.492781 iter 20 value 94.485477 iter 30 value 94.261213 iter 40 value 93.304936 iter 50 value 93.188793 iter 60 value 89.486930 iter 70 value 89.313238 iter 80 value 88.635475 iter 90 value 88.381593 iter 100 value 88.377470 final value 88.377470 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.237176 final value 94.011429 converged Fitting Repeat 2 # weights: 103 initial value 102.055956 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 105.733006 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.636045 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.146364 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.398973 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 104.449161 iter 10 value 94.033176 final value 94.033149 converged Fitting Repeat 3 # weights: 305 initial value 95.609729 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 99.279027 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 104.346892 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 111.526559 final value 93.988095 converged Fitting Repeat 2 # weights: 507 initial value 106.199787 final value 93.988095 converged Fitting Repeat 3 # weights: 507 initial value 101.280692 final value 93.988095 converged Fitting Repeat 4 # weights: 507 initial value 104.779926 iter 10 value 93.869756 iter 10 value 93.869755 iter 10 value 93.869755 final value 93.869755 converged Fitting Repeat 5 # weights: 507 initial value 105.180475 iter 10 value 93.988300 final value 93.988095 converged Fitting Repeat 1 # weights: 103 initial value 107.539359 iter 10 value 94.034323 iter 20 value 91.029299 iter 30 value 90.278581 iter 40 value 88.642183 iter 50 value 87.575298 iter 60 value 87.309940 final value 87.308021 converged Fitting Repeat 2 # weights: 103 initial value 99.843287 iter 10 value 91.483841 iter 20 value 88.181069 iter 30 value 87.625460 iter 40 value 87.556115 iter 50 value 87.314312 iter 60 value 87.257371 iter 60 value 87.257371 iter 60 value 87.257371 final value 87.257371 converged Fitting Repeat 3 # weights: 103 initial value 96.091792 iter 10 value 94.056758 iter 20 value 92.725349 iter 30 value 91.170643 iter 40 value 90.352085 iter 50 value 86.771646 iter 60 value 85.963850 iter 70 value 85.710618 iter 80 value 85.265717 iter 90 value 84.750434 iter 100 value 84.613454 final value 84.613454 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 94.691035 iter 10 value 89.778006 iter 20 value 88.467261 iter 30 value 86.209065 iter 40 value 85.869400 iter 50 value 85.801480 iter 60 value 85.799966 final value 85.799965 converged Fitting Repeat 5 # weights: 103 initial value 120.443580 iter 10 value 93.945333 iter 20 value 91.007807 iter 30 value 88.124298 iter 40 value 87.440235 iter 50 value 87.175381 iter 60 value 87.161283 iter 60 value 87.161283 final value 87.161283 converged Fitting Repeat 1 # weights: 305 initial value 118.152147 iter 10 value 95.622652 iter 20 value 87.566636 iter 30 value 87.323443 iter 40 value 87.206905 iter 50 value 87.116669 iter 60 value 86.278536 iter 70 value 84.284984 iter 80 value 83.804081 iter 90 value 83.590112 iter 100 value 83.495405 final value 83.495405 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.658683 iter 10 value 94.163994 iter 20 value 91.982676 iter 30 value 90.046104 iter 40 value 87.530466 iter 50 value 86.663153 iter 60 value 86.500069 iter 70 value 85.601429 iter 80 value 84.795321 iter 90 value 84.375067 iter 100 value 83.845707 final value 83.845707 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.202224 iter 10 value 94.036489 iter 20 value 88.094624 iter 30 value 86.599793 iter 40 value 85.955694 iter 50 value 85.010899 iter 60 value 84.852412 iter 70 value 83.835497 iter 80 value 83.477178 iter 90 value 83.081628 iter 100 value 82.972827 final value 82.972827 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.998946 iter 10 value 94.080116 iter 20 value 93.235094 iter 30 value 92.994801 iter 40 value 92.926639 iter 50 value 91.051001 iter 60 value 89.619363 iter 70 value 87.623175 iter 80 value 86.453545 iter 90 value 85.975072 iter 100 value 85.479250 final value 85.479250 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.404959 iter 10 value 94.074071 iter 20 value 90.824933 iter 30 value 88.560905 iter 40 value 87.758037 iter 50 value 87.236084 iter 60 value 86.469321 iter 70 value 85.636925 iter 80 value 85.569809 iter 90 value 85.507427 iter 100 value 84.386450 final value 84.386450 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.071616 iter 10 value 98.602120 iter 20 value 91.234964 iter 30 value 89.826757 iter 40 value 89.617720 iter 50 value 88.822966 iter 60 value 85.956708 iter 70 value 84.443902 iter 80 value 84.033245 iter 90 value 83.801427 iter 100 value 83.521154 final value 83.521154 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.907218 iter 10 value 94.159264 iter 20 value 93.974559 iter 30 value 88.818710 iter 40 value 86.424483 iter 50 value 85.318936 iter 60 value 85.200457 iter 70 value 84.968139 iter 80 value 84.239429 iter 90 value 83.824405 iter 100 value 83.492766 final value 83.492766 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 128.934303 iter 10 value 93.831533 iter 20 value 87.243112 iter 30 value 85.635800 iter 40 value 85.167434 iter 50 value 84.515070 iter 60 value 83.493779 iter 70 value 83.151670 iter 80 value 82.951603 iter 90 value 82.870294 iter 100 value 82.862435 final value 82.862435 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.648280 iter 10 value 94.119081 iter 20 value 93.923630 iter 30 value 88.562408 iter 40 value 87.253929 iter 50 value 85.817221 iter 60 value 85.729808 iter 70 value 85.437913 iter 80 value 84.331022 iter 90 value 83.747309 iter 100 value 83.462679 final value 83.462679 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.633444 iter 10 value 94.012603 iter 20 value 91.380413 iter 30 value 87.594310 iter 40 value 86.678876 iter 50 value 86.369785 iter 60 value 86.228857 iter 70 value 85.511488 iter 80 value 84.134666 iter 90 value 83.472909 iter 100 value 83.374270 final value 83.374270 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.518933 final value 94.054675 converged Fitting Repeat 2 # weights: 103 initial value 99.365568 iter 10 value 94.054424 iter 20 value 94.052952 final value 94.052919 converged Fitting Repeat 3 # weights: 103 initial value 100.284096 final value 94.054511 converged Fitting Repeat 4 # weights: 103 initial value 112.667557 final value 94.054693 converged Fitting Repeat 5 # weights: 103 initial value 96.764488 final value 94.054442 converged Fitting Repeat 1 # weights: 305 initial value 122.975002 iter 10 value 91.204346 iter 20 value 90.758300 iter 30 value 90.412589 iter 40 value 90.410349 iter 50 value 90.406071 iter 60 value 90.405868 iter 70 value 88.063127 iter 80 value 85.878468 iter 90 value 85.504159 iter 100 value 85.442830 final value 85.442830 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.901369 iter 10 value 94.039184 iter 20 value 93.894816 iter 30 value 93.809723 iter 40 value 87.457774 iter 50 value 86.108848 iter 60 value 85.637015 iter 70 value 85.634530 final value 85.634365 converged Fitting Repeat 3 # weights: 305 initial value 99.664912 iter 10 value 94.058463 iter 20 value 94.000499 iter 30 value 93.703400 iter 40 value 91.619783 iter 50 value 91.617072 iter 60 value 91.616782 iter 70 value 91.616441 iter 80 value 91.254076 iter 90 value 90.932621 iter 100 value 90.931969 final value 90.931969 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.314361 iter 10 value 94.057361 iter 20 value 94.052924 iter 30 value 94.008368 iter 40 value 93.129936 iter 50 value 90.800706 iter 60 value 90.778633 final value 90.778550 converged Fitting Repeat 5 # weights: 305 initial value 123.159097 iter 10 value 92.623937 iter 20 value 92.279359 iter 30 value 92.181410 iter 40 value 92.155870 iter 50 value 92.154432 iter 60 value 92.148976 iter 70 value 92.147803 iter 80 value 92.147139 iter 90 value 92.139066 iter 100 value 91.386191 final value 91.386191 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.176272 iter 10 value 94.024296 iter 20 value 94.018260 iter 30 value 93.781394 iter 40 value 93.754423 iter 50 value 93.749121 iter 60 value 93.747984 iter 70 value 90.258043 iter 80 value 86.856511 iter 90 value 86.855923 iter 100 value 85.894750 final value 85.894750 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.437339 iter 10 value 94.041114 iter 20 value 93.138768 iter 30 value 91.114982 iter 40 value 91.113227 iter 50 value 90.592551 iter 60 value 90.588252 iter 70 value 90.586123 iter 80 value 90.545080 iter 90 value 84.661224 iter 100 value 84.121650 final value 84.121650 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.566894 iter 10 value 94.057028 iter 20 value 92.140044 iter 30 value 88.908793 iter 40 value 88.906771 iter 50 value 88.622615 iter 60 value 88.622006 iter 70 value 88.525056 final value 88.513427 converged Fitting Repeat 4 # weights: 507 initial value 104.520072 iter 10 value 93.995976 iter 20 value 93.931955 iter 30 value 93.510747 iter 40 value 91.783860 iter 50 value 91.538463 iter 60 value 91.538180 iter 70 value 91.525234 iter 80 value 91.349728 iter 90 value 91.333603 final value 91.330442 converged Fitting Repeat 5 # weights: 507 initial value 107.902303 iter 10 value 94.060115 iter 20 value 94.048534 iter 30 value 89.274549 iter 40 value 88.898556 iter 50 value 86.892862 iter 60 value 86.132414 iter 70 value 86.033584 iter 80 value 84.850814 iter 90 value 84.682199 iter 100 value 84.106180 final value 84.106180 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.762733 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.347416 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.185029 iter 10 value 81.733744 iter 20 value 81.362538 final value 81.362488 converged Fitting Repeat 4 # weights: 103 initial value 100.569166 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.076774 iter 10 value 94.052172 final value 93.999229 converged Fitting Repeat 1 # weights: 305 initial value 95.549483 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.730951 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.639599 iter 10 value 89.845642 iter 20 value 87.119044 iter 30 value 85.643479 final value 85.643401 converged Fitting Repeat 4 # weights: 305 initial value 95.513982 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.144471 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.194162 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 97.296357 iter 10 value 91.644132 iter 20 value 87.286850 iter 30 value 87.195353 iter 30 value 87.195353 iter 30 value 87.195353 final value 87.195353 converged Fitting Repeat 3 # weights: 507 initial value 97.561736 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 123.204042 iter 10 value 94.308203 final value 94.308192 converged Fitting Repeat 5 # weights: 507 initial value 113.762834 iter 10 value 93.316397 final value 93.300000 converged Fitting Repeat 1 # weights: 103 initial value 116.192334 iter 10 value 94.403850 iter 20 value 93.970073 iter 30 value 92.975527 iter 40 value 85.477414 iter 50 value 84.749750 iter 60 value 82.778460 iter 70 value 82.521045 iter 80 value 81.999978 iter 90 value 81.563623 iter 100 value 81.343966 final value 81.343966 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 107.282287 iter 10 value 94.169204 iter 20 value 86.803198 iter 30 value 84.460274 iter 40 value 83.961317 iter 50 value 83.124021 iter 60 value 81.702801 iter 70 value 81.255512 iter 80 value 80.998638 iter 90 value 80.732054 final value 80.729398 converged Fitting Repeat 3 # weights: 103 initial value 104.132287 iter 10 value 94.352877 iter 20 value 92.739663 iter 30 value 88.854836 iter 40 value 83.006409 iter 50 value 81.765493 iter 60 value 81.154180 iter 70 value 80.943787 iter 80 value 80.791327 iter 90 value 80.729452 final value 80.729398 converged Fitting Repeat 4 # weights: 103 initial value 104.170298 iter 10 value 94.384528 iter 20 value 86.574988 iter 30 value 83.027816 iter 40 value 82.668396 iter 50 value 82.552919 iter 60 value 82.512402 iter 70 value 82.507504 iter 80 value 82.416297 iter 90 value 81.590671 iter 100 value 80.967011 final value 80.967011 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.733265 iter 10 value 93.578679 iter 20 value 86.862185 iter 30 value 84.221415 iter 40 value 82.873218 iter 50 value 82.838098 iter 60 value 82.799471 iter 70 value 82.786858 iter 80 value 82.686240 iter 90 value 82.526559 iter 100 value 82.508291 final value 82.508291 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.895635 iter 10 value 94.426875 iter 20 value 86.167315 iter 30 value 82.861562 iter 40 value 82.646472 iter 50 value 81.557891 iter 60 value 80.612535 iter 70 value 80.367964 iter 80 value 80.282051 iter 90 value 80.163653 iter 100 value 79.937167 final value 79.937167 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.148600 iter 10 value 86.654083 iter 20 value 83.267599 iter 30 value 81.052580 iter 40 value 80.140133 iter 50 value 79.886607 iter 60 value 79.797068 iter 70 value 79.684191 iter 80 value 79.529204 iter 90 value 79.271631 iter 100 value 79.258728 final value 79.258728 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.462055 iter 10 value 91.521077 iter 20 value 84.509719 iter 30 value 83.349178 iter 40 value 82.516098 iter 50 value 81.292717 iter 60 value 79.404728 iter 70 value 78.973165 iter 80 value 78.878218 iter 90 value 78.814007 iter 100 value 78.785246 final value 78.785246 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.290766 iter 10 value 93.960431 iter 20 value 89.646572 iter 30 value 84.982815 iter 40 value 84.321228 iter 50 value 82.944364 iter 60 value 82.604181 iter 70 value 82.258148 iter 80 value 81.780303 iter 90 value 80.759739 iter 100 value 79.539146 final value 79.539146 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.468360 iter 10 value 94.315112 iter 20 value 87.443406 iter 30 value 87.012400 iter 40 value 86.547642 iter 50 value 83.137824 iter 60 value 81.321247 iter 70 value 80.979922 iter 80 value 80.596847 iter 90 value 80.441699 iter 100 value 79.926119 final value 79.926119 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.762494 iter 10 value 89.539771 iter 20 value 85.049557 iter 30 value 82.849204 iter 40 value 82.201532 iter 50 value 82.080685 iter 60 value 81.636638 iter 70 value 80.559235 iter 80 value 80.179513 iter 90 value 79.991534 iter 100 value 79.743382 final value 79.743382 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.831079 iter 10 value 94.910292 iter 20 value 92.480564 iter 30 value 83.227218 iter 40 value 81.118529 iter 50 value 80.762413 iter 60 value 80.226756 iter 70 value 79.933285 iter 80 value 79.673605 iter 90 value 79.033166 iter 100 value 78.837833 final value 78.837833 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.131473 iter 10 value 94.219510 iter 20 value 93.929688 iter 30 value 89.871082 iter 40 value 85.407082 iter 50 value 82.838866 iter 60 value 81.066631 iter 70 value 80.375740 iter 80 value 80.121341 iter 90 value 80.051943 iter 100 value 79.760924 final value 79.760924 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.351815 iter 10 value 94.539745 iter 20 value 85.491324 iter 30 value 83.267026 iter 40 value 82.452474 iter 50 value 81.080020 iter 60 value 79.881322 iter 70 value 79.768106 iter 80 value 79.491505 iter 90 value 79.393786 iter 100 value 79.323199 final value 79.323199 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.044473 iter 10 value 94.262577 iter 20 value 93.933365 iter 30 value 90.329867 iter 40 value 84.789568 iter 50 value 83.205297 iter 60 value 82.506322 iter 70 value 82.408688 iter 80 value 82.261753 iter 90 value 81.442564 iter 100 value 80.441413 final value 80.441413 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.409366 final value 94.485935 converged Fitting Repeat 2 # weights: 103 initial value 96.843564 final value 94.356170 converged Fitting Repeat 3 # weights: 103 initial value 106.776129 final value 94.485929 converged Fitting Repeat 4 # weights: 103 initial value 104.463712 iter 10 value 94.485982 iter 20 value 94.484279 iter 30 value 93.871824 iter 30 value 93.871824 iter 30 value 93.871823 final value 93.871823 converged Fitting Repeat 5 # weights: 103 initial value 94.706404 final value 94.485831 converged Fitting Repeat 1 # weights: 305 initial value 106.018505 iter 10 value 94.058730 iter 20 value 94.055961 iter 30 value 94.055279 iter 40 value 94.053481 final value 94.053003 converged Fitting Repeat 2 # weights: 305 initial value 101.609770 iter 10 value 94.358773 iter 20 value 94.354586 iter 30 value 93.909594 iter 40 value 83.786713 iter 50 value 83.305147 iter 60 value 82.685380 iter 70 value 82.530302 iter 80 value 81.443074 iter 90 value 79.350849 iter 100 value 79.309485 final value 79.309485 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.675706 iter 10 value 94.489092 iter 20 value 94.481208 iter 30 value 93.982535 iter 40 value 91.593425 iter 50 value 91.524136 iter 60 value 90.381509 iter 70 value 82.011329 iter 80 value 79.492486 iter 90 value 79.471533 iter 100 value 79.250229 final value 79.250229 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.372102 iter 10 value 94.317279 iter 20 value 94.312714 iter 30 value 93.872101 iter 30 value 93.872101 iter 30 value 93.872101 final value 93.872101 converged Fitting Repeat 5 # weights: 305 initial value 97.485915 iter 10 value 94.275238 iter 20 value 93.988317 iter 30 value 93.979118 iter 40 value 93.975190 iter 50 value 93.746546 iter 60 value 93.364824 iter 70 value 90.605812 iter 80 value 83.787300 final value 83.778211 converged Fitting Repeat 1 # weights: 507 initial value 97.213304 iter 10 value 93.877253 iter 20 value 93.860187 iter 30 value 93.852256 iter 40 value 93.839873 iter 50 value 91.717302 iter 60 value 81.474873 iter 70 value 79.475976 iter 80 value 78.476586 iter 90 value 77.821180 iter 100 value 76.977440 final value 76.977440 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.801923 iter 10 value 92.622798 iter 20 value 87.127510 iter 30 value 81.271995 iter 40 value 80.075383 iter 50 value 79.585534 iter 60 value 79.320828 iter 70 value 79.166933 iter 80 value 79.165718 iter 90 value 79.160756 iter 100 value 78.933364 final value 78.933364 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.030874 iter 10 value 90.861952 iter 20 value 83.494751 iter 30 value 83.482929 iter 40 value 83.475841 iter 50 value 83.465249 iter 60 value 83.462322 final value 83.462103 converged Fitting Repeat 4 # weights: 507 initial value 111.172933 iter 10 value 94.362561 iter 20 value 94.352990 iter 30 value 91.025174 iter 40 value 81.586513 final value 81.586394 converged Fitting Repeat 5 # weights: 507 initial value 97.407195 iter 10 value 93.024859 iter 20 value 93.023083 iter 30 value 92.635993 iter 40 value 92.600148 iter 50 value 92.599667 iter 60 value 92.595548 iter 70 value 91.335686 iter 80 value 88.343567 iter 90 value 87.832933 iter 100 value 86.687907 final value 86.687907 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.303756 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.427625 final value 94.026542 converged Fitting Repeat 3 # weights: 103 initial value 114.334863 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.467645 final value 94.427726 converged Fitting Repeat 5 # weights: 103 initial value 97.492425 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.941988 iter 10 value 94.510693 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.430214 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 115.261128 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.084125 iter 10 value 86.612550 iter 20 value 86.601786 iter 20 value 86.601786 iter 20 value 86.601786 final value 86.601786 converged Fitting Repeat 5 # weights: 305 initial value 95.296983 final value 94.026542 converged Fitting Repeat 1 # weights: 507 initial value 95.023355 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 98.380327 iter 10 value 89.935226 iter 20 value 86.146844 iter 30 value 85.292021 iter 40 value 85.094604 iter 50 value 84.317525 iter 60 value 84.315579 iter 70 value 84.315503 iter 70 value 84.315503 final value 84.315503 converged Fitting Repeat 3 # weights: 507 initial value 94.887173 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.377522 iter 10 value 88.943834 iter 20 value 87.566995 final value 87.529748 converged Fitting Repeat 5 # weights: 507 initial value 103.214059 iter 10 value 94.058472 iter 20 value 94.052446 final value 94.052435 converged Fitting Repeat 1 # weights: 103 initial value 101.354728 iter 10 value 94.386973 iter 20 value 93.191505 iter 30 value 89.933942 iter 40 value 89.612457 iter 50 value 86.975019 iter 60 value 84.332568 iter 70 value 83.800033 iter 80 value 83.763884 iter 90 value 83.752804 final value 83.752802 converged Fitting Repeat 2 # weights: 103 initial value 101.795667 iter 10 value 94.472258 iter 20 value 89.046676 iter 30 value 88.477641 iter 40 value 85.415756 iter 50 value 85.253239 iter 60 value 84.775151 iter 70 value 84.474815 iter 80 value 84.406785 final value 84.406666 converged Fitting Repeat 3 # weights: 103 initial value 98.043977 iter 10 value 94.688935 iter 20 value 94.466572 iter 30 value 85.551533 iter 40 value 84.191916 iter 50 value 82.764917 iter 60 value 82.532097 iter 70 value 82.292834 iter 80 value 82.082812 final value 82.081328 converged Fitting Repeat 4 # weights: 103 initial value 98.056509 iter 10 value 94.318887 iter 20 value 86.995614 iter 30 value 86.605048 iter 40 value 86.169150 iter 50 value 85.792036 iter 60 value 84.251421 iter 70 value 83.773976 iter 80 value 83.594057 iter 90 value 83.511838 final value 83.500298 converged Fitting Repeat 5 # weights: 103 initial value 100.770242 iter 10 value 94.501988 iter 20 value 94.173229 iter 30 value 92.409600 iter 40 value 90.856899 iter 50 value 84.447936 iter 60 value 82.510382 iter 70 value 82.384747 iter 80 value 82.165215 iter 90 value 82.081474 final value 82.081329 converged Fitting Repeat 1 # weights: 305 initial value 121.115830 iter 10 value 94.077747 iter 20 value 87.650531 iter 30 value 85.289819 iter 40 value 82.451958 iter 50 value 81.759795 iter 60 value 80.877769 iter 70 value 80.628282 iter 80 value 80.594790 iter 90 value 80.583087 iter 100 value 80.578940 final value 80.578940 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.817539 iter 10 value 94.426852 iter 20 value 88.787586 iter 30 value 87.932427 iter 40 value 83.416280 iter 50 value 82.762513 iter 60 value 82.427255 iter 70 value 82.340587 iter 80 value 82.244508 iter 90 value 82.144155 iter 100 value 81.647851 final value 81.647851 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.229082 iter 10 value 93.950917 iter 20 value 88.639748 iter 30 value 87.310307 iter 40 value 86.143630 iter 50 value 85.305657 iter 60 value 83.396539 iter 70 value 82.710351 iter 80 value 82.381302 iter 90 value 82.034478 iter 100 value 81.993546 final value 81.993546 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.903068 iter 10 value 94.514096 iter 20 value 88.715823 iter 30 value 87.084449 iter 40 value 85.146405 iter 50 value 84.721207 iter 60 value 84.617959 iter 70 value 84.480259 iter 80 value 84.333904 iter 90 value 84.185421 iter 100 value 83.808472 final value 83.808472 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.700690 iter 10 value 94.450078 iter 20 value 93.435143 iter 30 value 86.536621 iter 40 value 84.788260 iter 50 value 84.007126 iter 60 value 82.941485 iter 70 value 82.753796 iter 80 value 82.566702 iter 90 value 82.445546 iter 100 value 82.394105 final value 82.394105 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.006219 iter 10 value 92.978407 iter 20 value 87.269538 iter 30 value 86.554485 iter 40 value 85.518107 iter 50 value 83.602558 iter 60 value 82.799501 iter 70 value 82.466198 iter 80 value 81.932416 iter 90 value 81.358622 iter 100 value 81.060432 final value 81.060432 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.763554 iter 10 value 94.558371 iter 20 value 93.972995 iter 30 value 91.693397 iter 40 value 88.341718 iter 50 value 86.988578 iter 60 value 84.334932 iter 70 value 82.717358 iter 80 value 81.833374 iter 90 value 81.396900 iter 100 value 81.166002 final value 81.166002 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.437374 iter 10 value 94.913909 iter 20 value 93.843257 iter 30 value 86.063527 iter 40 value 85.388959 iter 50 value 82.881459 iter 60 value 82.601202 iter 70 value 81.933912 iter 80 value 81.582403 iter 90 value 81.439874 iter 100 value 80.958079 final value 80.958079 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.415178 iter 10 value 95.331486 iter 20 value 86.171249 iter 30 value 85.263187 iter 40 value 83.583431 iter 50 value 81.879161 iter 60 value 81.115241 iter 70 value 80.804557 iter 80 value 80.680060 iter 90 value 80.549001 iter 100 value 80.450635 final value 80.450635 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.528525 iter 10 value 94.335190 iter 20 value 92.407539 iter 30 value 91.444297 iter 40 value 90.202906 iter 50 value 89.086710 iter 60 value 88.909411 iter 70 value 85.611802 iter 80 value 83.430403 iter 90 value 82.327820 iter 100 value 81.120811 final value 81.120811 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.689922 final value 94.485638 converged Fitting Repeat 2 # weights: 103 initial value 99.360647 final value 94.485709 converged Fitting Repeat 3 # weights: 103 initial value 100.417409 final value 94.485701 converged Fitting Repeat 4 # weights: 103 initial value 99.081470 final value 94.485720 converged Fitting Repeat 5 # weights: 103 initial value 97.431189 final value 94.499455 converged Fitting Repeat 1 # weights: 305 initial value 113.942882 iter 10 value 91.571163 iter 20 value 87.598250 iter 30 value 87.239140 iter 40 value 86.483380 final value 86.481007 converged Fitting Repeat 2 # weights: 305 initial value 115.762167 iter 10 value 94.470588 iter 20 value 92.991225 iter 30 value 92.917416 iter 40 value 91.151771 iter 50 value 87.690888 iter 60 value 87.662358 iter 70 value 87.658665 iter 80 value 87.236214 iter 90 value 87.233292 iter 100 value 87.232428 final value 87.232428 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.316486 iter 10 value 94.488867 iter 20 value 94.027147 final value 94.027001 converged Fitting Repeat 4 # weights: 305 initial value 101.980078 iter 10 value 94.488994 iter 20 value 94.480743 iter 30 value 94.017918 final value 93.976524 converged Fitting Repeat 5 # weights: 305 initial value 113.609242 iter 10 value 94.488964 iter 20 value 94.408223 iter 30 value 87.696059 iter 40 value 87.688872 iter 50 value 87.688242 iter 60 value 87.567087 iter 70 value 87.382083 iter 80 value 87.156170 iter 90 value 86.839317 final value 86.833906 converged Fitting Repeat 1 # weights: 507 initial value 96.077167 iter 10 value 93.699137 iter 20 value 93.312433 iter 30 value 93.306670 iter 40 value 92.802694 iter 50 value 86.453168 iter 60 value 84.938004 iter 70 value 84.552557 iter 80 value 84.440584 iter 90 value 84.438808 iter 90 value 84.438808 final value 84.438808 converged Fitting Repeat 2 # weights: 507 initial value 98.136133 iter 10 value 94.492878 iter 20 value 94.458808 iter 30 value 93.657812 iter 40 value 86.352176 iter 50 value 86.145174 final value 86.109662 converged Fitting Repeat 3 # weights: 507 initial value 95.720284 iter 10 value 94.035283 iter 20 value 94.026915 iter 30 value 93.809383 iter 40 value 92.264326 iter 50 value 86.101679 iter 60 value 84.933059 iter 70 value 84.820275 iter 80 value 81.538958 iter 90 value 80.926523 iter 100 value 80.751175 final value 80.751175 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.057350 iter 10 value 94.035409 iter 20 value 94.027358 iter 30 value 93.993075 iter 40 value 91.008361 iter 50 value 90.127899 iter 60 value 87.946812 iter 70 value 87.417845 iter 80 value 87.382573 iter 90 value 87.230472 iter 100 value 87.230284 final value 87.230284 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.100490 iter 10 value 94.492556 iter 20 value 94.475358 iter 30 value 87.599819 iter 40 value 86.902658 iter 50 value 86.847476 iter 60 value 86.844754 iter 70 value 86.844294 iter 80 value 86.843448 iter 80 value 86.843448 final value 86.843448 converged Fitting Repeat 1 # weights: 507 initial value 129.818380 iter 10 value 118.828027 iter 20 value 118.315551 iter 30 value 111.991954 iter 40 value 104.623586 iter 50 value 102.469955 iter 60 value 101.902771 iter 70 value 101.690975 iter 80 value 101.367826 iter 90 value 101.230153 iter 100 value 101.176757 final value 101.176757 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 171.565717 iter 10 value 117.852080 iter 20 value 108.111584 iter 30 value 105.551499 iter 40 value 102.582353 iter 50 value 102.266003 iter 60 value 102.081980 iter 70 value 101.134834 iter 80 value 100.732627 iter 90 value 100.665244 iter 100 value 100.659063 final value 100.659063 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.322543 iter 10 value 117.818183 iter 20 value 107.846314 iter 30 value 106.995855 iter 40 value 104.606035 iter 50 value 102.327233 iter 60 value 101.537337 iter 70 value 101.378455 iter 80 value 100.917614 iter 90 value 100.484331 iter 100 value 100.332814 final value 100.332814 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.209956 iter 10 value 117.784172 iter 20 value 110.231007 iter 30 value 109.783802 iter 40 value 108.141764 iter 50 value 105.185511 iter 60 value 102.563906 iter 70 value 102.153435 iter 80 value 101.537877 iter 90 value 100.940213 iter 100 value 100.566879 final value 100.566879 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 133.627394 iter 10 value 117.905868 iter 20 value 112.220581 iter 30 value 106.875194 iter 40 value 106.680551 iter 50 value 106.127282 iter 60 value 103.456945 iter 70 value 102.699072 iter 80 value 102.162433 iter 90 value 101.967663 iter 100 value 101.630533 final value 101.630533 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Aug 19 10:15:19 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 56.504 1.556 118.196
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 36.730 | 0.228 | 37.029 | |
FreqInteractors | 0.286 | 0.012 | 0.299 | |
calculateAAC | 0.043 | 0.004 | 0.047 | |
calculateAutocor | 0.689 | 0.024 | 0.716 | |
calculateCTDC | 0.091 | 0.004 | 0.096 | |
calculateCTDD | 0.749 | 0.000 | 0.751 | |
calculateCTDT | 0.266 | 0.000 | 0.266 | |
calculateCTriad | 0.459 | 0.012 | 0.471 | |
calculateDC | 0.131 | 0.000 | 0.131 | |
calculateF | 0.430 | 0.004 | 0.433 | |
calculateKSAAP | 0.134 | 0.008 | 0.142 | |
calculateQD_Sm | 2.301 | 0.020 | 2.325 | |
calculateTC | 2.417 | 0.023 | 2.444 | |
calculateTC_Sm | 0.333 | 0.000 | 0.333 | |
corr_plot | 37.187 | 0.320 | 37.582 | |
enrichfindP | 0.514 | 0.019 | 19.596 | |
enrichfind_hp | 0.074 | 0.012 | 2.929 | |
enrichplot | 0.547 | 0.176 | 0.724 | |
filter_missing_values | 0.002 | 0.000 | 0.002 | |
getFASTA | 0.080 | 0.004 | 5.227 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.001 | 0.002 | |
plotPPI | 0.085 | 0.017 | 0.103 | |
pred_ensembel | 18.006 | 0.556 | 17.360 | |
var_imp | 39.436 | 0.335 | 39.841 | |