Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-23 12:10 -0500 (Thu, 23 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4746
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4493
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4517
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4469
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4394
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-01-20 13:00 -0500 (Mon, 20 Jan 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kjohnson1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-01-21 13:08:10 -0500 (Tue, 21 Jan 2025)
EndedAt: 2025-01-21 13:08:49 -0500 (Tue, 21 Jan 2025)
EllapsedTime: 38.2 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.340   0.106   0.431 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 474168 25.4    1035467 55.3         NA   638597 34.2
Vcells 877630  6.7    8388608 64.0      65536  2072107 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 21 13:08:30 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 21 13:08:30 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600003214000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 21 13:08:32 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 21 13:08:33 2025"
> 
> ColMode(tmp2)
<pointer: 0x600003214000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 99.4650018 -0.6246704  0.6485895 -1.3409360
[2,]  0.4831442  2.9865401  1.2048553 -1.1819556
[3,]  0.7236144  0.9683287  0.7911376 -1.3622485
[4,] -0.6310322 -0.4882616 -0.3234987  0.4484598
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.4650018 0.6246704 0.6485895 1.3409360
[2,]  0.4831442 2.9865401 1.2048553 1.1819556
[3,]  0.7236144 0.9683287 0.7911376 1.3622485
[4,]  0.6310322 0.4882616 0.3234987 0.4484598
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9732142 0.7903609 0.8053505 1.1579879
[2,] 0.6950857 1.7281609 1.0976590 1.0871778
[3,] 0.8506553 0.9840369 0.8894592 1.1671540
[4,] 0.7943753 0.6987572 0.5687695 0.6696714
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.19714 33.52828 33.70209 37.92081
[2,]  32.43400 45.26815 37.18145 37.05373
[3,]  34.23017 35.80870 34.68573 38.03379
[4,]  33.57479 32.47583 31.01119 32.14517
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600003204000>
> exp(tmp5)
<pointer: 0x600003204000>
> log(tmp5,2)
<pointer: 0x600003204000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.637
> Min(tmp5)
[1] 52.52801
> mean(tmp5)
[1] 72.86525
> Sum(tmp5)
[1] 14573.05
> Var(tmp5)
[1] 857.0486
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.11835 71.90243 70.32847 69.50429 72.12137 69.13078 72.90835 72.21724
 [9] 70.51781 67.90339
> rowSums(tmp5)
 [1] 1842.367 1438.049 1406.569 1390.086 1442.427 1382.616 1458.167 1444.345
 [9] 1410.356 1358.068
> rowVars(tmp5)
 [1] 7818.70346   88.43964   66.71366   63.75259   68.82329   79.11580
 [7]   88.93868   94.07839   85.28554   65.35097
> rowSd(tmp5)
 [1] 88.423433  9.404235  8.167843  7.984522  8.295980  8.894706  9.430730
 [8]  9.699402  9.235017  8.083995
> rowMax(tmp5)
 [1] 466.63698  94.21972  86.32443  83.48929  94.85972  88.37119  93.09446
 [8]  88.27699  89.74369  88.23682
> rowMin(tmp5)
 [1] 59.51932 59.55640 55.29126 52.52801 61.40046 53.01130 58.74380 53.56965
 [9] 56.68755 58.66280
> 
> colMeans(tmp5)
 [1] 108.68236  70.51364  73.59481  76.58162  70.28444  71.81342  68.63034
 [8]  72.17411  66.71188  68.15889  72.29921  73.25784  68.47147  71.29213
[15]  71.72808  70.18970  65.71692  68.21590  75.11496  73.87323
> colSums(tmp5)
 [1] 1086.8236  705.1364  735.9481  765.8162  702.8444  718.1342  686.3034
 [8]  721.7411  667.1188  681.5889  722.9921  732.5784  684.7147  712.9213
[15]  717.2808  701.8970  657.1692  682.1590  751.1496  738.7323
> colVars(tmp5)
 [1] 15830.43592   110.89779    72.49612    81.24557    66.08843    92.29625
 [7]    23.45219   123.46469    59.83041    35.12848   128.37214    93.52621
[13]   114.51667    49.99711    90.13311    97.99280    57.44921    33.31552
[19]    71.11862    53.61725
> colSd(tmp5)
 [1] 125.819060  10.530802   8.514465   9.013633   8.129479   9.607094
 [7]   4.842746  11.111467   7.735012   5.926928  11.330143   9.670895
[13]  10.701246   7.070863   9.493846   9.899131   7.579526   5.771960
[19]   8.433186   7.322380
> colMax(tmp5)
 [1] 466.63698  94.21972  89.74369  88.59672  82.14952  84.52990  76.86956
 [8]  86.95371  75.13170  78.70604  93.09446  94.85972  88.23682  80.69962
[15]  88.27699  89.15062  83.34702  75.21121  86.93883  84.97246
> colMin(tmp5)
 [1] 60.57342 59.79490 58.02038 58.66280 56.68755 53.56965 62.66267 53.01130
 [9] 52.52801 56.18867 59.27694 61.47117 55.67758 55.03000 59.82255 59.93600
[17] 55.29126 59.34681 57.86955 58.03341
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.11835 71.90243       NA 69.50429 72.12137 69.13078 72.90835 72.21724
 [9] 70.51781 67.90339
> rowSums(tmp5)
 [1] 1842.367 1438.049       NA 1390.086 1442.427 1382.616 1458.167 1444.345
 [9] 1410.356 1358.068
> rowVars(tmp5)
 [1] 7818.70346   88.43964   70.21100   63.75259   68.82329   79.11580
 [7]   88.93868   94.07839   85.28554   65.35097
> rowSd(tmp5)
 [1] 88.423433  9.404235  8.379200  7.984522  8.295980  8.894706  9.430730
 [8]  9.699402  9.235017  8.083995
> rowMax(tmp5)
 [1] 466.63698  94.21972        NA  83.48929  94.85972  88.37119  93.09446
 [8]  88.27699  89.74369  88.23682
> rowMin(tmp5)
 [1] 59.51932 59.55640       NA 52.52801 61.40046 53.01130 58.74380 53.56965
 [9] 56.68755 58.66280
> 
> colMeans(tmp5)
 [1] 108.68236  70.51364  73.59481  76.58162  70.28444  71.81342  68.63034
 [8]  72.17411  66.71188        NA  72.29921  73.25784  68.47147  71.29213
[15]  71.72808  70.18970  65.71692  68.21590  75.11496  73.87323
> colSums(tmp5)
 [1] 1086.8236  705.1364  735.9481  765.8162  702.8444  718.1342  686.3034
 [8]  721.7411  667.1188        NA  722.9921  732.5784  684.7147  712.9213
[15]  717.2808  701.8970  657.1692  682.1590  751.1496  738.7323
> colVars(tmp5)
 [1] 15830.43592   110.89779    72.49612    81.24557    66.08843    92.29625
 [7]    23.45219   123.46469    59.83041          NA   128.37214    93.52621
[13]   114.51667    49.99711    90.13311    97.99280    57.44921    33.31552
[19]    71.11862    53.61725
> colSd(tmp5)
 [1] 125.819060  10.530802   8.514465   9.013633   8.129479   9.607094
 [7]   4.842746  11.111467   7.735012         NA  11.330143   9.670895
[13]  10.701246   7.070863   9.493846   9.899131   7.579526   5.771960
[19]   8.433186   7.322380
> colMax(tmp5)
 [1] 466.63698  94.21972  89.74369  88.59672  82.14952  84.52990  76.86956
 [8]  86.95371  75.13170        NA  93.09446  94.85972  88.23682  80.69962
[15]  88.27699  89.15062  83.34702  75.21121  86.93883  84.97246
> colMin(tmp5)
 [1] 60.57342 59.79490 58.02038 58.66280 56.68755 53.56965 62.66267 53.01130
 [9] 52.52801       NA 59.27694 61.47117 55.67758 55.03000 59.82255 59.93600
[17] 55.29126 59.34681 57.86955 58.03341
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.637
> Min(tmp5,na.rm=TRUE)
[1] 52.52801
> mean(tmp5,na.rm=TRUE)
[1] 72.88749
> Sum(tmp5,na.rm=TRUE)
[1] 14504.61
> Var(tmp5,na.rm=TRUE)
[1] 861.2777
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.11835 71.90243 70.42797 69.50429 72.12137 69.13078 72.90835 72.21724
 [9] 70.51781 67.90339
> rowSums(tmp5,na.rm=TRUE)
 [1] 1842.367 1438.049 1338.131 1390.086 1442.427 1382.616 1458.167 1444.345
 [9] 1410.356 1358.068
> rowVars(tmp5,na.rm=TRUE)
 [1] 7818.70346   88.43964   70.21100   63.75259   68.82329   79.11580
 [7]   88.93868   94.07839   85.28554   65.35097
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.423433  9.404235  8.379200  7.984522  8.295980  8.894706  9.430730
 [8]  9.699402  9.235017  8.083995
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.63698  94.21972  86.32443  83.48929  94.85972  88.37119  93.09446
 [8]  88.27699  89.74369  88.23682
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.51932 59.55640 55.29126 52.52801 61.40046 53.01130 58.74380 53.56965
 [9] 56.68755 58.66280
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.68236  70.51364  73.59481  76.58162  70.28444  71.81342  68.63034
 [8]  72.17411  66.71188  68.12786  72.29921  73.25784  68.47147  71.29213
[15]  71.72808  70.18970  65.71692  68.21590  75.11496  73.87323
> colSums(tmp5,na.rm=TRUE)
 [1] 1086.8236  705.1364  735.9481  765.8162  702.8444  718.1342  686.3034
 [8]  721.7411  667.1188  613.1508  722.9921  732.5784  684.7147  712.9213
[15]  717.2808  701.8970  657.1692  682.1590  751.1496  738.7323
> colVars(tmp5,na.rm=TRUE)
 [1] 15830.43592   110.89779    72.49612    81.24557    66.08843    92.29625
 [7]    23.45219   123.46469    59.83041    39.50871   128.37214    93.52621
[13]   114.51667    49.99711    90.13311    97.99280    57.44921    33.31552
[19]    71.11862    53.61725
> colSd(tmp5,na.rm=TRUE)
 [1] 125.819060  10.530802   8.514465   9.013633   8.129479   9.607094
 [7]   4.842746  11.111467   7.735012   6.285595  11.330143   9.670895
[13]  10.701246   7.070863   9.493846   9.899131   7.579526   5.771960
[19]   8.433186   7.322380
> colMax(tmp5,na.rm=TRUE)
 [1] 466.63698  94.21972  89.74369  88.59672  82.14952  84.52990  76.86956
 [8]  86.95371  75.13170  78.70604  93.09446  94.85972  88.23682  80.69962
[15]  88.27699  89.15062  83.34702  75.21121  86.93883  84.97246
> colMin(tmp5,na.rm=TRUE)
 [1] 60.57342 59.79490 58.02038 58.66280 56.68755 53.56965 62.66267 53.01130
 [9] 52.52801 56.18867 59.27694 61.47117 55.67758 55.03000 59.82255 59.93600
[17] 55.29126 59.34681 57.86955 58.03341
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.11835 71.90243      NaN 69.50429 72.12137 69.13078 72.90835 72.21724
 [9] 70.51781 67.90339
> rowSums(tmp5,na.rm=TRUE)
 [1] 1842.367 1438.049    0.000 1390.086 1442.427 1382.616 1458.167 1444.345
 [9] 1410.356 1358.068
> rowVars(tmp5,na.rm=TRUE)
 [1] 7818.70346   88.43964         NA   63.75259   68.82329   79.11580
 [7]   88.93868   94.07839   85.28554   65.35097
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.423433  9.404235        NA  7.984522  8.295980  8.894706  9.430730
 [8]  9.699402  9.235017  8.083995
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.63698  94.21972        NA  83.48929  94.85972  88.37119  93.09446
 [8]  88.27699  89.74369  88.23682
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.51932 59.55640       NA 52.52801 61.40046 53.01130 58.74380 53.56965
 [9] 56.68755 58.66280
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.84200  70.06726  73.75048  76.29487  69.80564  71.65160  69.13404
 [8]  72.61570  65.93436       NaN  70.74086  73.06272  69.89302  70.24685
[15]  72.77446  70.58265  66.87532  67.52769  77.03111  73.98375
> colSums(tmp5,na.rm=TRUE)
 [1] 1015.5780  630.6053  663.7543  686.6538  628.2508  644.8644  622.2063
 [8]  653.5413  593.4092    0.0000  636.6677  657.5644  629.0371  632.2217
[15]  654.9702  635.2438  601.8779  607.7492  693.2800  665.8537
> colVars(tmp5,na.rm=TRUE)
 [1] 17614.58615   122.51834    81.28552    90.47625    71.77042   103.53869
 [7]    23.52945   136.70404    60.50821          NA   117.09829   104.78865
[13]   106.09740    43.95495    89.08203   108.50483    49.53394    32.15159
[19]    38.70233    60.18200
> colSd(tmp5,na.rm=TRUE)
 [1] 132.719954  11.068800   9.015848   9.511900   8.471743  10.175396
 [7]   4.850716  11.692050   7.778702         NA  10.821196  10.236633
[13]  10.300359   6.629853   9.438328  10.416565   7.038036   5.670237
[19]   6.221120   7.757706
> colMax(tmp5,na.rm=TRUE)
 [1] 466.63698  94.21972  89.74369  88.59672  82.14952  84.52990  76.86956
 [8]  86.95371  75.13170      -Inf  93.09446  94.85972  88.23682  79.80121
[15]  88.27699  89.15062  83.34702  75.21121  86.93883  84.97246
> colMin(tmp5,na.rm=TRUE)
 [1] 60.57342 59.79490 58.02038 58.66280 56.68755 53.56965 62.66267 53.01130
 [9] 52.52801      Inf 59.27694 61.47117 57.60020 55.03000 59.82255 59.93600
[17] 59.90519 59.34681 67.94828 58.03341
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 266.6028 374.6750 194.4796 200.1393 148.4758 216.8863 179.8117 192.1206
 [9] 308.9294 151.8730
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 266.6028 374.6750 194.4796 200.1393 148.4758 216.8863 179.8117 192.1206
 [9] 308.9294 151.8730
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  5.684342e-14 -8.526513e-14 -1.136868e-13 -4.263256e-14 -3.126388e-13
 [6] -5.684342e-14 -5.684342e-14 -5.684342e-14  5.684342e-14  0.000000e+00
[11]  9.947598e-14 -5.684342e-14 -1.421085e-14 -1.136868e-13 -2.842171e-14
[16]  1.421085e-13 -1.136868e-13  2.842171e-14 -8.526513e-14  2.131628e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   5 
9   8 
3   2 
10   1 
10   20 
9   3 
5   11 
9   6 
7   16 
7   1 
7   19 
6   20 
10   13 
2   10 
4   13 
1   16 
9   15 
5   14 
7   3 
4   18 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.838314
> Min(tmp)
[1] -2.774605
> mean(tmp)
[1] -0.1384343
> Sum(tmp)
[1] -13.84343
> Var(tmp)
[1] 1.016291
> 
> rowMeans(tmp)
[1] -0.1384343
> rowSums(tmp)
[1] -13.84343
> rowVars(tmp)
[1] 1.016291
> rowSd(tmp)
[1] 1.008113
> rowMax(tmp)
[1] 2.838314
> rowMin(tmp)
[1] -2.774605
> 
> colMeans(tmp)
  [1] -0.992247115 -1.108077415  0.134394554 -1.659681121 -1.020685020
  [6]  0.210776778  0.396535408  0.165284225 -1.205165374  0.170321565
 [11]  1.318757331  0.078454435 -1.737465523  1.398396079 -0.425804500
 [16] -0.014188498  0.201085760  0.204293654  0.125948258  0.194506557
 [21]  1.885057042 -2.774604529 -1.572572527 -0.352865355 -0.708684337
 [26] -2.286401264 -0.138853778  0.789165473 -0.197915413  1.344712232
 [31] -0.655473722  0.206741098 -0.578832474 -0.754680138 -0.346912078
 [36]  2.138114890 -0.437735515 -0.187114314  0.056599332 -0.447195914
 [41] -0.959929014 -0.281467443 -0.698467323 -0.150592021  0.147132204
 [46]  0.928958629  0.587871952  0.275930046 -1.248820966  0.113208681
 [51] -1.402606247  0.530652146 -0.129604043  0.216333590 -0.266620206
 [56]  2.026661947  0.250413662 -1.659495620 -0.123790773  1.048421962
 [61]  0.050056147  0.240060819  0.429376691  0.998972874 -1.057574596
 [66] -0.766426694 -0.720211158 -0.514979771  0.330672868 -0.008044602
 [71]  0.420191097  1.547442371 -1.940158645 -0.027192906 -0.977702645
 [76]  0.609685294 -0.929694196  0.482081863 -2.067939755  1.172455292
 [81]  2.838314483  0.607888435 -0.522178208 -1.049357026  1.047836298
 [86] -2.242186875  0.299276440  0.150581889  0.937552720 -0.680040736
 [91]  0.417568761 -0.139012280 -0.807019881 -2.036424325  0.234256874
 [96] -1.642305548  0.545263108  0.288444873 -0.548095481  0.564960002
> colSums(tmp)
  [1] -0.992247115 -1.108077415  0.134394554 -1.659681121 -1.020685020
  [6]  0.210776778  0.396535408  0.165284225 -1.205165374  0.170321565
 [11]  1.318757331  0.078454435 -1.737465523  1.398396079 -0.425804500
 [16] -0.014188498  0.201085760  0.204293654  0.125948258  0.194506557
 [21]  1.885057042 -2.774604529 -1.572572527 -0.352865355 -0.708684337
 [26] -2.286401264 -0.138853778  0.789165473 -0.197915413  1.344712232
 [31] -0.655473722  0.206741098 -0.578832474 -0.754680138 -0.346912078
 [36]  2.138114890 -0.437735515 -0.187114314  0.056599332 -0.447195914
 [41] -0.959929014 -0.281467443 -0.698467323 -0.150592021  0.147132204
 [46]  0.928958629  0.587871952  0.275930046 -1.248820966  0.113208681
 [51] -1.402606247  0.530652146 -0.129604043  0.216333590 -0.266620206
 [56]  2.026661947  0.250413662 -1.659495620 -0.123790773  1.048421962
 [61]  0.050056147  0.240060819  0.429376691  0.998972874 -1.057574596
 [66] -0.766426694 -0.720211158 -0.514979771  0.330672868 -0.008044602
 [71]  0.420191097  1.547442371 -1.940158645 -0.027192906 -0.977702645
 [76]  0.609685294 -0.929694196  0.482081863 -2.067939755  1.172455292
 [81]  2.838314483  0.607888435 -0.522178208 -1.049357026  1.047836298
 [86] -2.242186875  0.299276440  0.150581889  0.937552720 -0.680040736
 [91]  0.417568761 -0.139012280 -0.807019881 -2.036424325  0.234256874
 [96] -1.642305548  0.545263108  0.288444873 -0.548095481  0.564960002
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.992247115 -1.108077415  0.134394554 -1.659681121 -1.020685020
  [6]  0.210776778  0.396535408  0.165284225 -1.205165374  0.170321565
 [11]  1.318757331  0.078454435 -1.737465523  1.398396079 -0.425804500
 [16] -0.014188498  0.201085760  0.204293654  0.125948258  0.194506557
 [21]  1.885057042 -2.774604529 -1.572572527 -0.352865355 -0.708684337
 [26] -2.286401264 -0.138853778  0.789165473 -0.197915413  1.344712232
 [31] -0.655473722  0.206741098 -0.578832474 -0.754680138 -0.346912078
 [36]  2.138114890 -0.437735515 -0.187114314  0.056599332 -0.447195914
 [41] -0.959929014 -0.281467443 -0.698467323 -0.150592021  0.147132204
 [46]  0.928958629  0.587871952  0.275930046 -1.248820966  0.113208681
 [51] -1.402606247  0.530652146 -0.129604043  0.216333590 -0.266620206
 [56]  2.026661947  0.250413662 -1.659495620 -0.123790773  1.048421962
 [61]  0.050056147  0.240060819  0.429376691  0.998972874 -1.057574596
 [66] -0.766426694 -0.720211158 -0.514979771  0.330672868 -0.008044602
 [71]  0.420191097  1.547442371 -1.940158645 -0.027192906 -0.977702645
 [76]  0.609685294 -0.929694196  0.482081863 -2.067939755  1.172455292
 [81]  2.838314483  0.607888435 -0.522178208 -1.049357026  1.047836298
 [86] -2.242186875  0.299276440  0.150581889  0.937552720 -0.680040736
 [91]  0.417568761 -0.139012280 -0.807019881 -2.036424325  0.234256874
 [96] -1.642305548  0.545263108  0.288444873 -0.548095481  0.564960002
> colMin(tmp)
  [1] -0.992247115 -1.108077415  0.134394554 -1.659681121 -1.020685020
  [6]  0.210776778  0.396535408  0.165284225 -1.205165374  0.170321565
 [11]  1.318757331  0.078454435 -1.737465523  1.398396079 -0.425804500
 [16] -0.014188498  0.201085760  0.204293654  0.125948258  0.194506557
 [21]  1.885057042 -2.774604529 -1.572572527 -0.352865355 -0.708684337
 [26] -2.286401264 -0.138853778  0.789165473 -0.197915413  1.344712232
 [31] -0.655473722  0.206741098 -0.578832474 -0.754680138 -0.346912078
 [36]  2.138114890 -0.437735515 -0.187114314  0.056599332 -0.447195914
 [41] -0.959929014 -0.281467443 -0.698467323 -0.150592021  0.147132204
 [46]  0.928958629  0.587871952  0.275930046 -1.248820966  0.113208681
 [51] -1.402606247  0.530652146 -0.129604043  0.216333590 -0.266620206
 [56]  2.026661947  0.250413662 -1.659495620 -0.123790773  1.048421962
 [61]  0.050056147  0.240060819  0.429376691  0.998972874 -1.057574596
 [66] -0.766426694 -0.720211158 -0.514979771  0.330672868 -0.008044602
 [71]  0.420191097  1.547442371 -1.940158645 -0.027192906 -0.977702645
 [76]  0.609685294 -0.929694196  0.482081863 -2.067939755  1.172455292
 [81]  2.838314483  0.607888435 -0.522178208 -1.049357026  1.047836298
 [86] -2.242186875  0.299276440  0.150581889  0.937552720 -0.680040736
 [91]  0.417568761 -0.139012280 -0.807019881 -2.036424325  0.234256874
 [96] -1.642305548  0.545263108  0.288444873 -0.548095481  0.564960002
> colMedians(tmp)
  [1] -0.992247115 -1.108077415  0.134394554 -1.659681121 -1.020685020
  [6]  0.210776778  0.396535408  0.165284225 -1.205165374  0.170321565
 [11]  1.318757331  0.078454435 -1.737465523  1.398396079 -0.425804500
 [16] -0.014188498  0.201085760  0.204293654  0.125948258  0.194506557
 [21]  1.885057042 -2.774604529 -1.572572527 -0.352865355 -0.708684337
 [26] -2.286401264 -0.138853778  0.789165473 -0.197915413  1.344712232
 [31] -0.655473722  0.206741098 -0.578832474 -0.754680138 -0.346912078
 [36]  2.138114890 -0.437735515 -0.187114314  0.056599332 -0.447195914
 [41] -0.959929014 -0.281467443 -0.698467323 -0.150592021  0.147132204
 [46]  0.928958629  0.587871952  0.275930046 -1.248820966  0.113208681
 [51] -1.402606247  0.530652146 -0.129604043  0.216333590 -0.266620206
 [56]  2.026661947  0.250413662 -1.659495620 -0.123790773  1.048421962
 [61]  0.050056147  0.240060819  0.429376691  0.998972874 -1.057574596
 [66] -0.766426694 -0.720211158 -0.514979771  0.330672868 -0.008044602
 [71]  0.420191097  1.547442371 -1.940158645 -0.027192906 -0.977702645
 [76]  0.609685294 -0.929694196  0.482081863 -2.067939755  1.172455292
 [81]  2.838314483  0.607888435 -0.522178208 -1.049357026  1.047836298
 [86] -2.242186875  0.299276440  0.150581889  0.937552720 -0.680040736
 [91]  0.417568761 -0.139012280 -0.807019881 -2.036424325  0.234256874
 [96] -1.642305548  0.545263108  0.288444873 -0.548095481  0.564960002
> colRanges(tmp)
           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
[1,] -0.9922471 -1.108077 0.1343946 -1.659681 -1.020685 0.2107768 0.3965354
[2,] -0.9922471 -1.108077 0.1343946 -1.659681 -1.020685 0.2107768 0.3965354
          [,8]      [,9]     [,10]    [,11]      [,12]     [,13]    [,14]
[1,] 0.1652842 -1.205165 0.1703216 1.318757 0.07845443 -1.737466 1.398396
[2,] 0.1652842 -1.205165 0.1703216 1.318757 0.07845443 -1.737466 1.398396
          [,15]      [,16]     [,17]     [,18]     [,19]     [,20]    [,21]
[1,] -0.4258045 -0.0141885 0.2010858 0.2042937 0.1259483 0.1945066 1.885057
[2,] -0.4258045 -0.0141885 0.2010858 0.2042937 0.1259483 0.1945066 1.885057
         [,22]     [,23]      [,24]      [,25]     [,26]      [,27]     [,28]
[1,] -2.774605 -1.572573 -0.3528654 -0.7086843 -2.286401 -0.1388538 0.7891655
[2,] -2.774605 -1.572573 -0.3528654 -0.7086843 -2.286401 -0.1388538 0.7891655
          [,29]    [,30]      [,31]     [,32]      [,33]      [,34]      [,35]
[1,] -0.1979154 1.344712 -0.6554737 0.2067411 -0.5788325 -0.7546801 -0.3469121
[2,] -0.1979154 1.344712 -0.6554737 0.2067411 -0.5788325 -0.7546801 -0.3469121
        [,36]      [,37]      [,38]      [,39]      [,40]     [,41]      [,42]
[1,] 2.138115 -0.4377355 -0.1871143 0.05659933 -0.4471959 -0.959929 -0.2814674
[2,] 2.138115 -0.4377355 -0.1871143 0.05659933 -0.4471959 -0.959929 -0.2814674
          [,43]     [,44]     [,45]     [,46]    [,47]   [,48]     [,49]
[1,] -0.6984673 -0.150592 0.1471322 0.9289586 0.587872 0.27593 -1.248821
[2,] -0.6984673 -0.150592 0.1471322 0.9289586 0.587872 0.27593 -1.248821
         [,50]     [,51]     [,52]     [,53]     [,54]      [,55]    [,56]
[1,] 0.1132087 -1.402606 0.5306521 -0.129604 0.2163336 -0.2666202 2.026662
[2,] 0.1132087 -1.402606 0.5306521 -0.129604 0.2163336 -0.2666202 2.026662
         [,57]     [,58]      [,59]    [,60]      [,61]     [,62]     [,63]
[1,] 0.2504137 -1.659496 -0.1237908 1.048422 0.05005615 0.2400608 0.4293767
[2,] 0.2504137 -1.659496 -0.1237908 1.048422 0.05005615 0.2400608 0.4293767
         [,64]     [,65]      [,66]      [,67]      [,68]     [,69]
[1,] 0.9989729 -1.057575 -0.7664267 -0.7202112 -0.5149798 0.3306729
[2,] 0.9989729 -1.057575 -0.7664267 -0.7202112 -0.5149798 0.3306729
            [,70]     [,71]    [,72]     [,73]       [,74]      [,75]     [,76]
[1,] -0.008044602 0.4201911 1.547442 -1.940159 -0.02719291 -0.9777026 0.6096853
[2,] -0.008044602 0.4201911 1.547442 -1.940159 -0.02719291 -0.9777026 0.6096853
          [,77]     [,78]    [,79]    [,80]    [,81]     [,82]      [,83]
[1,] -0.9296942 0.4820819 -2.06794 1.172455 2.838314 0.6078884 -0.5221782
[2,] -0.9296942 0.4820819 -2.06794 1.172455 2.838314 0.6078884 -0.5221782
         [,84]    [,85]     [,86]     [,87]     [,88]     [,89]      [,90]
[1,] -1.049357 1.047836 -2.242187 0.2992764 0.1505819 0.9375527 -0.6800407
[2,] -1.049357 1.047836 -2.242187 0.2992764 0.1505819 0.9375527 -0.6800407
         [,91]      [,92]      [,93]     [,94]     [,95]     [,96]     [,97]
[1,] 0.4175688 -0.1390123 -0.8070199 -2.036424 0.2342569 -1.642306 0.5452631
[2,] 0.4175688 -0.1390123 -0.8070199 -2.036424 0.2342569 -1.642306 0.5452631
         [,98]      [,99]  [,100]
[1,] 0.2884449 -0.5480955 0.56496
[2,] 0.2884449 -0.5480955 0.56496
> 
> 
> Max(tmp2)
[1] 2.539357
> Min(tmp2)
[1] -2.205404
> mean(tmp2)
[1] 0.0665665
> Sum(tmp2)
[1] 6.65665
> Var(tmp2)
[1] 0.95351
> 
> rowMeans(tmp2)
  [1]  0.44698557 -1.02372541 -1.14319125  1.50381354 -0.65752844 -0.07118114
  [7] -1.27384215  0.03243105 -0.44990222 -1.29502637 -0.31455274  0.28003788
 [13]  2.53935725  0.18375838 -2.11661846  0.50208776  0.08974598  1.85417221
 [19] -1.14325763  0.30425293  0.62768172 -0.08005731  0.20047721 -0.88507362
 [25]  1.16039279 -1.03272367  1.31112811 -1.58841259  0.11111395  0.26490277
 [31] -0.44006447  0.28012083  0.20916218  0.79808525  1.11755340  0.83711182
 [37]  1.35881207  0.66319186  1.53246085 -0.28759927  0.76480964 -1.09022824
 [43] -1.22187710  0.37160170 -0.36344994  0.26204212  0.70626999 -0.82818311
 [49] -0.62743997 -0.38370326  0.98046764  0.09221647 -0.42073840  0.13141773
 [55]  1.13692140 -0.13724699  2.15978100  2.24493922 -0.41061084 -0.75192906
 [61] -1.32323119  0.05724490  0.58582923  1.13840657 -0.88536437  0.17523951
 [67] -0.24953038  1.48407826  0.74013277 -0.77341466 -0.43312862  0.73338367
 [73] -0.13156193  1.01178155  0.45911285 -0.41507648  1.13776138 -0.66971629
 [79]  0.66527355 -0.21923752  0.32083807 -1.79655132  1.21394963  0.23293129
 [85] -2.01838320  1.72312438  1.07474965  0.90721279 -2.20540357 -0.04418591
 [91]  0.34642628 -0.74978352  0.02879985  0.36949694 -1.43819073 -0.59253950
 [97]  0.61992675  0.28933708 -0.69091224 -1.04331626
> rowSums(tmp2)
  [1]  0.44698557 -1.02372541 -1.14319125  1.50381354 -0.65752844 -0.07118114
  [7] -1.27384215  0.03243105 -0.44990222 -1.29502637 -0.31455274  0.28003788
 [13]  2.53935725  0.18375838 -2.11661846  0.50208776  0.08974598  1.85417221
 [19] -1.14325763  0.30425293  0.62768172 -0.08005731  0.20047721 -0.88507362
 [25]  1.16039279 -1.03272367  1.31112811 -1.58841259  0.11111395  0.26490277
 [31] -0.44006447  0.28012083  0.20916218  0.79808525  1.11755340  0.83711182
 [37]  1.35881207  0.66319186  1.53246085 -0.28759927  0.76480964 -1.09022824
 [43] -1.22187710  0.37160170 -0.36344994  0.26204212  0.70626999 -0.82818311
 [49] -0.62743997 -0.38370326  0.98046764  0.09221647 -0.42073840  0.13141773
 [55]  1.13692140 -0.13724699  2.15978100  2.24493922 -0.41061084 -0.75192906
 [61] -1.32323119  0.05724490  0.58582923  1.13840657 -0.88536437  0.17523951
 [67] -0.24953038  1.48407826  0.74013277 -0.77341466 -0.43312862  0.73338367
 [73] -0.13156193  1.01178155  0.45911285 -0.41507648  1.13776138 -0.66971629
 [79]  0.66527355 -0.21923752  0.32083807 -1.79655132  1.21394963  0.23293129
 [85] -2.01838320  1.72312438  1.07474965  0.90721279 -2.20540357 -0.04418591
 [91]  0.34642628 -0.74978352  0.02879985  0.36949694 -1.43819073 -0.59253950
 [97]  0.61992675  0.28933708 -0.69091224 -1.04331626
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.44698557 -1.02372541 -1.14319125  1.50381354 -0.65752844 -0.07118114
  [7] -1.27384215  0.03243105 -0.44990222 -1.29502637 -0.31455274  0.28003788
 [13]  2.53935725  0.18375838 -2.11661846  0.50208776  0.08974598  1.85417221
 [19] -1.14325763  0.30425293  0.62768172 -0.08005731  0.20047721 -0.88507362
 [25]  1.16039279 -1.03272367  1.31112811 -1.58841259  0.11111395  0.26490277
 [31] -0.44006447  0.28012083  0.20916218  0.79808525  1.11755340  0.83711182
 [37]  1.35881207  0.66319186  1.53246085 -0.28759927  0.76480964 -1.09022824
 [43] -1.22187710  0.37160170 -0.36344994  0.26204212  0.70626999 -0.82818311
 [49] -0.62743997 -0.38370326  0.98046764  0.09221647 -0.42073840  0.13141773
 [55]  1.13692140 -0.13724699  2.15978100  2.24493922 -0.41061084 -0.75192906
 [61] -1.32323119  0.05724490  0.58582923  1.13840657 -0.88536437  0.17523951
 [67] -0.24953038  1.48407826  0.74013277 -0.77341466 -0.43312862  0.73338367
 [73] -0.13156193  1.01178155  0.45911285 -0.41507648  1.13776138 -0.66971629
 [79]  0.66527355 -0.21923752  0.32083807 -1.79655132  1.21394963  0.23293129
 [85] -2.01838320  1.72312438  1.07474965  0.90721279 -2.20540357 -0.04418591
 [91]  0.34642628 -0.74978352  0.02879985  0.36949694 -1.43819073 -0.59253950
 [97]  0.61992675  0.28933708 -0.69091224 -1.04331626
> rowMin(tmp2)
  [1]  0.44698557 -1.02372541 -1.14319125  1.50381354 -0.65752844 -0.07118114
  [7] -1.27384215  0.03243105 -0.44990222 -1.29502637 -0.31455274  0.28003788
 [13]  2.53935725  0.18375838 -2.11661846  0.50208776  0.08974598  1.85417221
 [19] -1.14325763  0.30425293  0.62768172 -0.08005731  0.20047721 -0.88507362
 [25]  1.16039279 -1.03272367  1.31112811 -1.58841259  0.11111395  0.26490277
 [31] -0.44006447  0.28012083  0.20916218  0.79808525  1.11755340  0.83711182
 [37]  1.35881207  0.66319186  1.53246085 -0.28759927  0.76480964 -1.09022824
 [43] -1.22187710  0.37160170 -0.36344994  0.26204212  0.70626999 -0.82818311
 [49] -0.62743997 -0.38370326  0.98046764  0.09221647 -0.42073840  0.13141773
 [55]  1.13692140 -0.13724699  2.15978100  2.24493922 -0.41061084 -0.75192906
 [61] -1.32323119  0.05724490  0.58582923  1.13840657 -0.88536437  0.17523951
 [67] -0.24953038  1.48407826  0.74013277 -0.77341466 -0.43312862  0.73338367
 [73] -0.13156193  1.01178155  0.45911285 -0.41507648  1.13776138 -0.66971629
 [79]  0.66527355 -0.21923752  0.32083807 -1.79655132  1.21394963  0.23293129
 [85] -2.01838320  1.72312438  1.07474965  0.90721279 -2.20540357 -0.04418591
 [91]  0.34642628 -0.74978352  0.02879985  0.36949694 -1.43819073 -0.59253950
 [97]  0.61992675  0.28933708 -0.69091224 -1.04331626
> 
> colMeans(tmp2)
[1] 0.0665665
> colSums(tmp2)
[1] 6.65665
> colVars(tmp2)
[1] 0.95351
> colSd(tmp2)
[1] 0.9764784
> colMax(tmp2)
[1] 2.539357
> colMin(tmp2)
[1] -2.205404
> colMedians(tmp2)
[1] 0.1212658
> colRanges(tmp2)
          [,1]
[1,] -2.205404
[2,]  2.539357
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  5.1121286 -2.2155416  1.1994764 -1.1477179  4.7150076  5.4881391
 [7]  4.7966750 -2.1303300 -3.6932052  0.8885079
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.4169974
[2,] -0.3507674
[3,]  0.5728986
[4,]  1.1017114
[5,]  2.4097262
> 
> rowApply(tmp,sum)
 [1]  4.363304  3.827412  3.124056  2.730068  2.692548  2.972219  4.598911
 [8]  2.683631 -5.741035 -8.237974
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    4    7    9    2    9    2    8    7     2
 [2,]    1    2    1   10    6    4    9    9    4     1
 [3,]    6   10    6    1    8    3    8    2   10     4
 [4,]    5    5    9    3    5    1    5    5    5     3
 [5,]    9    7    8    6    4   10    4    4    3     8
 [6,]    4    3    4    2   10    8    6    7    6    10
 [7,]    7    6   10    5    9    7    1   10    8     6
 [8,]    2    8    2    8    7    5    3    1    2     9
 [9,]    8    1    3    4    3    6   10    3    1     5
[10,]    3    9    5    7    1    2    7    6    9     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.58119504 -0.07696831 -0.43220024 -3.00568293 -3.68040511 -2.18682091
 [7]  0.69110337 -2.91810940 -0.83271118  3.48281680  0.65027641  0.22363045
[13] -1.90596503  1.34854258  0.01195829  1.21974907  3.19886854  3.53498461
[19]  0.71113507 -3.87394685
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.71773183
[2,] -0.41053331
[3,]  0.05438366
[4,]  0.14470446
[5,]  1.51037206
> 
> rowApply(tmp,sum)
[1] -0.6687770  3.3679835 -3.5459612 -1.5575019 -0.8542931
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    7   19   14   10    6
[2,]   13    6    5   11   17
[3,]   20    3    6   15    4
[4,]    8    4   17    3    2
[5,]    5    1   12    6    7
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]        [,5]        [,6]
[1,] -0.41053331 -0.1282472  1.7704474 -0.3930688 -0.50879717 -0.48336658
[2,]  1.51037206 -0.4290741 -0.8154756 -0.4967887 -1.95089263  0.01577241
[3,]  0.14470446 -0.8287358 -0.7409737  0.3784952  0.05211899 -0.55582665
[4,]  0.05438366  0.1453350  0.2706841 -1.1562122 -0.55773344 -1.47308731
[5,] -0.71773183  1.1637538 -0.9168824 -1.3381084 -0.71510086  0.30968722
             [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,] -0.191736085 -0.1858287 -0.7517989  1.4286078 -0.2169343 -1.6512672
[2,]  0.600996273  1.0278888 -0.0868553  1.2102154  0.2591435  0.4131195
[3,]  0.353867273 -2.4111255  0.5936246  0.5741641  1.9779874 -0.8441045
[4,]  0.005981098 -0.2254906  0.3205945  0.5578379 -1.3833336  0.5187391
[5,] -0.078005193 -1.1235534 -0.9082761 -0.2880083  0.0134134  1.7871435
           [,13]       [,14]       [,15]       [,16]      [,17]       [,18]
[1,] -0.69102397 -0.19895282  0.62650669  1.14805521  0.8525385  0.20524370
[2,]  0.08224418 -0.45393383 -1.22300766  0.23933035  0.5234654  2.02998576
[3,] -0.91634583 -0.03761966  0.06383522  0.21950926 -0.4071933 -0.04686132
[4,]  0.15877839  1.40443848  0.26389867 -0.32492718  0.1462949 -0.58715918
[5,] -0.53961779  0.63461042  0.28072537 -0.06221858  2.0837630  1.93377565
             [,19]       [,20]
[1,] -0.7921278888 -0.09649339
[2,]  0.6405867648  0.27089088
[3,]  0.0001224329 -1.11560379
[4,]  1.3082795670 -1.00480373
[5,] -0.4457258050 -1.92793682
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  567  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1     col2      col3      col4       col5      col6       col7
row1 2.293669 1.476187 0.1272864 -1.584084 0.06382107 -1.085231 -0.6740336
           col8      col9     col10     col11     col12     col13     col14
row1 -0.7494544 0.7331621 -1.096263 0.9444717 0.3033824 -1.693706 -1.220238
          col15     col16    col17    col18      col19       col20
row1 -0.1830144 0.1172635 1.229189 1.128338 -0.3704408 -0.02472917
> tmp[,"col10"]
          col10
row1 -1.0962632
row2  0.3293998
row3  1.3849047
row4  1.5295011
row5  1.0808290
> tmp[c("row1","row5"),]
          col1      col2       col3      col4       col5       col6       col7
row1 2.2936693 1.4761869  0.1272864 -1.584084 0.06382107 -1.0852307 -0.6740336
row5 0.7836511 0.1580805 -0.7137639 -1.747163 0.77318385 -0.7098567 -0.5992456
           col8      col9     col10     col11     col12     col13     col14
row1 -0.7494544 0.7331621 -1.096263 0.9444717 0.3033824 -1.693706 -1.220238
row5 -0.4853604 0.8151731  1.080829 0.1774812 0.2501532 -0.132156  1.635934
          col15       col16     col17      col18        col19       col20
row1 -0.1830144 0.117263488  1.229189 1.12833793 -0.370440797 -0.02472917
row5  0.1862725 0.002954652 -2.349477 0.04972156 -0.003050622  0.67557046
> tmp[,c("col6","col20")]
            col6       col20
row1 -1.08523065 -0.02472917
row2  0.96852433 -0.11962207
row3 -0.52779173 -0.04339808
row4  0.08304683 -0.57461214
row5 -0.70985673  0.67557046
> tmp[c("row1","row5"),c("col6","col20")]
           col6       col20
row1 -1.0852307 -0.02472917
row5 -0.7098567  0.67557046
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2     col3     col4     col5     col6     col7     col8
row1 48.84691 49.6851 49.04523 49.60083 50.31717 104.4201 51.71095 47.81313
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.30236 50.88165 48.66269 49.78866 49.48071 50.22992 50.96032 49.25918
        col17  col18    col19    col20
row1 49.83103 50.783 48.87727 102.6945
> tmp[,"col10"]
        col10
row1 50.88165
row2 28.33335
row3 27.98642
row4 30.47214
row5 48.56797
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.84691 49.68510 49.04523 49.60083 50.31717 104.4201 51.71095 47.81313
row5 48.78627 49.34133 49.22687 51.73748 49.54280 104.8621 49.64898 50.97273
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.30236 50.88165 48.66269 49.78866 49.48071 50.22992 50.96032 49.25918
row5 50.16658 48.56797 50.99318 50.63335 49.59554 48.03691 49.35828 50.37682
        col17    col18    col19    col20
row1 49.83103 50.78300 48.87727 102.6945
row5 50.76956 50.09849 51.00360 106.0075
> tmp[,c("col6","col20")]
          col6     col20
row1 104.42014 102.69450
row2  76.39522  73.60796
row3  76.29929  73.71906
row4  75.28021  73.66837
row5 104.86213 106.00750
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.4201 102.6945
row5 104.8621 106.0075
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.4201 102.6945
row5 104.8621 106.0075
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.5144319
[2,] -1.3797692
[3,]  0.8755527
[4,]  1.3842588
[5,]  0.3801655
> tmp[,c("col17","col7")]
          col17        col7
[1,]  0.0032991  0.66453086
[2,] -2.4715712  0.07385903
[3,]  1.1477593 -0.01973572
[4,] -0.2781926 -1.17444320
[5,] -2.5620486  0.24776965
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6        col20
[1,] -1.5932816  0.004705913
[2,]  2.2550194  0.841311731
[3,]  1.1517665  0.090414639
[4,] -0.5120967 -1.332253896
[5,]  0.5747699 -0.757389767
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.593282
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -1.593282
[2,]  2.255019
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
            [,1]       [,2]      [,3]       [,4]       [,5]       [,6]
row3  0.05094829 -0.1228066 0.1301884 -0.3346737 -2.4360952  1.2713846
row1 -0.27096772  0.1047148 0.8316636 -2.2612741  0.4761787 -0.9732709
           [,7]       [,8]       [,9]      [,10]      [,11]       [,12]
row3 -0.5435791  1.3700557  1.1337014 -0.2497305  0.8742208 0.006451548
row1 -0.6898800 -0.8151079 -0.9335558 -2.0653555 -0.2847278 1.365791760
         [,13]      [,14]      [,15]     [,16]       [,17]       [,18]
row3 -0.968671 -0.5869592  0.9824186 0.7587126  0.49131611 -0.02403022
row1 -1.139506  1.0986247 -0.6754738 0.4897107 -0.05194445  1.29545765
           [,19]      [,20]
row3 -0.06840635  0.9405866
row1  1.33569193 -0.2097815
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]     [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
row2 -0.9633378 1.160568 0.1160471 0.7780588 0.8836418 -0.980063 -2.505453
          [,8]       [,9]     [,10]
row2 0.7577449 -0.9315996 0.3000636
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]       [,3]      [,4]      [,5]      [,6]       [,7]
row5 -0.31355 0.3661226 -0.4177008 -1.006743 0.4807567 0.7288481 -0.1256835
           [,8]      [,9]      [,10]      [,11]     [,12]     [,13]      [,14]
row5 -0.4042458 -1.894895 -0.2271688 -0.7815833 0.6909271 -2.616835 0.09456969
           [,15]    [,16]    [,17]      [,18]      [,19]     [,20]
row5 -0.09489678 1.234908 0.246013 -0.1804548 0.07569278 -0.119055
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600003208c00>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e5e7e2476"
 [2] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e2b8bef71"
 [3] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e7014fa0c"
 [4] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e712c6350"
 [5] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e192c533c"
 [6] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e2d0c950d"
 [7] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e150d9f96"
 [8] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e31683ba6"
 [9] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e322428a1"
[10] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e63e77bbe"
[11] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e726d2a2f"
[12] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e5cecae59"
[13] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e36aa84b8"
[14] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e74ef6811"
[15] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1752e11997011"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000032096e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000032096e0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000032096e0>
> rowMedians(tmp)
  [1] -0.170342769  0.391232624 -0.278324465  0.241992827  0.005837581
  [6] -0.037058812 -0.485566865  0.168580633 -0.539236112  0.189295458
 [11]  0.023168211  0.089382705 -0.133833870  0.000638871  0.194403467
 [16] -0.194544083  0.046696478  0.273074810  0.257671194 -0.342580348
 [21] -0.164087061 -0.238986566  0.466902367 -0.009548375 -0.077386581
 [26]  0.255171369  0.318323092  0.711885752 -0.248198571  0.469705653
 [31]  0.372415805  0.403965847  0.394366798  0.188894534 -0.047672684
 [36] -0.606199668  0.137517709 -0.175201808  0.153701764 -0.196198578
 [41]  0.198771331  0.244672350 -0.733361229 -0.142792709 -0.078428620
 [46] -0.123998755 -0.024030303 -0.113562195  0.488969783 -0.094525961
 [51]  0.344039229  0.022072455  0.739328314  0.514699001  0.067469320
 [56] -0.076467426  0.004600119  0.416888690  0.041714231  0.287871939
 [61] -0.570116078 -0.562118763 -0.007478206  0.262572711 -0.139832136
 [66]  0.046662857 -0.282844801  0.418706015 -0.167156808  0.642687039
 [71]  0.455689226 -0.160345122 -0.201931196  0.128709623  0.116128399
 [76] -0.313127267 -0.045787725  0.915260467  0.459020622  0.222101190
 [81] -0.195858502  0.512258517  0.448255514 -0.292434203 -0.040510539
 [86] -0.210174413  0.091763030 -0.161565553  0.272973135 -0.218785195
 [91]  0.266361020 -0.126356837  0.094095573 -0.106466821  0.228411090
 [96] -0.305878181  0.455854857  0.164413877 -0.241712557 -0.743161562
[101] -0.294735907  0.002519978  0.519143661 -0.108724579  0.282648912
[106]  0.156406045 -0.503524989 -0.071803396 -0.146869881  0.163474565
[111] -0.071602278  0.318901001  0.146070351 -0.121921468 -0.120081822
[116]  0.201418197  0.246576099 -0.589204974  0.345345558 -0.678768390
[121]  0.088177067 -0.124755184  0.349470339 -0.115430915  0.026170647
[126]  0.184532372 -0.393847608 -0.100930396  0.149509101  0.010193306
[131] -0.408961982  0.163700174  0.554853331 -0.181287048  0.465583998
[136]  0.367694912 -0.057743551 -0.044210201  0.040700231  0.331138362
[141] -0.199641648  0.250697788 -0.143632665 -0.035925461 -0.508677130
[146] -0.637998181 -0.561182855 -0.387428641 -0.834113027 -0.031484548
[151] -0.013838104 -0.213563374  0.085267676  0.275289884 -0.099885333
[156]  0.108981218 -0.131497420  0.520485752 -0.475629974  0.091038286
[161]  0.188344823 -0.035657930  0.375737297 -0.522424722  0.110722353
[166]  0.353279191  0.603837255  0.308367049 -0.287504649  0.331747699
[171]  0.088770818  0.228815323 -0.140928212  0.048805868  0.242346203
[176] -0.155014197 -0.222797501  0.096875551 -0.174967427  0.447340559
[181]  0.010062211 -0.158130098  0.022060166 -0.323873598  0.207402472
[186] -0.272619515  0.219369142  0.052649102 -0.288575640  0.348517673
[191]  0.042541855  0.061737532 -0.439309606 -0.095733912 -0.381409662
[196] -0.206072588 -0.301258980  0.508088128 -0.368405091  0.178188936
[201]  0.418159362 -0.119646273 -0.142708944 -0.165051272  0.821245174
[206]  0.360470817 -0.025450961  0.162784208  0.055598537 -0.647249211
[211]  0.024083905 -0.610380741  0.130068704  0.273993286 -0.693087024
[216] -0.220175116 -0.365089064 -0.563235846  0.495394212  0.105043116
[221]  0.045551313  0.113627439  0.190375661 -0.229965439  0.537176104
[226] -0.509610380 -0.048068469 -0.128586693  0.151478113 -0.455472782
> 
> proc.time()
   user  system elapsed 
  1.974   8.748  10.841 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000df8420>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000df8420>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000df8420>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600000df8420>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600000df8ba0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8ba0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600000df8ba0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8ba0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000df8ba0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8d80>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000df8d80>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600000df8d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000df8d80>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600000df8d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000df8d80>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600000df8d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600000df8d80>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8f60>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600000df8f60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8f60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df8f60>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1754d54fd0f9"  "BufferedMatrixFile1754d58ac0452"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1754d54fd0f9"  "BufferedMatrixFile1754d58ac0452"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df9200>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df9200>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600000df9200>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600000df9200>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600000df9200>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600000df9200>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df93e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600000df93e0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600000df93e0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600000df93e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000df95c0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600000df95c0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.355   0.115   0.454 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.345   0.066   0.396 

Example timings