Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-11-20 12:07 -0500 (Wed, 20 Nov 2024).

HostnameOSArch (*)R versionInstalled pkgs
teran2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4481
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4479
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4359
lconwaymacOS 12.7.1 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4539
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch644.4.1 (2024-06-14) -- "Race for Your Life" 4493
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2024-11-19 13:40 -0500 (Tue, 19 Nov 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
teran2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kunpeng2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2024-11-20 05:49:05 -0000 (Wed, 20 Nov 2024)
EndedAt: 2024-11-20 05:49:37 -0000 (Wed, 20 Nov 2024)
EllapsedTime: 32.1 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    gcc (GCC) 12.2.1 20220819 (openEuler 12.2.1-14)
    GNU Fortran (GCC) 10.3.1
* running under: openEuler 22.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (conda-forge gcc 14.2.0-1) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.4.1/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘gcc (conda-forge gcc 14.2.0-1) 14.2.0’
gcc -I"/home/biocbuild/R/R-4.4.1/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -I"/home/biocbuild/R/R-4.4.1/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -I"/home/biocbuild/R/R-4.4.1/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -I"/home/biocbuild/R/R-4.4.1/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c init_package.c -o init_package.o
gcc -shared -L/home/biocbuild/R/R-4.4.1/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R-4.4.1/lib -lR
installing to /home/biocbuild/R/R-4.4.1/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.419   0.032   0.350 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471778 25.2    1026214 54.9   643445 34.4
Vcells 871880  6.7    8388608 64.0  2044632 15.6
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Nov 20 05:49:31 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Nov 20 05:49:31 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x3ebee9f0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Nov 20 05:49:32 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Nov 20 05:49:32 2024"
> 
> ColMode(tmp2)
<pointer: 0x3ebee9f0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]     [,4]
[1,] 99.2905929 -0.8832994 -0.7604273 0.916547
[2,] -0.2888511 -1.1312297  0.7444777 1.046633
[3,] -1.3763878 -1.7962369  0.2650359 1.350070
[4,] -0.5467097 -0.9641428 -0.5013125 0.413524
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]     [,4]
[1,] 99.2905929 0.8832994 0.7604273 0.916547
[2,]  0.2888511 1.1312297 0.7444777 1.046633
[3,]  1.3763878 1.7962369 0.2650359 1.350070
[4,]  0.5467097 0.9641428 0.5013125 0.413524
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9644665 0.9398401 0.8720248 0.9573646
[2,] 0.5374487 1.0635928 0.8628312 1.0230508
[3,] 1.1731955 1.3402376 0.5148163 1.1619253
[4,] 0.7393982 0.9819078 0.7080342 0.6430583
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.93526 35.28170 34.48068 35.49019
[2,]  30.66334 36.76716 34.37279 36.27714
[3,]  38.10834 40.19861 30.41320 37.96932
[4,]  32.94069 35.78322 32.58165 31.84411
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x3d5763e0>
> exp(tmp5)
<pointer: 0x3d5763e0>
> log(tmp5,2)
<pointer: 0x3d5763e0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.0919
> Min(tmp5)
[1] 52.81046
> mean(tmp5)
[1] 73.6383
> Sum(tmp5)
[1] 14727.66
> Var(tmp5)
[1] 845.8018
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 94.62058 70.18935 70.99442 69.60898 69.22124 71.89118 71.95455 70.75421
 [9] 76.11504 71.03348
> rowSums(tmp5)
 [1] 1892.412 1403.787 1419.888 1392.180 1384.425 1437.824 1439.091 1415.084
 [9] 1522.301 1420.670
> rowVars(tmp5)
 [1] 7746.22623   32.48643   64.19320   55.25748   67.88923   81.66810
 [7]   67.13478   66.33552   44.04465   83.93941
> rowSd(tmp5)
 [1] 88.012648  5.699687  8.012066  7.433537  8.239492  9.037041  8.193581
 [8]  8.144662  6.636615  9.161845
> rowMax(tmp5)
 [1] 466.09190  80.04279  83.66815  82.22713  89.40940  92.80933  88.06321
 [8]  84.02949  90.08150  90.71483
> rowMin(tmp5)
 [1] 58.23872 59.77900 57.06614 54.19412 55.92458 56.34393 59.84559 56.41978
 [9] 62.18306 52.81046
> 
> colMeans(tmp5)
 [1] 109.76846  72.55249  70.35491  74.88862  73.98392  71.95547  70.72882
 [8]  72.18118  70.58424  71.37214  75.79450  74.09211  70.20626  69.46826
[15]  70.15261  72.30738  68.70739  68.45448  72.37031  72.84251
> colSums(tmp5)
 [1] 1097.6846  725.5249  703.5491  748.8862  739.8392  719.5547  707.2882
 [8]  721.8118  705.8424  713.7214  757.9450  740.9211  702.0626  694.6826
[15]  701.5261  723.0738  687.0739  684.5448  723.7031  728.4251
> colVars(tmp5)
 [1] 15706.86808    38.40345    33.71991    60.62328   106.69463    78.87016
 [7]   129.54104    99.57152    54.34912    94.18430   116.72819   119.53583
[13]    46.73835    32.34312    48.79969    95.80380    41.18991    57.05395
[19]    64.51348    66.88047
> colSd(tmp5)
 [1] 125.327044   6.197052   5.806885   7.786095  10.329309   8.880887
 [7]  11.381610   9.978553   7.372185   9.704860  10.804082  10.933244
[13]   6.836545   5.687101   6.985677   9.787941   6.417936   7.553406
[19]   8.032028   8.178048
> colMax(tmp5)
 [1] 466.09190  83.66815  82.85201  83.78926  90.71483  82.73720  90.08150
 [8]  83.00300  80.94796  92.80933  89.40940  88.06321  76.91378  77.85044
[15]  82.22713  95.60049  78.98474  80.67659  82.04391  80.87262
> colMin(tmp5)
 [1] 58.99060 63.61229 62.82182 59.51808 55.92458 56.41978 57.28961 54.19412
 [9] 59.97045 59.84559 60.40811 52.81046 56.34393 59.69757 59.51399 59.77900
[17] 61.01061 57.91277 58.83305 58.23872
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 94.62058 70.18935 70.99442 69.60898 69.22124 71.89118 71.95455       NA
 [9] 76.11504 71.03348
> rowSums(tmp5)
 [1] 1892.412 1403.787 1419.888 1392.180 1384.425 1437.824 1439.091       NA
 [9] 1522.301 1420.670
> rowVars(tmp5)
 [1] 7746.22623   32.48643   64.19320   55.25748   67.88923   81.66810
 [7]   67.13478   63.94406   44.04465   83.93941
> rowSd(tmp5)
 [1] 88.012648  5.699687  8.012066  7.433537  8.239492  9.037041  8.193581
 [8]  7.996503  6.636615  9.161845
> rowMax(tmp5)
 [1] 466.09190  80.04279  83.66815  82.22713  89.40940  92.80933  88.06321
 [8]        NA  90.08150  90.71483
> rowMin(tmp5)
 [1] 58.23872 59.77900 57.06614 54.19412 55.92458 56.34393 59.84559       NA
 [9] 62.18306 52.81046
> 
> colMeans(tmp5)
 [1] 109.76846  72.55249  70.35491  74.88862  73.98392  71.95547  70.72882
 [8]  72.18118        NA  71.37214  75.79450  74.09211  70.20626  69.46826
[15]  70.15261  72.30738  68.70739  68.45448  72.37031  72.84251
> colSums(tmp5)
 [1] 1097.6846  725.5249  703.5491  748.8862  739.8392  719.5547  707.2882
 [8]  721.8118        NA  713.7214  757.9450  740.9211  702.0626  694.6826
[15]  701.5261  723.0738  687.0739  684.5448  723.7031  728.4251
> colVars(tmp5)
 [1] 15706.86808    38.40345    33.71991    60.62328   106.69463    78.87016
 [7]   129.54104    99.57152          NA    94.18430   116.72819   119.53583
[13]    46.73835    32.34312    48.79969    95.80380    41.18991    57.05395
[19]    64.51348    66.88047
> colSd(tmp5)
 [1] 125.327044   6.197052   5.806885   7.786095  10.329309   8.880887
 [7]  11.381610   9.978553         NA   9.704860  10.804082  10.933244
[13]   6.836545   5.687101   6.985677   9.787941   6.417936   7.553406
[19]   8.032028   8.178048
> colMax(tmp5)
 [1] 466.09190  83.66815  82.85201  83.78926  90.71483  82.73720  90.08150
 [8]  83.00300        NA  92.80933  89.40940  88.06321  76.91378  77.85044
[15]  82.22713  95.60049  78.98474  80.67659  82.04391  80.87262
> colMin(tmp5)
 [1] 58.99060 63.61229 62.82182 59.51808 55.92458 56.41978 57.28961 54.19412
 [9]       NA 59.84559 60.40811 52.81046 56.34393 59.69757 59.51399 59.77900
[17] 61.01061 57.91277 58.83305 58.23872
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.0919
> Min(tmp5,na.rm=TRUE)
[1] 52.81046
> mean(tmp5,na.rm=TRUE)
[1] 73.60157
> Sum(tmp5,na.rm=TRUE)
[1] 14646.71
> Var(tmp5,na.rm=TRUE)
[1] 849.8023
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 94.62058 70.18935 70.99442 69.60898 69.22124 71.89118 71.95455 70.21770
 [9] 76.11504 71.03348
> rowSums(tmp5,na.rm=TRUE)
 [1] 1892.412 1403.787 1419.888 1392.180 1384.425 1437.824 1439.091 1334.136
 [9] 1522.301 1420.670
> rowVars(tmp5,na.rm=TRUE)
 [1] 7746.22623   32.48643   64.19320   55.25748   67.88923   81.66810
 [7]   67.13478   63.94406   44.04465   83.93941
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.012648  5.699687  8.012066  7.433537  8.239492  9.037041  8.193581
 [8]  7.996503  6.636615  9.161845
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.09190  80.04279  83.66815  82.22713  89.40940  92.80933  88.06321
 [8]  84.02949  90.08150  90.71483
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.23872 59.77900 57.06614 54.19412 55.92458 56.34393 59.84559 56.41978
 [9] 62.18306 52.81046
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.76846  72.55249  70.35491  74.88862  73.98392  71.95547  70.72882
 [8]  72.18118  69.43271  71.37214  75.79450  74.09211  70.20626  69.46826
[15]  70.15261  72.30738  68.70739  68.45448  72.37031  72.84251
> colSums(tmp5,na.rm=TRUE)
 [1] 1097.6846  725.5249  703.5491  748.8862  739.8392  719.5547  707.2882
 [8]  721.8118  624.8944  713.7214  757.9450  740.9211  702.0626  694.6826
[15]  701.5261  723.0738  687.0739  684.5448  723.7031  728.4251
> colVars(tmp5,na.rm=TRUE)
 [1] 15706.86808    38.40345    33.71991    60.62328   106.69463    78.87016
 [7]   129.54104    99.57152    46.22514    94.18430   116.72819   119.53583
[13]    46.73835    32.34312    48.79969    95.80380    41.18991    57.05395
[19]    64.51348    66.88047
> colSd(tmp5,na.rm=TRUE)
 [1] 125.327044   6.197052   5.806885   7.786095  10.329309   8.880887
 [7]  11.381610   9.978553   6.798908   9.704860  10.804082  10.933244
[13]   6.836545   5.687101   6.985677   9.787941   6.417936   7.553406
[19]   8.032028   8.178048
> colMax(tmp5,na.rm=TRUE)
 [1] 466.09190  83.66815  82.85201  83.78926  90.71483  82.73720  90.08150
 [8]  83.00300  79.59812  92.80933  89.40940  88.06321  76.91378  77.85044
[15]  82.22713  95.60049  78.98474  80.67659  82.04391  80.87262
> colMin(tmp5,na.rm=TRUE)
 [1] 58.99060 63.61229 62.82182 59.51808 55.92458 56.41978 57.28961 54.19412
 [9] 59.97045 59.84559 60.40811 52.81046 56.34393 59.69757 59.51399 59.77900
[17] 61.01061 57.91277 58.83305 58.23872
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 94.62058 70.18935 70.99442 69.60898 69.22124 71.89118 71.95455      NaN
 [9] 76.11504 71.03348
> rowSums(tmp5,na.rm=TRUE)
 [1] 1892.412 1403.787 1419.888 1392.180 1384.425 1437.824 1439.091    0.000
 [9] 1522.301 1420.670
> rowVars(tmp5,na.rm=TRUE)
 [1] 7746.22623   32.48643   64.19320   55.25748   67.88923   81.66810
 [7]   67.13478         NA   44.04465   83.93941
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.012648  5.699687  8.012066  7.433537  8.239492  9.037041  8.193581
 [8]        NA  6.636615  9.161845
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.09190  80.04279  83.66815  82.22713  89.40940  92.80933  88.06321
 [8]        NA  90.08150  90.71483
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.23872 59.77900 57.06614 54.19412 55.92458 56.34393 59.84559       NA
 [9] 62.18306 52.81046
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.20335  72.37625  71.19193  76.59645  73.93763  73.68166  71.40679
 [8]  71.45224       NaN  72.32295  76.26120  72.98795  70.91805  69.72559
[15]  69.22505  72.13314  69.56258  68.16279  71.41656  72.18028
> colSums(tmp5,na.rm=TRUE)
 [1] 1027.8301  651.3862  640.7273  689.3681  665.4387  663.1349  642.6611
 [8]  643.0701    0.0000  650.9066  686.3508  656.8916  638.2624  627.5303
[15]  623.0255  649.1983  626.0633  613.4651  642.7490  649.6226
> colVars(tmp5,na.rm=TRUE)
 [1] 17448.95895    42.85446    30.05329    35.38823   120.00735    55.20701
 [7]   140.56269   106.04014          NA    95.78673   128.86889   120.76230
[13]    46.88095    35.64107    45.22056   107.43775    38.11082    63.22846
[19]    62.34411    70.30692
> colSd(tmp5,na.rm=TRUE)
 [1] 132.094508   6.546332   5.482089   5.948800  10.954787   7.430142
 [7]  11.855914  10.297580         NA   9.787069  11.352044  10.989190
[13]   6.846967   5.970014   6.724623  10.365218   6.173396   7.951632
[19]   7.895829   8.384922
> colMax(tmp5,na.rm=TRUE)
 [1] 466.09190  83.66815  82.85201  83.78926  90.71483  82.73720  90.08150
 [8]  83.00300      -Inf  92.80933  89.40940  88.06321  76.91378  77.85044
[15]  82.22713  95.60049  78.98474  80.67659  82.04391  80.87262
> colMin(tmp5,na.rm=TRUE)
 [1] 58.99060 63.61229 63.30109 66.27934 55.92458 60.26020 57.28961 54.19412
 [9]      Inf 59.84559 60.40811 52.81046 56.34393 59.69757 59.51399 59.77900
[17] 62.18306 57.91277 58.83305 58.23872
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 227.8803 156.2599 177.6152 146.5779 261.9212 150.8734 226.1175 243.2069
 [9] 128.3908 138.9082
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 227.8803 156.2599 177.6152 146.5779 261.9212 150.8734 226.1175 243.2069
 [9] 128.3908 138.9082
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -8.526513e-14 -1.705303e-13  2.842171e-14 -7.105427e-14
 [6]  0.000000e+00  5.684342e-14 -2.273737e-13  1.989520e-13  2.273737e-13
[11]  8.526513e-14 -5.684342e-14 -1.136868e-13  1.136868e-13  1.705303e-13
[16] -8.526513e-14 -2.842171e-14  1.136868e-13 -8.526513e-14  1.421085e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   9 
4   7 
8   10 
6   12 
5   7 
9   4 
9   1 
9   17 
7   17 
7   20 
3   9 
7   20 
2   11 
4   10 
1   14 
1   19 
6   3 
4   10 
3   6 
4   14 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.813666
> Min(tmp)
[1] -2.573187
> mean(tmp)
[1] -0.06838047
> Sum(tmp)
[1] -6.838047
> Var(tmp)
[1] 1.157406
> 
> rowMeans(tmp)
[1] -0.06838047
> rowSums(tmp)
[1] -6.838047
> rowVars(tmp)
[1] 1.157406
> rowSd(tmp)
[1] 1.075828
> rowMax(tmp)
[1] 2.813666
> rowMin(tmp)
[1] -2.573187
> 
> colMeans(tmp)
  [1]  0.832267141  0.135933582 -1.024075151  2.813666423 -0.545759742
  [6]  0.343509456 -0.807995160  0.472985394 -2.158642527  1.308745509
 [11]  0.688312894  0.890570369 -0.597017198  0.847902715 -0.824709398
 [16] -0.358343856  0.058474890 -0.393978129 -0.420422983  0.146608894
 [21]  1.638590676  0.658825636  1.123841109  0.063677081 -1.909734852
 [26]  0.176042196  0.071547471 -1.689983516 -0.577383486 -0.065267326
 [31]  2.774633186  0.968605954  1.251750881 -0.438741418 -1.847030185
 [36] -1.932644871 -1.230686131 -0.343741869 -0.689374196  0.495297500
 [41]  2.502232657 -0.930923691  0.318472156  1.205763871  0.699267079
 [46]  0.599625441 -0.547323787 -0.758845447  0.811461171  1.252547801
 [51]  0.031269535 -0.952815618 -0.090935912 -0.016846909 -1.374688484
 [56]  0.400486540 -1.033121263 -1.205900197 -0.837304279  0.129029323
 [61]  0.080247477  2.805586171 -0.441414018 -0.079174026 -0.423727844
 [66]  0.601051244 -1.096636070 -0.168194646  0.979465582 -2.152116660
 [71] -0.314487352 -0.850973205 -1.521595480  0.442885389 -0.456868828
 [76] -1.584608817 -0.434643133  0.320528062 -1.096565836  0.993461625
 [81]  1.339100459 -0.547283531  0.448695303 -0.660640432  1.634851797
 [86]  0.867731937 -0.271193044 -0.775079583 -0.395800975 -2.573187431
 [91]  0.961966764 -0.425883120  0.719083294 -1.167072401 -0.852513051
 [96] -0.008124531  0.407180342  0.115708293 -1.629274832  0.263760684
> colSums(tmp)
  [1]  0.832267141  0.135933582 -1.024075151  2.813666423 -0.545759742
  [6]  0.343509456 -0.807995160  0.472985394 -2.158642527  1.308745509
 [11]  0.688312894  0.890570369 -0.597017198  0.847902715 -0.824709398
 [16] -0.358343856  0.058474890 -0.393978129 -0.420422983  0.146608894
 [21]  1.638590676  0.658825636  1.123841109  0.063677081 -1.909734852
 [26]  0.176042196  0.071547471 -1.689983516 -0.577383486 -0.065267326
 [31]  2.774633186  0.968605954  1.251750881 -0.438741418 -1.847030185
 [36] -1.932644871 -1.230686131 -0.343741869 -0.689374196  0.495297500
 [41]  2.502232657 -0.930923691  0.318472156  1.205763871  0.699267079
 [46]  0.599625441 -0.547323787 -0.758845447  0.811461171  1.252547801
 [51]  0.031269535 -0.952815618 -0.090935912 -0.016846909 -1.374688484
 [56]  0.400486540 -1.033121263 -1.205900197 -0.837304279  0.129029323
 [61]  0.080247477  2.805586171 -0.441414018 -0.079174026 -0.423727844
 [66]  0.601051244 -1.096636070 -0.168194646  0.979465582 -2.152116660
 [71] -0.314487352 -0.850973205 -1.521595480  0.442885389 -0.456868828
 [76] -1.584608817 -0.434643133  0.320528062 -1.096565836  0.993461625
 [81]  1.339100459 -0.547283531  0.448695303 -0.660640432  1.634851797
 [86]  0.867731937 -0.271193044 -0.775079583 -0.395800975 -2.573187431
 [91]  0.961966764 -0.425883120  0.719083294 -1.167072401 -0.852513051
 [96] -0.008124531  0.407180342  0.115708293 -1.629274832  0.263760684
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.832267141  0.135933582 -1.024075151  2.813666423 -0.545759742
  [6]  0.343509456 -0.807995160  0.472985394 -2.158642527  1.308745509
 [11]  0.688312894  0.890570369 -0.597017198  0.847902715 -0.824709398
 [16] -0.358343856  0.058474890 -0.393978129 -0.420422983  0.146608894
 [21]  1.638590676  0.658825636  1.123841109  0.063677081 -1.909734852
 [26]  0.176042196  0.071547471 -1.689983516 -0.577383486 -0.065267326
 [31]  2.774633186  0.968605954  1.251750881 -0.438741418 -1.847030185
 [36] -1.932644871 -1.230686131 -0.343741869 -0.689374196  0.495297500
 [41]  2.502232657 -0.930923691  0.318472156  1.205763871  0.699267079
 [46]  0.599625441 -0.547323787 -0.758845447  0.811461171  1.252547801
 [51]  0.031269535 -0.952815618 -0.090935912 -0.016846909 -1.374688484
 [56]  0.400486540 -1.033121263 -1.205900197 -0.837304279  0.129029323
 [61]  0.080247477  2.805586171 -0.441414018 -0.079174026 -0.423727844
 [66]  0.601051244 -1.096636070 -0.168194646  0.979465582 -2.152116660
 [71] -0.314487352 -0.850973205 -1.521595480  0.442885389 -0.456868828
 [76] -1.584608817 -0.434643133  0.320528062 -1.096565836  0.993461625
 [81]  1.339100459 -0.547283531  0.448695303 -0.660640432  1.634851797
 [86]  0.867731937 -0.271193044 -0.775079583 -0.395800975 -2.573187431
 [91]  0.961966764 -0.425883120  0.719083294 -1.167072401 -0.852513051
 [96] -0.008124531  0.407180342  0.115708293 -1.629274832  0.263760684
> colMin(tmp)
  [1]  0.832267141  0.135933582 -1.024075151  2.813666423 -0.545759742
  [6]  0.343509456 -0.807995160  0.472985394 -2.158642527  1.308745509
 [11]  0.688312894  0.890570369 -0.597017198  0.847902715 -0.824709398
 [16] -0.358343856  0.058474890 -0.393978129 -0.420422983  0.146608894
 [21]  1.638590676  0.658825636  1.123841109  0.063677081 -1.909734852
 [26]  0.176042196  0.071547471 -1.689983516 -0.577383486 -0.065267326
 [31]  2.774633186  0.968605954  1.251750881 -0.438741418 -1.847030185
 [36] -1.932644871 -1.230686131 -0.343741869 -0.689374196  0.495297500
 [41]  2.502232657 -0.930923691  0.318472156  1.205763871  0.699267079
 [46]  0.599625441 -0.547323787 -0.758845447  0.811461171  1.252547801
 [51]  0.031269535 -0.952815618 -0.090935912 -0.016846909 -1.374688484
 [56]  0.400486540 -1.033121263 -1.205900197 -0.837304279  0.129029323
 [61]  0.080247477  2.805586171 -0.441414018 -0.079174026 -0.423727844
 [66]  0.601051244 -1.096636070 -0.168194646  0.979465582 -2.152116660
 [71] -0.314487352 -0.850973205 -1.521595480  0.442885389 -0.456868828
 [76] -1.584608817 -0.434643133  0.320528062 -1.096565836  0.993461625
 [81]  1.339100459 -0.547283531  0.448695303 -0.660640432  1.634851797
 [86]  0.867731937 -0.271193044 -0.775079583 -0.395800975 -2.573187431
 [91]  0.961966764 -0.425883120  0.719083294 -1.167072401 -0.852513051
 [96] -0.008124531  0.407180342  0.115708293 -1.629274832  0.263760684
> colMedians(tmp)
  [1]  0.832267141  0.135933582 -1.024075151  2.813666423 -0.545759742
  [6]  0.343509456 -0.807995160  0.472985394 -2.158642527  1.308745509
 [11]  0.688312894  0.890570369 -0.597017198  0.847902715 -0.824709398
 [16] -0.358343856  0.058474890 -0.393978129 -0.420422983  0.146608894
 [21]  1.638590676  0.658825636  1.123841109  0.063677081 -1.909734852
 [26]  0.176042196  0.071547471 -1.689983516 -0.577383486 -0.065267326
 [31]  2.774633186  0.968605954  1.251750881 -0.438741418 -1.847030185
 [36] -1.932644871 -1.230686131 -0.343741869 -0.689374196  0.495297500
 [41]  2.502232657 -0.930923691  0.318472156  1.205763871  0.699267079
 [46]  0.599625441 -0.547323787 -0.758845447  0.811461171  1.252547801
 [51]  0.031269535 -0.952815618 -0.090935912 -0.016846909 -1.374688484
 [56]  0.400486540 -1.033121263 -1.205900197 -0.837304279  0.129029323
 [61]  0.080247477  2.805586171 -0.441414018 -0.079174026 -0.423727844
 [66]  0.601051244 -1.096636070 -0.168194646  0.979465582 -2.152116660
 [71] -0.314487352 -0.850973205 -1.521595480  0.442885389 -0.456868828
 [76] -1.584608817 -0.434643133  0.320528062 -1.096565836  0.993461625
 [81]  1.339100459 -0.547283531  0.448695303 -0.660640432  1.634851797
 [86]  0.867731937 -0.271193044 -0.775079583 -0.395800975 -2.573187431
 [91]  0.961966764 -0.425883120  0.719083294 -1.167072401 -0.852513051
 [96] -0.008124531  0.407180342  0.115708293 -1.629274832  0.263760684
> colRanges(tmp)
          [,1]      [,2]      [,3]     [,4]       [,5]      [,6]       [,7]
[1,] 0.8322671 0.1359336 -1.024075 2.813666 -0.5457597 0.3435095 -0.8079952
[2,] 0.8322671 0.1359336 -1.024075 2.813666 -0.5457597 0.3435095 -0.8079952
          [,8]      [,9]    [,10]     [,11]     [,12]      [,13]     [,14]
[1,] 0.4729854 -2.158643 1.308746 0.6883129 0.8905704 -0.5970172 0.8479027
[2,] 0.4729854 -2.158643 1.308746 0.6883129 0.8905704 -0.5970172 0.8479027
          [,15]      [,16]      [,17]      [,18]     [,19]     [,20]    [,21]
[1,] -0.8247094 -0.3583439 0.05847489 -0.3939781 -0.420423 0.1466089 1.638591
[2,] -0.8247094 -0.3583439 0.05847489 -0.3939781 -0.420423 0.1466089 1.638591
         [,22]    [,23]      [,24]     [,25]     [,26]      [,27]     [,28]
[1,] 0.6588256 1.123841 0.06367708 -1.909735 0.1760422 0.07154747 -1.689984
[2,] 0.6588256 1.123841 0.06367708 -1.909735 0.1760422 0.07154747 -1.689984
          [,29]       [,30]    [,31]    [,32]    [,33]      [,34]    [,35]
[1,] -0.5773835 -0.06526733 2.774633 0.968606 1.251751 -0.4387414 -1.84703
[2,] -0.5773835 -0.06526733 2.774633 0.968606 1.251751 -0.4387414 -1.84703
         [,36]     [,37]      [,38]      [,39]     [,40]    [,41]      [,42]
[1,] -1.932645 -1.230686 -0.3437419 -0.6893742 0.4952975 2.502233 -0.9309237
[2,] -1.932645 -1.230686 -0.3437419 -0.6893742 0.4952975 2.502233 -0.9309237
         [,43]    [,44]     [,45]     [,46]      [,47]      [,48]     [,49]
[1,] 0.3184722 1.205764 0.6992671 0.5996254 -0.5473238 -0.7588454 0.8114612
[2,] 0.3184722 1.205764 0.6992671 0.5996254 -0.5473238 -0.7588454 0.8114612
        [,50]      [,51]      [,52]       [,53]       [,54]     [,55]     [,56]
[1,] 1.252548 0.03126953 -0.9528156 -0.09093591 -0.01684691 -1.374688 0.4004865
[2,] 1.252548 0.03126953 -0.9528156 -0.09093591 -0.01684691 -1.374688 0.4004865
         [,57]   [,58]      [,59]     [,60]      [,61]    [,62]     [,63]
[1,] -1.033121 -1.2059 -0.8373043 0.1290293 0.08024748 2.805586 -0.441414
[2,] -1.033121 -1.2059 -0.8373043 0.1290293 0.08024748 2.805586 -0.441414
           [,64]      [,65]     [,66]     [,67]      [,68]     [,69]     [,70]
[1,] -0.07917403 -0.4237278 0.6010512 -1.096636 -0.1681946 0.9794656 -2.152117
[2,] -0.07917403 -0.4237278 0.6010512 -1.096636 -0.1681946 0.9794656 -2.152117
          [,71]      [,72]     [,73]     [,74]      [,75]     [,76]      [,77]
[1,] -0.3144874 -0.8509732 -1.521595 0.4428854 -0.4568688 -1.584609 -0.4346431
[2,] -0.3144874 -0.8509732 -1.521595 0.4428854 -0.4568688 -1.584609 -0.4346431
         [,78]     [,79]     [,80]  [,81]      [,82]     [,83]      [,84]
[1,] 0.3205281 -1.096566 0.9934616 1.3391 -0.5472835 0.4486953 -0.6606404
[2,] 0.3205281 -1.096566 0.9934616 1.3391 -0.5472835 0.4486953 -0.6606404
        [,85]     [,86]     [,87]      [,88]     [,89]     [,90]     [,91]
[1,] 1.634852 0.8677319 -0.271193 -0.7750796 -0.395801 -2.573187 0.9619668
[2,] 1.634852 0.8677319 -0.271193 -0.7750796 -0.395801 -2.573187 0.9619668
          [,92]     [,93]     [,94]      [,95]        [,96]     [,97]     [,98]
[1,] -0.4258831 0.7190833 -1.167072 -0.8525131 -0.008124531 0.4071803 0.1157083
[2,] -0.4258831 0.7190833 -1.167072 -0.8525131 -0.008124531 0.4071803 0.1157083
         [,99]    [,100]
[1,] -1.629275 0.2637607
[2,] -1.629275 0.2637607
> 
> 
> Max(tmp2)
[1] 1.98831
> Min(tmp2)
[1] -2.712126
> mean(tmp2)
[1] 0.2064611
> Sum(tmp2)
[1] 20.64611
> Var(tmp2)
[1] 0.8858582
> 
> rowMeans(tmp2)
  [1]  1.98831047 -0.96786037  1.04879413 -0.37272622  0.07438872 -1.31971703
  [7] -0.18455369 -0.46059890 -0.29720415 -0.89746606  0.08344840  1.19483804
 [13]  0.92860397  0.62346443  1.23583406  0.13230191  0.16443731  0.75371133
 [19]  0.18063141 -0.07363024 -0.80954839 -0.34157064 -1.53178695  0.45849652
 [25]  0.86360086  1.05660909  1.96958618 -0.53743784 -1.62362440 -0.95631311
 [31] -0.04590693 -0.24154172  0.22520643 -0.82609156  1.32139054  0.81105489
 [37] -0.67821136  1.86206819  1.20060311 -2.71212594  0.14523897 -0.77636495
 [43] -0.08800637  0.48302345  1.34983850  0.45080140  1.53047326  0.08448704
 [49] -0.24321170  0.71139205  0.84829227  1.47508562  0.95761775 -0.71984232
 [55] -0.60227866  0.87783861  0.21322071  1.53685407 -1.22154825  1.19754164
 [61] -0.16197302  1.28151511 -0.30524196  0.51705326  0.31718998  1.41919196
 [67] -0.25844118 -0.45582705  0.39305959  0.96211905  1.26138370  1.56606254
 [73]  0.27992469 -0.45345016 -0.13949114  0.30631575  0.11020556 -0.23109584
 [79]  0.77277808  0.33999040  0.02168560 -0.15473398  0.08019417  0.23923719
 [85]  0.29515304 -0.57773523  1.89074862  1.75864534  0.17991568 -1.70997185
 [91]  1.51259619 -1.23891412 -0.10754496  1.45949248 -1.29750744 -0.59686344
 [97] -0.73279426  1.31975854 -1.15410348  0.42766499
> rowSums(tmp2)
  [1]  1.98831047 -0.96786037  1.04879413 -0.37272622  0.07438872 -1.31971703
  [7] -0.18455369 -0.46059890 -0.29720415 -0.89746606  0.08344840  1.19483804
 [13]  0.92860397  0.62346443  1.23583406  0.13230191  0.16443731  0.75371133
 [19]  0.18063141 -0.07363024 -0.80954839 -0.34157064 -1.53178695  0.45849652
 [25]  0.86360086  1.05660909  1.96958618 -0.53743784 -1.62362440 -0.95631311
 [31] -0.04590693 -0.24154172  0.22520643 -0.82609156  1.32139054  0.81105489
 [37] -0.67821136  1.86206819  1.20060311 -2.71212594  0.14523897 -0.77636495
 [43] -0.08800637  0.48302345  1.34983850  0.45080140  1.53047326  0.08448704
 [49] -0.24321170  0.71139205  0.84829227  1.47508562  0.95761775 -0.71984232
 [55] -0.60227866  0.87783861  0.21322071  1.53685407 -1.22154825  1.19754164
 [61] -0.16197302  1.28151511 -0.30524196  0.51705326  0.31718998  1.41919196
 [67] -0.25844118 -0.45582705  0.39305959  0.96211905  1.26138370  1.56606254
 [73]  0.27992469 -0.45345016 -0.13949114  0.30631575  0.11020556 -0.23109584
 [79]  0.77277808  0.33999040  0.02168560 -0.15473398  0.08019417  0.23923719
 [85]  0.29515304 -0.57773523  1.89074862  1.75864534  0.17991568 -1.70997185
 [91]  1.51259619 -1.23891412 -0.10754496  1.45949248 -1.29750744 -0.59686344
 [97] -0.73279426  1.31975854 -1.15410348  0.42766499
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.98831047 -0.96786037  1.04879413 -0.37272622  0.07438872 -1.31971703
  [7] -0.18455369 -0.46059890 -0.29720415 -0.89746606  0.08344840  1.19483804
 [13]  0.92860397  0.62346443  1.23583406  0.13230191  0.16443731  0.75371133
 [19]  0.18063141 -0.07363024 -0.80954839 -0.34157064 -1.53178695  0.45849652
 [25]  0.86360086  1.05660909  1.96958618 -0.53743784 -1.62362440 -0.95631311
 [31] -0.04590693 -0.24154172  0.22520643 -0.82609156  1.32139054  0.81105489
 [37] -0.67821136  1.86206819  1.20060311 -2.71212594  0.14523897 -0.77636495
 [43] -0.08800637  0.48302345  1.34983850  0.45080140  1.53047326  0.08448704
 [49] -0.24321170  0.71139205  0.84829227  1.47508562  0.95761775 -0.71984232
 [55] -0.60227866  0.87783861  0.21322071  1.53685407 -1.22154825  1.19754164
 [61] -0.16197302  1.28151511 -0.30524196  0.51705326  0.31718998  1.41919196
 [67] -0.25844118 -0.45582705  0.39305959  0.96211905  1.26138370  1.56606254
 [73]  0.27992469 -0.45345016 -0.13949114  0.30631575  0.11020556 -0.23109584
 [79]  0.77277808  0.33999040  0.02168560 -0.15473398  0.08019417  0.23923719
 [85]  0.29515304 -0.57773523  1.89074862  1.75864534  0.17991568 -1.70997185
 [91]  1.51259619 -1.23891412 -0.10754496  1.45949248 -1.29750744 -0.59686344
 [97] -0.73279426  1.31975854 -1.15410348  0.42766499
> rowMin(tmp2)
  [1]  1.98831047 -0.96786037  1.04879413 -0.37272622  0.07438872 -1.31971703
  [7] -0.18455369 -0.46059890 -0.29720415 -0.89746606  0.08344840  1.19483804
 [13]  0.92860397  0.62346443  1.23583406  0.13230191  0.16443731  0.75371133
 [19]  0.18063141 -0.07363024 -0.80954839 -0.34157064 -1.53178695  0.45849652
 [25]  0.86360086  1.05660909  1.96958618 -0.53743784 -1.62362440 -0.95631311
 [31] -0.04590693 -0.24154172  0.22520643 -0.82609156  1.32139054  0.81105489
 [37] -0.67821136  1.86206819  1.20060311 -2.71212594  0.14523897 -0.77636495
 [43] -0.08800637  0.48302345  1.34983850  0.45080140  1.53047326  0.08448704
 [49] -0.24321170  0.71139205  0.84829227  1.47508562  0.95761775 -0.71984232
 [55] -0.60227866  0.87783861  0.21322071  1.53685407 -1.22154825  1.19754164
 [61] -0.16197302  1.28151511 -0.30524196  0.51705326  0.31718998  1.41919196
 [67] -0.25844118 -0.45582705  0.39305959  0.96211905  1.26138370  1.56606254
 [73]  0.27992469 -0.45345016 -0.13949114  0.30631575  0.11020556 -0.23109584
 [79]  0.77277808  0.33999040  0.02168560 -0.15473398  0.08019417  0.23923719
 [85]  0.29515304 -0.57773523  1.89074862  1.75864534  0.17991568 -1.70997185
 [91]  1.51259619 -1.23891412 -0.10754496  1.45949248 -1.29750744 -0.59686344
 [97] -0.73279426  1.31975854 -1.15410348  0.42766499
> 
> colMeans(tmp2)
[1] 0.2064611
> colSums(tmp2)
[1] 20.64611
> colVars(tmp2)
[1] 0.8858582
> colSd(tmp2)
[1] 0.9412004
> colMax(tmp2)
[1] 1.98831
> colMin(tmp2)
[1] -2.712126
> colMedians(tmp2)
[1] 0.1721765
> colRanges(tmp2)
          [,1]
[1,] -2.712126
[2,]  1.988310
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  5.00653533 -0.52508162 -1.64588189 -2.38403988 -2.34195275 -6.09585948
 [7] -5.79694893  0.01935326 -6.32877967  3.95900114
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.6559823
[2,]  0.1413434
[3,]  0.5267999
[4,]  1.0392391
[5,]  1.1604791
> 
> rowApply(tmp,sum)
 [1] -5.6920180 -2.8159236  4.1501492  3.3877115 -2.5381412  0.6474011
 [7] -3.8094079 -3.9355009 -3.8149423 -1.7129824
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    9    2    8    7    8    9    7    8     8
 [2,]    9    4    5    4    6    3    8    3    7     5
 [3,]    1    8    7    5    3    9    7    4    3     4
 [4,]    2    7    3    7    1    7    6    6    5     7
 [5,]    3    6    6    6    5    4    2   10    6     6
 [6,]    7    1    9    3   10    6    1    5    4     2
 [7,]    6    2    8    1    4   10    3    1    1    10
 [8,]    4   10    4   10    8    5    4    8    2     9
 [9,]    5    5    1    9    2    1    5    2    9     1
[10,]   10    3   10    2    9    2   10    9   10     3
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.8106670 -3.5354234 -0.7247636 -0.6128947  0.3960388  0.5718753
 [7] -2.2501136 -1.8077745 -1.3962341  1.3721565 -2.4377057  2.2814301
[13] -3.0509730  2.9486884  0.7195169  2.0889953  2.2167880  4.3998156
[19] -1.1631600 -2.5236089
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.1098595
[2,] -0.1000083
[3,]  0.5087676
[4,]  0.7277914
[5,]  0.7839758
> 
> rowApply(tmp,sum)
[1]  0.04457605 -1.33482074 -0.16795936  3.52946878 -2.76794455
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   17   11    7   15   14
[2,]    7    7    4    8    1
[3,]    2   17   20   11    4
[4,]    9    9    6    3   16
[5,]   13   10    8    6   17
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]       [,4]        [,5]       [,6]
[1,]  0.7277914 -0.32191244 -2.0342167 -0.1036310  0.33086600  0.6080101
[2,] -0.1000083 -0.67471817  1.1887023 -0.2161361 -0.16808749  0.3849518
[3,] -0.1098595 -0.64502408  0.9294053 -0.3084035 -0.06446547 -0.3771727
[4,]  0.7839758  0.01258403  0.1310909 -0.5572174 -0.33571599  0.2503244
[5,]  0.5087676 -1.90635272 -0.9397454  0.5724932  0.63344175 -0.2942384
            [,7]       [,8]       [,9]       [,10]       [,11]      [,12]
[1,] -0.61497270  0.5838639 -3.0068721 -0.14454952  0.06480006  1.0812308
[2,] -2.08015837 -1.9369551  0.8654222  0.80170454 -0.65584524 -0.8043885
[3,]  0.50937446  0.6530845  0.5676824  0.10356397 -0.82806664  0.6157293
[4,]  0.06931731 -0.2983895 -1.2529744  0.08313227  0.57495891  1.2605659
[5,] -0.13367435 -0.8093784  1.4305078  0.52830521 -1.59355283  0.1282926
          [,13]        [,14]      [,15]      [,16]       [,17]      [,18]
[1,] -0.6819219  2.074745474 -0.4142424 -0.5749928 -0.08591224  2.0472682
[2,]  1.4650178  1.039868380 -0.9112960  0.9255999  1.27868180  2.1745436
[3,] -2.5037591  0.008216145  0.4091070  0.4978750  0.91755632  0.3976139
[4,] -0.4129836  0.981999404  0.7043326  0.8715876  0.94495940 -1.1049590
[5,] -0.9173263 -1.156141051  0.9316156  0.3689254 -0.83849726  0.8853489
          [,19]      [,20]
[1,]  0.1506753  0.3585485
[2,] -1.4030805 -2.5086395
[3,] -1.4927229  0.5523061
[4,]  1.2448910 -0.4220110
[5,]  0.3370770 -0.5038130
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  652  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  565  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2       col3       col4       col5      col6       col7
row1 0.6808857 -0.223358 -0.3669809 -0.4376916 -0.8495042 -0.798127 -0.7897872
          col8      col9     col10      col11     col12     col13      col14
row1 0.1352367 -1.325079 0.4145826 -0.9645561 0.8974223 -1.303264 -0.4475299
        col15    col16      col17     col18      col19      col20
row1 1.254937 0.594641 -0.5321497 0.4595804 0.07551566 0.07276861
> tmp[,"col10"]
          col10
row1  0.4145826
row2 -0.1465787
row3 -0.3657690
row4  0.1144266
row5  1.0621229
> tmp[c("row1","row5"),]
           col1       col2       col3       col4       col5       col6
row1  0.6808857 -0.2233580 -0.3669809 -0.4376916 -0.8495042 -0.7981270
row5 -1.6111005  0.7571068 -0.6028219 -1.4290566 -0.5639476  0.2025664
           col7      col8      col9     col10      col11     col12      col13
row1 -0.7897872 0.1352367 -1.325079 0.4145826 -0.9645561 0.8974223 -1.3032639
row5 -0.5826899 1.0619864 -0.731009 1.0621229 -1.5064694 0.8263000 -0.9868946
          col14     col15    col16      col17     col18      col19      col20
row1 -0.4475299 1.2549375 0.594641 -0.5321497 0.4595804 0.07551566 0.07276861
row5 -0.5316354 0.7855767 1.552875 -0.5541041 0.8444230 1.16283197 0.78023165
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.7981270  0.07276861
row2  0.1361754 -1.87774651
row3  1.7705713  0.83918062
row4  0.5923021  0.36806262
row5  0.2025664  0.78023165
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.7981270 0.07276861
row5  0.2025664 0.78023165
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6    col7     col8
row1 50.99921 50.99153 48.97404 51.27331 49.71397 105.6989 51.2403 47.89643
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.24625 48.91369 49.64741 50.13181 50.14057 50.53583 50.13962 49.87097
        col17    col18    col19    col20
row1 50.47967 49.98877 48.00065 106.5829
> tmp[,"col10"]
        col10
row1 48.91369
row2 30.07662
row3 31.70031
row4 29.27865
row5 50.30976
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.99921 50.99153 48.97404 51.27331 49.71397 105.6989 51.24030 47.89643
row5 49.48424 51.99199 50.55928 50.82197 49.16708 104.5096 50.83263 50.35971
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.24625 48.91369 49.64741 50.13181 50.14057 50.53583 50.13962 49.87097
row5 50.68631 50.30976 49.11046 50.39505 49.37149 49.29709 49.76150 48.86441
        col17    col18    col19    col20
row1 50.47967 49.98877 48.00065 106.5829
row5 48.83839 50.70033 49.29688 103.6475
> tmp[,c("col6","col20")]
          col6     col20
row1 105.69892 106.58294
row2  74.92323  76.29427
row3  76.16655  74.82116
row4  75.51601  75.18208
row5 104.50957 103.64750
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.6989 106.5829
row5 104.5096 103.6475
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.6989 106.5829
row5 104.5096 103.6475
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -0.01128839
[2,] -0.50201266
[3,] -0.26282542
[4,]  0.14705786
[5,]  0.60077236
> tmp[,c("col17","col7")]
          col17       col7
[1,]  0.8759424  1.7690723
[2,]  1.8260884  0.2442026
[3,] -1.5434191  1.0114663
[4,] -0.1958756  0.4503558
[5,]  0.3085213 -2.5890618
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
             col6        col20
[1,]  0.003695978 -0.726091580
[2,]  0.880961616  0.009830697
[3,]  2.210823523 -1.452782506
[4,]  0.633668293  0.228507220
[5,] -0.325252937  0.832685813
> subBufferedMatrix(tmp,1,c("col6"))[,1]
            col1
[1,] 0.003695978
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] 0.003695978
[2,] 0.880961616
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]     [,2]       [,3]      [,4]       [,5]       [,6]      [,7]
row3 0.07450742 1.814483  1.6313193  2.013741 -0.1392958 -0.7981561 0.1009870
row1 1.93055665 1.190724 -0.3637957 -2.085076 -0.2328369 -0.8940831 0.8479323
           [,8]       [,9]     [,10]      [,11]      [,12]      [,13]
row3 -1.4704228 -0.9154471 0.4561402  1.2481456 -0.2489139  0.3781826
row1  0.9713972  0.4296085 1.1089884 -0.7927261  1.3603647 -0.9179149
          [,14]     [,15]       [,16]      [,17]      [,18]     [,19]    [,20]
row3 -0.1683844 0.4817980 -0.03651318 -0.6227275 -0.7579502 1.0487968 0.416254
row1  1.2149139 0.3433473 -0.06631560 -0.2518592 -0.6591119 0.3183943 1.179630
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]       [,4]      [,5]      [,6]      [,7]
row2 0.5973155 -0.8820932 -1.055868 -0.5090171 -1.484882 -1.294493 0.7096787
         [,8]       [,9]    [,10]
row2 1.469942 -0.9533148 1.744743
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]      [,4]      [,5]     [,6]      [,7]
row5 -0.1617283 0.2579105 0.3843138 0.3673013 0.4809131 1.386916 0.4086731
          [,8]      [,9]      [,10]      [,11]      [,12]       [,13]
row5 0.4980012 0.7309875 -0.2926077 -0.1670199 -0.4782507 -0.07464738
          [,14]      [,15]      [,16]    [,17]     [,18]      [,19]     [,20]
row5 -0.6868155 -0.8155422 -0.8687022 1.171305 0.7623721 -0.3525627 0.4900476
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x3d052260>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff06e8b4834"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff0f1ac4f4" 
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff042203c61"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff01875d556"
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff016da50f6"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff02ab57630"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff05ecc3cc1"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff01ccdd263"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff04fe8443f"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff0ea3231a" 
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff041c9855a"
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff06ac49140"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff03b7da60e"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff02c0f8509"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM34eff05bc09d67"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x3e9dfb50>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x3e9dfb50>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x3e9dfb50>
> rowMedians(tmp)
  [1]  0.265706104  0.135402000  0.185230317 -0.264545666 -0.209976793
  [6]  0.331007981  0.443393363  0.059953358  0.394146849  0.386107623
 [11] -0.248238204  0.279115383  0.298478934 -0.012863300 -0.252076803
 [16] -0.369232712 -0.246334464  0.007692758 -0.075006047 -0.024468347
 [21]  0.454043785 -0.350346586 -0.219892568  0.174360825 -0.329369009
 [26]  0.223447330 -0.126676342 -0.084343558  0.167921998  0.411300897
 [31]  0.424190697  0.469720875  0.093340241  0.270446203 -0.219514642
 [36]  0.533931322  0.077938612  0.024378875 -0.451640240 -0.138890002
 [41] -0.083630272  0.540730651 -0.086587244  0.067501599 -0.718167278
 [46] -0.268418720  0.063480044  0.340114806 -0.102510674 -0.229456862
 [51]  0.685463457  0.681689911 -0.389565647  0.131785341  0.272597285
 [56] -0.697153177 -0.337223788 -0.155362273 -0.014523090  0.367169627
 [61] -0.145309562 -0.014998800 -0.397036545  0.549666771  0.079556061
 [66]  0.436746324 -0.865214870  0.564344425 -0.369632449 -0.242564167
 [71]  0.007562105  0.307316528 -0.100105123 -0.521934225  0.491504532
 [76]  0.103021825 -0.345844890 -0.093256788  0.074050387  0.241399629
 [81] -0.442879196  0.033068852 -0.471775961  0.006227505  0.206584652
 [86] -0.512915414 -0.498667121  0.065110240 -0.132890999 -0.327446957
 [91]  0.547330821 -0.218627490  0.674078720 -0.539360254  0.687013157
 [96]  0.184176524 -0.059089450  0.047543633  0.803740894 -0.091581627
[101] -0.283357574  0.681506024 -0.237184318  0.266780473  0.175887307
[106]  0.112314461  0.803221476 -0.083787227  0.081228153  0.078115569
[111]  0.171086529  0.097075473  0.169386812  0.081866664  0.085770631
[116] -0.194941413  0.245838958 -0.135270494  0.524033557 -0.001268524
[121]  0.326189725 -0.008919832  0.087398372 -0.068333855 -0.081483418
[126] -0.396150645  0.825292280  0.699900143  0.235115483 -0.305721717
[131] -0.207993916 -0.149805675  0.039729407 -0.033070141  0.269565108
[136]  0.401778236  0.002199809  0.055576854 -0.078781841 -0.313978607
[141]  0.040416964 -0.013843831  0.148884829 -0.024412224 -0.059000557
[146]  0.404809802  0.282637572  0.196935668 -0.204597811 -0.564313910
[151]  0.049503787  0.195421123 -0.718043341 -0.809190160 -0.107798583
[156]  0.043869889  0.495396289 -0.689323621 -0.165173492  0.125612337
[161] -0.521926934  0.305457984  0.165080542 -0.173124991 -0.572622959
[166] -0.181248549 -0.074075087 -0.071631919 -0.675948431  0.028905539
[171]  0.173005270 -0.119698887  0.416500966  0.004558725  0.156698464
[176] -0.506722960 -0.210853766 -0.085728313  0.205877085 -0.595517728
[181]  0.030593004  0.744085701 -0.476216700  0.193979536 -0.438067245
[186] -0.018714850  0.413753077 -0.380560117 -0.246895476 -0.500825177
[191]  0.368665625  0.268267205 -0.107163110 -0.012930822  0.327703088
[196]  0.205099836 -0.114164688  0.154118790 -0.534023536 -0.154240912
[201] -0.040781164 -0.371961444 -0.439883340  0.397201637  0.785620793
[206] -0.081675842 -0.018089934  0.117633446 -0.031975186  0.039735931
[211] -0.183409026 -0.378083049 -0.376514960 -0.074202980  0.809059802
[216] -0.154434423  0.651338083  0.287075186 -0.269123458 -0.536513666
[221]  0.401046809  0.011478203 -0.228661941 -0.220348788  0.265564703
[226] -0.090117700  0.193525004  0.052283547 -0.040660887 -0.488734448
> 
> proc.time()
   user  system elapsed 
  1.977   1.093   2.998 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x1eac49f0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x1eac49f0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x1eac49f0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x1eac49f0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x1d1634b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1d1634b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x1d1634b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1d1634b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x1d1634b0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x1d1a0070>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1d1a0070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x1d1a0070>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x1d1a0070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x1d1a0070>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x1d1a0070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x1d1a0070>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x1d1a0070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x1d1a0070>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e75b470>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x1e75b470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e75b470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e75b470>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile34f07a66009f3e" "BufferedMatrixFile34f07a913307b" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile34f07a66009f3e" "BufferedMatrixFile34f07a913307b" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e333c80>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e333c80>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x1e333c80>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x1e333c80>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x1e333c80>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x1e333c80>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e336460>
> .Call("R_bm_AddColumn",P)
<pointer: 0x1e336460>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x1e336460>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x1e336460>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x1d6a4bf0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x1d6a4bf0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.413   0.038   0.350 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.418   0.036   0.352 

Example timings