Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-09 12:11 -0500 (Thu, 09 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4744
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4487
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4515
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4467
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4358
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-01-02 13:00 -0500 (Thu, 02 Jan 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on taishan

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-01-08 23:40:20 -0000 (Wed, 08 Jan 2025)
EndedAt: 2025-01-08 23:40:42 -0000 (Wed, 08 Jan 2025)
EllapsedTime: 22.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 12.3.1 (openEuler 12.3.1-36.oe2403)
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.4.2/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -shared -L/home/biocbuild/R/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R/lib -lR
installing to /home/biocbuild/R/R-4.4.2/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.293   0.052   0.333 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471793 25.2    1026264 54.9   643431 34.4
Vcells 871915  6.7    8388608 64.0  2046348 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Jan  8 23:40:36 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Jan  8 23:40:36 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x33ac43c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Jan  8 23:40:36 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Jan  8 23:40:37 2025"
> 
> ColMode(tmp2)
<pointer: 0x33ac43c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]       [,4]
[1,] 99.2884476 0.8922569 -2.1319260 -1.1179819
[2,]  0.5245423 0.3707515 -0.4189245 -0.2163692
[3,]  1.4254829 0.7707392 -0.9401766 -0.4316666
[4,] -0.8901840 1.4648013  0.4768243  0.2383889
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.2884476 0.8922569 2.1319260 1.1179819
[2,]  0.5245423 0.3707515 0.4189245 0.2163692
[3,]  1.4254829 0.7707392 0.9401766 0.4316666
[4,]  0.8901840 1.4648013 0.4768243 0.2383889
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9643589 0.9445935 1.4601116 1.0573466
[2,] 0.7242529 0.6088936 0.6472438 0.4651551
[3,] 1.1939359 0.8779175 0.9696270 0.6570134
[4,] 0.9434956 1.2102897 0.6905246 0.4882509
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.93204 35.33819 41.73304 36.69145
[2,]  32.76707 31.45969 31.89136 29.86792
[3,]  38.36484 34.54991 35.63645 32.00180
[4,]  35.32514 38.56770 32.38207 30.12090
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x354abad0>
> exp(tmp5)
<pointer: 0x354abad0>
> log(tmp5,2)
<pointer: 0x354abad0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.0852
> Min(tmp5)
[1] 54.62572
> mean(tmp5)
[1] 72.9979
> Sum(tmp5)
[1] 14599.58
> Var(tmp5)
[1] 852.2053
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.25741 70.78394 71.03571 70.39577 69.28230 72.61657 73.91357 69.39421
 [9] 70.59622 70.70329
> rowSums(tmp5)
 [1] 1825.148 1415.679 1420.714 1407.915 1385.646 1452.331 1478.271 1387.884
 [9] 1411.924 1414.066
> rowVars(tmp5)
 [1] 7884.66869   54.02998  105.93976   79.63941   79.58605   64.14657
 [7]   64.74693   81.60011   29.89054   73.33201
> rowSd(tmp5)
 [1] 88.795657  7.350509 10.292704  8.924091  8.921101  8.009155  8.046548
 [8]  9.033278  5.467224  8.563411
> rowMax(tmp5)
 [1] 466.08519  87.06315  93.74059  85.72621  82.16165  90.53347  85.46080
 [8]  88.68906  83.28497  85.67048
> rowMin(tmp5)
 [1] 55.55091 58.82840 55.60123 55.67154 54.62572 59.36587 55.51819 56.57228
 [9] 59.23244 54.73636
> 
> colMeans(tmp5)
 [1] 114.15366  72.08178  67.83244  69.63027  71.13438  73.29284  72.50655
 [8]  71.88841  70.48355  72.40431  67.13431  70.10661  72.90615  70.34935
[15]  72.63179  68.88174  73.01215  70.01439  71.57392  67.93936
> colSums(tmp5)
 [1] 1141.5366  720.8178  678.3244  696.3027  711.3438  732.9284  725.0655
 [8]  718.8841  704.8355  724.0431  671.3431  701.0661  729.0615  703.4935
[15]  726.3179  688.8174  730.1215  700.1439  715.7392  679.3936
> colVars(tmp5)
 [1] 15339.12536    40.13163    70.71576    66.18931    58.62425    94.17275
 [7]   116.90390    52.77707    29.11512    48.31284    81.93269   100.22027
[13]   107.61215    93.25646   113.66282    66.34025    74.69496   125.39012
[19]    47.85297    63.14850
> colSd(tmp5)
 [1] 123.851223   6.334953   8.409266   8.135681   7.656648   9.704264
 [7]  10.812211   7.264783   5.395843   6.950744   9.051668  10.011008
[13]  10.373628   9.656938  10.661277   8.144953   8.642625  11.197773
[19]   6.917584   7.946603
> colMax(tmp5)
 [1] 466.08519  80.27361  86.86186  80.50229  84.57124  87.06315  88.68906
 [8]  81.73952  81.34039  80.84417  85.67048  84.66105  93.74059  85.37683
[15]  90.53347  77.94198  85.46080  84.14618  81.75860  84.45526
> colMin(tmp5)
 [1] 63.18705 60.54836 57.54198 55.67751 58.27073 61.75068 55.60123 59.19427
 [9] 65.54039 61.02884 54.62572 57.18408 55.51819 55.67154 54.73636 55.91714
[17] 57.52271 55.55091 57.89662 58.82840
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.25741 70.78394 71.03571 70.39577 69.28230 72.61657       NA 69.39421
 [9] 70.59622 70.70329
> rowSums(tmp5)
 [1] 1825.148 1415.679 1420.714 1407.915 1385.646 1452.331       NA 1387.884
 [9] 1411.924 1414.066
> rowVars(tmp5)
 [1] 7884.66869   54.02998  105.93976   79.63941   79.58605   64.14657
 [7]   68.04848   81.60011   29.89054   73.33201
> rowSd(tmp5)
 [1] 88.795657  7.350509 10.292704  8.924091  8.921101  8.009155  8.249150
 [8]  9.033278  5.467224  8.563411
> rowMax(tmp5)
 [1] 466.08519  87.06315  93.74059  85.72621  82.16165  90.53347        NA
 [8]  88.68906  83.28497  85.67048
> rowMin(tmp5)
 [1] 55.55091 58.82840 55.60123 55.67154 54.62572 59.36587       NA 56.57228
 [9] 59.23244 54.73636
> 
> colMeans(tmp5)
 [1] 114.15366  72.08178  67.83244  69.63027  71.13438  73.29284  72.50655
 [8]  71.88841  70.48355  72.40431  67.13431  70.10661  72.90615  70.34935
[15]  72.63179  68.88174  73.01215        NA  71.57392  67.93936
> colSums(tmp5)
 [1] 1141.5366  720.8178  678.3244  696.3027  711.3438  732.9284  725.0655
 [8]  718.8841  704.8355  724.0431  671.3431  701.0661  729.0615  703.4935
[15]  726.3179  688.8174  730.1215        NA  715.7392  679.3936
> colVars(tmp5)
 [1] 15339.12536    40.13163    70.71576    66.18931    58.62425    94.17275
 [7]   116.90390    52.77707    29.11512    48.31284    81.93269   100.22027
[13]   107.61215    93.25646   113.66282    66.34025    74.69496          NA
[19]    47.85297    63.14850
> colSd(tmp5)
 [1] 123.851223   6.334953   8.409266   8.135681   7.656648   9.704264
 [7]  10.812211   7.264783   5.395843   6.950744   9.051668  10.011008
[13]  10.373628   9.656938  10.661277   8.144953   8.642625         NA
[19]   6.917584   7.946603
> colMax(tmp5)
 [1] 466.08519  80.27361  86.86186  80.50229  84.57124  87.06315  88.68906
 [8]  81.73952  81.34039  80.84417  85.67048  84.66105  93.74059  85.37683
[15]  90.53347  77.94198  85.46080        NA  81.75860  84.45526
> colMin(tmp5)
 [1] 63.18705 60.54836 57.54198 55.67751 58.27073 61.75068 55.60123 59.19427
 [9] 65.54039 61.02884 54.62572 57.18408 55.51819 55.67154 54.73636 55.91714
[17] 57.52271       NA 57.89662 58.82840
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.0852
> Min(tmp5,na.rm=TRUE)
[1] 54.62572
> mean(tmp5,na.rm=TRUE)
[1] 73.00459
> Sum(tmp5,na.rm=TRUE)
[1] 14527.91
> Var(tmp5,na.rm=TRUE)
[1] 856.5004
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.25741 70.78394 71.03571 70.39577 69.28230 72.61657 74.03188 69.39421
 [9] 70.59622 70.70329
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.148 1415.679 1420.714 1407.915 1385.646 1452.331 1406.606 1387.884
 [9] 1411.924 1414.066
> rowVars(tmp5,na.rm=TRUE)
 [1] 7884.66869   54.02998  105.93976   79.63941   79.58605   64.14657
 [7]   68.04848   81.60011   29.89054   73.33201
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.795657  7.350509 10.292704  8.924091  8.921101  8.009155  8.249150
 [8]  9.033278  5.467224  8.563411
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.08519  87.06315  93.74059  85.72621  82.16165  90.53347  85.46080
 [8]  88.68906  83.28497  85.67048
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.55091 58.82840 55.60123 55.67154 54.62572 59.36587 55.51819 56.57228
 [9] 59.23244 54.73636
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.15366  72.08178  67.83244  69.63027  71.13438  73.29284  72.50655
 [8]  71.88841  70.48355  72.40431  67.13431  70.10661  72.90615  70.34935
[15]  72.63179  68.88174  73.01215  69.83091  71.57392  67.93936
> colSums(tmp5,na.rm=TRUE)
 [1] 1141.5366  720.8178  678.3244  696.3027  711.3438  732.9284  725.0655
 [8]  718.8841  704.8355  724.0431  671.3431  701.0661  729.0615  703.4935
[15]  726.3179  688.8174  730.1215  628.4782  715.7392  679.3936
> colVars(tmp5,na.rm=TRUE)
 [1] 15339.12536    40.13163    70.71576    66.18931    58.62425    94.17275
 [7]   116.90390    52.77707    29.11512    48.31284    81.93269   100.22027
[13]   107.61215    93.25646   113.66282    66.34025    74.69496   140.68517
[19]    47.85297    63.14850
> colSd(tmp5,na.rm=TRUE)
 [1] 123.851223   6.334953   8.409266   8.135681   7.656648   9.704264
 [7]  10.812211   7.264783   5.395843   6.950744   9.051668  10.011008
[13]  10.373628   9.656938  10.661277   8.144953   8.642625  11.861078
[19]   6.917584   7.946603
> colMax(tmp5,na.rm=TRUE)
 [1] 466.08519  80.27361  86.86186  80.50229  84.57124  87.06315  88.68906
 [8]  81.73952  81.34039  80.84417  85.67048  84.66105  93.74059  85.37683
[15]  90.53347  77.94198  85.46080  84.14618  81.75860  84.45526
> colMin(tmp5,na.rm=TRUE)
 [1] 63.18705 60.54836 57.54198 55.67751 58.27073 61.75068 55.60123 59.19427
 [9] 65.54039 61.02884 54.62572 57.18408 55.51819 55.67154 54.73636 55.91714
[17] 57.52271 55.55091 57.89662 58.82840
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.25741 70.78394 71.03571 70.39577 69.28230 72.61657      NaN 69.39421
 [9] 70.59622 70.70329
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.148 1415.679 1420.714 1407.915 1385.646 1452.331    0.000 1387.884
 [9] 1411.924 1414.066
> rowVars(tmp5,na.rm=TRUE)
 [1] 7884.66869   54.02998  105.93976   79.63941   79.58605   64.14657
 [7]         NA   81.60011   29.89054   73.33201
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.795657  7.350509 10.292704  8.924091  8.921101  8.009155        NA
 [8]  9.033278  5.467224  8.563411
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.08519  87.06315  93.74059  85.72621  82.16165  90.53347        NA
 [8]  88.68906  83.28497  85.67048
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.55091 58.82840 55.60123 55.67154 54.62572 59.36587       NA 56.57228
 [9] 59.23244 54.73636
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 119.26614  71.30892  68.37761  68.75722  70.69570  72.88615  71.89871
 [8]  72.63768  69.27723  73.23862  67.07346  68.48945  74.83814  69.93414
[15]  72.97516  67.87505  71.62897       NaN  70.82962  66.10426
> colSums(tmp5,na.rm=TRUE)
 [1] 1073.3953  641.7803  615.3985  618.8150  636.2613  655.9753  647.0884
 [8]  653.7391  623.4951  659.1476  603.6612  616.4050  673.5433  629.4072
[15]  656.7764  610.8755  644.6607    0.0000  637.4666  594.9383
> colVars(tmp5,na.rm=TRUE)
 [1] 16962.47010    38.42823    76.21157    65.88814    63.78730   104.08357
 [7]   127.36036    53.05844    16.38351    46.52104    92.13263    83.32674
[13]    79.07185   102.97397   126.54424    63.23170    62.50839          NA
[19]    47.60224    33.15665
> colSd(tmp5,na.rm=TRUE)
 [1] 130.240048   6.199051   8.729924   8.117151   7.986695  10.202135
 [7]  11.285405   7.284122   4.047655   6.820633   9.598574   9.128348
[13]   8.892236  10.147609  11.249188   7.951836   7.906225         NA
[19]   6.899437   5.758181
> colMax(tmp5,na.rm=TRUE)
 [1] 466.08519  80.27361  86.86186  80.50229  84.57124  87.06315  88.68906
 [8]  81.73952  78.61613  80.84417  85.67048  80.17293  93.74059  85.37683
[15]  90.53347  77.13161  80.99348      -Inf  81.75860  77.32272
> colMin(tmp5,na.rm=TRUE)
 [1] 63.18705 60.54836 57.54198 55.67751 58.27073 61.75068 55.60123 59.19427
 [9] 65.54039 61.02884 54.62572 57.18408 60.07217 55.67154 54.73636 55.91714
[17] 57.52271      Inf 57.89662 58.82840
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 191.2175 177.8611 339.6359 138.3562 202.7896 285.3647 196.9780 233.2046
 [9] 160.4149 221.9953
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 191.2175 177.8611 339.6359 138.3562 202.7896 285.3647 196.9780 233.2046
 [9] 160.4149 221.9953
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  8.526513e-14 -5.684342e-14 -1.136868e-13 -4.263256e-14  1.136868e-13
 [6] -2.842171e-14 -5.684342e-14 -1.136868e-13  0.000000e+00 -8.526513e-14
[11] -5.684342e-14 -2.842171e-14  5.684342e-14 -1.421085e-14  1.989520e-13
[16] -1.136868e-13 -2.842171e-13  1.136868e-13 -5.684342e-14 -1.136868e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
4   4 
3   10 
2   1 
6   2 
1   5 
5   20 
4   8 
2   4 
5   2 
5   18 
1   18 
7   11 
5   16 
1   17 
8   1 
6   2 
6   3 
1   6 
9   6 
6   14 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.953606
> Min(tmp)
[1] -1.927963
> mean(tmp)
[1] 0.1909894
> Sum(tmp)
[1] 19.09894
> Var(tmp)
[1] 0.7059465
> 
> rowMeans(tmp)
[1] 0.1909894
> rowSums(tmp)
[1] 19.09894
> rowVars(tmp)
[1] 0.7059465
> rowSd(tmp)
[1] 0.8402062
> rowMax(tmp)
[1] 2.953606
> rowMin(tmp)
[1] -1.927963
> 
> colMeans(tmp)
  [1] -0.263073535 -1.167740911 -0.290531574 -0.266747958 -0.402038109
  [6]  0.310984944 -0.259220840 -0.382931784 -0.370894200  0.719138556
 [11]  1.314645955  0.796976956  0.989852457 -1.216130773  0.349063757
 [16] -1.103933263 -0.083704770 -0.357559364 -0.801768427  1.512174573
 [21]  0.619178649  0.379138556  0.733826149 -1.927962774 -0.356942436
 [26] -0.031984768  0.944884428  0.469242475 -0.287474246  0.387631137
 [31]  0.206706032  1.968929907  1.227406033 -0.086420997  0.906000461
 [36]  0.001829710 -0.921140367  0.538541001 -0.646577795  0.531975625
 [41]  0.423517742 -0.231657811  0.274130220  1.237972093 -0.239984364
 [46]  1.705434426  0.149334607  0.487711123  0.031405717  0.760639067
 [51]  0.790176061  1.544085218  0.870608231 -1.273367522  0.130913449
 [56]  0.677260058  0.342483272 -0.685126729  0.667521961  0.330392347
 [61]  0.046827204  0.730226391 -1.185933061  0.726723265  0.061333976
 [66] -0.236575602  0.493026965 -0.510298680  0.548777716 -1.274023864
 [71]  0.680354604 -0.382740459  0.105077387  0.692112582  2.953606356
 [76]  0.380978935  0.326388211 -1.043916717  1.106046871  0.361848715
 [81]  0.037970338  1.732078931 -0.468213912  0.113701720 -0.656096668
 [86] -1.646599318  0.755454553  1.123018499  1.097821046  1.400584152
 [91] -0.178534864 -0.501331568 -0.003468204 -1.272963133 -0.087972917
 [96]  0.641421608  0.519619428 -0.301128202 -0.938400916  1.475342087
> colSums(tmp)
  [1] -0.263073535 -1.167740911 -0.290531574 -0.266747958 -0.402038109
  [6]  0.310984944 -0.259220840 -0.382931784 -0.370894200  0.719138556
 [11]  1.314645955  0.796976956  0.989852457 -1.216130773  0.349063757
 [16] -1.103933263 -0.083704770 -0.357559364 -0.801768427  1.512174573
 [21]  0.619178649  0.379138556  0.733826149 -1.927962774 -0.356942436
 [26] -0.031984768  0.944884428  0.469242475 -0.287474246  0.387631137
 [31]  0.206706032  1.968929907  1.227406033 -0.086420997  0.906000461
 [36]  0.001829710 -0.921140367  0.538541001 -0.646577795  0.531975625
 [41]  0.423517742 -0.231657811  0.274130220  1.237972093 -0.239984364
 [46]  1.705434426  0.149334607  0.487711123  0.031405717  0.760639067
 [51]  0.790176061  1.544085218  0.870608231 -1.273367522  0.130913449
 [56]  0.677260058  0.342483272 -0.685126729  0.667521961  0.330392347
 [61]  0.046827204  0.730226391 -1.185933061  0.726723265  0.061333976
 [66] -0.236575602  0.493026965 -0.510298680  0.548777716 -1.274023864
 [71]  0.680354604 -0.382740459  0.105077387  0.692112582  2.953606356
 [76]  0.380978935  0.326388211 -1.043916717  1.106046871  0.361848715
 [81]  0.037970338  1.732078931 -0.468213912  0.113701720 -0.656096668
 [86] -1.646599318  0.755454553  1.123018499  1.097821046  1.400584152
 [91] -0.178534864 -0.501331568 -0.003468204 -1.272963133 -0.087972917
 [96]  0.641421608  0.519619428 -0.301128202 -0.938400916  1.475342087
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.263073535 -1.167740911 -0.290531574 -0.266747958 -0.402038109
  [6]  0.310984944 -0.259220840 -0.382931784 -0.370894200  0.719138556
 [11]  1.314645955  0.796976956  0.989852457 -1.216130773  0.349063757
 [16] -1.103933263 -0.083704770 -0.357559364 -0.801768427  1.512174573
 [21]  0.619178649  0.379138556  0.733826149 -1.927962774 -0.356942436
 [26] -0.031984768  0.944884428  0.469242475 -0.287474246  0.387631137
 [31]  0.206706032  1.968929907  1.227406033 -0.086420997  0.906000461
 [36]  0.001829710 -0.921140367  0.538541001 -0.646577795  0.531975625
 [41]  0.423517742 -0.231657811  0.274130220  1.237972093 -0.239984364
 [46]  1.705434426  0.149334607  0.487711123  0.031405717  0.760639067
 [51]  0.790176061  1.544085218  0.870608231 -1.273367522  0.130913449
 [56]  0.677260058  0.342483272 -0.685126729  0.667521961  0.330392347
 [61]  0.046827204  0.730226391 -1.185933061  0.726723265  0.061333976
 [66] -0.236575602  0.493026965 -0.510298680  0.548777716 -1.274023864
 [71]  0.680354604 -0.382740459  0.105077387  0.692112582  2.953606356
 [76]  0.380978935  0.326388211 -1.043916717  1.106046871  0.361848715
 [81]  0.037970338  1.732078931 -0.468213912  0.113701720 -0.656096668
 [86] -1.646599318  0.755454553  1.123018499  1.097821046  1.400584152
 [91] -0.178534864 -0.501331568 -0.003468204 -1.272963133 -0.087972917
 [96]  0.641421608  0.519619428 -0.301128202 -0.938400916  1.475342087
> colMin(tmp)
  [1] -0.263073535 -1.167740911 -0.290531574 -0.266747958 -0.402038109
  [6]  0.310984944 -0.259220840 -0.382931784 -0.370894200  0.719138556
 [11]  1.314645955  0.796976956  0.989852457 -1.216130773  0.349063757
 [16] -1.103933263 -0.083704770 -0.357559364 -0.801768427  1.512174573
 [21]  0.619178649  0.379138556  0.733826149 -1.927962774 -0.356942436
 [26] -0.031984768  0.944884428  0.469242475 -0.287474246  0.387631137
 [31]  0.206706032  1.968929907  1.227406033 -0.086420997  0.906000461
 [36]  0.001829710 -0.921140367  0.538541001 -0.646577795  0.531975625
 [41]  0.423517742 -0.231657811  0.274130220  1.237972093 -0.239984364
 [46]  1.705434426  0.149334607  0.487711123  0.031405717  0.760639067
 [51]  0.790176061  1.544085218  0.870608231 -1.273367522  0.130913449
 [56]  0.677260058  0.342483272 -0.685126729  0.667521961  0.330392347
 [61]  0.046827204  0.730226391 -1.185933061  0.726723265  0.061333976
 [66] -0.236575602  0.493026965 -0.510298680  0.548777716 -1.274023864
 [71]  0.680354604 -0.382740459  0.105077387  0.692112582  2.953606356
 [76]  0.380978935  0.326388211 -1.043916717  1.106046871  0.361848715
 [81]  0.037970338  1.732078931 -0.468213912  0.113701720 -0.656096668
 [86] -1.646599318  0.755454553  1.123018499  1.097821046  1.400584152
 [91] -0.178534864 -0.501331568 -0.003468204 -1.272963133 -0.087972917
 [96]  0.641421608  0.519619428 -0.301128202 -0.938400916  1.475342087
> colMedians(tmp)
  [1] -0.263073535 -1.167740911 -0.290531574 -0.266747958 -0.402038109
  [6]  0.310984944 -0.259220840 -0.382931784 -0.370894200  0.719138556
 [11]  1.314645955  0.796976956  0.989852457 -1.216130773  0.349063757
 [16] -1.103933263 -0.083704770 -0.357559364 -0.801768427  1.512174573
 [21]  0.619178649  0.379138556  0.733826149 -1.927962774 -0.356942436
 [26] -0.031984768  0.944884428  0.469242475 -0.287474246  0.387631137
 [31]  0.206706032  1.968929907  1.227406033 -0.086420997  0.906000461
 [36]  0.001829710 -0.921140367  0.538541001 -0.646577795  0.531975625
 [41]  0.423517742 -0.231657811  0.274130220  1.237972093 -0.239984364
 [46]  1.705434426  0.149334607  0.487711123  0.031405717  0.760639067
 [51]  0.790176061  1.544085218  0.870608231 -1.273367522  0.130913449
 [56]  0.677260058  0.342483272 -0.685126729  0.667521961  0.330392347
 [61]  0.046827204  0.730226391 -1.185933061  0.726723265  0.061333976
 [66] -0.236575602  0.493026965 -0.510298680  0.548777716 -1.274023864
 [71]  0.680354604 -0.382740459  0.105077387  0.692112582  2.953606356
 [76]  0.380978935  0.326388211 -1.043916717  1.106046871  0.361848715
 [81]  0.037970338  1.732078931 -0.468213912  0.113701720 -0.656096668
 [86] -1.646599318  0.755454553  1.123018499  1.097821046  1.400584152
 [91] -0.178534864 -0.501331568 -0.003468204 -1.272963133 -0.087972917
 [96]  0.641421608  0.519619428 -0.301128202 -0.938400916  1.475342087
> colRanges(tmp)
           [,1]      [,2]       [,3]      [,4]       [,5]      [,6]       [,7]
[1,] -0.2630735 -1.167741 -0.2905316 -0.266748 -0.4020381 0.3109849 -0.2592208
[2,] -0.2630735 -1.167741 -0.2905316 -0.266748 -0.4020381 0.3109849 -0.2592208
           [,8]       [,9]     [,10]    [,11]    [,12]     [,13]     [,14]
[1,] -0.3829318 -0.3708942 0.7191386 1.314646 0.796977 0.9898525 -1.216131
[2,] -0.3829318 -0.3708942 0.7191386 1.314646 0.796977 0.9898525 -1.216131
         [,15]     [,16]       [,17]      [,18]      [,19]    [,20]     [,21]
[1,] 0.3490638 -1.103933 -0.08370477 -0.3575594 -0.8017684 1.512175 0.6191786
[2,] 0.3490638 -1.103933 -0.08370477 -0.3575594 -0.8017684 1.512175 0.6191786
         [,22]     [,23]     [,24]      [,25]       [,26]     [,27]     [,28]
[1,] 0.3791386 0.7338261 -1.927963 -0.3569424 -0.03198477 0.9448844 0.4692425
[2,] 0.3791386 0.7338261 -1.927963 -0.3569424 -0.03198477 0.9448844 0.4692425
          [,29]     [,30]    [,31]   [,32]    [,33]     [,34]     [,35]
[1,] -0.2874742 0.3876311 0.206706 1.96893 1.227406 -0.086421 0.9060005
[2,] -0.2874742 0.3876311 0.206706 1.96893 1.227406 -0.086421 0.9060005
          [,36]      [,37]    [,38]      [,39]     [,40]     [,41]      [,42]
[1,] 0.00182971 -0.9211404 0.538541 -0.6465778 0.5319756 0.4235177 -0.2316578
[2,] 0.00182971 -0.9211404 0.538541 -0.6465778 0.5319756 0.4235177 -0.2316578
         [,43]    [,44]      [,45]    [,46]     [,47]     [,48]      [,49]
[1,] 0.2741302 1.237972 -0.2399844 1.705434 0.1493346 0.4877111 0.03140572
[2,] 0.2741302 1.237972 -0.2399844 1.705434 0.1493346 0.4877111 0.03140572
         [,50]     [,51]    [,52]     [,53]     [,54]     [,55]     [,56]
[1,] 0.7606391 0.7901761 1.544085 0.8706082 -1.273368 0.1309134 0.6772601
[2,] 0.7606391 0.7901761 1.544085 0.8706082 -1.273368 0.1309134 0.6772601
         [,57]      [,58]    [,59]     [,60]     [,61]     [,62]     [,63]
[1,] 0.3424833 -0.6851267 0.667522 0.3303923 0.0468272 0.7302264 -1.185933
[2,] 0.3424833 -0.6851267 0.667522 0.3303923 0.0468272 0.7302264 -1.185933
         [,64]      [,65]      [,66]    [,67]      [,68]     [,69]     [,70]
[1,] 0.7267233 0.06133398 -0.2365756 0.493027 -0.5102987 0.5487777 -1.274024
[2,] 0.7267233 0.06133398 -0.2365756 0.493027 -0.5102987 0.5487777 -1.274024
         [,71]      [,72]     [,73]     [,74]    [,75]     [,76]     [,77]
[1,] 0.6803546 -0.3827405 0.1050774 0.6921126 2.953606 0.3809789 0.3263882
[2,] 0.6803546 -0.3827405 0.1050774 0.6921126 2.953606 0.3809789 0.3263882
         [,78]    [,79]     [,80]      [,81]    [,82]      [,83]     [,84]
[1,] -1.043917 1.106047 0.3618487 0.03797034 1.732079 -0.4682139 0.1137017
[2,] -1.043917 1.106047 0.3618487 0.03797034 1.732079 -0.4682139 0.1137017
          [,85]     [,86]     [,87]    [,88]    [,89]    [,90]      [,91]
[1,] -0.6560967 -1.646599 0.7554546 1.123018 1.097821 1.400584 -0.1785349
[2,] -0.6560967 -1.646599 0.7554546 1.123018 1.097821 1.400584 -0.1785349
          [,92]        [,93]     [,94]       [,95]     [,96]     [,97]
[1,] -0.5013316 -0.003468204 -1.272963 -0.08797292 0.6414216 0.5196194
[2,] -0.5013316 -0.003468204 -1.272963 -0.08797292 0.6414216 0.5196194
          [,98]      [,99]   [,100]
[1,] -0.3011282 -0.9384009 1.475342
[2,] -0.3011282 -0.9384009 1.475342
> 
> 
> Max(tmp2)
[1] 2.286236
> Min(tmp2)
[1] -3.095518
> mean(tmp2)
[1] -0.2272912
> Sum(tmp2)
[1] -22.72912
> Var(tmp2)
[1] 1.019967
> 
> rowMeans(tmp2)
  [1] -0.988741428 -1.665200671 -0.812316212  0.444320126  0.282790422
  [6] -0.735019290 -0.106510213 -0.374226599 -0.284186402 -0.219343777
 [11] -0.946141160 -1.112618303  0.195945844 -1.506708805 -1.111698103
 [16]  1.361311187  0.132735566  0.062460208 -0.137128636 -1.320901283
 [21] -1.413070806  0.386111839 -2.415899407 -0.565893138 -0.404644662
 [26]  0.335135874 -0.907726123 -1.137903412 -0.584175898 -0.243503819
 [31]  0.646619957 -3.095517685 -0.514358273 -0.422689724  1.364192412
 [36]  1.504862883 -0.005443792 -1.801615055  0.765525004  1.090131985
 [41]  0.493577068 -2.341610632 -0.772132012 -0.884775270  1.109220698
 [46]  0.978020542 -1.497593996  0.904197294 -1.692046529 -0.301930734
 [51]  0.664899657  2.286236370 -1.696025649 -0.952719240 -0.272294520
 [56] -0.421943964  0.707967163 -0.702734374  0.516901218 -0.552463546
 [61] -0.271895683  1.301367604 -0.902989124 -0.705649438  0.954419815
 [66] -0.185261772  0.962376012 -0.533853646  1.042633118 -0.582880784
 [71]  0.406138296 -0.683570283  1.184815811  1.257243793 -0.501817566
 [76] -0.005367063 -0.567201825 -1.558450367  0.686625973 -0.769914777
 [81] -0.554414662  0.791181462  0.400291676  1.288947233 -1.602185174
 [86] -0.364994078  0.788820281 -0.018299272 -0.262674279 -1.651746957
 [91] -0.100375706 -1.800789312 -0.854981347 -1.326793908 -0.768418934
 [96]  1.159897322  0.704615332  1.624258536 -0.093510363  0.073571551
> rowSums(tmp2)
  [1] -0.988741428 -1.665200671 -0.812316212  0.444320126  0.282790422
  [6] -0.735019290 -0.106510213 -0.374226599 -0.284186402 -0.219343777
 [11] -0.946141160 -1.112618303  0.195945844 -1.506708805 -1.111698103
 [16]  1.361311187  0.132735566  0.062460208 -0.137128636 -1.320901283
 [21] -1.413070806  0.386111839 -2.415899407 -0.565893138 -0.404644662
 [26]  0.335135874 -0.907726123 -1.137903412 -0.584175898 -0.243503819
 [31]  0.646619957 -3.095517685 -0.514358273 -0.422689724  1.364192412
 [36]  1.504862883 -0.005443792 -1.801615055  0.765525004  1.090131985
 [41]  0.493577068 -2.341610632 -0.772132012 -0.884775270  1.109220698
 [46]  0.978020542 -1.497593996  0.904197294 -1.692046529 -0.301930734
 [51]  0.664899657  2.286236370 -1.696025649 -0.952719240 -0.272294520
 [56] -0.421943964  0.707967163 -0.702734374  0.516901218 -0.552463546
 [61] -0.271895683  1.301367604 -0.902989124 -0.705649438  0.954419815
 [66] -0.185261772  0.962376012 -0.533853646  1.042633118 -0.582880784
 [71]  0.406138296 -0.683570283  1.184815811  1.257243793 -0.501817566
 [76] -0.005367063 -0.567201825 -1.558450367  0.686625973 -0.769914777
 [81] -0.554414662  0.791181462  0.400291676  1.288947233 -1.602185174
 [86] -0.364994078  0.788820281 -0.018299272 -0.262674279 -1.651746957
 [91] -0.100375706 -1.800789312 -0.854981347 -1.326793908 -0.768418934
 [96]  1.159897322  0.704615332  1.624258536 -0.093510363  0.073571551
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.988741428 -1.665200671 -0.812316212  0.444320126  0.282790422
  [6] -0.735019290 -0.106510213 -0.374226599 -0.284186402 -0.219343777
 [11] -0.946141160 -1.112618303  0.195945844 -1.506708805 -1.111698103
 [16]  1.361311187  0.132735566  0.062460208 -0.137128636 -1.320901283
 [21] -1.413070806  0.386111839 -2.415899407 -0.565893138 -0.404644662
 [26]  0.335135874 -0.907726123 -1.137903412 -0.584175898 -0.243503819
 [31]  0.646619957 -3.095517685 -0.514358273 -0.422689724  1.364192412
 [36]  1.504862883 -0.005443792 -1.801615055  0.765525004  1.090131985
 [41]  0.493577068 -2.341610632 -0.772132012 -0.884775270  1.109220698
 [46]  0.978020542 -1.497593996  0.904197294 -1.692046529 -0.301930734
 [51]  0.664899657  2.286236370 -1.696025649 -0.952719240 -0.272294520
 [56] -0.421943964  0.707967163 -0.702734374  0.516901218 -0.552463546
 [61] -0.271895683  1.301367604 -0.902989124 -0.705649438  0.954419815
 [66] -0.185261772  0.962376012 -0.533853646  1.042633118 -0.582880784
 [71]  0.406138296 -0.683570283  1.184815811  1.257243793 -0.501817566
 [76] -0.005367063 -0.567201825 -1.558450367  0.686625973 -0.769914777
 [81] -0.554414662  0.791181462  0.400291676  1.288947233 -1.602185174
 [86] -0.364994078  0.788820281 -0.018299272 -0.262674279 -1.651746957
 [91] -0.100375706 -1.800789312 -0.854981347 -1.326793908 -0.768418934
 [96]  1.159897322  0.704615332  1.624258536 -0.093510363  0.073571551
> rowMin(tmp2)
  [1] -0.988741428 -1.665200671 -0.812316212  0.444320126  0.282790422
  [6] -0.735019290 -0.106510213 -0.374226599 -0.284186402 -0.219343777
 [11] -0.946141160 -1.112618303  0.195945844 -1.506708805 -1.111698103
 [16]  1.361311187  0.132735566  0.062460208 -0.137128636 -1.320901283
 [21] -1.413070806  0.386111839 -2.415899407 -0.565893138 -0.404644662
 [26]  0.335135874 -0.907726123 -1.137903412 -0.584175898 -0.243503819
 [31]  0.646619957 -3.095517685 -0.514358273 -0.422689724  1.364192412
 [36]  1.504862883 -0.005443792 -1.801615055  0.765525004  1.090131985
 [41]  0.493577068 -2.341610632 -0.772132012 -0.884775270  1.109220698
 [46]  0.978020542 -1.497593996  0.904197294 -1.692046529 -0.301930734
 [51]  0.664899657  2.286236370 -1.696025649 -0.952719240 -0.272294520
 [56] -0.421943964  0.707967163 -0.702734374  0.516901218 -0.552463546
 [61] -0.271895683  1.301367604 -0.902989124 -0.705649438  0.954419815
 [66] -0.185261772  0.962376012 -0.533853646  1.042633118 -0.582880784
 [71]  0.406138296 -0.683570283  1.184815811  1.257243793 -0.501817566
 [76] -0.005367063 -0.567201825 -1.558450367  0.686625973 -0.769914777
 [81] -0.554414662  0.791181462  0.400291676  1.288947233 -1.602185174
 [86] -0.364994078  0.788820281 -0.018299272 -0.262674279 -1.651746957
 [91] -0.100375706 -1.800789312 -0.854981347 -1.326793908 -0.768418934
 [96]  1.159897322  0.704615332  1.624258536 -0.093510363  0.073571551
> 
> colMeans(tmp2)
[1] -0.2272912
> colSums(tmp2)
[1] -22.72912
> colVars(tmp2)
[1] 1.019967
> colSd(tmp2)
[1] 1.009934
> colMax(tmp2)
[1] 2.286236
> colMin(tmp2)
[1] -3.095518
> colMedians(tmp2)
[1] -0.2782405
> colRanges(tmp2)
          [,1]
[1,] -3.095518
[2,]  2.286236
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.0914480  2.6159785 -2.3216296 -2.1716128  0.4558714  2.6121538
 [7] -0.6416361  7.3098894 -0.2097927  2.2934943
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.0694462
[2,] -0.6423565
[3,]  0.1327313
[4,]  0.3782288
[5,]  1.6152454
> 
> rowApply(tmp,sum)
 [1]  0.67768690 -0.47480027  1.70354763  3.94004859 -2.19034966  0.07321549
 [7]  9.39400562  3.13797170 -3.62544801 -1.60171376
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    7   10    5    7    7    2    3   10    4     4
 [2,]    4    3   10    8    6    3    6    7    6     9
 [3,]    8    5    2    1    9    1    9    8    3     1
 [4,]    1    1    6    2   10    7    4    1    2     7
 [5,]    6    2    8   10    4    4    1    9    8     2
 [6,]    9    6    7    4    5    9    2    5    7     6
 [7,]    5    8    3    3    3    6   10    2    1     3
 [8,]    2    7    9    9    8   10    8    3    9    10
 [9,]    3    9    1    5    2    8    7    4    5     5
[10,]   10    4    4    6    1    5    5    6   10     8
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.3968205  2.3303738 -1.5573549  1.8080783 -2.0696668 -0.2589019
 [7]  1.4555705  0.5774203 -2.2281213 -3.4380021  2.3108581  2.2411339
[13]  2.7187659 -4.1445574  2.1231183 -3.9742512 -2.7920673  0.2314863
[19] -0.8392316  0.1591932
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9064242
[2,] -0.8320739
[3,]  0.2769845
[4,]  1.3171935
[5,]  1.5411406
> 
> rowApply(tmp,sum)
[1]  3.261873 -5.433981  1.143875  2.605301 -5.526403
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    3   12   19    3   18
[2,]   16   19   16    4   12
[3,]   10    9    8   15    6
[4,]    6   10   20   16    7
[5,]   15    7   13    2   10
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,] -0.8320739  0.9258282 -0.1343463 -0.6604871  0.7348584  0.5795287
[2,]  0.2769845  1.2115737 -0.3096617 -0.1987748 -0.9563914 -2.3589000
[3,]  1.5411406  0.7882967 -0.6169788  3.0878014  0.1130396 -0.3337032
[4,] -0.9064242 -0.8479218  0.7168877  0.7377026 -1.4444432  1.4054889
[5,]  1.3171935  0.2525969 -1.2132557 -1.1581638 -0.5167302  0.4486837
           [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,]  1.3148263  2.8881235  0.3373987 -1.3998540 -0.7279209  1.4198750
[2,] -2.0796882  0.9511759 -1.4567022 -0.3382759  0.4406955  1.3224785
[3,] -0.7054635 -1.0450527  0.3997911 -0.1892745  1.2922975 -0.3322470
[4,]  1.5948475  0.2387654 -0.1331982 -0.5295511  0.5430063 -0.2764078
[5,]  1.3310484 -2.4555919 -1.3754106 -0.9810466  0.7627797  0.1074352
          [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,] -0.6355712 -0.6751762 -0.22579253 -0.1846701 -1.7873478  1.4103620
[2,]  0.5507326  0.4052627  0.11960426 -1.7490000 -1.8507875  0.9855819
[3,] -0.8225444 -1.1657143  0.06374171 -0.7870501  1.4554458 -0.7383911
[4,]  0.5719888  0.6139561  1.58993821 -0.2953727  0.9161525 -0.1305478
[5,]  3.0541602 -3.3228857  0.57562665 -0.9581584 -1.5255302 -1.2955187
          [,19]       [,20]
[1,]  0.4388941  0.47541800
[2,]  1.0094457 -1.40933484
[3,] -1.1352934  0.27403342
[4,] -1.7175226 -0.04204372
[5,]  0.5652446  0.86112031
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2      col3       col4     col5     col6      col7
row1 0.6983482 0.5217003 0.4730876 -0.5239498 -1.70653 -1.25344 0.2340841
         col8      col9      col10     col11      col12      col13    col14
row1 1.098058 0.8428923 -0.8900854 0.6892093 -0.6680448 -0.7552029 1.795321
         col15     col16    col17      col18    col19      col20
row1 0.1621512 -1.820155 1.225715 -0.2710288 1.302506 -0.7111409
> tmp[,"col10"]
          col10
row1 -0.8900854
row2 -0.3129924
row3 -1.0991509
row4  0.7989160
row5  0.6640575
> tmp[c("row1","row5"),]
          col1      col2      col3       col4      col5      col6       col7
row1 0.6983482 0.5217003 0.4730876 -0.5239498 -1.706530 -1.253440  0.2340841
row5 1.0375472 1.0145907 0.2564382 -1.5591860 -1.320777  1.146756 -0.3956427
          col8      col9      col10     col11      col12      col13      col14
row1  1.098058 0.8428923 -0.8900854 0.6892093 -0.6680448 -0.7552029  1.7953215
row5 -1.156706 0.3232202  0.6640575 0.6753017 -0.3821938 -0.1568835 -0.6131431
         col15      col16     col17      col18       col19      col20
row1 0.1621512 -1.8201550 1.2257149 -0.2710288  1.30250568 -0.7111409
row5 0.7955745 -0.8065403 0.2008076  1.6020118 -0.03455526  0.1802661
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.2534401 -0.7111409
row2 -0.7925907  1.6444159
row3  0.6890571  0.9524493
row4 -2.2830709  0.6682799
row5  1.1467557  0.1802661
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 -1.253440 -0.7111409
row5  1.146756  0.1802661
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.82416 49.59483 49.32506 48.51966 50.91265 104.8466 51.17028 50.20204
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.33939 51.25635 49.84009 50.36559 51.17228 49.52418 51.68566 48.66661
        col17    col18    col19   col20
row1 50.98786 49.99447 49.68847 105.724
> tmp[,"col10"]
        col10
row1 51.25635
row2 29.80500
row3 28.92226
row4 30.07631
row5 49.06666
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.82416 49.59483 49.32506 48.51966 50.91265 104.8466 51.17028 50.20204
row5 49.33383 50.43504 50.62217 50.82776 50.62671 107.6314 48.86756 50.04972
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.33939 51.25635 49.84009 50.36559 51.17228 49.52418 51.68566 48.66661
row5 50.16893 49.06666 50.52131 49.69517 51.49068 50.34136 50.00113 51.22186
        col17    col18    col19   col20
row1 50.98786 49.99447 49.68847 105.724
row5 51.52350 50.70704 51.02216 105.089
> tmp[,c("col6","col20")]
          col6     col20
row1 104.84661 105.72404
row2  75.84149  76.13021
row3  75.81837  75.39250
row4  75.05084  72.74381
row5 107.63143 105.08895
> tmp[c("row1","row5"),c("col6","col20")]
         col6   col20
row1 104.8466 105.724
row5 107.6314 105.089
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6   col20
row1 104.8466 105.724
row5 107.6314 105.089
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  0.46156158
[2,]  0.46281789
[3,] -0.08185354
[4,]  1.34312098
[5,] -0.17651365
> tmp[,c("col17","col7")]
          col17       col7
[1,] -1.8553679  0.8330776
[2,] -0.7221232 -0.2571414
[3,]  0.2749199 -1.7082472
[4,] -0.2174280  0.7743741
[5,]  0.9677749 -0.7821872
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.7339651 -0.6233058
[2,]  0.5169970  2.1801139
[3,] -0.2280284 -0.9910297
[4,]  0.1433957  0.4362243
[5,] -0.6281931 -0.5846199
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.733965
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -1.733965
[2,]  0.516997
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]      [,3]       [,4]       [,5]      [,6]      [,7]
row3 -0.7118841 -0.3976291 1.2744958  0.5794965 -0.1641739 1.2177402 0.3035123
row1 -0.8426092  1.3948270 0.1835293 -0.5423965  0.6385827 0.2420573 0.1031255
           [,8]       [,9]     [,10]       [,11]    [,12]     [,13]       [,14]
row3 -0.5195695 -0.3174814 1.7371186 -0.48822454 1.391844 -1.529248 -1.35972540
row1 -0.9017023  0.4913406 0.5746989  0.01372223 1.494558 -1.134566  0.04870579
          [,15]      [,16]     [,17]       [,18]     [,19]      [,20]
row3  0.1755330 -1.9676085 -1.372482 -0.03561996 0.9066108  1.7055831
row1 -0.3785533 -0.2103763  1.454614 -0.78606343 0.7282984 -0.9815765
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]      [,3]      [,4]       [,5]       [,6]      [,7]
row2 0.07169097 0.9884933 0.6511383 0.4507858 -0.3399051 -0.5799594 -1.919895
          [,8]     [,9]     [,10]
row2 -0.849077 0.393388 -1.411318
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]     [,2]      [,3]      [,4]       [,5]       [,6]      [,7]
row5 -0.2957247 0.313331 -3.935155 0.7717615 -0.6255077 0.05501731 -1.692204
          [,8]       [,9]     [,10]      [,11]    [,12]    [,13]      [,14]
row5 0.4382028 -0.8988569 0.6498874 -0.7144257 1.773254 1.142178 -0.7693585
         [,15]    [,16]      [,17]    [,18]      [,19]      [,20]
row5 -2.706311 1.471198 -0.7200731 1.379842 -0.1830551 0.01987293
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x356aac20>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264407e2c53"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM3852645b7e50fc"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264614e89ec"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM38526482bc337" 
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM38526413076b55"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264211e812b"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM38526435ee9996"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264271552a2"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264284f34ca"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264462176e5"
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM38526441eb8184"
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM3852643284d1a5"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM38526428860594"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM385264538e1de0"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM3852647e7794f4"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x3445b020>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x3445b020>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x3445b020>
> rowMedians(tmp)
  [1] -0.301568512  0.169375908 -0.034468022  0.230781622  0.193082561
  [6] -0.928363180  0.508702687 -0.444512784  0.154967716  0.038544886
 [11] -0.176154726  0.217771424  0.103158077 -0.436483101 -0.409975059
 [16]  0.128301854 -0.157004803 -0.002516227  0.400330335  0.352786690
 [21]  0.031772288  0.695969186  0.170823162 -0.136544551 -0.051857321
 [26]  0.248336721  0.433634317 -0.220350857  0.118037730  0.406283244
 [31] -0.214731954 -0.011995049 -0.607016429  0.016961469 -0.506470360
 [36] -0.373499084  0.817004006  0.484470142  0.099471800 -0.115804126
 [41]  0.586700145  0.738487015  0.046566562  0.372242752 -0.151656708
 [46]  0.566733239  0.549641769 -0.162336742  0.558938129  0.030540796
 [51] -0.040554607  0.163424285 -0.009346763  0.481445044 -0.012501682
 [56]  0.181345722 -0.236794316  0.279855886 -0.015976837 -0.049956893
 [61] -0.551211201  0.379922456 -0.276446077  0.419414889 -0.075620975
 [66]  0.253327522  0.859129171  0.252322729  0.032551982  0.404145108
 [71] -0.117680815  0.283060381 -0.162029103  0.495732067 -0.474910173
 [76]  0.252287860 -0.025678721  0.038223313  0.236521820 -0.160116022
 [81]  0.142203447 -0.259450862 -0.112265821 -0.576651094 -0.085588877
 [86]  0.350540180  0.035678285  0.131283847  0.098028799  0.469797258
 [91]  0.074575006 -0.095550990  0.112716008  0.474552052 -0.716549292
 [96]  0.111681009 -0.059591997  0.010416892 -0.091994512 -0.086852922
[101]  0.006409757 -0.226934702 -0.043581771 -0.593890644  0.246208617
[106]  0.160211216 -0.409269531 -0.047456833  0.672641428 -0.251817547
[111] -0.185697145  0.151026461  0.216260365  0.010178956  0.048820740
[116]  0.104112013 -0.784848791 -0.278886211 -0.253922391 -0.279253439
[121]  0.376873936 -0.097650658 -0.221911128 -0.356407374  0.416085215
[126]  0.207298265 -0.643055361 -0.018286792  0.628697027 -0.145779153
[131] -0.152385083 -0.314923261  0.322445106 -0.175606910  0.524632206
[136]  0.284284891  0.662808105  0.062471821 -0.061191280 -0.474375800
[141]  0.135760840  0.494596906  0.076336408  0.095155522  0.153611871
[146] -0.055969817  0.368442766 -0.530669766  0.658932913  0.095629905
[151] -0.160534725  0.139554604  0.745114681 -0.334484605 -0.420937886
[156]  0.101701542 -0.014225467  0.105955488 -0.351369416  0.023405742
[161]  0.650737245  0.623689645 -0.161868323  0.224422336 -0.358141715
[166] -0.102793615 -0.606409886  0.016226987  0.001830118 -0.118601391
[171] -0.101875920  0.397293512 -0.073174453 -0.335379510  0.064380326
[176] -0.047488021 -0.301620419  0.364100916 -0.380827414 -0.107958932
[181]  0.177588614 -0.159962203  0.089694752  0.235766551  0.191163328
[186]  0.362513298 -0.364529193  0.218790003 -0.518562114 -0.160988920
[191]  0.336492168  0.205085935 -0.520789643  0.306501065 -0.075600571
[196]  0.061195037 -0.101283738  0.129316422  0.070547304 -0.178559031
[201]  0.236218211  0.289058609 -0.346879495  0.235323588 -0.082675384
[206]  0.566857277 -0.081242937  0.483578760 -0.117404523  0.478552534
[211] -0.385271088 -0.366867528  0.270840541  0.129917317  0.222572003
[216] -0.046186625 -0.334848457 -0.116884147 -0.068379849 -0.302151245
[221]  0.233462395  0.129985437  0.309289585  0.350921365  0.223420614
[226]  0.342057065 -0.371147420  0.341017604  0.073861767 -0.451512761
> 
> proc.time()
   user  system elapsed 
  1.717   0.944   2.686 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xc94b3c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xc94b3c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xc94b3c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0xc94b3c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0xc42dd60>
> .Call("R_bm_AddColumn",P)
<pointer: 0xc42dd60>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0xc42dd60>
> .Call("R_bm_AddColumn",P)
<pointer: 0xc42dd60>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xc42dd60>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xca5f7e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0xca5f7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xca5f7e0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0xca5f7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xca5f7e0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0xca5f7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xca5f7e0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0xca5f7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xca5f7e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xd354fd0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0xd354fd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0xd354fd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0xd354fd0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3854c3600e65c4" "BufferedMatrixFile3854c366abb954"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3854c3600e65c4" "BufferedMatrixFile3854c366abb954"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_AddColumn",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0xcbd1da0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xec40990>
> .Call("R_bm_AddColumn",P)
<pointer: 0xec40990>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0xec40990>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0xec40990>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xec8dcc0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xec8dcc0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.313   0.040   0.338 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.299   0.035   0.320 

Example timings