Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-14 11:40 -0400 (Thu, 14 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4824
palomino7Windows Server 2022 Datacenterx644.5.1 (2025-06-13 ucrt) -- "Great Square Root" 4566
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4604
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4545
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4579
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.72.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-08-11 13:40 -0400 (Mon, 11 Aug 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_21
git_last_commit: aa9e634
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.72.0
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings BufferedMatrix_1.72.0.tar.gz
StartedAt: 2025-08-13 20:35:26 -0400 (Wed, 13 Aug 2025)
EndedAt: 2025-08-13 20:35:51 -0400 (Wed, 13 Aug 2025)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings BufferedMatrix_1.72.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 (2025-06-13)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.72.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.72.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.21-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.21-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.21-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.21-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.251   0.041   0.280 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478417 25.6    1047105   56   639600 34.2
Vcells 885231  6.8    8388608   64  2081598 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Aug 13 20:35:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Aug 13 20:35:41 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x589266d0fad0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Aug 13 20:35:42 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Aug 13 20:35:42 2025"
> 
> ColMode(tmp2)
<pointer: 0x589266d0fad0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]         [,3]       [,4]
[1,] 99.9692086  0.3684730  0.002915933 -0.7549035
[2,] -0.9485263 -0.2100452 -0.974626763 -1.5666991
[3,]  1.3444258  1.3417350  0.342882250  0.3534481
[4,] -0.9019543  2.2301272  0.118717149  0.8349507
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]        [,3]      [,4]
[1,] 99.9692086 0.3684730 0.002915933 0.7549035
[2,]  0.9485263 0.2100452 0.974626763 1.5666991
[3,]  1.3444258 1.3417350 0.342882250 0.3534481
[4,]  0.9019543 2.2301272 0.118717149 0.8349507
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]       [,3]      [,4]
[1,] 9.9984603 0.6070197 0.05399938 0.8688518
[2,] 0.9739231 0.4583069 0.98723187 1.2516785
[3,] 1.1594938 1.1583329 0.58556148 0.5945150
[4,] 0.9497128 1.4933610 0.34455355 0.9137564
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.95381 31.43867 25.54291 34.44342
[2,]  35.68776 29.79311 35.84695 39.08348
[3,]  37.93936 37.92506 31.19850 31.29860
[4,]  35.39908 42.16374 28.56425 34.97251
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x58926794b960>
> exp(tmp5)
<pointer: 0x58926794b960>
> log(tmp5,2)
<pointer: 0x58926794b960>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 468.2119
> Min(tmp5)
[1] 53.16422
> mean(tmp5)
[1] 72.84788
> Sum(tmp5)
[1] 14569.58
> Var(tmp5)
[1] 860.4075
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.71587 72.60064 71.95732 72.59503 70.40972 72.26513 70.38508 69.51885
 [9] 69.53452 69.49661
> rowSums(tmp5)
 [1] 1794.317 1452.013 1439.146 1451.901 1408.194 1445.303 1407.702 1390.377
 [9] 1390.690 1389.932
> rowVars(tmp5)
 [1] 7998.16545   57.56858   75.09288   83.54120   88.61711   82.00751
 [7]   81.21847   45.36735  107.19361   44.34960
> rowSd(tmp5)
 [1] 89.432463  7.587396  8.665615  9.140087  9.413666  9.055800  9.012129
 [8]  6.735529 10.353435  6.659549
> rowMax(tmp5)
 [1] 468.21189  83.33546  84.14047  87.75830  91.39144  87.84349  86.01158
 [8]  82.84227  88.16363  82.44172
> rowMin(tmp5)
 [1] 53.16422 60.41345 57.53284 57.14465 53.91133 58.62503 54.47689 54.22936
 [9] 57.38173 59.15564
> 
> colMeans(tmp5)
 [1] 112.88562  71.71000  66.88984  70.15046  73.14936  71.11343  73.95578
 [8]  71.51734  70.47041  72.01130  69.78325  72.63284  71.39767  68.36739
[15]  68.67326  74.24579  65.43712  68.53392  72.47557  71.55722
> colSums(tmp5)
 [1] 1128.8562  717.1000  668.8984  701.5046  731.4936  711.1343  739.5578
 [8]  715.1734  704.7041  720.1130  697.8325  726.3284  713.9767  683.6739
[15]  686.7326  742.4579  654.3712  685.3392  724.7557  715.5722
> colVars(tmp5)
 [1] 15634.79822    87.69656    71.86925    58.58377    58.95927    75.09157
 [7]    53.64122    74.09408    49.78377    91.71837    51.41022    49.40376
[13]    56.18736   103.60678   113.25235   102.61013    48.81059    83.81619
[19]   104.11327    70.81815
> colSd(tmp5)
 [1] 125.039187   9.364644   8.477574   7.654003   7.678494   8.665539
 [7]   7.324017   8.607792   7.055761   9.576971   7.170092   7.028781
[13]   7.495823  10.178741  10.642009  10.129666   6.986458   9.155118
[19]  10.203591   8.415352
> colMax(tmp5)
 [1] 468.21189  87.75830  78.67364  81.34715  82.83575  91.39144  86.01158
 [8]  86.92430  82.29062  88.16363  78.21468  82.85899  83.22564  82.99411
[15]  85.65971  87.84349  75.38133  82.92439  87.59690  85.60843
> colMin(tmp5)
 [1] 61.25899 61.41018 53.16422 57.38173 57.75560 62.12973 64.84148 61.21152
 [9] 60.86109 60.08549 57.11048 61.54413 59.15564 57.39513 54.22936 53.91133
[17] 54.47689 56.83901 59.73391 58.62503
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1]       NA 72.60064 71.95732 72.59503 70.40972 72.26513 70.38508 69.51885
 [9] 69.53452 69.49661
> rowSums(tmp5)
 [1]       NA 1452.013 1439.146 1451.901 1408.194 1445.303 1407.702 1390.377
 [9] 1390.690 1389.932
> rowVars(tmp5)
 [1] 8440.04463   57.56858   75.09288   83.54120   88.61711   82.00751
 [7]   81.21847   45.36735  107.19361   44.34960
> rowSd(tmp5)
 [1] 91.869716  7.587396  8.665615  9.140087  9.413666  9.055800  9.012129
 [8]  6.735529 10.353435  6.659549
> rowMax(tmp5)
 [1]       NA 83.33546 84.14047 87.75830 91.39144 87.84349 86.01158 82.84227
 [9] 88.16363 82.44172
> rowMin(tmp5)
 [1]       NA 60.41345 57.53284 57.14465 53.91133 58.62503 54.47689 54.22936
 [9] 57.38173 59.15564
> 
> colMeans(tmp5)
 [1] 112.88562  71.71000  66.88984  70.15046  73.14936  71.11343  73.95578
 [8]  71.51734  70.47041  72.01130  69.78325  72.63284        NA  68.36739
[15]  68.67326  74.24579  65.43712  68.53392  72.47557  71.55722
> colSums(tmp5)
 [1] 1128.8562  717.1000  668.8984  701.5046  731.4936  711.1343  739.5578
 [8]  715.1734  704.7041  720.1130  697.8325  726.3284        NA  683.6739
[15]  686.7326  742.4579  654.3712  685.3392  724.7557  715.5722
> colVars(tmp5)
 [1] 15634.79822    87.69656    71.86925    58.58377    58.95927    75.09157
 [7]    53.64122    74.09408    49.78377    91.71837    51.41022    49.40376
[13]          NA   103.60678   113.25235   102.61013    48.81059    83.81619
[19]   104.11327    70.81815
> colSd(tmp5)
 [1] 125.039187   9.364644   8.477574   7.654003   7.678494   8.665539
 [7]   7.324017   8.607792   7.055761   9.576971   7.170092   7.028781
[13]         NA  10.178741  10.642009  10.129666   6.986458   9.155118
[19]  10.203591   8.415352
> colMax(tmp5)
 [1] 468.21189  87.75830  78.67364  81.34715  82.83575  91.39144  86.01158
 [8]  86.92430  82.29062  88.16363  78.21468  82.85899        NA  82.99411
[15]  85.65971  87.84349  75.38133  82.92439  87.59690  85.60843
> colMin(tmp5)
 [1] 61.25899 61.41018 53.16422 57.38173 57.75560 62.12973 64.84148 61.21152
 [9] 60.86109 60.08549 57.11048 61.54413       NA 57.39513 54.22936 53.91133
[17] 54.47689 56.83901 59.73391 58.62503
> 
> Max(tmp5,na.rm=TRUE)
[1] 468.2119
> Min(tmp5,na.rm=TRUE)
[1] 53.16422
> mean(tmp5,na.rm=TRUE)
[1] 72.79573
> Sum(tmp5,na.rm=TRUE)
[1] 14486.35
> Var(tmp5,na.rm=TRUE)
[1] 864.2063
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.05746 72.60064 71.95732 72.59503 70.40972 72.26513 70.38508 69.51885
 [9] 69.53452 69.49661
> rowSums(tmp5,na.rm=TRUE)
 [1] 1711.092 1452.013 1439.146 1451.901 1408.194 1445.303 1407.702 1390.377
 [9] 1390.690 1389.932
> rowVars(tmp5,na.rm=TRUE)
 [1] 8440.04463   57.56858   75.09288   83.54120   88.61711   82.00751
 [7]   81.21847   45.36735  107.19361   44.34960
> rowSd(tmp5,na.rm=TRUE)
 [1] 91.869716  7.587396  8.665615  9.140087  9.413666  9.055800  9.012129
 [8]  6.735529 10.353435  6.659549
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.21189  83.33546  84.14047  87.75830  91.39144  87.84349  86.01158
 [8]  82.84227  88.16363  82.44172
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.16422 60.41345 57.53284 57.14465 53.91133 58.62503 54.47689 54.22936
 [9] 57.38173 59.15564
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.88562  71.71000  66.88984  70.15046  73.14936  71.11343  73.95578
 [8]  71.51734  70.47041  72.01130  69.78325  72.63284  70.08345  68.36739
[15]  68.67326  74.24579  65.43712  68.53392  72.47557  71.55722
> colSums(tmp5,na.rm=TRUE)
 [1] 1128.8562  717.1000  668.8984  701.5046  731.4936  711.1343  739.5578
 [8]  715.1734  704.7041  720.1130  697.8325  726.3284  630.7511  683.6739
[15]  686.7326  742.4579  654.3712  685.3392  724.7557  715.5722
> colVars(tmp5,na.rm=TRUE)
 [1] 15634.79822    87.69656    71.86925    58.58377    58.95927    75.09157
 [7]    53.64122    74.09408    49.78377    91.71837    51.41022    49.40376
[13]    43.78012   103.60678   113.25235   102.61013    48.81059    83.81619
[19]   104.11327    70.81815
> colSd(tmp5,na.rm=TRUE)
 [1] 125.039187   9.364644   8.477574   7.654003   7.678494   8.665539
 [7]   7.324017   8.607792   7.055761   9.576971   7.170092   7.028781
[13]   6.616655  10.178741  10.642009  10.129666   6.986458   9.155118
[19]  10.203591   8.415352
> colMax(tmp5,na.rm=TRUE)
 [1] 468.21189  87.75830  78.67364  81.34715  82.83575  91.39144  86.01158
 [8]  86.92430  82.29062  88.16363  78.21468  82.85899  80.62127  82.99411
[15]  85.65971  87.84349  75.38133  82.92439  87.59690  85.60843
> colMin(tmp5,na.rm=TRUE)
 [1] 61.25899 61.41018 53.16422 57.38173 57.75560 62.12973 64.84148 61.21152
 [9] 60.86109 60.08549 57.11048 61.54413 59.15564 57.39513 54.22936 53.91133
[17] 54.47689 56.83901 59.73391 58.62503
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1]      NaN 72.60064 71.95732 72.59503 70.40972 72.26513 70.38508 69.51885
 [9] 69.53452 69.49661
> rowSums(tmp5,na.rm=TRUE)
 [1]    0.000 1452.013 1439.146 1451.901 1408.194 1445.303 1407.702 1390.377
 [9] 1390.690 1389.932
> rowVars(tmp5,na.rm=TRUE)
 [1]        NA  57.56858  75.09288  83.54120  88.61711  82.00751  81.21847
 [8]  45.36735 107.19361  44.34960
> rowSd(tmp5,na.rm=TRUE)
 [1]        NA  7.587396  8.665615  9.140087  9.413666  9.055800  9.012129
 [8]  6.735529 10.353435  6.659549
> rowMax(tmp5,na.rm=TRUE)
 [1]       NA 83.33546 84.14047 87.75830 91.39144 87.84349 86.01158 82.84227
 [9] 88.16363 82.44172
> rowMin(tmp5,na.rm=TRUE)
 [1]       NA 60.41345 57.53284 57.14465 53.91133 58.62503 54.47689 54.22936
 [9] 57.38173 59.15564
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 73.40492 72.40717 68.41491 69.97946 73.49829 70.49711 73.77468 71.44477
 [9] 71.04226 73.33639 69.86765 72.32976      NaN 68.82992 67.90241 74.32430
[17] 65.27055 69.83336 71.22617 72.00559
> colSums(tmp5,na.rm=TRUE)
 [1] 660.6443 651.6646 615.7342 629.8152 661.4846 634.4740 663.9722 643.0029
 [9] 639.3803 660.0275 628.8089 650.9678   0.0000 619.4693 611.1217 668.9187
[17] 587.4349 628.5002 641.0356 648.0503
> colVars(tmp5,na.rm=TRUE)
 [1]  53.48725  93.19062  54.68726  65.57778  64.95942  80.20468  59.97744
 [8]  83.29660  52.32781  83.42969  57.75636  54.54583        NA 114.15089
[15] 120.72406 115.36704  54.59977  75.29724  99.56613  77.40874
> colSd(tmp5,na.rm=TRUE)
 [1]  7.313498  9.653529  7.395084  8.098011  8.059740  8.955707  7.744510
 [8]  9.126697  7.233796  9.133985  7.599760  7.385515        NA 10.684142
[15] 10.987450 10.740905  7.389166  8.677398  9.978283  8.798224
> colMax(tmp5,na.rm=TRUE)
 [1] 83.29099 87.75830 78.67364 81.34715 82.83575 91.39144 86.01158 86.92430
 [9] 82.29062 88.16363 78.21468 82.85899     -Inf 82.99411 85.65971 87.84349
[17] 75.38133 82.92439 87.59690 85.60843
> colMin(tmp5,na.rm=TRUE)
 [1] 61.25899 61.41018 59.24863 57.38173 57.75560 62.12973 64.84148 61.21152
 [9] 60.86109 60.75620 57.11048 61.54413      Inf 57.39513 54.22936 53.91133
[17] 54.47689 57.14465 59.73391 58.62503
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 235.9779 213.6254 325.9559 253.8223 232.3358 215.3097 189.2443 245.2031
 [9] 307.7701 128.8029
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 235.9779 213.6254 325.9559 253.8223 232.3358 215.3097 189.2443 245.2031
 [9] 307.7701 128.8029
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -4.263256e-14 -2.842171e-14  1.136868e-13  0.000000e+00 -4.263256e-14
 [6]  5.684342e-14  2.842171e-14  2.842171e-14 -1.421085e-14 -5.684342e-14
[11] -5.684342e-14 -1.421085e-13  1.421085e-13 -1.136868e-13 -2.842171e-13
[16] -1.989520e-13 -7.105427e-14 -2.842171e-14  1.136868e-13  5.684342e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
7   5 
4   7 
7   2 
5   8 
2   15 
6   4 
1   12 
8   20 
5   16 
2   17 
10   11 
6   20 
3   14 
8   15 
8   10 
6   4 
9   11 
8   5 
9   15 
4   15 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.2904
> Min(tmp)
[1] -2.252836
> mean(tmp)
[1] -0.009685585
> Sum(tmp)
[1] -0.9685585
> Var(tmp)
[1] 1.239468
> 
> rowMeans(tmp)
[1] -0.009685585
> rowSums(tmp)
[1] -0.9685585
> rowVars(tmp)
[1] 1.239468
> rowSd(tmp)
[1] 1.113314
> rowMax(tmp)
[1] 2.2904
> rowMin(tmp)
[1] -2.252836
> 
> colMeans(tmp)
  [1] -0.932890700 -1.424520794  0.986484160  1.227161972 -2.227612638
  [6]  0.771461306  0.181190304 -0.541223098 -0.877264008  0.972358796
 [11]  0.089318657 -0.841835423 -2.047504080  1.066570359 -0.913453149
 [16] -0.346030710 -0.722683390 -1.089577144 -0.233516215 -0.471470145
 [21] -1.044209638  0.275736213  1.873724823  0.311785220 -0.327808053
 [26]  1.424213779 -0.896950060 -1.023499421 -0.005082096  0.415303877
 [31] -1.349671183 -0.033120824 -0.016513158  1.383433415  1.344738561
 [36] -0.101071015 -0.790728046  0.765264430  0.033461179  1.524690999
 [41]  0.355830754 -0.422702877 -2.022852621 -0.900791488  0.760478355
 [46] -0.113171307 -1.584547574 -1.385474980  0.893274960 -0.136723641
 [51] -0.774988214  0.167517430 -1.991166402  1.057562862 -1.169292270
 [56] -0.332983582  2.007670561  0.581558493  2.290399873 -1.798815511
 [61]  1.897823217  0.309155739 -1.089943861 -2.252836365  1.828546189
 [66] -1.116882665  1.742926705 -0.219931717  2.093904476  1.875024139
 [71]  1.037560972 -1.450959853  0.076449679 -1.022636348 -0.253010403
 [76]  1.674211979 -1.106355540  1.357995241  0.527565867 -0.612061542
 [81]  1.335147600  1.256206945  1.321434195  0.161822794  0.245740804
 [86] -0.635145700  1.392181870 -0.431998772  0.735814323  0.099614513
 [91] -0.064455392 -0.651315133 -1.171362813  0.592096999 -0.014460074
 [96] -1.912337529  0.443691582 -0.827095901  0.393013757 -0.403144322
> colSums(tmp)
  [1] -0.932890700 -1.424520794  0.986484160  1.227161972 -2.227612638
  [6]  0.771461306  0.181190304 -0.541223098 -0.877264008  0.972358796
 [11]  0.089318657 -0.841835423 -2.047504080  1.066570359 -0.913453149
 [16] -0.346030710 -0.722683390 -1.089577144 -0.233516215 -0.471470145
 [21] -1.044209638  0.275736213  1.873724823  0.311785220 -0.327808053
 [26]  1.424213779 -0.896950060 -1.023499421 -0.005082096  0.415303877
 [31] -1.349671183 -0.033120824 -0.016513158  1.383433415  1.344738561
 [36] -0.101071015 -0.790728046  0.765264430  0.033461179  1.524690999
 [41]  0.355830754 -0.422702877 -2.022852621 -0.900791488  0.760478355
 [46] -0.113171307 -1.584547574 -1.385474980  0.893274960 -0.136723641
 [51] -0.774988214  0.167517430 -1.991166402  1.057562862 -1.169292270
 [56] -0.332983582  2.007670561  0.581558493  2.290399873 -1.798815511
 [61]  1.897823217  0.309155739 -1.089943861 -2.252836365  1.828546189
 [66] -1.116882665  1.742926705 -0.219931717  2.093904476  1.875024139
 [71]  1.037560972 -1.450959853  0.076449679 -1.022636348 -0.253010403
 [76]  1.674211979 -1.106355540  1.357995241  0.527565867 -0.612061542
 [81]  1.335147600  1.256206945  1.321434195  0.161822794  0.245740804
 [86] -0.635145700  1.392181870 -0.431998772  0.735814323  0.099614513
 [91] -0.064455392 -0.651315133 -1.171362813  0.592096999 -0.014460074
 [96] -1.912337529  0.443691582 -0.827095901  0.393013757 -0.403144322
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.932890700 -1.424520794  0.986484160  1.227161972 -2.227612638
  [6]  0.771461306  0.181190304 -0.541223098 -0.877264008  0.972358796
 [11]  0.089318657 -0.841835423 -2.047504080  1.066570359 -0.913453149
 [16] -0.346030710 -0.722683390 -1.089577144 -0.233516215 -0.471470145
 [21] -1.044209638  0.275736213  1.873724823  0.311785220 -0.327808053
 [26]  1.424213779 -0.896950060 -1.023499421 -0.005082096  0.415303877
 [31] -1.349671183 -0.033120824 -0.016513158  1.383433415  1.344738561
 [36] -0.101071015 -0.790728046  0.765264430  0.033461179  1.524690999
 [41]  0.355830754 -0.422702877 -2.022852621 -0.900791488  0.760478355
 [46] -0.113171307 -1.584547574 -1.385474980  0.893274960 -0.136723641
 [51] -0.774988214  0.167517430 -1.991166402  1.057562862 -1.169292270
 [56] -0.332983582  2.007670561  0.581558493  2.290399873 -1.798815511
 [61]  1.897823217  0.309155739 -1.089943861 -2.252836365  1.828546189
 [66] -1.116882665  1.742926705 -0.219931717  2.093904476  1.875024139
 [71]  1.037560972 -1.450959853  0.076449679 -1.022636348 -0.253010403
 [76]  1.674211979 -1.106355540  1.357995241  0.527565867 -0.612061542
 [81]  1.335147600  1.256206945  1.321434195  0.161822794  0.245740804
 [86] -0.635145700  1.392181870 -0.431998772  0.735814323  0.099614513
 [91] -0.064455392 -0.651315133 -1.171362813  0.592096999 -0.014460074
 [96] -1.912337529  0.443691582 -0.827095901  0.393013757 -0.403144322
> colMin(tmp)
  [1] -0.932890700 -1.424520794  0.986484160  1.227161972 -2.227612638
  [6]  0.771461306  0.181190304 -0.541223098 -0.877264008  0.972358796
 [11]  0.089318657 -0.841835423 -2.047504080  1.066570359 -0.913453149
 [16] -0.346030710 -0.722683390 -1.089577144 -0.233516215 -0.471470145
 [21] -1.044209638  0.275736213  1.873724823  0.311785220 -0.327808053
 [26]  1.424213779 -0.896950060 -1.023499421 -0.005082096  0.415303877
 [31] -1.349671183 -0.033120824 -0.016513158  1.383433415  1.344738561
 [36] -0.101071015 -0.790728046  0.765264430  0.033461179  1.524690999
 [41]  0.355830754 -0.422702877 -2.022852621 -0.900791488  0.760478355
 [46] -0.113171307 -1.584547574 -1.385474980  0.893274960 -0.136723641
 [51] -0.774988214  0.167517430 -1.991166402  1.057562862 -1.169292270
 [56] -0.332983582  2.007670561  0.581558493  2.290399873 -1.798815511
 [61]  1.897823217  0.309155739 -1.089943861 -2.252836365  1.828546189
 [66] -1.116882665  1.742926705 -0.219931717  2.093904476  1.875024139
 [71]  1.037560972 -1.450959853  0.076449679 -1.022636348 -0.253010403
 [76]  1.674211979 -1.106355540  1.357995241  0.527565867 -0.612061542
 [81]  1.335147600  1.256206945  1.321434195  0.161822794  0.245740804
 [86] -0.635145700  1.392181870 -0.431998772  0.735814323  0.099614513
 [91] -0.064455392 -0.651315133 -1.171362813  0.592096999 -0.014460074
 [96] -1.912337529  0.443691582 -0.827095901  0.393013757 -0.403144322
> colMedians(tmp)
  [1] -0.932890700 -1.424520794  0.986484160  1.227161972 -2.227612638
  [6]  0.771461306  0.181190304 -0.541223098 -0.877264008  0.972358796
 [11]  0.089318657 -0.841835423 -2.047504080  1.066570359 -0.913453149
 [16] -0.346030710 -0.722683390 -1.089577144 -0.233516215 -0.471470145
 [21] -1.044209638  0.275736213  1.873724823  0.311785220 -0.327808053
 [26]  1.424213779 -0.896950060 -1.023499421 -0.005082096  0.415303877
 [31] -1.349671183 -0.033120824 -0.016513158  1.383433415  1.344738561
 [36] -0.101071015 -0.790728046  0.765264430  0.033461179  1.524690999
 [41]  0.355830754 -0.422702877 -2.022852621 -0.900791488  0.760478355
 [46] -0.113171307 -1.584547574 -1.385474980  0.893274960 -0.136723641
 [51] -0.774988214  0.167517430 -1.991166402  1.057562862 -1.169292270
 [56] -0.332983582  2.007670561  0.581558493  2.290399873 -1.798815511
 [61]  1.897823217  0.309155739 -1.089943861 -2.252836365  1.828546189
 [66] -1.116882665  1.742926705 -0.219931717  2.093904476  1.875024139
 [71]  1.037560972 -1.450959853  0.076449679 -1.022636348 -0.253010403
 [76]  1.674211979 -1.106355540  1.357995241  0.527565867 -0.612061542
 [81]  1.335147600  1.256206945  1.321434195  0.161822794  0.245740804
 [86] -0.635145700  1.392181870 -0.431998772  0.735814323  0.099614513
 [91] -0.064455392 -0.651315133 -1.171362813  0.592096999 -0.014460074
 [96] -1.912337529  0.443691582 -0.827095901  0.393013757 -0.403144322
> colRanges(tmp)
           [,1]      [,2]      [,3]     [,4]      [,5]      [,6]      [,7]
[1,] -0.9328907 -1.424521 0.9864842 1.227162 -2.227613 0.7714613 0.1811903
[2,] -0.9328907 -1.424521 0.9864842 1.227162 -2.227613 0.7714613 0.1811903
           [,8]      [,9]     [,10]      [,11]      [,12]     [,13]   [,14]
[1,] -0.5412231 -0.877264 0.9723588 0.08931866 -0.8418354 -2.047504 1.06657
[2,] -0.5412231 -0.877264 0.9723588 0.08931866 -0.8418354 -2.047504 1.06657
          [,15]      [,16]      [,17]     [,18]      [,19]      [,20]    [,21]
[1,] -0.9134531 -0.3460307 -0.7226834 -1.089577 -0.2335162 -0.4714701 -1.04421
[2,] -0.9134531 -0.3460307 -0.7226834 -1.089577 -0.2335162 -0.4714701 -1.04421
         [,22]    [,23]     [,24]      [,25]    [,26]      [,27]     [,28]
[1,] 0.2757362 1.873725 0.3117852 -0.3278081 1.424214 -0.8969501 -1.023499
[2,] 0.2757362 1.873725 0.3117852 -0.3278081 1.424214 -0.8969501 -1.023499
            [,29]     [,30]     [,31]       [,32]       [,33]    [,34]    [,35]
[1,] -0.005082096 0.4153039 -1.349671 -0.03312082 -0.01651316 1.383433 1.344739
[2,] -0.005082096 0.4153039 -1.349671 -0.03312082 -0.01651316 1.383433 1.344739
         [,36]     [,37]     [,38]      [,39]    [,40]     [,41]      [,42]
[1,] -0.101071 -0.790728 0.7652644 0.03346118 1.524691 0.3558308 -0.4227029
[2,] -0.101071 -0.790728 0.7652644 0.03346118 1.524691 0.3558308 -0.4227029
         [,43]      [,44]     [,45]      [,46]     [,47]     [,48]    [,49]
[1,] -2.022853 -0.9007915 0.7604784 -0.1131713 -1.584548 -1.385475 0.893275
[2,] -2.022853 -0.9007915 0.7604784 -0.1131713 -1.584548 -1.385475 0.893275
          [,50]      [,51]     [,52]     [,53]    [,54]     [,55]      [,56]
[1,] -0.1367236 -0.7749882 0.1675174 -1.991166 1.057563 -1.169292 -0.3329836
[2,] -0.1367236 -0.7749882 0.1675174 -1.991166 1.057563 -1.169292 -0.3329836
        [,57]     [,58]  [,59]     [,60]    [,61]     [,62]     [,63]     [,64]
[1,] 2.007671 0.5815585 2.2904 -1.798816 1.897823 0.3091557 -1.089944 -2.252836
[2,] 2.007671 0.5815585 2.2904 -1.798816 1.897823 0.3091557 -1.089944 -2.252836
        [,65]     [,66]    [,67]      [,68]    [,69]    [,70]    [,71]    [,72]
[1,] 1.828546 -1.116883 1.742927 -0.2199317 2.093904 1.875024 1.037561 -1.45096
[2,] 1.828546 -1.116883 1.742927 -0.2199317 2.093904 1.875024 1.037561 -1.45096
          [,73]     [,74]      [,75]    [,76]     [,77]    [,78]     [,79]
[1,] 0.07644968 -1.022636 -0.2530104 1.674212 -1.106356 1.357995 0.5275659
[2,] 0.07644968 -1.022636 -0.2530104 1.674212 -1.106356 1.357995 0.5275659
          [,80]    [,81]    [,82]    [,83]     [,84]     [,85]      [,86]
[1,] -0.6120615 1.335148 1.256207 1.321434 0.1618228 0.2457408 -0.6351457
[2,] -0.6120615 1.335148 1.256207 1.321434 0.1618228 0.2457408 -0.6351457
        [,87]      [,88]     [,89]      [,90]       [,91]      [,92]     [,93]
[1,] 1.392182 -0.4319988 0.7358143 0.09961451 -0.06445539 -0.6513151 -1.171363
[2,] 1.392182 -0.4319988 0.7358143 0.09961451 -0.06445539 -0.6513151 -1.171363
        [,94]       [,95]     [,96]     [,97]      [,98]     [,99]     [,100]
[1,] 0.592097 -0.01446007 -1.912338 0.4436916 -0.8270959 0.3930138 -0.4031443
[2,] 0.592097 -0.01446007 -1.912338 0.4436916 -0.8270959 0.3930138 -0.4031443
> 
> 
> Max(tmp2)
[1] 2.380572
> Min(tmp2)
[1] -2.41149
> mean(tmp2)
[1] 0.1072231
> Sum(tmp2)
[1] 10.72231
> Var(tmp2)
[1] 0.9474531
> 
> rowMeans(tmp2)
  [1] -0.125746896 -0.246185912 -1.141792470 -2.264268663 -1.224545997
  [6]  1.660457219 -0.378481326 -0.464899413 -0.621952823 -1.204924199
 [11] -0.739550404  1.013091253  0.476315245  0.317206976  0.727907992
 [16] -0.004046148  1.241208315  1.195122034 -0.057603012 -0.253013938
 [21]  0.441599776  1.050385382  0.028723368 -0.082213670 -2.411490057
 [26]  0.453985314  0.320537982 -0.023976443 -1.588399410  0.187206964
 [31]  0.071030536 -0.502910433  1.372713473  0.130266793  0.971312698
 [36]  0.978706250 -1.118726417  0.503623731  0.688493787 -0.209077168
 [41]  0.178925848  1.781202359 -0.559797991  0.000784325 -0.325181513
 [46] -1.267020904  1.743413952  0.125980655  0.017773708  0.455635609
 [51]  0.156699919 -0.603606496 -1.155543218  2.153653076  0.952223254
 [56] -0.520343808  1.164152500 -0.354038289 -0.641463997 -1.667561809
 [61] -0.218904273 -0.091361430  0.040432451  1.003247452  0.248043516
 [66] -0.113843933  0.684813227  2.075522422 -1.320142855 -1.032437359
 [71]  1.364663437 -1.091679803  0.766395538  1.299253801 -0.763098577
 [76]  1.440231746  0.396341499 -0.727136336  1.026518708 -0.491046170
 [81]  0.038951028  0.158164805  0.144987976  0.613317569 -0.740579414
 [86]  0.238138691  2.380572192 -0.059964281 -0.743668150  2.320117577
 [91] -0.097504044 -0.683905790 -1.152071064  0.217682306 -0.179337295
 [96]  1.287102757  0.594865332  1.223322160 -1.295560412  1.159888821
> rowSums(tmp2)
  [1] -0.125746896 -0.246185912 -1.141792470 -2.264268663 -1.224545997
  [6]  1.660457219 -0.378481326 -0.464899413 -0.621952823 -1.204924199
 [11] -0.739550404  1.013091253  0.476315245  0.317206976  0.727907992
 [16] -0.004046148  1.241208315  1.195122034 -0.057603012 -0.253013938
 [21]  0.441599776  1.050385382  0.028723368 -0.082213670 -2.411490057
 [26]  0.453985314  0.320537982 -0.023976443 -1.588399410  0.187206964
 [31]  0.071030536 -0.502910433  1.372713473  0.130266793  0.971312698
 [36]  0.978706250 -1.118726417  0.503623731  0.688493787 -0.209077168
 [41]  0.178925848  1.781202359 -0.559797991  0.000784325 -0.325181513
 [46] -1.267020904  1.743413952  0.125980655  0.017773708  0.455635609
 [51]  0.156699919 -0.603606496 -1.155543218  2.153653076  0.952223254
 [56] -0.520343808  1.164152500 -0.354038289 -0.641463997 -1.667561809
 [61] -0.218904273 -0.091361430  0.040432451  1.003247452  0.248043516
 [66] -0.113843933  0.684813227  2.075522422 -1.320142855 -1.032437359
 [71]  1.364663437 -1.091679803  0.766395538  1.299253801 -0.763098577
 [76]  1.440231746  0.396341499 -0.727136336  1.026518708 -0.491046170
 [81]  0.038951028  0.158164805  0.144987976  0.613317569 -0.740579414
 [86]  0.238138691  2.380572192 -0.059964281 -0.743668150  2.320117577
 [91] -0.097504044 -0.683905790 -1.152071064  0.217682306 -0.179337295
 [96]  1.287102757  0.594865332  1.223322160 -1.295560412  1.159888821
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.125746896 -0.246185912 -1.141792470 -2.264268663 -1.224545997
  [6]  1.660457219 -0.378481326 -0.464899413 -0.621952823 -1.204924199
 [11] -0.739550404  1.013091253  0.476315245  0.317206976  0.727907992
 [16] -0.004046148  1.241208315  1.195122034 -0.057603012 -0.253013938
 [21]  0.441599776  1.050385382  0.028723368 -0.082213670 -2.411490057
 [26]  0.453985314  0.320537982 -0.023976443 -1.588399410  0.187206964
 [31]  0.071030536 -0.502910433  1.372713473  0.130266793  0.971312698
 [36]  0.978706250 -1.118726417  0.503623731  0.688493787 -0.209077168
 [41]  0.178925848  1.781202359 -0.559797991  0.000784325 -0.325181513
 [46] -1.267020904  1.743413952  0.125980655  0.017773708  0.455635609
 [51]  0.156699919 -0.603606496 -1.155543218  2.153653076  0.952223254
 [56] -0.520343808  1.164152500 -0.354038289 -0.641463997 -1.667561809
 [61] -0.218904273 -0.091361430  0.040432451  1.003247452  0.248043516
 [66] -0.113843933  0.684813227  2.075522422 -1.320142855 -1.032437359
 [71]  1.364663437 -1.091679803  0.766395538  1.299253801 -0.763098577
 [76]  1.440231746  0.396341499 -0.727136336  1.026518708 -0.491046170
 [81]  0.038951028  0.158164805  0.144987976  0.613317569 -0.740579414
 [86]  0.238138691  2.380572192 -0.059964281 -0.743668150  2.320117577
 [91] -0.097504044 -0.683905790 -1.152071064  0.217682306 -0.179337295
 [96]  1.287102757  0.594865332  1.223322160 -1.295560412  1.159888821
> rowMin(tmp2)
  [1] -0.125746896 -0.246185912 -1.141792470 -2.264268663 -1.224545997
  [6]  1.660457219 -0.378481326 -0.464899413 -0.621952823 -1.204924199
 [11] -0.739550404  1.013091253  0.476315245  0.317206976  0.727907992
 [16] -0.004046148  1.241208315  1.195122034 -0.057603012 -0.253013938
 [21]  0.441599776  1.050385382  0.028723368 -0.082213670 -2.411490057
 [26]  0.453985314  0.320537982 -0.023976443 -1.588399410  0.187206964
 [31]  0.071030536 -0.502910433  1.372713473  0.130266793  0.971312698
 [36]  0.978706250 -1.118726417  0.503623731  0.688493787 -0.209077168
 [41]  0.178925848  1.781202359 -0.559797991  0.000784325 -0.325181513
 [46] -1.267020904  1.743413952  0.125980655  0.017773708  0.455635609
 [51]  0.156699919 -0.603606496 -1.155543218  2.153653076  0.952223254
 [56] -0.520343808  1.164152500 -0.354038289 -0.641463997 -1.667561809
 [61] -0.218904273 -0.091361430  0.040432451  1.003247452  0.248043516
 [66] -0.113843933  0.684813227  2.075522422 -1.320142855 -1.032437359
 [71]  1.364663437 -1.091679803  0.766395538  1.299253801 -0.763098577
 [76]  1.440231746  0.396341499 -0.727136336  1.026518708 -0.491046170
 [81]  0.038951028  0.158164805  0.144987976  0.613317569 -0.740579414
 [86]  0.238138691  2.380572192 -0.059964281 -0.743668150  2.320117577
 [91] -0.097504044 -0.683905790 -1.152071064  0.217682306 -0.179337295
 [96]  1.287102757  0.594865332  1.223322160 -1.295560412  1.159888821
> 
> colMeans(tmp2)
[1] 0.1072231
> colSums(tmp2)
[1] 10.72231
> colVars(tmp2)
[1] 0.9474531
> colSd(tmp2)
[1] 0.973372
> colMax(tmp2)
[1] 2.380572
> colMin(tmp2)
[1] -2.41149
> colMedians(tmp2)
[1] 0.03969174
> colRanges(tmp2)
          [,1]
[1,] -2.411490
[2,]  2.380572
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.40809328 -2.10646291 -0.84267821 -3.17124318 -0.42883546  2.38022283
 [7] -0.33549840 -2.76597272 -0.03313334  3.79072611
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.8181993
[2,] -0.8904425
[3,]  0.1693863
[4,]  1.1404908
[5,]  1.7346804
> 
> rowApply(tmp,sum)
 [1]  4.2313178 -0.2760208 -3.5363130  0.7494300  3.0641685 -0.9386463
 [7]  1.3636766 -4.2932202 -2.4180897 -1.0510848
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10   10    1    1    7    9    8    5    5     3
 [2,]    6    4    7    3    9    2    6    9    1     5
 [3,]    4    2    4    8    3    4   10    1    4     9
 [4,]    8    9    6    2    2    7    1    7    3     1
 [5,]    9    1   10    9    6    1    3    6    7     7
 [6,]    2    5    9    6    8    8    4   10    2     4
 [7,]    7    3    5    7   10    3    5    2    8     2
 [8,]    1    7    2    4    5    5    7    3    9     8
 [9,]    3    8    3   10    4    6    2    4   10     6
[10,]    5    6    8    5    1   10    9    8    6    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.6107767 -0.5045434 -1.7334257  3.8153527 -0.7795874  0.7222193
 [7]  2.1510306  1.4042781 -1.4440982  1.8288715  2.4406609  1.1517638
[13] -1.5986278  0.5525145  0.9339503 -0.1326875 -0.4960688 -3.8844614
[19] -2.7581799  2.4412555
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.0800451
[2,] -0.9155678
[3,] -0.3216064
[4,]  0.8489437
[5,]  3.0790524
> 
> rowApply(tmp,sum)
[1]  2.6441390 -5.4695221  4.3455670  3.9147364  0.2860737
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20    6   13    5    4
[2,]    5   11   10   20    6
[3,]   12    1    5   18    9
[4,]   19    4    4   19   19
[5,]   15    8    3    4   13
> 
> 
> as.matrix(tmp)
           [,1]        [,2]        [,3]       [,4]       [,5]       [,6]
[1,]  3.0790524 -1.06223166 -0.02360903  2.9029484  0.7324861 -0.8279412
[2,] -0.9155678 -0.15963703 -1.73732410 -1.2270424 -0.5222194 -1.3652064
[3,]  0.8489437  0.05765667 -0.65407265 -0.8012403 -1.1445305  1.4595455
[4,] -0.3216064  1.24966948  1.14406161  1.1747776 -0.3603120  0.7355074
[5,] -1.0800451 -0.59000083 -0.46248149  1.7659094  0.5149884  0.7203140
           [,7]       [,8]         [,9]       [,10]      [,11]      [,12]
[1,] -0.2290328 -1.8301726 -1.248515727  1.19393207  1.9995035 -0.6095085
[2,]  0.8747394  0.5246457  0.529882091  0.19098822 -0.1612941 -1.4381533
[3,]  0.5063703  1.0989985 -0.001583817 -0.43379658  1.7355249  2.3806770
[4,] -0.5957083 -0.2002418  0.275392962  0.08748345  0.5910226  0.3821148
[5,]  1.5946621  1.8110484 -0.999273683  0.79026436 -1.7240960  0.4366339
          [,13]       [,14]       [,15]      [,16]      [,17]      [,18]
[1,]  0.4483792 -0.05051903 -1.40578371 -0.6564459 -1.4433041  1.6568985
[2,] -0.1129260 -0.00432642 -0.09973214 -0.6929889  0.8058619 -0.9184526
[3,]  1.2599676 -1.14740930  0.85777467  1.2326929 -0.5942215 -2.1443016
[4,] -2.7145360  0.97842999  0.27049820  0.4520109  1.1214837 -1.2593436
[5,] -0.4795126  0.77633925  1.31119328 -0.4679565 -0.3858888 -1.2192621
          [,19]      [,20]
[1,] -0.6339030  0.6519061
[2,] -0.4832609  1.4424920
[3,] -0.4284488  0.2570204
[4,]  0.4297760  0.4742559
[5,] -1.6423432 -0.3844188
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  565  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2      col3      col4      col5       col6      col7
row1 -2.364527 0.778412 0.2391404 0.2332343 0.5352599 -0.8170998 0.5516349
         col8      col9     col10      col11    col12     col13     col14
row1 -1.49035 0.6924898 0.3786656 -0.4895262 1.605236 0.3552704 0.4879174
        col15   col16     col17       col18    col19     col20
row1 1.250434 2.19257 -1.011877 -0.08641141 1.295958 0.6993516
> tmp[,"col10"]
          col10
row1  0.3786656
row2  0.4597676
row3  0.4871001
row4 -0.5014644
row5 -0.6611857
> tmp[c("row1","row5"),]
           col1      col2       col3       col4       col5       col6      col7
row1 -2.3645269  0.778412  0.2391404  0.2332343  0.5352599 -0.8170998 0.5516349
row5  0.9195632 -1.500705 -0.2916061 -0.2855189 -0.2069536 -0.2610830 0.5220580
          col8      col9      col10      col11      col12      col13      col14
row1 -1.490350 0.6924898  0.3786656 -0.4895262  1.6052361  0.3552704  0.4879174
row5 -1.042397 1.8062713 -0.6611857  2.1329860 -0.8139811 -0.3433878 -1.2695045
         col15      col16      col17       col18     col19     col20
row1  1.250434  2.1925704 -1.0118770 -0.08641141 1.2959585 0.6993516
row5 -1.037062 -0.2970891 -0.8527455  0.70908024 0.9553228 0.9060239
> tmp[,c("col6","col20")]
           col6     col20
row1 -0.8170998 0.6993516
row2  0.3361525 1.9247494
row3 -2.0703259 0.9874407
row4  1.5010322 0.4364351
row5 -0.2610830 0.9060239
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.8170998 0.6993516
row5 -0.2610830 0.9060239
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2    col3     col4     col5     col6     col7     col8
row1 49.83519 48.2675 50.9754 50.15523 50.40935 104.6493 52.06245 50.09163
         col9    col10    col11   col12    col13    col14    col15    col16
row1 50.14192 50.88948 50.17677 49.7341 49.91432 49.27492 50.20491 49.41323
        col17    col18    col19    col20
row1 49.93716 50.40899 48.25763 103.4339
> tmp[,"col10"]
        col10
row1 50.88948
row2 29.76454
row3 29.10366
row4 30.78712
row5 47.63224
> tmp[c("row1","row5"),]
         col1    col2     col3     col4     col5     col6     col7     col8
row1 49.83519 48.2675 50.97540 50.15523 50.40935 104.6493 52.06245 50.09163
row5 48.89090 51.6477 49.32175 49.57959 49.66406 105.2038 51.17430 50.59826
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.14192 50.88948 50.17677 49.73410 49.91432 49.27492 50.20491 49.41323
row5 50.70668 47.63224 51.38907 47.43839 49.55354 50.97989 50.57901 48.62640
        col17    col18    col19    col20
row1 49.93716 50.40899 48.25763 103.4339
row5 49.51321 49.63789 50.26374 104.9484
> tmp[,c("col6","col20")]
          col6     col20
row1 104.64929 103.43388
row2  74.91437  74.92730
row3  75.72908  73.58376
row4  74.83880  74.23855
row5 105.20384 104.94845
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.6493 103.4339
row5 105.2038 104.9484
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.6493 103.4339
row5 105.2038 104.9484
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.7255193
[2,] -0.4694046
[3,]  0.3520960
[4,]  1.3990887
[5,] -0.8738598
> tmp[,c("col17","col7")]
          col17       col7
[1,]  0.6141980  0.1347744
[2,] -0.7820025 -0.1729442
[3,]  0.1634100  0.4171432
[4,] -1.6214183  1.5361776
[5,]  0.5604923 -0.3952626
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,] -1.4528927  1.46819881
[2,]  2.5795663 -0.57818967
[3,] -0.1154568 -0.54582312
[4,]  0.1802801  0.05378329
[5,]  1.1863722 -0.24552215
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.452893
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -1.452893
[2,]  2.579566
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]        [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
row3 -0.8048254 -1.38214382 1.3571830 -1.661429 1.7993064 -0.4508771  0.4301405
row1  0.1335623 -0.09371123 0.7923764 -1.039153 0.8085902 -1.5357737 -1.0018985
           [,8]      [,9]      [,10]      [,11]      [,12]      [,13]    [,14]
row3 -0.1679109 -1.998197 -1.9288648 -0.9649101 -0.5581941  1.4953959 1.595552
row1  1.6310848  1.121789  0.4720354  1.6630544  1.5691744 -0.7106697 1.155109
          [,15]      [,16]         [,17]      [,18]     [,19]      [,20]
row3 -1.5376378 -0.2079671 -0.0003622226  0.2535305 -0.213935 -0.3248400
row1  0.7880838  0.4506142 -0.6101627089 -0.4170029  0.111168 -0.5916486
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]       [,3]       [,4]      [,5]       [,6]       [,7]
row2 0.7726821 1.069027 -0.8435114 -0.1876013 -2.069253 -0.0268644 -0.4895439
          [,8]      [,9]     [,10]
row2 -1.869728 0.8080458 -1.782691
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]     [,2]       [,3]      [,4]       [,5]      [,6]    [,7]
row5 -0.5805147 1.037564 -0.6500481 0.6299913 -0.4232557 -1.952331 1.35902
          [,8]     [,9]     [,10]     [,11]     [,12]    [,13]     [,14]
row5 -2.031554 1.491267 0.5882239 -1.777625 0.2153719 0.291719 0.4503244
          [,15]     [,16]     [,17]     [,18]     [,19]        [,20]
row5 -0.1475651 0.3503762 0.9347832 -0.369386 0.5048066 -0.007451776
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x589267523030>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f160d312c"
 [2] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f3243387a"
 [3] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f630fb587"
 [4] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f64dea001"
 [5] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f4e4dbfef"
 [6] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f4a3ff156"
 [7] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f4dff49cf"
 [8] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f12f9fdf3"
 [9] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f139dc141"
[10] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8fe74028e" 
[11] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f722e1333"
[12] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f69f42dbf"
[13] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f20b1d4c" 
[14] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f2f196fad"
[15] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM32ba8f1f17f05" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x58926823d360>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x58926823d360>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x58926823d360>
> rowMedians(tmp)
  [1] -3.994873e-01  3.316896e-02  3.182740e-01  1.018797e-02  1.865763e-02
  [6]  3.369172e-01  2.575015e-02  8.496026e-02  1.341224e-02 -1.502792e-01
 [11] -1.152249e-01 -4.275043e-01  1.704766e-01 -2.474852e-01 -1.548513e-01
 [16] -1.793298e-01 -2.331028e-01  1.243490e-01 -1.545379e-01 -7.381012e-02
 [21]  1.904624e-01 -4.217081e-02 -4.470701e-02 -1.643551e-01  3.321418e-01
 [26]  2.885932e-01  4.176632e-01 -4.062645e-01  4.849769e-01 -9.640796e-03
 [31]  6.453603e-01 -4.747041e-01  6.018638e-02 -9.089018e-02 -1.168405e-01
 [36]  8.531919e-01  2.960054e-01  6.020162e-02  1.433549e-01  1.749074e-01
 [41]  5.262484e-01 -2.566669e-01 -1.269917e-01 -3.993719e-01  2.197047e-01
 [46] -5.298781e-01  2.855536e-01  3.699322e-01 -1.176849e-01 -5.028959e-01
 [51] -1.356404e-01 -2.597528e-01 -3.478578e-01  1.425896e-01 -3.341449e-01
 [56]  4.699580e-01 -2.676080e-01 -3.612616e-03  3.403700e-01 -4.542577e-01
 [61]  1.286967e-01 -3.347547e-01  4.581927e-01 -1.269933e-01 -3.787655e-01
 [66] -8.493312e-02 -3.251652e-01  1.585681e-01 -4.141943e-02  3.233561e-01
 [71]  1.594664e-01  5.560664e-03  2.740218e-01  2.292689e-01 -1.396799e-01
 [76] -2.006042e-01  1.715451e-01 -2.209055e-01  3.301943e-01  1.654286e-01
 [81] -7.825698e-02  7.369208e-02 -2.583221e-02  1.100120e-01 -3.413989e-01
 [86] -1.291450e-01 -3.760162e-01  4.346766e-01  3.957253e-01  2.521624e-01
 [91] -2.980607e-01  1.495709e-01 -1.895198e-01  6.652847e-02  3.062740e-01
 [96]  8.636351e-02  2.900661e-01  1.140558e-01  4.074061e-02  3.190673e-02
[101]  7.043453e-02  1.898281e-01 -5.092803e-01  1.216012e-01  4.769960e-01
[106] -2.079069e-01 -1.609237e-01  3.091339e-02 -1.998002e-01  7.058868e-01
[111] -5.729287e-01 -1.984277e-01  1.289974e-02  2.101039e-01 -9.945830e-02
[116]  2.117795e-01  2.622778e-01 -3.246318e-01  9.435487e-02  5.483341e-01
[121] -1.905465e-02  4.608992e-01 -3.399154e-01 -5.303136e-02  1.270255e-01
[126]  6.028755e-01  9.214092e-02 -6.811363e-03 -1.050644e-01 -1.586570e-01
[131]  1.785614e-01  9.025879e-02 -4.526660e-01  1.265760e-01  1.270020e-01
[136]  3.998768e-01 -2.397599e-01  4.506795e-01  2.565632e-01 -2.244825e-01
[141]  1.682360e-01 -2.314750e-01 -1.712370e-01  1.914943e-01  1.990700e-01
[146] -1.882603e-03  2.290490e-01 -1.566636e-01 -3.961365e-01  4.321702e-01
[151] -4.677261e-01 -4.730446e-01  3.626580e-01 -9.767975e-02  1.728350e-01
[156]  4.410843e-01 -2.396884e-01 -2.098791e-01  2.601105e-01  1.636141e-01
[161] -3.567124e-01  3.229937e-01 -1.057717e-01  2.808091e-01  1.202459e-01
[166]  3.739686e-01  5.791024e-01 -5.500352e-01  2.721478e-01  1.011738e-01
[171]  1.465900e-01 -1.142458e-02  2.494364e-01  2.809855e-02  1.351046e-01
[176] -2.395545e-01  1.823785e-03 -5.964241e-02  8.872832e-02  7.328962e-02
[181]  7.669669e-05  1.005914e-02 -3.728924e-01  2.622129e-01  1.263069e-01
[186] -9.751612e-02  1.653129e-01  1.184133e-01  1.334346e-01  1.830406e-01
[191]  2.423734e-01 -3.855599e-01  5.945305e-01 -4.117978e-01  1.170741e-01
[196] -1.070733e-01  1.952313e-01 -5.013083e-01  1.676824e-01  1.796828e-01
[201] -2.926604e-01 -1.608757e-01  1.900173e-01  1.207827e-01 -3.065847e-01
[206]  1.068680e-01  3.245055e-01  8.245016e-01  3.542767e-01  5.439709e-02
[211]  7.136162e-02 -1.509236e-02 -5.692070e-02  4.344072e-01  1.386081e-01
[216] -5.605231e-01 -1.460530e-02 -2.591442e-01  3.400779e-01  2.343686e-01
[221] -3.462549e-02  3.134914e-01 -1.149090e-01  3.494541e-01  1.269340e-01
[226] -5.035891e-01  5.989662e-02  4.116150e-01  9.815403e-02 -1.126953e-01
> 
> proc.time()
   user  system elapsed 
  1.349   1.494   2.835 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x645a2ef50ad0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x645a2ef50ad0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x645a2ef50ad0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x645a2ef50ad0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x645a2ef42a30>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2ef42a30>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x645a2ef42a30>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2ef42a30>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x645a2ef42a30>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2dd0e870>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2dd0e870>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x645a2dd0e870>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x645a2dd0e870>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x645a2dd0e870>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x645a2dd0e870>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x645a2dd0e870>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x645a2dd0e870>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x645a2dd0e870>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2e11f1a0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x645a2e11f1a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2e11f1a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2e11f1a0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile32bc8a105384eb" "BufferedMatrixFile32bc8a63893231"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile32bc8a105384eb" "BufferedMatrixFile32bc8a63893231"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x645a302c9870>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2e71dca0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x645a2e71dca0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x645a2e71dca0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x645a2e71dca0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x645a2eed0a20>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x645a2eed0a20>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.239   0.056   0.283 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.231   0.052   0.272 

Example timings