Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-02 11:38 -0400 (Thu, 02 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4831
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4612
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4553
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4584
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.72.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-29 13:40 -0400 (Mon, 29 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_21
git_last_commit: aa9e634
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on merida1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.72.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
StartedAt: 2025-09-30 00:55:08 -0400 (Tue, 30 Sep 2025)
EndedAt: 2025-09-30 00:56:22 -0400 (Tue, 30 Sep 2025)
EllapsedTime: 74.4 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 RC (2025-06-05 r88288)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.72.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.72.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.595   0.207   0.795 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480849 25.7    1056621 56.5         NA   634465 33.9
Vcells 891080  6.8    8388608 64.0      65536  2108740 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep 30 00:55:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep 30 00:55:42 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600003b68000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep 30 00:55:48 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep 30 00:55:51 2025"
> 
> ColMode(tmp2)
<pointer: 0x600003b68000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]        [,4]
[1,] 99.81089693 -1.3949717  0.2859473  2.17572981
[2,] -0.42084230  2.5512135  0.6347347 -0.08661389
[3,]  0.84115388  0.8242945 -0.0773835  2.31156693
[4,]  0.08267039  1.3088051  0.4124475  0.10971443
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]       [,4]
[1,] 99.81089693 1.3949717 0.2859473 2.17572981
[2,]  0.42084230 2.5512135 0.6347347 0.08661389
[3,]  0.84115388 0.8242945 0.0773835 2.31156693
[4,]  0.08267039 1.3088051 0.4124475 0.10971443
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9905404 1.1810892 0.5347404 1.4750355
[2,] 0.6487236 1.5972518 0.7967024 0.2943024
[3,] 0.9171444 0.9079067 0.2781789 1.5203838
[4,] 0.2875246 1.1440302 0.6422207 0.3312317
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.71630 38.20586 30.63335 41.92609
[2,]  31.90808 43.52373 33.60176 28.02964
[3,]  35.01260 34.90336 27.85917 42.51541
[4,]  27.95792 37.74911 31.83465 28.42203
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600003b680c0>
> exp(tmp5)
<pointer: 0x600003b680c0>
> log(tmp5,2)
<pointer: 0x600003b680c0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.7175
> Min(tmp5)
[1] 53.98118
> mean(tmp5)
[1] 73.39902
> Sum(tmp5)
[1] 14679.8
> Var(tmp5)
[1] 860.1976
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.53772 68.33245 71.44974 72.29779 70.61500 72.53172 71.94130 73.42353
 [9] 70.93739 70.92354
> rowSums(tmp5)
 [1] 1830.754 1366.649 1428.995 1445.956 1412.300 1450.634 1438.826 1468.471
 [9] 1418.748 1418.471
> rowVars(tmp5)
 [1] 7915.00184   94.84246   60.58396   66.39659   92.81799   58.32765
 [7]   74.26890   86.40247   86.47072   71.68169
> rowSd(tmp5)
 [1] 88.966296  9.738709  7.783570  8.148410  9.634209  7.637254  8.617940
 [8]  9.295293  9.298964  8.466504
> rowMax(tmp5)
 [1] 467.71754  90.58895  88.49025  87.05750  87.47217  84.21507  88.59290
 [8]  97.75163  84.69498  88.29791
> rowMin(tmp5)
 [1] 58.35423 54.99613 57.98522 58.19074 54.95476 56.70116 55.53973 58.19150
 [9] 53.98118 56.73218
> 
> colMeans(tmp5)
 [1] 110.12449  76.78407  68.80197  73.65509  74.40855  74.47033  72.41083
 [8]  66.93593  70.90737  71.21310  69.99842  75.59799  71.82135  69.28412
[15]  70.58927  71.33187  69.52974  75.29396  68.47123  66.35067
> colSums(tmp5)
 [1] 1101.2449  767.8407  688.0197  736.5509  744.0855  744.7033  724.1083
 [8]  669.3593  709.0737  712.1310  699.9842  755.9799  718.2135  692.8412
[15]  705.8927  713.3187  695.2974  752.9396  684.7123  663.5067
> colVars(tmp5)
 [1] 15835.78190    80.75152    55.90216   126.05410    36.01432    42.24497
 [7]    79.28132    50.09470    77.78504    75.74724    42.03543    72.07906
[13]   110.54923    75.02428    54.18246   117.83323    73.80654    97.05694
[19]    56.06352   108.48906
> colSd(tmp5)
 [1] 125.840303   8.986185   7.476775  11.227382   6.001193   6.499613
 [7]   8.904006   7.077761   8.819583   8.703289   6.483474   8.489939
[13]  10.514240   8.661656   7.360873  10.855101   8.591073   9.851748
[19]   7.487558  10.415808
> colMax(tmp5)
 [1] 467.71754  90.58895  82.74891  88.49025  80.72671  85.93480  88.59290
 [8]  79.68492  86.40819  83.48319  81.32449  87.81471  86.48972  82.85577
[15]  81.03483  88.29791  85.41839  97.75163  77.57250  84.16277
> colMin(tmp5)
 [1] 58.19074 63.03391 57.98522 58.34002 62.83169 64.47699 61.01688 59.04608
 [9] 61.56370 55.53973 59.64890 64.30099 55.87474 56.19537 58.95239 54.95476
[17] 56.70116 62.59829 54.99613 53.98118
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.53772 68.33245 71.44974 72.29779 70.61500 72.53172 71.94130       NA
 [9] 70.93739 70.92354
> rowSums(tmp5)
 [1] 1830.754 1366.649 1428.995 1445.956 1412.300 1450.634 1438.826       NA
 [9] 1418.748 1418.471
> rowVars(tmp5)
 [1] 7915.00184   94.84246   60.58396   66.39659   92.81799   58.32765
 [7]   74.26890   56.59113   86.47072   71.68169
> rowSd(tmp5)
 [1] 88.966296  9.738709  7.783570  8.148410  9.634209  7.637254  8.617940
 [8]  7.522708  9.298964  8.466504
> rowMax(tmp5)
 [1] 467.71754  90.58895  88.49025  87.05750  87.47217  84.21507  88.59290
 [8]        NA  84.69498  88.29791
> rowMin(tmp5)
 [1] 58.35423 54.99613 57.98522 58.19074 54.95476 56.70116 55.53973       NA
 [9] 53.98118 56.73218
> 
> colMeans(tmp5)
 [1] 110.12449  76.78407  68.80197  73.65509  74.40855  74.47033  72.41083
 [8]  66.93593  70.90737  71.21310  69.99842  75.59799  71.82135  69.28412
[15]  70.58927  71.33187  69.52974        NA  68.47123  66.35067
> colSums(tmp5)
 [1] 1101.2449  767.8407  688.0197  736.5509  744.0855  744.7033  724.1083
 [8]  669.3593  709.0737  712.1310  699.9842  755.9799  718.2135  692.8412
[15]  705.8927  713.3187  695.2974        NA  684.7123  663.5067
> colVars(tmp5)
 [1] 15835.78190    80.75152    55.90216   126.05410    36.01432    42.24497
 [7]    79.28132    50.09470    77.78504    75.74724    42.03543    72.07906
[13]   110.54923    75.02428    54.18246   117.83323    73.80654          NA
[19]    56.06352   108.48906
> colSd(tmp5)
 [1] 125.840303   8.986185   7.476775  11.227382   6.001193   6.499613
 [7]   8.904006   7.077761   8.819583   8.703289   6.483474   8.489939
[13]  10.514240   8.661656   7.360873  10.855101   8.591073         NA
[19]   7.487558  10.415808
> colMax(tmp5)
 [1] 467.71754  90.58895  82.74891  88.49025  80.72671  85.93480  88.59290
 [8]  79.68492  86.40819  83.48319  81.32449  87.81471  86.48972  82.85577
[15]  81.03483  88.29791  85.41839        NA  77.57250  84.16277
> colMin(tmp5)
 [1] 58.19074 63.03391 57.98522 58.34002 62.83169 64.47699 61.01688 59.04608
 [9] 61.56370 55.53973 59.64890 64.30099 55.87474 56.19537 58.95239 54.95476
[17] 56.70116       NA 54.99613 53.98118
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.7175
> Min(tmp5,na.rm=TRUE)
[1] 53.98118
> mean(tmp5,na.rm=TRUE)
[1] 73.27664
> Sum(tmp5,na.rm=TRUE)
[1] 14582.05
> Var(tmp5,na.rm=TRUE)
[1] 861.5317
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.53772 68.33245 71.44974 72.29779 70.61500 72.53172 71.94130 72.14311
 [9] 70.93739 70.92354
> rowSums(tmp5,na.rm=TRUE)
 [1] 1830.754 1366.649 1428.995 1445.956 1412.300 1450.634 1438.826 1370.719
 [9] 1418.748 1418.471
> rowVars(tmp5,na.rm=TRUE)
 [1] 7915.00184   94.84246   60.58396   66.39659   92.81799   58.32765
 [7]   74.26890   56.59113   86.47072   71.68169
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.966296  9.738709  7.783570  8.148410  9.634209  7.637254  8.617940
 [8]  7.522708  9.298964  8.466504
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.71754  90.58895  88.49025  87.05750  87.47217  84.21507  88.59290
 [8]  87.17458  84.69498  88.29791
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.35423 54.99613 57.98522 58.19074 54.95476 56.70116 55.53973 58.19150
 [9] 53.98118 56.73218
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.12449  76.78407  68.80197  73.65509  74.40855  74.47033  72.41083
 [8]  66.93593  70.90737  71.21310  69.99842  75.59799  71.82135  69.28412
[15]  70.58927  71.33187  69.52974  72.79866  68.47123  66.35067
> colSums(tmp5,na.rm=TRUE)
 [1] 1101.2449  767.8407  688.0197  736.5509  744.0855  744.7033  724.1083
 [8]  669.3593  709.0737  712.1310  699.9842  755.9799  718.2135  692.8412
[15]  705.8927  713.3187  695.2974  655.1880  684.7123  663.5067
> colVars(tmp5,na.rm=TRUE)
 [1] 15835.78190    80.75152    55.90216   126.05410    36.01432    42.24497
 [7]    79.28132    50.09470    77.78504    75.74724    42.03543    72.07906
[13]   110.54923    75.02428    54.18246   117.83323    73.80654    39.14089
[19]    56.06352   108.48906
> colSd(tmp5,na.rm=TRUE)
 [1] 125.840303   8.986185   7.476775  11.227382   6.001193   6.499613
 [7]   8.904006   7.077761   8.819583   8.703289   6.483474   8.489939
[13]  10.514240   8.661656   7.360873  10.855101   8.591073   6.256268
[19]   7.487558  10.415808
> colMax(tmp5,na.rm=TRUE)
 [1] 467.71754  90.58895  82.74891  88.49025  80.72671  85.93480  88.59290
 [8]  79.68492  86.40819  83.48319  81.32449  87.81471  86.48972  82.85577
[15]  81.03483  88.29791  85.41839  80.75223  77.57250  84.16277
> colMin(tmp5,na.rm=TRUE)
 [1] 58.19074 63.03391 57.98522 58.34002 62.83169 64.47699 61.01688 59.04608
 [9] 61.56370 55.53973 59.64890 64.30099 55.87474 56.19537 58.95239 54.95476
[17] 56.70116 62.59829 54.99613 53.98118
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.53772 68.33245 71.44974 72.29779 70.61500 72.53172 71.94130      NaN
 [9] 70.93739 70.92354
> rowSums(tmp5,na.rm=TRUE)
 [1] 1830.754 1366.649 1428.995 1445.956 1412.300 1450.634 1438.826    0.000
 [9] 1418.748 1418.471
> rowVars(tmp5,na.rm=TRUE)
 [1] 7915.00184   94.84246   60.58396   66.39659   92.81799   58.32765
 [7]   74.26890         NA   86.47072   71.68169
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.966296  9.738709  7.783570  8.148410  9.634209  7.637254  8.617940
 [8]        NA  9.298964  8.466504
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.71754  90.58895  88.49025  87.05750  87.47217  84.21507  88.59290
 [8]        NA  84.69498  88.29791
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.35423 54.99613 57.98522 58.19074 54.95476 56.70116 55.53973       NA
 [9] 53.98118 56.73218
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.01515  77.73857  67.25232  73.21751  73.81874  74.72474  72.55488
 [8]  66.87655  71.57219  70.62294  69.97728  74.31170  71.28704  70.02924
[15]  69.57399  71.99463  68.78521       NaN  68.51731  67.25724
> colSums(tmp5,na.rm=TRUE)
 [1] 1035.1363  699.6471  605.2708  658.9576  664.3686  672.5227  652.9939
 [8]  601.8890  644.1497  635.6064  629.7955  668.8053  641.5833  630.2632
[15]  626.1660  647.9516  619.0669    0.0000  616.6558  605.3152
> colVars(tmp5,na.rm=TRUE)
 [1] 17546.17136    80.59596    35.87367   139.65673    36.60244    46.79743
 [7]    88.95805    56.31688    82.53588    81.29742    47.28483    62.47542
[13]   121.15605    78.15635    49.35890   127.62090    76.79628          NA
[19]    63.04757   112.80406
> colSd(tmp5,na.rm=TRUE)
 [1] 132.461962   8.977525   5.989463  11.817645   6.049995   6.840865
 [7]   9.431757   7.504457   9.084926   9.016508   6.876397   7.904140
[13]  11.007091   8.840608   7.025589  11.296942   8.763349         NA
[19]   7.940250  10.620926
> colMax(tmp5,na.rm=TRUE)
 [1] 467.71754  90.58895  76.14162  88.49025  80.72671  85.93480  88.59290
 [8]  79.68492  86.40819  83.48319  81.32449  87.81471  86.48972  82.85577
[15]  81.03483  88.29791  85.41839      -Inf  77.57250  84.16277
> colMin(tmp5,na.rm=TRUE)
 [1] 58.19074 63.03391 57.98522 58.34002 62.83169 64.47699 61.01688 59.04608
 [9] 61.56370 55.53973 59.64890 64.30099 55.87474 56.19537 58.95239 54.95476
[17] 56.70116      Inf 54.99613 53.98118
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 193.57820 183.85960 258.24312  95.09861 123.92177 281.59281 185.42321
 [8] 136.93978 228.77559 110.47608
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 193.57820 183.85960 258.24312  95.09861 123.92177 281.59281 185.42321
 [8] 136.93978 228.77559 110.47608
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14 -4.263256e-14  0.000000e+00 -1.136868e-13 -1.421085e-14
 [6]  1.421085e-13 -5.684342e-14  5.684342e-14  5.684342e-14  5.684342e-14
[11]  1.136868e-13  1.421085e-14 -1.421085e-13  2.842171e-14 -9.947598e-14
[16]  2.842171e-14  1.989520e-13  0.000000e+00  0.000000e+00  8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   13 
9   6 
7   19 
10   6 
1   14 
5   3 
10   14 
7   2 
3   17 
8   1 
3   20 
10   2 
10   10 
2   9 
4   2 
7   10 
2   13 
7   20 
5   18 
6   12 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 3.269659
> Min(tmp)
[1] -2.401338
> mean(tmp)
[1] 0.06135006
> Sum(tmp)
[1] 6.135006
> Var(tmp)
[1] 1.027378
> 
> rowMeans(tmp)
[1] 0.06135006
> rowSums(tmp)
[1] 6.135006
> rowVars(tmp)
[1] 1.027378
> rowSd(tmp)
[1] 1.013597
> rowMax(tmp)
[1] 3.269659
> rowMin(tmp)
[1] -2.401338
> 
> colMeans(tmp)
  [1] -0.316321453 -0.727183330 -0.094095072 -1.687715026 -2.401338209
  [6] -0.131942817 -0.820827277 -0.520246491  0.960861690 -0.597269253
 [11]  0.702044546 -0.603356421  0.313304729 -1.450912621 -0.304474093
 [16] -1.674521414 -0.212050451  1.802353229  0.978201267 -0.511976415
 [21]  0.086203464  1.707986785 -1.099622258  0.570994464  0.551844450
 [26] -2.046862586  0.233215014 -0.101994257 -0.006537922  0.138533625
 [31]  0.478168993  0.318310919 -0.707272314  0.459241244  1.066030638
 [36]  0.866090745  0.501261012  1.002391858  0.300973001 -0.406202875
 [41]  1.600580854  1.312367248  0.118994923  0.417140504  1.034146244
 [46]  2.166510892  1.007501398  0.279410326  0.164774660  0.790847470
 [51] -0.450505606 -0.377539915  0.728813616  0.148012093 -1.656257324
 [56]  0.732743762 -1.785155691  2.195499747 -0.155970376 -0.031217623
 [61]  1.281391108 -0.026287367 -1.651365917 -0.244208533  0.623561174
 [66]  0.530755587 -1.192339852 -0.579035912  0.666449185 -0.201995108
 [71]  0.659617588  3.269658740  1.463610417 -1.346760461 -0.861318801
 [76]  0.361944645  0.302184170 -1.293590969  0.508051069  0.217339118
 [81]  1.275299979 -1.173223949  0.323120543 -0.592654709 -0.709874460
 [86]  0.144176922  1.061751305 -1.494161911 -1.120524969  1.505839449
 [91] -1.042210111 -0.316011003  0.059739260  1.194303289 -0.798665904
 [96]  0.377635858 -0.594479682 -0.240830258  1.460732852 -0.528602520
> colSums(tmp)
  [1] -0.316321453 -0.727183330 -0.094095072 -1.687715026 -2.401338209
  [6] -0.131942817 -0.820827277 -0.520246491  0.960861690 -0.597269253
 [11]  0.702044546 -0.603356421  0.313304729 -1.450912621 -0.304474093
 [16] -1.674521414 -0.212050451  1.802353229  0.978201267 -0.511976415
 [21]  0.086203464  1.707986785 -1.099622258  0.570994464  0.551844450
 [26] -2.046862586  0.233215014 -0.101994257 -0.006537922  0.138533625
 [31]  0.478168993  0.318310919 -0.707272314  0.459241244  1.066030638
 [36]  0.866090745  0.501261012  1.002391858  0.300973001 -0.406202875
 [41]  1.600580854  1.312367248  0.118994923  0.417140504  1.034146244
 [46]  2.166510892  1.007501398  0.279410326  0.164774660  0.790847470
 [51] -0.450505606 -0.377539915  0.728813616  0.148012093 -1.656257324
 [56]  0.732743762 -1.785155691  2.195499747 -0.155970376 -0.031217623
 [61]  1.281391108 -0.026287367 -1.651365917 -0.244208533  0.623561174
 [66]  0.530755587 -1.192339852 -0.579035912  0.666449185 -0.201995108
 [71]  0.659617588  3.269658740  1.463610417 -1.346760461 -0.861318801
 [76]  0.361944645  0.302184170 -1.293590969  0.508051069  0.217339118
 [81]  1.275299979 -1.173223949  0.323120543 -0.592654709 -0.709874460
 [86]  0.144176922  1.061751305 -1.494161911 -1.120524969  1.505839449
 [91] -1.042210111 -0.316011003  0.059739260  1.194303289 -0.798665904
 [96]  0.377635858 -0.594479682 -0.240830258  1.460732852 -0.528602520
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.316321453 -0.727183330 -0.094095072 -1.687715026 -2.401338209
  [6] -0.131942817 -0.820827277 -0.520246491  0.960861690 -0.597269253
 [11]  0.702044546 -0.603356421  0.313304729 -1.450912621 -0.304474093
 [16] -1.674521414 -0.212050451  1.802353229  0.978201267 -0.511976415
 [21]  0.086203464  1.707986785 -1.099622258  0.570994464  0.551844450
 [26] -2.046862586  0.233215014 -0.101994257 -0.006537922  0.138533625
 [31]  0.478168993  0.318310919 -0.707272314  0.459241244  1.066030638
 [36]  0.866090745  0.501261012  1.002391858  0.300973001 -0.406202875
 [41]  1.600580854  1.312367248  0.118994923  0.417140504  1.034146244
 [46]  2.166510892  1.007501398  0.279410326  0.164774660  0.790847470
 [51] -0.450505606 -0.377539915  0.728813616  0.148012093 -1.656257324
 [56]  0.732743762 -1.785155691  2.195499747 -0.155970376 -0.031217623
 [61]  1.281391108 -0.026287367 -1.651365917 -0.244208533  0.623561174
 [66]  0.530755587 -1.192339852 -0.579035912  0.666449185 -0.201995108
 [71]  0.659617588  3.269658740  1.463610417 -1.346760461 -0.861318801
 [76]  0.361944645  0.302184170 -1.293590969  0.508051069  0.217339118
 [81]  1.275299979 -1.173223949  0.323120543 -0.592654709 -0.709874460
 [86]  0.144176922  1.061751305 -1.494161911 -1.120524969  1.505839449
 [91] -1.042210111 -0.316011003  0.059739260  1.194303289 -0.798665904
 [96]  0.377635858 -0.594479682 -0.240830258  1.460732852 -0.528602520
> colMin(tmp)
  [1] -0.316321453 -0.727183330 -0.094095072 -1.687715026 -2.401338209
  [6] -0.131942817 -0.820827277 -0.520246491  0.960861690 -0.597269253
 [11]  0.702044546 -0.603356421  0.313304729 -1.450912621 -0.304474093
 [16] -1.674521414 -0.212050451  1.802353229  0.978201267 -0.511976415
 [21]  0.086203464  1.707986785 -1.099622258  0.570994464  0.551844450
 [26] -2.046862586  0.233215014 -0.101994257 -0.006537922  0.138533625
 [31]  0.478168993  0.318310919 -0.707272314  0.459241244  1.066030638
 [36]  0.866090745  0.501261012  1.002391858  0.300973001 -0.406202875
 [41]  1.600580854  1.312367248  0.118994923  0.417140504  1.034146244
 [46]  2.166510892  1.007501398  0.279410326  0.164774660  0.790847470
 [51] -0.450505606 -0.377539915  0.728813616  0.148012093 -1.656257324
 [56]  0.732743762 -1.785155691  2.195499747 -0.155970376 -0.031217623
 [61]  1.281391108 -0.026287367 -1.651365917 -0.244208533  0.623561174
 [66]  0.530755587 -1.192339852 -0.579035912  0.666449185 -0.201995108
 [71]  0.659617588  3.269658740  1.463610417 -1.346760461 -0.861318801
 [76]  0.361944645  0.302184170 -1.293590969  0.508051069  0.217339118
 [81]  1.275299979 -1.173223949  0.323120543 -0.592654709 -0.709874460
 [86]  0.144176922  1.061751305 -1.494161911 -1.120524969  1.505839449
 [91] -1.042210111 -0.316011003  0.059739260  1.194303289 -0.798665904
 [96]  0.377635858 -0.594479682 -0.240830258  1.460732852 -0.528602520
> colMedians(tmp)
  [1] -0.316321453 -0.727183330 -0.094095072 -1.687715026 -2.401338209
  [6] -0.131942817 -0.820827277 -0.520246491  0.960861690 -0.597269253
 [11]  0.702044546 -0.603356421  0.313304729 -1.450912621 -0.304474093
 [16] -1.674521414 -0.212050451  1.802353229  0.978201267 -0.511976415
 [21]  0.086203464  1.707986785 -1.099622258  0.570994464  0.551844450
 [26] -2.046862586  0.233215014 -0.101994257 -0.006537922  0.138533625
 [31]  0.478168993  0.318310919 -0.707272314  0.459241244  1.066030638
 [36]  0.866090745  0.501261012  1.002391858  0.300973001 -0.406202875
 [41]  1.600580854  1.312367248  0.118994923  0.417140504  1.034146244
 [46]  2.166510892  1.007501398  0.279410326  0.164774660  0.790847470
 [51] -0.450505606 -0.377539915  0.728813616  0.148012093 -1.656257324
 [56]  0.732743762 -1.785155691  2.195499747 -0.155970376 -0.031217623
 [61]  1.281391108 -0.026287367 -1.651365917 -0.244208533  0.623561174
 [66]  0.530755587 -1.192339852 -0.579035912  0.666449185 -0.201995108
 [71]  0.659617588  3.269658740  1.463610417 -1.346760461 -0.861318801
 [76]  0.361944645  0.302184170 -1.293590969  0.508051069  0.217339118
 [81]  1.275299979 -1.173223949  0.323120543 -0.592654709 -0.709874460
 [86]  0.144176922  1.061751305 -1.494161911 -1.120524969  1.505839449
 [91] -1.042210111 -0.316011003  0.059739260  1.194303289 -0.798665904
 [96]  0.377635858 -0.594479682 -0.240830258  1.460732852 -0.528602520
> colRanges(tmp)
           [,1]       [,2]        [,3]      [,4]      [,5]       [,6]
[1,] -0.3163215 -0.7271833 -0.09409507 -1.687715 -2.401338 -0.1319428
[2,] -0.3163215 -0.7271833 -0.09409507 -1.687715 -2.401338 -0.1319428
           [,7]       [,8]      [,9]      [,10]     [,11]      [,12]     [,13]
[1,] -0.8208273 -0.5202465 0.9608617 -0.5972693 0.7020445 -0.6033564 0.3133047
[2,] -0.8208273 -0.5202465 0.9608617 -0.5972693 0.7020445 -0.6033564 0.3133047
         [,14]      [,15]     [,16]      [,17]    [,18]     [,19]      [,20]
[1,] -1.450913 -0.3044741 -1.674521 -0.2120505 1.802353 0.9782013 -0.5119764
[2,] -1.450913 -0.3044741 -1.674521 -0.2120505 1.802353 0.9782013 -0.5119764
          [,21]    [,22]     [,23]     [,24]     [,25]     [,26]    [,27]
[1,] 0.08620346 1.707987 -1.099622 0.5709945 0.5518445 -2.046863 0.233215
[2,] 0.08620346 1.707987 -1.099622 0.5709945 0.5518445 -2.046863 0.233215
          [,28]        [,29]     [,30]    [,31]     [,32]      [,33]     [,34]
[1,] -0.1019943 -0.006537922 0.1385336 0.478169 0.3183109 -0.7072723 0.4592412
[2,] -0.1019943 -0.006537922 0.1385336 0.478169 0.3183109 -0.7072723 0.4592412
        [,35]     [,36]    [,37]    [,38]    [,39]      [,40]    [,41]    [,42]
[1,] 1.066031 0.8660907 0.501261 1.002392 0.300973 -0.4062029 1.600581 1.312367
[2,] 1.066031 0.8660907 0.501261 1.002392 0.300973 -0.4062029 1.600581 1.312367
         [,43]     [,44]    [,45]    [,46]    [,47]     [,48]     [,49]
[1,] 0.1189949 0.4171405 1.034146 2.166511 1.007501 0.2794103 0.1647747
[2,] 0.1189949 0.4171405 1.034146 2.166511 1.007501 0.2794103 0.1647747
         [,50]      [,51]      [,52]     [,53]     [,54]     [,55]     [,56]
[1,] 0.7908475 -0.4505056 -0.3775399 0.7288136 0.1480121 -1.656257 0.7327438
[2,] 0.7908475 -0.4505056 -0.3775399 0.7288136 0.1480121 -1.656257 0.7327438
         [,57]  [,58]      [,59]       [,60]    [,61]       [,62]     [,63]
[1,] -1.785156 2.1955 -0.1559704 -0.03121762 1.281391 -0.02628737 -1.651366
[2,] -1.785156 2.1955 -0.1559704 -0.03121762 1.281391 -0.02628737 -1.651366
          [,64]     [,65]     [,66]    [,67]      [,68]     [,69]      [,70]
[1,] -0.2442085 0.6235612 0.5307556 -1.19234 -0.5790359 0.6664492 -0.2019951
[2,] -0.2442085 0.6235612 0.5307556 -1.19234 -0.5790359 0.6664492 -0.2019951
         [,71]    [,72]   [,73]    [,74]      [,75]     [,76]     [,77]
[1,] 0.6596176 3.269659 1.46361 -1.34676 -0.8613188 0.3619446 0.3021842
[2,] 0.6596176 3.269659 1.46361 -1.34676 -0.8613188 0.3619446 0.3021842
         [,78]     [,79]     [,80]  [,81]     [,82]     [,83]      [,84]
[1,] -1.293591 0.5080511 0.2173391 1.2753 -1.173224 0.3231205 -0.5926547
[2,] -1.293591 0.5080511 0.2173391 1.2753 -1.173224 0.3231205 -0.5926547
          [,85]     [,86]    [,87]     [,88]     [,89]    [,90]    [,91]
[1,] -0.7098745 0.1441769 1.061751 -1.494162 -1.120525 1.505839 -1.04221
[2,] -0.7098745 0.1441769 1.061751 -1.494162 -1.120525 1.505839 -1.04221
         [,92]      [,93]    [,94]      [,95]     [,96]      [,97]      [,98]
[1,] -0.316011 0.05973926 1.194303 -0.7986659 0.3776359 -0.5944797 -0.2408303
[2,] -0.316011 0.05973926 1.194303 -0.7986659 0.3776359 -0.5944797 -0.2408303
        [,99]     [,100]
[1,] 1.460733 -0.5286025
[2,] 1.460733 -0.5286025
> 
> 
> Max(tmp2)
[1] 2.179616
> Min(tmp2)
[1] -3.161911
> mean(tmp2)
[1] -0.2317481
> Sum(tmp2)
[1] -23.17481
> Var(tmp2)
[1] 0.9094666
> 
> rowMeans(tmp2)
  [1] -0.6191944274 -1.0123450656 -0.8576053831  1.4912100898  1.1531641403
  [6]  0.5172760609 -0.9185546505 -0.5489323535 -3.1619107897 -0.5026328884
 [11]  0.2421214728 -1.2593194831 -1.4637317303  0.3410345207  0.5190598992
 [16] -0.4407982605 -0.4279753856 -1.1536272814  0.7110952109 -1.8947022181
 [21] -0.6406566471  0.2504271738 -0.8655431456 -0.9328193778 -1.6926911622
 [26]  0.3414824173 -0.1187308751  0.7254922581 -0.6755485128 -0.6946199488
 [31]  0.0614191565 -0.8698448062 -0.5400766543 -1.3238238551 -0.3820476105
 [36] -0.1813061305 -1.3226933449  0.4676752889  0.5749938545 -0.7391149050
 [41]  0.9574128916 -0.7101345737  1.1798449014 -0.8123461520  1.5386647154
 [46] -0.9989276637  0.4166802782  0.9698689814  1.3100662554  0.4535395048
 [51] -0.4308677827  1.0643915270 -1.3793132791  0.7672456798 -1.3369564051
 [56]  0.2030047818 -0.0004358452 -0.6471930373 -0.9466070336  0.1964704020
 [61]  0.0458145274  1.2504191540 -0.3248493243 -0.0345151415 -1.6361775118
 [66] -0.3465568695  1.1103436816  1.0824517050 -1.5072901386  2.1796163196
 [71]  0.1083171644 -0.4692796607 -2.0074655899 -0.4091063348 -0.9542261136
 [76]  0.9300768522 -0.6543635989  0.7869616705 -0.1405667594  0.2330095753
 [81]  1.0586805630 -1.0894916217 -0.2714383797 -1.2037533550 -0.6706227018
 [86] -0.7495556088 -0.3523799101 -0.1631961821  1.4424742981  1.2597112860
 [91]  0.0113222002 -1.5665157868 -0.3440633259 -1.1916996601  0.6584065427
 [96]  0.1826943751 -1.5477269944 -0.0787625657 -0.3542877518 -1.3972274101
> rowSums(tmp2)
  [1] -0.6191944274 -1.0123450656 -0.8576053831  1.4912100898  1.1531641403
  [6]  0.5172760609 -0.9185546505 -0.5489323535 -3.1619107897 -0.5026328884
 [11]  0.2421214728 -1.2593194831 -1.4637317303  0.3410345207  0.5190598992
 [16] -0.4407982605 -0.4279753856 -1.1536272814  0.7110952109 -1.8947022181
 [21] -0.6406566471  0.2504271738 -0.8655431456 -0.9328193778 -1.6926911622
 [26]  0.3414824173 -0.1187308751  0.7254922581 -0.6755485128 -0.6946199488
 [31]  0.0614191565 -0.8698448062 -0.5400766543 -1.3238238551 -0.3820476105
 [36] -0.1813061305 -1.3226933449  0.4676752889  0.5749938545 -0.7391149050
 [41]  0.9574128916 -0.7101345737  1.1798449014 -0.8123461520  1.5386647154
 [46] -0.9989276637  0.4166802782  0.9698689814  1.3100662554  0.4535395048
 [51] -0.4308677827  1.0643915270 -1.3793132791  0.7672456798 -1.3369564051
 [56]  0.2030047818 -0.0004358452 -0.6471930373 -0.9466070336  0.1964704020
 [61]  0.0458145274  1.2504191540 -0.3248493243 -0.0345151415 -1.6361775118
 [66] -0.3465568695  1.1103436816  1.0824517050 -1.5072901386  2.1796163196
 [71]  0.1083171644 -0.4692796607 -2.0074655899 -0.4091063348 -0.9542261136
 [76]  0.9300768522 -0.6543635989  0.7869616705 -0.1405667594  0.2330095753
 [81]  1.0586805630 -1.0894916217 -0.2714383797 -1.2037533550 -0.6706227018
 [86] -0.7495556088 -0.3523799101 -0.1631961821  1.4424742981  1.2597112860
 [91]  0.0113222002 -1.5665157868 -0.3440633259 -1.1916996601  0.6584065427
 [96]  0.1826943751 -1.5477269944 -0.0787625657 -0.3542877518 -1.3972274101
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.6191944274 -1.0123450656 -0.8576053831  1.4912100898  1.1531641403
  [6]  0.5172760609 -0.9185546505 -0.5489323535 -3.1619107897 -0.5026328884
 [11]  0.2421214728 -1.2593194831 -1.4637317303  0.3410345207  0.5190598992
 [16] -0.4407982605 -0.4279753856 -1.1536272814  0.7110952109 -1.8947022181
 [21] -0.6406566471  0.2504271738 -0.8655431456 -0.9328193778 -1.6926911622
 [26]  0.3414824173 -0.1187308751  0.7254922581 -0.6755485128 -0.6946199488
 [31]  0.0614191565 -0.8698448062 -0.5400766543 -1.3238238551 -0.3820476105
 [36] -0.1813061305 -1.3226933449  0.4676752889  0.5749938545 -0.7391149050
 [41]  0.9574128916 -0.7101345737  1.1798449014 -0.8123461520  1.5386647154
 [46] -0.9989276637  0.4166802782  0.9698689814  1.3100662554  0.4535395048
 [51] -0.4308677827  1.0643915270 -1.3793132791  0.7672456798 -1.3369564051
 [56]  0.2030047818 -0.0004358452 -0.6471930373 -0.9466070336  0.1964704020
 [61]  0.0458145274  1.2504191540 -0.3248493243 -0.0345151415 -1.6361775118
 [66] -0.3465568695  1.1103436816  1.0824517050 -1.5072901386  2.1796163196
 [71]  0.1083171644 -0.4692796607 -2.0074655899 -0.4091063348 -0.9542261136
 [76]  0.9300768522 -0.6543635989  0.7869616705 -0.1405667594  0.2330095753
 [81]  1.0586805630 -1.0894916217 -0.2714383797 -1.2037533550 -0.6706227018
 [86] -0.7495556088 -0.3523799101 -0.1631961821  1.4424742981  1.2597112860
 [91]  0.0113222002 -1.5665157868 -0.3440633259 -1.1916996601  0.6584065427
 [96]  0.1826943751 -1.5477269944 -0.0787625657 -0.3542877518 -1.3972274101
> rowMin(tmp2)
  [1] -0.6191944274 -1.0123450656 -0.8576053831  1.4912100898  1.1531641403
  [6]  0.5172760609 -0.9185546505 -0.5489323535 -3.1619107897 -0.5026328884
 [11]  0.2421214728 -1.2593194831 -1.4637317303  0.3410345207  0.5190598992
 [16] -0.4407982605 -0.4279753856 -1.1536272814  0.7110952109 -1.8947022181
 [21] -0.6406566471  0.2504271738 -0.8655431456 -0.9328193778 -1.6926911622
 [26]  0.3414824173 -0.1187308751  0.7254922581 -0.6755485128 -0.6946199488
 [31]  0.0614191565 -0.8698448062 -0.5400766543 -1.3238238551 -0.3820476105
 [36] -0.1813061305 -1.3226933449  0.4676752889  0.5749938545 -0.7391149050
 [41]  0.9574128916 -0.7101345737  1.1798449014 -0.8123461520  1.5386647154
 [46] -0.9989276637  0.4166802782  0.9698689814  1.3100662554  0.4535395048
 [51] -0.4308677827  1.0643915270 -1.3793132791  0.7672456798 -1.3369564051
 [56]  0.2030047818 -0.0004358452 -0.6471930373 -0.9466070336  0.1964704020
 [61]  0.0458145274  1.2504191540 -0.3248493243 -0.0345151415 -1.6361775118
 [66] -0.3465568695  1.1103436816  1.0824517050 -1.5072901386  2.1796163196
 [71]  0.1083171644 -0.4692796607 -2.0074655899 -0.4091063348 -0.9542261136
 [76]  0.9300768522 -0.6543635989  0.7869616705 -0.1405667594  0.2330095753
 [81]  1.0586805630 -1.0894916217 -0.2714383797 -1.2037533550 -0.6706227018
 [86] -0.7495556088 -0.3523799101 -0.1631961821  1.4424742981  1.2597112860
 [91]  0.0113222002 -1.5665157868 -0.3440633259 -1.1916996601  0.6584065427
 [96]  0.1826943751 -1.5477269944 -0.0787625657 -0.3542877518 -1.3972274101
> 
> colMeans(tmp2)
[1] -0.2317481
> colSums(tmp2)
[1] -23.17481
> colVars(tmp2)
[1] 0.9094666
> colSd(tmp2)
[1] 0.9536596
> colMax(tmp2)
[1] 2.179616
> colMin(tmp2)
[1] -3.161911
> colMedians(tmp2)
[1] -0.3494684
> colRanges(tmp2)
          [,1]
[1,] -3.161911
[2,]  2.179616
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.32039092 -6.57558439 -0.46380415  4.32646068  0.15874195  4.49850180
 [7] -0.68480042 -7.11382808  0.20434832  0.01926541
> colApply(tmp,quantile)[,1]
             [,1]
[1,] -1.134011266
[2,] -0.265766070
[3,]  0.008522628
[4,]  0.806064879
[5,]  2.123778116
> 
> rowApply(tmp,sum)
 [1]  1.4505178 -2.6366345 -3.3732860 -3.1156455 -1.9920326 -0.2089304
 [7]  1.9087358  1.5495185  3.0360277  1.0714213
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    4    8    6    2    6    4    9   10     5
 [2,]    6    3    7    2    4    9    1    2    9     1
 [3,]    3    6    5    7    5    3    5   10    1     4
 [4,]    9    7    9    1    3   10    9    8    7     8
 [5,]    1   10   10    9    7    2    6    4    2     3
 [6,]    8    9    6    8    9    7    7    7    3     7
 [7,]    4    5    4    4    1    8   10    1    6     6
 [8,]    5    1    2    3    6    1    2    6    5     9
 [9,]    7    8    1   10   10    5    3    3    4     2
[10,]    2    2    3    5    8    4    8    5    8    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.70559489 -2.05152656  0.79323548 -2.83345668 -2.56676934  0.10641165
 [7]  1.88340910  0.25859223 -2.35660118  1.49413619 -0.02744170 -1.16867346
[13] -1.57322371  1.49375459 -2.46504261  0.03919491 -4.46062729 -0.80413541
[19]  0.36737491 -2.62515845
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.8236679
[2,] -0.7636239
[3,] -0.4811829
[4,]  0.2107266
[5,]  1.1521533
> 
> rowApply(tmp,sum)
[1]  -5.6929354 -11.3060036  -0.7992479  -0.4853182   1.0813629
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   19    8    8   13    6
[2,]   18    1   10    1   18
[3,]   17    7   17   12   10
[4,]    2    5   20    5    5
[5,]    7   14   14    3    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,]  1.1521533  0.5506058  0.4233222 -1.5557194 -0.96083937  0.1444720
[2,] -0.8236679 -1.7007294 -1.1144114 -1.2703377 -0.01370071  0.2357862
[3,] -0.4811829 -0.1626274  1.1297966  1.5853539  0.17281893 -0.5466739
[4,]  0.2107266 -2.0174628  0.1907614 -0.7845491 -1.01563256  0.7635479
[5,] -0.7636239  1.2786873  0.1637667 -0.8082044 -0.74941563 -0.4907206
           [,7]        [,8]        [,9]       [,10]     [,11]      [,12]
[1,]  0.3322731  0.06310838 -0.23726223 -0.20688820 -1.183013 -0.5396620
[2,] -0.1445716 -1.30270366  0.08422307  0.83949192 -1.146088 -0.5244561
[3,]  0.7151317 -0.03152755  0.12103054 -0.02712683 -1.046490 -0.4763717
[4,] -0.1115168  1.26358599 -0.27133810 -0.92748671  1.597124  1.0542523
[5,]  1.0920927  0.26612906 -2.05325447  1.81614601  1.751025 -0.6824359
          [,13]       [,14]      [,15]       [,16]      [,17]      [,18]
[1,] -1.2415086  2.05393323 -1.0349323 -0.82379040 -1.1681012  0.2640084
[2,] -0.7116785  0.13570239 -0.6057888  0.03695856 -1.5027292  0.2403910
[3,]  1.1717050 -0.83783753 -1.4473047  1.33245581 -1.3285327 -0.6689939
[4,]  0.1292993 -0.05057614 -0.3227926 -1.50388848 -0.6444995  0.6308933
[5,] -0.9210410  0.19253264  0.9457757  0.99745942  0.1832353 -1.2704342
          [,19]      [,20]
[1,]  0.3958423 -2.1209375
[2,] -0.6390889 -1.3786054
[3,] -0.6213938  0.6485228
[4,]  0.2113198  1.1129141
[5,]  1.0206956 -0.8870524
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2       col3      col4       col5      col6     col7
row1 -0.6696519 0.7666829 -0.6545509 -0.330683 -0.2332436 -1.097457 1.992859
           col8     col9     col10     col11     col12     col13    col14
row1 -0.2859101 0.609971 -1.313115 0.4365386 -1.451675 0.3174439 1.460126
          col15      col16    col17    col18    col19   col20
row1 0.02525058 -0.4562665 1.354612 1.848907 1.604454 1.03492
> tmp[,"col10"]
           col10
row1 -1.31311537
row2 -0.02753129
row3  0.35595858
row4 -0.53662575
row5  0.17687254
> tmp[c("row1","row5"),]
           col1      col2       col3       col4       col5      col6       col7
row1 -0.6696519 0.7666829 -0.6545509 -0.3306830 -0.2332436 -1.097457  1.9928591
row5 -0.7009417 0.2339859 -1.0688293 -0.1954346 -0.3852012  1.219008 -0.1631004
           col8     col9      col10      col11      col12     col13       col14
row1 -0.2859101 0.609971 -1.3131154  0.4365386 -1.4516754 0.3174439  1.46012556
row5  1.4693364 0.149355  0.1768725 -0.4024343  0.8124326 0.4518129 -0.05774094
          col15      col16     col17    col18    col19     col20
row1 0.02525058 -0.4562665 1.3546117 1.848907 1.604454  1.034920
row5 0.16021891  0.5915766 0.7317313 1.657954 1.852431 -0.723472
> tmp[,c("col6","col20")]
           col6       col20
row1 -1.0974566  1.03491953
row2  0.6952996 -1.02618455
row3  0.3364693  0.65278323
row4  1.4299033 -0.01414666
row5  1.2190085 -0.72347199
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 -1.097457  1.034920
row5  1.219008 -0.723472
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.36092 51.22001 52.21265 50.63899 50.65579 106.8982 51.72128 49.25184
         col9    col10   col11    col12    col13    col14    col15   col16
row1 50.34582 49.76856 51.3427 52.57378 49.91919 50.82039 50.09509 49.6801
        col17    col18    col19   col20
row1 50.09481 50.52935 50.30398 105.845
> tmp[,"col10"]
        col10
row1 49.76856
row2 30.87449
row3 31.07678
row4 31.44613
row5 50.58705
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.36092 51.22001 52.21265 50.63899 50.65579 106.8982 51.72128 49.25184
row5 50.43131 49.56559 49.34345 49.14328 49.93734 104.2635 51.04350 49.93710
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.34582 49.76856 51.34270 52.57378 49.91919 50.82039 50.09509 49.68010
row5 50.24236 50.58705 49.69954 50.61192 51.31601 51.42117 50.80874 50.97588
        col17    col18    col19    col20
row1 50.09481 50.52935 50.30398 105.8450
row5 49.85202 51.26791 49.10156 105.7896
> tmp[,c("col6","col20")]
          col6     col20
row1 106.89821 105.84497
row2  75.50259  75.71016
row3  78.04169  75.13508
row4  75.40752  74.38238
row5 104.26352 105.78961
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.8982 105.8450
row5 104.2635 105.7896
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.8982 105.8450
row5 104.2635 105.7896
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.1773161
[2,] -0.2555274
[3,] -1.0394197
[4,] -0.6636776
[5,]  0.6709773
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.65332325 -0.5159110
[2,] -0.06297417  0.2450281
[3,] -0.51193613 -0.8175448
[4,]  0.07471561 -2.2274708
[5,] -0.91050326  0.1425867
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.1470946  0.2792019
[2,] -0.1510921 -2.5095093
[3,] -2.1909381 -0.3289042
[4,]  1.5933273 -1.1770716
[5,] -0.3417658 -1.8559269
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.1470946
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.1470946
[2,] -0.1510921
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]       [,3]      [,4]       [,5]       [,6]       [,7]
row3  0.8986053 0.5990882 0.90847294 0.1259059 -0.4792195 -0.8670156  0.5158055
row1 -0.2839703 0.1896393 0.09317613 1.2021800 -0.2225007 -0.7070763 -1.2505758
           [,8]       [,9]       [,10]     [,11]      [,12]     [,13]     [,14]
row3 -0.1377484 -0.1662626  0.82243141 0.4692832  0.3653752 0.2210081 0.2958434
row1 -1.2811051 -1.6363679 -0.03886705 0.5083244 -1.3771193 0.6930129 1.2603366
          [,15]      [,16]     [,17]       [,18]     [,19]      [,20]
row3  0.8249993 -0.8536174 0.2892375 -0.05790444 1.5548005  0.2531703
row1 -0.3218972  0.8638930 1.2527422  0.84958980 0.5253182 -1.4906142
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
         [,1]      [,2]     [,3]    [,4]       [,5]     [,6]      [,7]     [,8]
row2 1.284496 0.7119053 2.462346 2.77023 -0.3098808 1.212166 0.9504709 1.062252
           [,9]    [,10]
row2 -0.3616728 0.929789
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]     [,3]      [,4]      [,5]      [,6]     [,7]
row5 -1.419275 0.9262842 1.558019 0.1490425 -1.242516 -1.723484 1.525987
           [,8]        [,9]      [,10]     [,11]      [,12]      [,13]
row5 -0.6870097 -0.03314066 -0.3221459 -3.311175 -0.7869643 -0.1426989
          [,14]    [,15]    [,16]    [,17]      [,18]    [,19]      [,20]
row5 -0.3686341 -1.21517 1.561931 1.413698 0.03403619 1.151358 -0.3222389
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600003b6c000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d334dcf1f9f"
 [2] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d33592527a1"
 [3] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d33164ce8c0"
 [4] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d331344a0b0"
 [5] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d337e918cb1"
 [6] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d335abf962" 
 [7] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d335d8193d6"
 [8] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d336610f68f"
 [9] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d3363ab5aa2"
[10] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d336cb74cd" 
[11] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d3317614237"
[12] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d33724234de"
[13] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d33589d156c"
[14] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d3330e992e7"
[15] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1d3336ab94c7"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600003b18120>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600003b18120>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600003b18120>
> rowMedians(tmp)
  [1] -0.3278848486  0.1845375531 -0.1134776069 -0.3127802178 -0.1833452836
  [6] -0.1706397528  0.5392167456  0.3507524226  0.1212135441 -0.2221757718
 [11]  0.0984199937  0.0309428567  0.0454099468  0.3463253264 -0.3932349365
 [16]  0.0423328112  0.2058493098 -0.3620437469 -0.2350868946  0.1526817697
 [21] -0.1033710489 -0.6966761207  0.9422399383  0.5093458703  0.6831279105
 [26]  0.2390738879  0.4443918841 -0.2612996684 -0.0155128422  0.0203724799
 [31]  0.4228964654  0.3534881846 -0.2663739284 -0.4628934045  0.0194025937
 [36]  0.2418689366  0.3413008788  0.0587105024 -0.3676316134 -0.1298821700
 [41] -0.4416754731  0.2265500923  0.0220053899  0.3864883890  0.3835065563
 [46]  0.0650789137 -0.1979931994 -0.2908445746 -0.2884322618  0.0433406889
 [51] -0.0625423599 -0.4049961817  0.0233712553 -0.5057209200  0.3705720267
 [56] -0.5876464446 -0.0007898461  0.1228673405 -0.3076391113 -0.5477890732
 [61] -0.2523804608 -0.0032082262  0.4744470938  0.1820362667  0.0998370313
 [66] -0.1223724501 -0.2476930411 -0.3515636239 -0.6043372099  0.3447385157
 [71] -0.5297124801  0.3521764740  0.1935179609  0.1372224184  0.2450274813
 [76] -0.4373160020  0.1614842026  0.0669681370 -0.1101448187 -0.3392084666
 [81] -0.4521449686 -0.2509376089 -0.2332034152  0.1117998438  0.3621985322
 [86] -0.0921318142 -0.0153958507 -0.2011142794  0.3912682765  0.0657813723
 [91]  0.1904719893  0.0242411499 -0.3107509269  0.2309203159  0.2990899013
 [96]  0.3529864146  0.1096010814  0.0149739521  0.2760274225 -0.3241430997
[101]  0.5209347780  0.0916919434 -0.2142077479  0.3129899834  0.0871415187
[106]  0.1101900782  0.2301949163  0.0232240428 -0.0966620227 -0.2719116843
[111]  0.6833863958  0.1546584815  0.1449184158 -0.1576802378 -0.3474401240
[116] -0.1301859562 -0.1105067192 -0.3575501035 -0.6797336801 -0.1318037391
[121]  0.3477562728  0.0049387998 -0.4860968692  0.5249346965 -0.0206919782
[126]  0.6913699029  0.1838728558 -0.2658448771 -0.2869058605  0.0162524226
[131] -0.2810252047 -0.0254680837  0.3472555013  0.0257718238  0.1322520178
[136] -0.6371077646  0.0824555932 -0.4249311023 -0.4651651967 -0.5962536702
[141]  0.0486134457  0.1901634712 -0.0708727258  0.1255303776 -0.4240840289
[146] -0.0193804384  0.1063593904 -0.3084811945 -0.1842907341 -0.5552829508
[151] -0.2244113103  0.2987481845 -0.2510630007  0.3830951097 -0.1864399016
[156] -0.0246987213  0.4068741834  0.2107246968  0.6846804345  0.3611361880
[161]  0.0626091453 -0.1045057161  0.1228579943 -0.0255389305 -0.3501674817
[166] -0.0774454030 -0.1215580617 -0.3468843020 -0.1814319687 -0.1518749753
[171]  0.2883457857 -0.2856946009  0.6448530084 -0.2494987225 -0.0059644897
[176]  0.0852620712 -0.2513592956 -0.5006077386  0.1216452639 -0.6349317372
[181] -0.2824559929 -0.3027310605  0.1482283472  0.1473439651  0.4727278341
[186] -0.1067741105 -0.0080770970  0.6393030501 -0.2152020926 -0.2979454795
[191] -0.2826409076 -0.3571902284  0.2769234390  0.3619861153 -0.5262903351
[196]  0.1466048354 -0.4109755862 -0.3841970216 -0.0265478264 -0.0294043553
[201]  0.0191762697 -0.4246773858 -0.3254658753 -0.2476270066  0.1277464136
[206] -0.1436369602 -0.3325608271 -0.2277156362  0.1738290450 -0.0455528105
[211] -0.1775265260  0.2365734135  0.1669034896  0.4303639924 -0.1760186848
[216]  0.1366636138  0.0014879174  0.1259643677  0.0167923751 -0.0398553921
[221] -0.2256338195  0.2757187716 -0.2473919362 -0.2541233316  0.2429158487
[226]  0.3887902336  0.0252569358  0.0545755484  0.4523886284  0.0915449754
> 
> proc.time()
   user  system elapsed 
  5.097  19.133  28.110 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001e18000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001e18000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001e18000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600001e18000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600001e04000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e04000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600001e04000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e04000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001e04000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e1c300>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e1c300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001e1c300>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001e1c300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001e1c300>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600001e1c300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001e1c300>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600001e1c300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001e1c300>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001e30000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile22622ca9018f" "BufferedMatrixFile2262ba56a31" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile22622ca9018f" "BufferedMatrixFile2262ba56a31" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30240>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001e30240>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001e30240>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600001e30240>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600001e30240>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30420>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001e30420>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001e30420>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600001e30420>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001e30600>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001e30600>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.589   0.217   0.787 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.591   0.139   0.722 

Example timings