Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-05-19 11:44 -0400 (Mon, 19 May 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4835
palomino7Windows Server 2022 Datacenterx644.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" 4575
merida1macOS 12.7.5 Montereyx86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4600
kjohnson1macOS 13.6.6 Venturaarm644.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six" 4554
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4571
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.72.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-05-15 13:40 -0400 (Thu, 15 May 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_21
git_last_commit: aa9e634
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    ERROR  skippedskipped
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kjohnson1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.72.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
StartedAt: 2025-05-16 13:36:44 -0400 (Fri, 16 May 2025)
EndedAt: 2025-05-16 13:37:22 -0400 (Fri, 16 May 2025)
EllapsedTime: 37.9 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88129)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.5
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.72.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.72.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.332   0.103   0.429 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480809 25.7    1056525 56.5         NA   634428 33.9
Vcells 890970  6.8    8388608 64.0      65536  2108795 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri May 16 13:37:03 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri May 16 13:37:03 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600000c64de0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri May 16 13:37:06 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri May 16 13:37:07 2025"
> 
> ColMode(tmp2)
<pointer: 0x600000c64de0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]       [,3]       [,4]
[1,] 100.38286750 -0.7863604 -0.4151873  0.3411912
[2,]  -0.20989507 -1.0956169 -0.4974876 -0.3691847
[3,]   0.02972879 -1.3806393  0.6132690  0.4983650
[4,]  -2.05622755  0.9124694  1.5615629 -0.8382751
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 100.38286750 0.7863604 0.4151873 0.3411912
[2,]   0.20989507 1.0956169 0.4974876 0.3691847
[3,]   0.02972879 1.3806393 0.6132690 0.4983650
[4,]   2.05622755 0.9124694 1.5615629 0.8382751
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0191251 0.8867696 0.6443503 0.5841158
[2,]  0.4581431 1.0467172 0.7053280 0.6076057
[3,]  0.1724204 1.1750061 0.7831150 0.7059497
[4,]  1.4339552 0.9552326 1.2496251 0.9155737
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.57412 34.65406 31.85869 31.18235
[2,]  29.79133 36.56279 32.55077 31.44524
[3,]  26.75393 38.13070 33.44442 32.55786
[4,]  41.39578 35.46480 39.05781 34.99401
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600000c68000>
> exp(tmp5)
<pointer: 0x600000c68000>
> log(tmp5,2)
<pointer: 0x600000c68000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.503
> Min(tmp5)
[1] 52.64426
> mean(tmp5)
[1] 72.98781
> Sum(tmp5)
[1] 14597.56
> Var(tmp5)
[1] 869.1956
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 86.87189 68.11126 71.46576 76.51648 71.93693 72.81094 73.49794 70.09135
 [9] 68.58186 69.99373
> rowSums(tmp5)
 [1] 1737.438 1362.225 1429.315 1530.330 1438.739 1456.219 1469.959 1401.827
 [9] 1371.637 1399.875
> rowVars(tmp5)
 [1] 8188.50519   41.58010   84.95031   45.11179   68.21245   80.81358
 [7]   52.31286   62.27482   88.86346  107.39388
> rowSd(tmp5)
 [1] 90.490360  6.448263  9.216849  6.716531  8.259083  8.989638  7.232763
 [8]  7.891440  9.426742 10.363102
> rowMax(tmp5)
 [1] 469.50297  77.75054  84.12215  88.92923  87.07039  90.41825  85.05920
 [8]  81.81466  84.94893  84.84910
> rowMin(tmp5)
 [1] 55.67573 57.38883 52.64426 66.21883 61.14890 58.85195 60.90846 54.28368
 [9] 55.94114 55.02855
> 
> colMeans(tmp5)
 [1] 110.83615  73.69524  72.47240  71.26963  73.60163  71.27270  64.74954
 [8]  73.26651  71.36938  69.57796  69.92785  73.24564  70.68980  68.74923
[15]  71.53586  71.88254  66.59470  72.31043  71.25524  71.45386
> colSums(tmp5)
 [1] 1108.3615  736.9524  724.7240  712.6963  736.0163  712.7270  647.4954
 [8]  732.6651  713.6938  695.7796  699.2785  732.4564  706.8980  687.4923
[15]  715.3586  718.8254  665.9470  723.1043  712.5524  714.5386
> colVars(tmp5)
 [1] 15961.48572    69.95510    64.37567    41.87003   134.60087    32.42876
 [7]    74.73064    80.12252    60.55296    76.80971    55.16752    64.41341
[13]    60.15493    53.32050    87.14919   183.60341    80.90297    87.64507
[19]    72.56544    94.33946
> colSd(tmp5)
 [1] 126.338774   8.363916   8.023445   6.470706  11.601761   5.694625
 [7]   8.644688   8.951118   7.781578   8.764115   7.427484   8.025797
[13]   7.755961   7.302089   9.335373  13.550033   8.994608   9.361894
[19]   8.518535   9.712850
> colMax(tmp5)
 [1] 469.50297  83.50183  81.81466  81.35712  93.10771  77.46004  88.39598
 [8]  84.64781  86.04158  80.80487  84.75932  82.21023  83.55545  79.71604
[15]  86.62444  90.41825  83.79801  84.84910  88.92923  87.07039
> colMin(tmp5)
 [1] 55.68481 56.74295 58.91343 62.77171 55.12107 62.02272 56.74604 60.70161
 [9] 59.37709 55.02855 61.27286 55.79566 59.84405 55.67573 56.17745 54.28368
[17] 52.64426 58.85195 58.57076 57.38883
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 86.87189 68.11126 71.46576 76.51648 71.93693       NA 73.49794 70.09135
 [9] 68.58186 69.99373
> rowSums(tmp5)
 [1] 1737.438 1362.225 1429.315 1530.330 1438.739       NA 1469.959 1401.827
 [9] 1371.637 1399.875
> rowVars(tmp5)
 [1] 8188.50519   41.58010   84.95031   45.11179   68.21245   84.75320
 [7]   52.31286   62.27482   88.86346  107.39388
> rowSd(tmp5)
 [1] 90.490360  6.448263  9.216849  6.716531  8.259083  9.206150  7.232763
 [8]  7.891440  9.426742 10.363102
> rowMax(tmp5)
 [1] 469.50297  77.75054  84.12215  88.92923  87.07039        NA  85.05920
 [8]  81.81466  84.94893  84.84910
> rowMin(tmp5)
 [1] 55.67573 57.38883 52.64426 66.21883 61.14890       NA 60.90846 54.28368
 [9] 55.94114 55.02855
> 
> colMeans(tmp5)
 [1] 110.83615  73.69524  72.47240  71.26963  73.60163  71.27270  64.74954
 [8]  73.26651  71.36938  69.57796  69.92785        NA  70.68980  68.74923
[15]  71.53586  71.88254  66.59470  72.31043  71.25524  71.45386
> colSums(tmp5)
 [1] 1108.3615  736.9524  724.7240  712.6963  736.0163  712.7270  647.4954
 [8]  732.6651  713.6938  695.7796  699.2785        NA  706.8980  687.4923
[15]  715.3586  718.8254  665.9470  723.1043  712.5524  714.5386
> colVars(tmp5)
 [1] 15961.48572    69.95510    64.37567    41.87003   134.60087    32.42876
 [7]    74.73064    80.12252    60.55296    76.80971    55.16752          NA
[13]    60.15493    53.32050    87.14919   183.60341    80.90297    87.64507
[19]    72.56544    94.33946
> colSd(tmp5)
 [1] 126.338774   8.363916   8.023445   6.470706  11.601761   5.694625
 [7]   8.644688   8.951118   7.781578   8.764115   7.427484         NA
[13]   7.755961   7.302089   9.335373  13.550033   8.994608   9.361894
[19]   8.518535   9.712850
> colMax(tmp5)
 [1] 469.50297  83.50183  81.81466  81.35712  93.10771  77.46004  88.39598
 [8]  84.64781  86.04158  80.80487  84.75932        NA  83.55545  79.71604
[15]  86.62444  90.41825  83.79801  84.84910  88.92923  87.07039
> colMin(tmp5)
 [1] 55.68481 56.74295 58.91343 62.77171 55.12107 62.02272 56.74604 60.70161
 [9] 59.37709 55.02855 61.27286       NA 59.84405 55.67573 56.17745 54.28368
[17] 52.64426 58.85195 58.57076 57.38883
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.503
> Min(tmp5,na.rm=TRUE)
[1] 52.64426
> mean(tmp5,na.rm=TRUE)
[1] 73.00411
> Sum(tmp5,na.rm=TRUE)
[1] 14527.82
> Var(tmp5,na.rm=TRUE)
[1] 873.5321
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 86.87189 68.11126 71.46576 76.51648 71.93693 72.97235 73.49794 70.09135
 [9] 68.58186 69.99373
> rowSums(tmp5,na.rm=TRUE)
 [1] 1737.438 1362.225 1429.315 1530.330 1438.739 1386.475 1469.959 1401.827
 [9] 1371.637 1399.875
> rowVars(tmp5,na.rm=TRUE)
 [1] 8188.50519   41.58010   84.95031   45.11179   68.21245   84.75320
 [7]   52.31286   62.27482   88.86346  107.39388
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.490360  6.448263  9.216849  6.716531  8.259083  9.206150  7.232763
 [8]  7.891440  9.426742 10.363102
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.50297  77.75054  84.12215  88.92923  87.07039  90.41825  85.05920
 [8]  81.81466  84.94893  84.84910
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.67573 57.38883 52.64426 66.21883 61.14890 58.85195 60.90846 54.28368
 [9] 55.94114 55.02855
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.83615  73.69524  72.47240  71.26963  73.60163  71.27270  64.74954
 [8]  73.26651  71.36938  69.57796  69.92785  73.63470  70.68980  68.74923
[15]  71.53586  71.88254  66.59470  72.31043  71.25524  71.45386
> colSums(tmp5,na.rm=TRUE)
 [1] 1108.3615  736.9524  724.7240  712.6963  736.0163  712.7270  647.4954
 [8]  732.6651  713.6938  695.7796  699.2785  662.7123  706.8980  687.4923
[15]  715.3586  718.8254  665.9470  723.1043  712.5524  714.5386
> colVars(tmp5,na.rm=TRUE)
 [1] 15961.48572    69.95510    64.37567    41.87003   134.60087    32.42876
 [7]    74.73064    80.12252    60.55296    76.80971    55.16752    70.76220
[13]    60.15493    53.32050    87.14919   183.60341    80.90297    87.64507
[19]    72.56544    94.33946
> colSd(tmp5,na.rm=TRUE)
 [1] 126.338774   8.363916   8.023445   6.470706  11.601761   5.694625
 [7]   8.644688   8.951118   7.781578   8.764115   7.427484   8.412027
[13]   7.755961   7.302089   9.335373  13.550033   8.994608   9.361894
[19]   8.518535   9.712850
> colMax(tmp5,na.rm=TRUE)
 [1] 469.50297  83.50183  81.81466  81.35712  93.10771  77.46004  88.39598
 [8]  84.64781  86.04158  80.80487  84.75932  82.21023  83.55545  79.71604
[15]  86.62444  90.41825  83.79801  84.84910  88.92923  87.07039
> colMin(tmp5,na.rm=TRUE)
 [1] 55.68481 56.74295 58.91343 62.77171 55.12107 62.02272 56.74604 60.70161
 [9] 59.37709 55.02855 61.27286 55.79566 59.84405 55.67573 56.17745 54.28368
[17] 52.64426 58.85195 58.57076 57.38883
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 86.87189 68.11126 71.46576 76.51648 71.93693      NaN 73.49794 70.09135
 [9] 68.58186 69.99373
> rowSums(tmp5,na.rm=TRUE)
 [1] 1737.438 1362.225 1429.315 1530.330 1438.739    0.000 1469.959 1401.827
 [9] 1371.637 1399.875
> rowVars(tmp5,na.rm=TRUE)
 [1] 8188.50519   41.58010   84.95031   45.11179   68.21245         NA
 [7]   52.31286   62.27482   88.86346  107.39388
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.490360  6.448263  9.216849  6.716531  8.259083        NA  7.232763
 [8]  7.891440  9.426742 10.363102
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.50297  77.75054  84.12215  88.92923  87.07039        NA  85.05920
 [8]  81.81466  84.94893  84.84910
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.67573 57.38883 52.64426 66.21883 61.14890       NA 60.90846 54.28368
 [9] 55.94114 55.02855
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.64885  72.67154  71.97781  71.50430  73.59406  70.82592  65.10793
 [8]  72.27715  71.43361  68.33053  70.88951       NaN  71.89488  68.72489
[15]  69.85935  69.82301  66.00953  73.80581  70.87631  72.25963
> colSums(tmp5,na.rm=TRUE)
 [1] 1031.8397  654.0439  647.8003  643.5387  662.3465  637.4333  585.9714
 [8]  650.4944  642.9025  614.9748  638.0056    0.0000  647.0539  618.5240
[15]  628.7342  628.4071  594.0858  664.2523  637.8868  650.3367
> colVars(tmp5,na.rm=TRUE)
 [1] 17793.13333    66.90996    69.67067    46.48421   151.42533    34.23666
 [7]    82.62697    79.12597    68.07568    68.90489    51.65945          NA
[13]    51.33675    59.97890    66.42265   158.83542    87.16358    73.44366
[19]    80.02070    98.82767
> colSd(tmp5,na.rm=TRUE)
 [1] 133.390904   8.179851   8.346896   6.817933  12.305500   5.851210
 [7]   9.089938   8.895278   8.250799   8.300897   7.187451         NA
[13]   7.164967   7.744605   8.150009  12.602993   9.336144   8.569927
[19]   8.945429   9.941211
> colMax(tmp5,na.rm=TRUE)
 [1] 469.50297  83.50183  81.81466  81.35712  93.10771  77.46004  88.39598
 [8]  84.64781  86.04158  78.05452  84.75932      -Inf  83.55545  79.71604
[15]  78.91410  85.05920  83.79801  84.84910  88.92923  87.07039
> colMin(tmp5,na.rm=TRUE)
 [1] 55.68481 56.74295 58.91343 62.77171 55.12107 62.02272 56.74604 60.70161
 [9] 59.37709 55.02855 63.58708      Inf 63.24406 55.67573 56.17745 54.28368
[17] 52.64426 61.11784 58.57076 57.38883
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 264.4190 222.0927 148.7314 340.5224 202.7917 243.5276 186.8487 191.7461
 [9] 148.3924 240.5381
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 264.4190 222.0927 148.7314 340.5224 202.7917 243.5276 186.8487 191.7461
 [9] 148.3924 240.5381
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14  0.000000e+00 -8.526513e-14 -2.842171e-14  5.684342e-14
 [6] -5.684342e-14  2.842171e-14  0.000000e+00 -4.263256e-14  1.136868e-13
[11]  2.842171e-14  5.684342e-14 -1.136868e-13  2.842171e-14 -5.684342e-14
[16]  0.000000e+00  1.136868e-13 -5.684342e-14  1.705303e-13 -2.842171e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   16 
9   9 
10   5 
5   18 
7   9 
9   14 
5   2 
9   11 
2   11 
7   8 
9   2 
7   20 
8   12 
6   13 
6   5 
2   7 
6   3 
4   10 
6   7 
4   7 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.031409
> Min(tmp)
[1] -2.008538
> mean(tmp)
[1] 0.09619113
> Sum(tmp)
[1] 9.619113
> Var(tmp)
[1] 0.7603718
> 
> rowMeans(tmp)
[1] 0.09619113
> rowSums(tmp)
[1] 9.619113
> rowVars(tmp)
[1] 0.7603718
> rowSd(tmp)
[1] 0.871993
> rowMax(tmp)
[1] 2.031409
> rowMin(tmp)
[1] -2.008538
> 
> colMeans(tmp)
  [1]  0.78689407  0.79749813 -0.07138020 -0.87815348  1.10679920 -1.08332705
  [7] -1.06283709  0.14787693  0.91279146  0.12474310  0.57908341  0.20769679
 [13]  0.29884181 -0.17135328  0.77486544  1.04700405 -0.19999454  1.81100896
 [19] -0.35901382 -0.85382118 -0.88850975  0.07104268  0.26137251 -1.34747029
 [25] -1.01379765 -0.21092751  0.03131840 -1.65611961 -1.27118785 -0.10433037
 [31] -0.45578430  0.64473378 -0.98818531 -0.33019480  1.15914939  1.23547523
 [37]  0.40643318  0.24723673 -0.51014011 -0.66829087  0.41812729  2.00840316
 [43]  1.17788093 -0.36212856 -0.79941758 -0.85840407 -0.76736018 -0.20393349
 [49]  0.17521346  2.03140919  1.17354349  0.12642573  0.27859064 -0.30019418
 [55] -0.69065218  0.73865325  1.11941657  0.54212539  0.82194586  0.66161619
 [61] -0.15326592 -1.04955755 -0.64085335  0.25678482  0.23226381  1.68569699
 [67]  1.42121468 -0.08746669  0.31535095  0.83664868 -0.76057560  0.29251144
 [73]  1.12298590 -0.62789506  0.55203546  0.56926878  0.44020912  1.92090413
 [79]  1.08832757  1.36519206 -1.23269138  0.10315473 -0.89836288 -0.90538529
 [85] -0.08786991  0.14402300 -0.33965003 -2.00853805  1.26239140  0.43877752
 [91]  0.27684446  0.49027596 -1.45739697  0.41025789 -1.20393601  0.22187995
 [97]  0.87172589 -1.14595837  0.28823213 -0.20674848
> colSums(tmp)
  [1]  0.78689407  0.79749813 -0.07138020 -0.87815348  1.10679920 -1.08332705
  [7] -1.06283709  0.14787693  0.91279146  0.12474310  0.57908341  0.20769679
 [13]  0.29884181 -0.17135328  0.77486544  1.04700405 -0.19999454  1.81100896
 [19] -0.35901382 -0.85382118 -0.88850975  0.07104268  0.26137251 -1.34747029
 [25] -1.01379765 -0.21092751  0.03131840 -1.65611961 -1.27118785 -0.10433037
 [31] -0.45578430  0.64473378 -0.98818531 -0.33019480  1.15914939  1.23547523
 [37]  0.40643318  0.24723673 -0.51014011 -0.66829087  0.41812729  2.00840316
 [43]  1.17788093 -0.36212856 -0.79941758 -0.85840407 -0.76736018 -0.20393349
 [49]  0.17521346  2.03140919  1.17354349  0.12642573  0.27859064 -0.30019418
 [55] -0.69065218  0.73865325  1.11941657  0.54212539  0.82194586  0.66161619
 [61] -0.15326592 -1.04955755 -0.64085335  0.25678482  0.23226381  1.68569699
 [67]  1.42121468 -0.08746669  0.31535095  0.83664868 -0.76057560  0.29251144
 [73]  1.12298590 -0.62789506  0.55203546  0.56926878  0.44020912  1.92090413
 [79]  1.08832757  1.36519206 -1.23269138  0.10315473 -0.89836288 -0.90538529
 [85] -0.08786991  0.14402300 -0.33965003 -2.00853805  1.26239140  0.43877752
 [91]  0.27684446  0.49027596 -1.45739697  0.41025789 -1.20393601  0.22187995
 [97]  0.87172589 -1.14595837  0.28823213 -0.20674848
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.78689407  0.79749813 -0.07138020 -0.87815348  1.10679920 -1.08332705
  [7] -1.06283709  0.14787693  0.91279146  0.12474310  0.57908341  0.20769679
 [13]  0.29884181 -0.17135328  0.77486544  1.04700405 -0.19999454  1.81100896
 [19] -0.35901382 -0.85382118 -0.88850975  0.07104268  0.26137251 -1.34747029
 [25] -1.01379765 -0.21092751  0.03131840 -1.65611961 -1.27118785 -0.10433037
 [31] -0.45578430  0.64473378 -0.98818531 -0.33019480  1.15914939  1.23547523
 [37]  0.40643318  0.24723673 -0.51014011 -0.66829087  0.41812729  2.00840316
 [43]  1.17788093 -0.36212856 -0.79941758 -0.85840407 -0.76736018 -0.20393349
 [49]  0.17521346  2.03140919  1.17354349  0.12642573  0.27859064 -0.30019418
 [55] -0.69065218  0.73865325  1.11941657  0.54212539  0.82194586  0.66161619
 [61] -0.15326592 -1.04955755 -0.64085335  0.25678482  0.23226381  1.68569699
 [67]  1.42121468 -0.08746669  0.31535095  0.83664868 -0.76057560  0.29251144
 [73]  1.12298590 -0.62789506  0.55203546  0.56926878  0.44020912  1.92090413
 [79]  1.08832757  1.36519206 -1.23269138  0.10315473 -0.89836288 -0.90538529
 [85] -0.08786991  0.14402300 -0.33965003 -2.00853805  1.26239140  0.43877752
 [91]  0.27684446  0.49027596 -1.45739697  0.41025789 -1.20393601  0.22187995
 [97]  0.87172589 -1.14595837  0.28823213 -0.20674848
> colMin(tmp)
  [1]  0.78689407  0.79749813 -0.07138020 -0.87815348  1.10679920 -1.08332705
  [7] -1.06283709  0.14787693  0.91279146  0.12474310  0.57908341  0.20769679
 [13]  0.29884181 -0.17135328  0.77486544  1.04700405 -0.19999454  1.81100896
 [19] -0.35901382 -0.85382118 -0.88850975  0.07104268  0.26137251 -1.34747029
 [25] -1.01379765 -0.21092751  0.03131840 -1.65611961 -1.27118785 -0.10433037
 [31] -0.45578430  0.64473378 -0.98818531 -0.33019480  1.15914939  1.23547523
 [37]  0.40643318  0.24723673 -0.51014011 -0.66829087  0.41812729  2.00840316
 [43]  1.17788093 -0.36212856 -0.79941758 -0.85840407 -0.76736018 -0.20393349
 [49]  0.17521346  2.03140919  1.17354349  0.12642573  0.27859064 -0.30019418
 [55] -0.69065218  0.73865325  1.11941657  0.54212539  0.82194586  0.66161619
 [61] -0.15326592 -1.04955755 -0.64085335  0.25678482  0.23226381  1.68569699
 [67]  1.42121468 -0.08746669  0.31535095  0.83664868 -0.76057560  0.29251144
 [73]  1.12298590 -0.62789506  0.55203546  0.56926878  0.44020912  1.92090413
 [79]  1.08832757  1.36519206 -1.23269138  0.10315473 -0.89836288 -0.90538529
 [85] -0.08786991  0.14402300 -0.33965003 -2.00853805  1.26239140  0.43877752
 [91]  0.27684446  0.49027596 -1.45739697  0.41025789 -1.20393601  0.22187995
 [97]  0.87172589 -1.14595837  0.28823213 -0.20674848
> colMedians(tmp)
  [1]  0.78689407  0.79749813 -0.07138020 -0.87815348  1.10679920 -1.08332705
  [7] -1.06283709  0.14787693  0.91279146  0.12474310  0.57908341  0.20769679
 [13]  0.29884181 -0.17135328  0.77486544  1.04700405 -0.19999454  1.81100896
 [19] -0.35901382 -0.85382118 -0.88850975  0.07104268  0.26137251 -1.34747029
 [25] -1.01379765 -0.21092751  0.03131840 -1.65611961 -1.27118785 -0.10433037
 [31] -0.45578430  0.64473378 -0.98818531 -0.33019480  1.15914939  1.23547523
 [37]  0.40643318  0.24723673 -0.51014011 -0.66829087  0.41812729  2.00840316
 [43]  1.17788093 -0.36212856 -0.79941758 -0.85840407 -0.76736018 -0.20393349
 [49]  0.17521346  2.03140919  1.17354349  0.12642573  0.27859064 -0.30019418
 [55] -0.69065218  0.73865325  1.11941657  0.54212539  0.82194586  0.66161619
 [61] -0.15326592 -1.04955755 -0.64085335  0.25678482  0.23226381  1.68569699
 [67]  1.42121468 -0.08746669  0.31535095  0.83664868 -0.76057560  0.29251144
 [73]  1.12298590 -0.62789506  0.55203546  0.56926878  0.44020912  1.92090413
 [79]  1.08832757  1.36519206 -1.23269138  0.10315473 -0.89836288 -0.90538529
 [85] -0.08786991  0.14402300 -0.33965003 -2.00853805  1.26239140  0.43877752
 [91]  0.27684446  0.49027596 -1.45739697  0.41025789 -1.20393601  0.22187995
 [97]  0.87172589 -1.14595837  0.28823213 -0.20674848
> colRanges(tmp)
          [,1]      [,2]       [,3]       [,4]     [,5]      [,6]      [,7]
[1,] 0.7868941 0.7974981 -0.0713802 -0.8781535 1.106799 -1.083327 -1.062837
[2,] 0.7868941 0.7974981 -0.0713802 -0.8781535 1.106799 -1.083327 -1.062837
          [,8]      [,9]     [,10]     [,11]     [,12]     [,13]      [,14]
[1,] 0.1478769 0.9127915 0.1247431 0.5790834 0.2076968 0.2988418 -0.1713533
[2,] 0.1478769 0.9127915 0.1247431 0.5790834 0.2076968 0.2988418 -0.1713533
         [,15]    [,16]      [,17]    [,18]      [,19]      [,20]      [,21]
[1,] 0.7748654 1.047004 -0.1999945 1.811009 -0.3590138 -0.8538212 -0.8885098
[2,] 0.7748654 1.047004 -0.1999945 1.811009 -0.3590138 -0.8538212 -0.8885098
          [,22]     [,23]    [,24]     [,25]      [,26]     [,27]    [,28]
[1,] 0.07104268 0.2613725 -1.34747 -1.013798 -0.2109275 0.0313184 -1.65612
[2,] 0.07104268 0.2613725 -1.34747 -1.013798 -0.2109275 0.0313184 -1.65612
         [,29]      [,30]      [,31]     [,32]      [,33]      [,34]    [,35]
[1,] -1.271188 -0.1043304 -0.4557843 0.6447338 -0.9881853 -0.3301948 1.159149
[2,] -1.271188 -0.1043304 -0.4557843 0.6447338 -0.9881853 -0.3301948 1.159149
        [,36]     [,37]     [,38]      [,39]      [,40]     [,41]    [,42]
[1,] 1.235475 0.4064332 0.2472367 -0.5101401 -0.6682909 0.4181273 2.008403
[2,] 1.235475 0.4064332 0.2472367 -0.5101401 -0.6682909 0.4181273 2.008403
        [,43]      [,44]      [,45]      [,46]      [,47]      [,48]     [,49]
[1,] 1.177881 -0.3621286 -0.7994176 -0.8584041 -0.7673602 -0.2039335 0.1752135
[2,] 1.177881 -0.3621286 -0.7994176 -0.8584041 -0.7673602 -0.2039335 0.1752135
        [,50]    [,51]     [,52]     [,53]      [,54]      [,55]     [,56]
[1,] 2.031409 1.173543 0.1264257 0.2785906 -0.3001942 -0.6906522 0.7386533
[2,] 2.031409 1.173543 0.1264257 0.2785906 -0.3001942 -0.6906522 0.7386533
        [,57]     [,58]     [,59]     [,60]      [,61]     [,62]      [,63]
[1,] 1.119417 0.5421254 0.8219459 0.6616162 -0.1532659 -1.049558 -0.6408533
[2,] 1.119417 0.5421254 0.8219459 0.6616162 -0.1532659 -1.049558 -0.6408533
         [,64]     [,65]    [,66]    [,67]       [,68]    [,69]     [,70]
[1,] 0.2567848 0.2322638 1.685697 1.421215 -0.08746669 0.315351 0.8366487
[2,] 0.2567848 0.2322638 1.685697 1.421215 -0.08746669 0.315351 0.8366487
          [,71]     [,72]    [,73]      [,74]     [,75]     [,76]     [,77]
[1,] -0.7605756 0.2925114 1.122986 -0.6278951 0.5520355 0.5692688 0.4402091
[2,] -0.7605756 0.2925114 1.122986 -0.6278951 0.5520355 0.5692688 0.4402091
        [,78]    [,79]    [,80]     [,81]     [,82]      [,83]      [,84]
[1,] 1.920904 1.088328 1.365192 -1.232691 0.1031547 -0.8983629 -0.9053853
[2,] 1.920904 1.088328 1.365192 -1.232691 0.1031547 -0.8983629 -0.9053853
           [,85]    [,86]    [,87]     [,88]    [,89]     [,90]     [,91]
[1,] -0.08786991 0.144023 -0.33965 -2.008538 1.262391 0.4387775 0.2768445
[2,] -0.08786991 0.144023 -0.33965 -2.008538 1.262391 0.4387775 0.2768445
        [,92]     [,93]     [,94]     [,95]     [,96]     [,97]     [,98]
[1,] 0.490276 -1.457397 0.4102579 -1.203936 0.2218799 0.8717259 -1.145958
[2,] 0.490276 -1.457397 0.4102579 -1.203936 0.2218799 0.8717259 -1.145958
         [,99]     [,100]
[1,] 0.2882321 -0.2067485
[2,] 0.2882321 -0.2067485
> 
> 
> Max(tmp2)
[1] 2.125765
> Min(tmp2)
[1] -2.165415
> mean(tmp2)
[1] 0.0247308
> Sum(tmp2)
[1] 2.47308
> Var(tmp2)
[1] 0.8172926
> 
> rowMeans(tmp2)
  [1] -0.720988057 -1.707812982  0.273895213 -0.002284812  1.405224773
  [6] -0.020715597  0.883792106 -0.028418818 -0.579018929  0.558949380
 [11]  0.387975147 -0.966858158  0.167505088  0.472460934 -0.484918727
 [16] -1.090605481  1.136959277 -0.309706644  0.378608737  0.136614928
 [21] -0.058728486 -0.414647980 -0.339201892  2.091647995  0.384137722
 [26] -0.089788651 -0.335098134  1.492299593  0.145452496 -0.585233734
 [31]  0.904863804 -0.132079426  0.854992159 -0.500467590 -1.044793505
 [36]  1.134310517 -0.124489789  0.351640941  0.818467615  0.142974997
 [41]  0.281748349  0.315364319 -0.431817847 -0.081180781 -0.237332952
 [46]  0.242137929  2.103078299 -0.426773484  1.336585872 -0.661017151
 [51]  1.392629375 -0.632837778  0.682885397  0.182917736 -1.040813427
 [56]  0.845014791  1.413321698 -0.525537082 -0.452361881  0.739913122
 [61]  0.822521662  0.152853581  1.204658174  1.012846961 -1.371406576
 [66]  2.125764777 -1.220154830 -0.448086666 -0.045230693 -0.894854384
 [71] -0.255204711 -0.400345438  0.369508142 -0.311795989 -1.417987630
 [76] -0.681808507 -0.797372998  1.628580341 -0.147583202  0.282463022
 [81]  0.844672940 -0.925401675 -1.592702638  0.204369442  1.338642443
 [86]  0.958944935 -2.120207680  0.826814908 -0.927344829 -0.275061095
 [91]  0.108681145  0.699138686 -1.917172714 -0.232206138  0.088711011
 [96] -2.165415385 -0.034853582  0.186417918 -0.595014838 -1.238138416
> rowSums(tmp2)
  [1] -0.720988057 -1.707812982  0.273895213 -0.002284812  1.405224773
  [6] -0.020715597  0.883792106 -0.028418818 -0.579018929  0.558949380
 [11]  0.387975147 -0.966858158  0.167505088  0.472460934 -0.484918727
 [16] -1.090605481  1.136959277 -0.309706644  0.378608737  0.136614928
 [21] -0.058728486 -0.414647980 -0.339201892  2.091647995  0.384137722
 [26] -0.089788651 -0.335098134  1.492299593  0.145452496 -0.585233734
 [31]  0.904863804 -0.132079426  0.854992159 -0.500467590 -1.044793505
 [36]  1.134310517 -0.124489789  0.351640941  0.818467615  0.142974997
 [41]  0.281748349  0.315364319 -0.431817847 -0.081180781 -0.237332952
 [46]  0.242137929  2.103078299 -0.426773484  1.336585872 -0.661017151
 [51]  1.392629375 -0.632837778  0.682885397  0.182917736 -1.040813427
 [56]  0.845014791  1.413321698 -0.525537082 -0.452361881  0.739913122
 [61]  0.822521662  0.152853581  1.204658174  1.012846961 -1.371406576
 [66]  2.125764777 -1.220154830 -0.448086666 -0.045230693 -0.894854384
 [71] -0.255204711 -0.400345438  0.369508142 -0.311795989 -1.417987630
 [76] -0.681808507 -0.797372998  1.628580341 -0.147583202  0.282463022
 [81]  0.844672940 -0.925401675 -1.592702638  0.204369442  1.338642443
 [86]  0.958944935 -2.120207680  0.826814908 -0.927344829 -0.275061095
 [91]  0.108681145  0.699138686 -1.917172714 -0.232206138  0.088711011
 [96] -2.165415385 -0.034853582  0.186417918 -0.595014838 -1.238138416
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.720988057 -1.707812982  0.273895213 -0.002284812  1.405224773
  [6] -0.020715597  0.883792106 -0.028418818 -0.579018929  0.558949380
 [11]  0.387975147 -0.966858158  0.167505088  0.472460934 -0.484918727
 [16] -1.090605481  1.136959277 -0.309706644  0.378608737  0.136614928
 [21] -0.058728486 -0.414647980 -0.339201892  2.091647995  0.384137722
 [26] -0.089788651 -0.335098134  1.492299593  0.145452496 -0.585233734
 [31]  0.904863804 -0.132079426  0.854992159 -0.500467590 -1.044793505
 [36]  1.134310517 -0.124489789  0.351640941  0.818467615  0.142974997
 [41]  0.281748349  0.315364319 -0.431817847 -0.081180781 -0.237332952
 [46]  0.242137929  2.103078299 -0.426773484  1.336585872 -0.661017151
 [51]  1.392629375 -0.632837778  0.682885397  0.182917736 -1.040813427
 [56]  0.845014791  1.413321698 -0.525537082 -0.452361881  0.739913122
 [61]  0.822521662  0.152853581  1.204658174  1.012846961 -1.371406576
 [66]  2.125764777 -1.220154830 -0.448086666 -0.045230693 -0.894854384
 [71] -0.255204711 -0.400345438  0.369508142 -0.311795989 -1.417987630
 [76] -0.681808507 -0.797372998  1.628580341 -0.147583202  0.282463022
 [81]  0.844672940 -0.925401675 -1.592702638  0.204369442  1.338642443
 [86]  0.958944935 -2.120207680  0.826814908 -0.927344829 -0.275061095
 [91]  0.108681145  0.699138686 -1.917172714 -0.232206138  0.088711011
 [96] -2.165415385 -0.034853582  0.186417918 -0.595014838 -1.238138416
> rowMin(tmp2)
  [1] -0.720988057 -1.707812982  0.273895213 -0.002284812  1.405224773
  [6] -0.020715597  0.883792106 -0.028418818 -0.579018929  0.558949380
 [11]  0.387975147 -0.966858158  0.167505088  0.472460934 -0.484918727
 [16] -1.090605481  1.136959277 -0.309706644  0.378608737  0.136614928
 [21] -0.058728486 -0.414647980 -0.339201892  2.091647995  0.384137722
 [26] -0.089788651 -0.335098134  1.492299593  0.145452496 -0.585233734
 [31]  0.904863804 -0.132079426  0.854992159 -0.500467590 -1.044793505
 [36]  1.134310517 -0.124489789  0.351640941  0.818467615  0.142974997
 [41]  0.281748349  0.315364319 -0.431817847 -0.081180781 -0.237332952
 [46]  0.242137929  2.103078299 -0.426773484  1.336585872 -0.661017151
 [51]  1.392629375 -0.632837778  0.682885397  0.182917736 -1.040813427
 [56]  0.845014791  1.413321698 -0.525537082 -0.452361881  0.739913122
 [61]  0.822521662  0.152853581  1.204658174  1.012846961 -1.371406576
 [66]  2.125764777 -1.220154830 -0.448086666 -0.045230693 -0.894854384
 [71] -0.255204711 -0.400345438  0.369508142 -0.311795989 -1.417987630
 [76] -0.681808507 -0.797372998  1.628580341 -0.147583202  0.282463022
 [81]  0.844672940 -0.925401675 -1.592702638  0.204369442  1.338642443
 [86]  0.958944935 -2.120207680  0.826814908 -0.927344829 -0.275061095
 [91]  0.108681145  0.699138686 -1.917172714 -0.232206138  0.088711011
 [96] -2.165415385 -0.034853582  0.186417918 -0.595014838 -1.238138416
> 
> colMeans(tmp2)
[1] 0.0247308
> colSums(tmp2)
[1] 2.47308
> colVars(tmp2)
[1] 0.8172926
> colSd(tmp2)
[1] 0.9040424
> colMax(tmp2)
[1] 2.125765
> colMin(tmp2)
[1] -2.165415
> colMedians(tmp2)
[1] -0.02456721
> colRanges(tmp2)
          [,1]
[1,] -2.165415
[2,]  2.125765
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.80219978 -0.88612925 -0.60047404 -0.84043977  3.63622284  0.38617770
 [7]  3.41113778 -2.19292127 -0.01117846  0.56325803
> colApply(tmp,quantile)[,1]
          [,1]
[1,] -1.094311
[2,] -0.606727
[3,]  0.600022
[4,]  0.947336
[5,]  1.575349
> 
> rowApply(tmp,sum)
 [1]  6.621893 -1.063237  1.516025  3.472059  2.948042 -1.034089  5.431862
 [8] -2.655190 -6.302185 -2.667327
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    2    6    8   10    8    9    2    6     6
 [2,]    4    8    5   10    3    1    5    8    8     2
 [3,]    7    1   10    6    1    6    8    1    7     3
 [4,]    3    4    7    2    7    4    4    9    5     7
 [5,]    8    7    9    4    5    5    2    5    9     9
 [6,]    5    6    2    3    9    7    7    3    3     8
 [7,]    1    9    8    1    8   10    6    7    2    10
 [8,]    9    3    3    7    2    2    1   10    4     5
 [9,]    2    5    4    9    6    9   10    4    1     4
[10,]   10   10    1    5    4    3    3    6   10     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.91593591 -6.34515510 -0.07706213 -0.28536795  1.75359829  0.29973351
 [7] -5.26293259  2.40009695 -0.62256706  0.09930997  1.28902636  0.30485914
[13] -3.24923185 -2.12621259 -0.35716395  1.33311150  1.03022427  0.18458046
[19] -0.65780394  2.33691913
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9441712
[2,] -0.6634269
[3,] -0.6449996
[4,] -0.2905924
[5,]  0.6272542
> 
> rowApply(tmp,sum)
[1] -9.030945 -1.120761  1.300010  3.846901 -4.863178
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   11    6    2   13    7
[2,]    4   16    8    3    1
[3,]    5    3   14   18   15
[4,]    8    8    7   10   14
[5,]   12   11    9   16   18
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,] -0.2905924 -1.6052837 -1.1247456 -0.4780407 -0.26539116  2.0053701
[2,] -0.6634269  0.7141310 -1.2380658 -0.2907830 -0.04370646 -1.7588443
[3,] -0.9441712 -0.2777171  0.3860244 -0.3144144 -0.05139788  0.8318385
[4,]  0.6272542 -0.7439425  1.3192967  0.3127073  0.81798146  1.4079051
[5,] -0.6449996 -4.4323428  0.5804281  0.4851628  1.29611233 -2.1865358
           [,7]        [,8]        [,9]      [,10]      [,11]       [,12]
[1,]  0.4456187 -0.03638868 -0.73896046  0.6348685 -0.5659042 -0.07913751
[2,] -2.1978101  1.53765229  0.68952118 -0.4806053  0.3826536  0.24415455
[3,] -0.8939477  0.30196351 -0.56876108 -0.5060900  1.2493321  1.09342889
[4,] -1.2947454  0.85286158 -0.10301414 -0.4840873 -0.5319147  0.54159920
[5,] -1.3220481 -0.25599174  0.09864744  0.9352240  0.7548595 -1.49518599
          [,13]      [,14]       [,15]     [,16]       [,17]      [,18]
[1,] -1.6516284 -1.9320884 -0.02395988 -0.223086 -0.38944646 -0.4741746
[2,] -0.0125967 -1.1689405  1.60705890 -1.064663 -0.08882318 -0.1411473
[3,] -1.5388414  0.6100514 -0.86715486  1.241082  0.06327451  0.9839359
[4,] -1.6281111  0.6788398  0.42925583  1.365392 -0.53102668  0.7092814
[5,]  1.5819458 -0.3140748 -1.50236393  0.014387  1.97624607 -0.8933149
          [,19]       [,20]
[1,] -2.0927505 -0.14522356
[2,]  0.9888342  1.86464588
[3,]  0.2441480  0.25742729
[4,] -0.1661951  0.26756249
[5,]  0.3681595  0.09250702
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  655  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  565  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1     col2      col3      col4     col5     col6       col7
row1 -0.1410176 1.282186 0.2897304 -0.478003 1.184666 0.410794 -0.2712949
           col8      col9    col10     col11     col12      col13      col14
row1 -0.4688348 0.6086548 0.827547 0.1231001 0.4610089 -0.6216027 -0.2281741
          col15     col16      col17    col18      col19     col20
row1 -0.4000666 -1.118131 -0.1144273 -1.16201 -0.8297051 0.5662828
> tmp[,"col10"]
         col10
row1 0.8275470
row2 1.0305973
row3 1.4068747
row4 0.1275486
row5 1.7224789
> tmp[c("row1","row5"),]
           col1      col2       col3       col4     col5      col6       col7
row1 -0.1410176  1.282186  0.2897304 -0.4780030 1.184666 0.4107940 -0.2712949
row5 -1.5417994 -1.105084 -0.8945749 -0.3568879 2.026227 0.4303763 -0.7941432
           col8      col9    col10     col11      col12       col13      col14
row1 -0.4688348 0.6086548 0.827547 0.1231001  0.4610089 -0.62160271 -0.2281741
row5  0.6024433 1.3913897 1.722479 0.1271383 -0.8089431  0.05264481 -1.5601858
          col15      col16      col17      col18      col19     col20
row1 -0.4000666 -1.1181313 -0.1144273 -1.1620104 -0.8297051 0.5662828
row5  0.6213067 -0.6793303 -0.3791224  0.8657726 -1.0741309 1.4522031
> tmp[,c("col6","col20")]
           col6      col20
row1  0.4107940  0.5662828
row2 -0.0262938  0.6996056
row3 -1.4743983 -0.1568471
row4  0.4823293 -0.9807329
row5  0.4303763  1.4522031
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 0.4107940 0.5662828
row5 0.4303763 1.4522031
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.55883 52.23009 49.27011 50.36554 47.49047 104.9382 51.68797 48.34144
         col9    col10    col11   col12    col13    col14    col15    col16
row1 48.57111 50.41393 50.30778 50.1253 51.09492 50.44758 49.76414 50.21088
        col17    col18    col19    col20
row1 49.58482 49.64654 49.99964 105.3679
> tmp[,"col10"]
        col10
row1 50.41393
row2 28.43805
row3 29.12732
row4 29.86070
row5 49.87347
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.55883 52.23009 49.27011 50.36554 47.49047 104.9382 51.68797 48.34144
row5 49.39302 49.28680 50.79471 49.80718 49.10746 105.2396 49.92983 49.45527
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.57111 50.41393 50.30778 50.12530 51.09492 50.44758 49.76414 50.21088
row5 52.29582 49.87347 50.64158 50.60383 50.62087 47.75973 49.76489 49.11413
        col17    col18    col19    col20
row1 49.58482 49.64654 49.99964 105.3679
row5 50.10615 50.90691 49.77442 103.5303
> tmp[,c("col6","col20")]
          col6     col20
row1 104.93816 105.36793
row2  76.80815  75.98455
row3  76.18135  74.76595
row4  75.20817  75.52765
row5 105.23959 103.53026
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9382 105.3679
row5 105.2396 103.5303
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9382 105.3679
row5 105.2396 103.5303
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.9581915
[2,]  1.1157647
[3,]  0.9688444
[4,]  0.2510042
[5,]  0.8807433
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.20263706 -0.8916143
[2,] -0.53648339 -0.8290380
[3,]  0.62278754 -0.6267738
[4,]  0.97893806 -1.2571892
[5,] -0.01501002  0.1509591
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.4541592 -0.9077330
[2,]  0.9185441  0.3385340
[3,] -1.5220902  0.3186377
[4,]  0.5318263 -1.0970323
[5,] -1.1159110 -0.2874368
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.4541592
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.4541592
[2,]  0.9185441
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]      [,3]      [,4]        [,5]      [,6]       [,7]
row3 0.2380546 0.2921495 -1.020482 0.4217873  0.02608032 0.5927560 -1.7484280
row1 0.3802162 0.2564162 -1.042596 0.5652088 -1.63366530 0.4072095  0.8815936
             [,8]        [,9]      [,10]     [,11]      [,12]       [,13]
row3 -0.080810676 -0.26134991 -1.2180535  1.072243 -0.7661198 0.009950534
row1 -0.005757539  0.04343923 -0.5193792 -1.152942 -1.2665508 0.105803557
          [,14]     [,15]      [,16]     [,17]     [,18]      [,19]    [,20]
row3  0.4903586 0.1497451 -1.7346501  1.020889 -0.855115 -0.4283213 1.085474
row1 -1.1560818 0.3669249  0.7739924 -1.133410  1.648352  1.4702381 1.504201
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]      [,3]     [,4]      [,5]      [,6]       [,7]
row2 0.4739342 0.8291211 0.0716431 2.302519 0.8951588 0.2962123 -0.4561085
           [,8]     [,9]     [,10]
row2 -0.4774448 2.588466 -1.509246
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]        [,2]      [,3]       [,4]      [,5]       [,6]       [,7]
row5 0.7793256 -0.07751601 -1.114531 -0.7435306 -1.025346 -0.6922578 -0.4278333
           [,8]     [,9]    [,10]     [,11]     [,12]     [,13]    [,14]
row5 -0.4730147 2.208253 2.090072 0.1433416 0.1798378 0.7751782 2.455237
           [,15]     [,16]      [,17]     [,18]      [,19]     [,20]
row5 -0.05695606 0.2962401 -0.1806393 0.9197375 -0.1714859 -1.013245
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600000c68420>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b129b64bb3"
 [2] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b17f23ea29"
 [3] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b1ee26af5" 
 [4] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b132dc0275"
 [5] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b1a256969" 
 [6] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b11e2b71b3"
 [7] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b13635ae3e"
 [8] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b17e42843f"
 [9] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b140f884db"
[10] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b17bda672f"
[11] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b13fac7e2f"
[12] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b155906051"
[13] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b179a391b9"
[14] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b161b44712"
[15] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM170b12a620db" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600000c68fc0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600000c68fc0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600000c68fc0>
> rowMedians(tmp)
  [1]  0.097402615  0.499671888  0.536445228 -0.199697892  0.012082833
  [6]  0.076954670 -0.029376118  0.287413481 -0.375810783  0.392114184
 [11]  0.220442204 -0.126844660 -0.065672807 -0.560450068 -0.149480218
 [16] -0.375605291 -0.286442572  0.430604732  0.506442396 -0.396439826
 [21] -0.247877664 -0.177069786  0.164547761 -0.033348066  0.016155516
 [26] -0.816531728 -0.068956408  0.066514252 -0.238032220 -0.394623215
 [31]  0.650306718 -0.198553675 -0.255024662 -0.417326557  0.105591271
 [36]  0.909094482 -0.047143642 -0.066225163  0.201489517 -0.315839850
 [41]  0.389826965 -0.056610731  0.099688412 -0.032486986 -0.182952768
 [46] -0.136414880  0.439496137 -0.182421768 -0.220125627  0.277887935
 [51]  0.325865675 -0.201742134  0.015689499  0.349097498 -0.395818821
 [56] -0.328620055 -0.534693056  0.212920767 -0.003415240  0.084070233
 [61]  0.047678064  0.469819407  0.249662556  0.489997046  0.250975373
 [66]  0.234973685 -0.080993709 -0.528031287 -0.357928340 -0.211814731
 [71]  0.078498175 -0.096641025  0.506441043  0.483798317  0.447236368
 [76]  0.136955387 -0.075243532  0.131439933  0.102478970  0.125927235
 [81]  0.252723640 -0.061152433 -0.098133834 -0.077405299 -0.178779283
 [86]  0.036605777  0.132506234  0.491482185  0.092036833  0.508768488
 [91]  0.074165514 -0.137853575  0.042426874 -0.243159105  0.374419078
 [96] -0.213256961  0.512456004 -0.261498396  0.317867083  0.458250016
[101]  0.117728670 -0.468370218  0.779086935 -0.108023495  0.156679609
[106]  0.158102711 -0.439702604 -0.499387885 -0.002912082  0.495367886
[111] -0.396697296  0.053945584  0.234423905  0.293583667 -0.057284855
[116] -0.152715930 -0.128410318  0.495200156  0.350449307  0.228074732
[121]  0.189766230  0.245516007  0.239964953  0.440300843 -0.588567997
[126]  0.077495871 -0.176848946  0.177491950 -0.023343561 -0.307492737
[131] -0.314716878  0.014132166  0.045409783 -0.282806283 -0.250716589
[136] -0.256488824  0.706585734  0.069850597  0.348343957  0.190163740
[141]  0.400576012 -0.378717839 -0.291308187 -0.383795407 -0.451959489
[146]  0.392157385  0.258693062 -0.109117721 -0.167754952  0.079854942
[151] -0.403264347 -0.650527931  0.242318768 -0.928378780  0.069778816
[156]  0.282603238  0.360639224  0.395481608  0.188893014  0.556297110
[161] -0.282180218  0.047242097  0.087741931 -0.055421861 -0.169396556
[166]  0.090905965  0.209318782  0.352044849  0.284338454  0.488852057
[171]  0.459338163  0.430594311  0.174957283  0.594536881 -0.167861653
[176]  0.050200727  0.011335709 -0.103609211 -0.440772566  0.445137979
[181]  0.204271272  0.108499182 -0.452613972 -0.035507374 -0.034738164
[186] -0.491473375  0.284119156 -0.573491411  0.036273612  0.001851323
[191] -0.706488785 -0.181817665 -0.020216281  0.057422571 -0.235552729
[196]  0.040417049  0.573806878 -0.254980988  0.034948657  0.101868499
[201]  0.492023259 -0.043491871  0.406800437 -0.080094943  0.259891097
[206]  0.050138159  0.069050106 -0.065627883 -0.248099024  0.038093366
[211]  0.243915477 -0.415404371  0.429852200  0.137955047  0.276285272
[216]  0.267714241  0.018972065  0.201317802  0.067738450  0.006528182
[221]  0.143454902 -0.316535178  0.040155966 -0.008500118  0.241929822
[226] -0.077051342 -0.062637685 -0.591145151  0.015976818  0.258749100
> 
> proc.time()
   user  system elapsed 
  1.908   8.573  10.627 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003a30e40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003a30e40>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003a30e40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600003a30e40>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600003a3c660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600003a3c660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3c660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003a3c660>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3c840>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3c840>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003a3c840>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003a3c840>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003a3c840>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600003a3c840>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003a3c840>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600003a3c840>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003a3c840>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3ca20>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600003a3ca20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3ca20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3ca20>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile170f53765bd50" "BufferedMatrixFile170f54a6b0253"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile170f53765bd50" "BufferedMatrixFile170f54a6b0253"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600003a3ccc0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3cea0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003a3cea0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003a3cea0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600003a3cea0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003a3d080>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003a3d080>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.340   0.106   0.429 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.0 RC (2025-04-04 r88129) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.293   0.060   0.343 

Example timings