Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-27 12:01 -0500 (Thu, 27 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4876
merida1macOS 12.7.6 Montereyx86_644.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble" 4656
kjohnson1macOS 13.7.5 Venturaarm644.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble" 4602
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4668
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.74.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-24 13:45 -0500 (Mon, 24 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_22
git_last_commit: d2ce144
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.7.5 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.74.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
StartedAt: 2025-11-25 22:09:07 -0500 (Tue, 25 Nov 2025)
EndedAt: 2025-11-25 22:09:31 -0500 (Tue, 25 Nov 2025)
EllapsedTime: 24.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.74.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.74.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.246   0.039   0.274 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478284 25.6    1046725   56   639600 34.2
Vcells 884773  6.8    8388608   64  2081613 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 25 22:09:22 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 25 22:09:22 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5f7979422240>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 25 22:09:22 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 25 22:09:23 2025"
> 
> ColMode(tmp2)
<pointer: 0x5f7979422240>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]        [,3]       [,4]
[1,] 100.4109444  0.5464873 -4.39094412  1.3782102
[2,]  -0.3510032  0.1655421  2.15429452 -0.4915553
[3,]  -1.3444168 -1.1948393 -0.52494019  0.4947817
[4,]   0.3307066 -0.6714045 -0.00409506  0.6768994
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]       [,3]      [,4]
[1,] 100.4109444 0.5464873 4.39094412 1.3782102
[2,]   0.3510032 0.1655421 2.15429452 0.4915553
[3,]   1.3444168 1.1948393 0.52494019 0.4947817
[4,]   0.3307066 0.6714045 0.00409506 0.6768994
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 10.0205262 0.7392478 2.09545797 1.1739720
[2,]  0.5924552 0.4068686 1.46775152 0.7011100
[3,]  1.1594899 1.0930871 0.72452756 0.7034072
[4,]  0.5750710 0.8193928 0.06399266 0.8227390
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.61621 32.93896 50.34552 38.11793
[2,]  31.27556 29.23423 41.83181 32.50266
[3,]  37.93932 37.12571 32.77022 32.52885
[4,]  31.08142 33.86533 25.64402 33.90429
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5f797a028930>
> exp(tmp5)
<pointer: 0x5f797a028930>
> log(tmp5,2)
<pointer: 0x5f797a028930>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.5906
> Min(tmp5)
[1] 52.9664
> mean(tmp5)
[1] 72.91355
> Sum(tmp5)
[1] 14582.71
> Var(tmp5)
[1] 875.0016
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.56788 68.63514 72.51843 70.52194 73.16043 70.31905 71.24852 68.17130
 [9] 72.80437 71.18846
> rowSums(tmp5)
 [1] 1811.358 1372.703 1450.369 1410.439 1463.209 1406.381 1424.970 1363.426
 [9] 1456.087 1423.769
> rowVars(tmp5)
 [1] 8069.23873  110.75494   57.84860  107.16590  125.98770   53.78873
 [7]   78.66133   57.80176   65.66593   47.15804
> rowSd(tmp5)
 [1] 89.828941 10.524017  7.605827 10.352096 11.224424  7.334080  8.869122
 [8]  7.602747  8.103452  6.867171
> rowMax(tmp5)
 [1] 469.59057  89.04288  82.81692  93.87985  96.75716  83.63529  86.34275
 [8]  85.26417  86.18028  84.03227
> rowMin(tmp5)
 [1] 52.96640 54.87542 55.27545 53.37467 55.17639 53.81816 59.74663 54.89636
 [9] 60.88525 58.66142
> 
> colMeans(tmp5)
 [1] 108.99821  71.17242  72.38310  71.81789  72.21238  71.22540  70.65636
 [8]  77.05419  68.18756  71.44177  70.88696  76.45972  71.47542  70.31586
[15]  71.65990  70.10580  68.12871  66.74517  67.27622  70.06801
> colSums(tmp5)
 [1] 1089.9821  711.7242  723.8310  718.1789  722.1238  712.2540  706.5636
 [8]  770.5419  681.8756  714.4177  708.8696  764.5972  714.7542  703.1586
[15]  716.5990  701.0580  681.2871  667.4517  672.7622  700.6801
> colVars(tmp5)
 [1] 16077.46524    65.63844   214.19714    59.27882    75.32604    52.36134
 [7]    38.23494   167.29312    98.18896    71.30937    45.71353   114.34835
[13]    89.42981    61.79565    68.71740    95.40401    54.79833   122.25181
[19]    52.69405    64.50827
> colSd(tmp5)
 [1] 126.796945   8.101755  14.635475   7.699274   8.679058   7.236114
 [7]   6.183440  12.934184   9.909034   8.444488   6.761178  10.693379
[13]   9.456733   7.861021   8.289596   9.767497   7.402590  11.056754
[19]   7.259067   8.031704
> colMax(tmp5)
 [1] 469.59057  83.63529 104.78761  81.05685  86.18028  80.82026  80.56786
 [8]  96.75716  84.03227  89.49132  81.78850  93.87985  86.34275  79.20833
[15]  81.43722  89.04288  77.26477  83.24154  79.56071  87.52101
> colMin(tmp5)
 [1] 62.07310 59.74663 53.37467 55.17639 59.95985 57.67125 62.45530 52.96640
 [9] 55.27545 60.88525 59.96018 65.39970 58.13422 55.91180 57.74171 55.18718
[17] 58.59834 53.81816 54.89636 58.66142
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.56788 68.63514 72.51843 70.52194 73.16043 70.31905       NA 68.17130
 [9] 72.80437 71.18846
> rowSums(tmp5)
 [1] 1811.358 1372.703 1450.369 1410.439 1463.209 1406.381       NA 1363.426
 [9] 1456.087 1423.769
> rowVars(tmp5)
 [1] 8069.23873  110.75494   57.84860  107.16590  125.98770   53.78873
 [7]   81.10310   57.80176   65.66593   47.15804
> rowSd(tmp5)
 [1] 89.828941 10.524017  7.605827 10.352096 11.224424  7.334080  9.005726
 [8]  7.602747  8.103452  6.867171
> rowMax(tmp5)
 [1] 469.59057  89.04288  82.81692  93.87985  96.75716  83.63529        NA
 [8]  85.26417  86.18028  84.03227
> rowMin(tmp5)
 [1] 52.96640 54.87542 55.27545 53.37467 55.17639 53.81816       NA 54.89636
 [9] 60.88525 58.66142
> 
> colMeans(tmp5)
 [1]       NA 71.17242 72.38310 71.81789 72.21238 71.22540 70.65636 77.05419
 [9] 68.18756 71.44177 70.88696 76.45972 71.47542 70.31586 71.65990 70.10580
[17] 68.12871 66.74517 67.27622 70.06801
> colSums(tmp5)
 [1]       NA 711.7242 723.8310 718.1789 722.1238 712.2540 706.5636 770.5419
 [9] 681.8756 714.4177 708.8696 764.5972 714.7542 703.1586 716.5990 701.0580
[17] 681.2871 667.4517 672.7622 700.6801
> colVars(tmp5)
 [1]        NA  65.63844 214.19714  59.27882  75.32604  52.36134  38.23494
 [8] 167.29312  98.18896  71.30937  45.71353 114.34835  89.42981  61.79565
[15]  68.71740  95.40401  54.79833 122.25181  52.69405  64.50827
> colSd(tmp5)
 [1]        NA  8.101755 14.635475  7.699274  8.679058  7.236114  6.183440
 [8] 12.934184  9.909034  8.444488  6.761178 10.693379  9.456733  7.861021
[15]  8.289596  9.767497  7.402590 11.056754  7.259067  8.031704
> colMax(tmp5)
 [1]        NA  83.63529 104.78761  81.05685  86.18028  80.82026  80.56786
 [8]  96.75716  84.03227  89.49132  81.78850  93.87985  86.34275  79.20833
[15]  81.43722  89.04288  77.26477  83.24154  79.56071  87.52101
> colMin(tmp5)
 [1]       NA 59.74663 53.37467 55.17639 59.95985 57.67125 62.45530 52.96640
 [9] 55.27545 60.88525 59.96018 65.39970 58.13422 55.91180 57.74171 55.18718
[17] 58.59834 53.81816 54.89636 58.66142
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.5906
> Min(tmp5,na.rm=TRUE)
[1] 52.9664
> mean(tmp5,na.rm=TRUE)
[1] 72.95077
> Sum(tmp5,na.rm=TRUE)
[1] 14517.2
> Var(tmp5,na.rm=TRUE)
[1] 879.1423
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.56788 68.63514 72.51843 70.52194 73.16043 70.31905 71.55075 68.17130
 [9] 72.80437 71.18846
> rowSums(tmp5,na.rm=TRUE)
 [1] 1811.358 1372.703 1450.369 1410.439 1463.209 1406.381 1359.464 1363.426
 [9] 1456.087 1423.769
> rowVars(tmp5,na.rm=TRUE)
 [1] 8069.23873  110.75494   57.84860  107.16590  125.98770   53.78873
 [7]   81.10310   57.80176   65.66593   47.15804
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.828941 10.524017  7.605827 10.352096 11.224424  7.334080  9.005726
 [8]  7.602747  8.103452  6.867171
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.59057  89.04288  82.81692  93.87985  96.75716  83.63529  86.34275
 [8]  85.26417  86.18028  84.03227
> rowMin(tmp5,na.rm=TRUE)
 [1] 52.96640 54.87542 55.27545 53.37467 55.17639 53.81816 59.74663 54.89636
 [9] 60.88525 58.66142
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.83065  71.17242  72.38310  71.81789  72.21238  71.22540  70.65636
 [8]  77.05419  68.18756  71.44177  70.88696  76.45972  71.47542  70.31586
[15]  71.65990  70.10580  68.12871  66.74517  67.27622  70.06801
> colSums(tmp5,na.rm=TRUE)
 [1] 1024.4758  711.7242  723.8310  718.1789  722.1238  712.2540  706.5636
 [8]  770.5419  681.8756  714.4177  708.8696  764.5972  714.7542  703.1586
[15]  716.5990  701.0580  681.2871  667.4517  672.7622  700.6801
> colVars(tmp5,na.rm=TRUE)
 [1] 17824.43289    65.63844   214.19714    59.27882    75.32604    52.36134
 [7]    38.23494   167.29312    98.18896    71.30937    45.71353   114.34835
[13]    89.42981    61.79565    68.71740    95.40401    54.79833   122.25181
[19]    52.69405    64.50827
> colSd(tmp5,na.rm=TRUE)
 [1] 133.508175   8.101755  14.635475   7.699274   8.679058   7.236114
 [7]   6.183440  12.934184   9.909034   8.444488   6.761178  10.693379
[13]   9.456733   7.861021   8.289596   9.767497   7.402590  11.056754
[19]   7.259067   8.031704
> colMax(tmp5,na.rm=TRUE)
 [1] 469.59057  83.63529 104.78761  81.05685  86.18028  80.82026  80.56786
 [8]  96.75716  84.03227  89.49132  81.78850  93.87985  86.34275  79.20833
[15]  81.43722  89.04288  77.26477  83.24154  79.56071  87.52101
> colMin(tmp5,na.rm=TRUE)
 [1] 62.07310 59.74663 53.37467 55.17639 59.95985 57.67125 62.45530 52.96640
 [9] 55.27545 60.88525 59.96018 65.39970 58.13422 55.91180 57.74171 55.18718
[17] 58.59834 53.81816 54.89636 58.66142
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.56788 68.63514 72.51843 70.52194 73.16043 70.31905      NaN 68.17130
 [9] 72.80437 71.18846
> rowSums(tmp5,na.rm=TRUE)
 [1] 1811.358 1372.703 1450.369 1410.439 1463.209 1406.381    0.000 1363.426
 [9] 1456.087 1423.769
> rowVars(tmp5,na.rm=TRUE)
 [1] 8069.23873  110.75494   57.84860  107.16590  125.98770   53.78873
 [7]         NA   57.80176   65.66593   47.15804
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.828941 10.524017  7.605827 10.352096 11.224424  7.334080        NA
 [8]  7.602747  8.103452  6.867171
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.59057  89.04288  82.81692  93.87985  96.75716  83.63529        NA
 [8]  85.26417  86.18028  84.03227
> rowMin(tmp5,na.rm=TRUE)
 [1] 52.96640 54.87542 55.27545 53.37467 55.17639 53.81816       NA 54.89636
 [9] 60.88525 58.66142
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1]      NaN 72.44195 73.56446 70.79133 71.06101 71.31906 71.17552 76.18140
 [9] 68.80107 71.11269 70.65915 75.58608 69.82350 70.76406 70.93216 70.84494
[17] 68.94949 66.44419 67.74293 69.94546
> colSums(tmp5,na.rm=TRUE)
 [1]   0.0000 651.9776 662.0802 637.1220 639.5491 641.8715 640.5797 685.6326
 [9] 619.2096 640.0142 635.9324 680.2747 628.4115 636.8766 638.3895 637.6044
[17] 620.5454 597.9977 609.6863 629.5091
> colVars(tmp5,na.rm=TRUE)
 [1]        NA  55.71149 225.27100  54.83333  69.82810  58.80783  39.98216
 [8] 179.63494 106.22815  79.00475  50.84391 120.05547  69.90890  67.26008
[15]  71.34907 101.18339  54.06933 136.51419  56.83043  72.40285
> colSd(tmp5,na.rm=TRUE)
 [1]        NA  7.464013 15.009031  7.404953  8.356321  7.668626  6.323145
 [8] 13.402796 10.306704  8.888461  7.130492 10.956982  8.361154  8.201224
[15]  8.446838 10.058995  7.353185 11.683928  7.538596  8.508987
> colMax(tmp5,na.rm=TRUE)
 [1]      -Inf  83.63529 104.78761  79.33748  86.18028  80.82026  80.56786
 [8]  96.75716  84.03227  89.49132  81.78850  93.87985  85.26417  79.20833
[15]  81.43722  89.04288  77.26477  83.24154  79.56071  87.52101
> colMin(tmp5,na.rm=TRUE)
 [1]      Inf 60.84722 53.37467 55.17639 59.95985 57.67125 62.45530 52.96640
 [9] 55.27545 60.88525 59.96018 65.39970 58.13422 55.91180 57.74171 55.18718
[17] 58.59834 53.81816 54.89636 58.66142
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 299.8720 191.0202 221.9914 178.4925 201.5158 249.2375 328.3603 151.7073
 [9] 297.6116 145.0816
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 299.8720 191.0202 221.9914 178.4925 201.5158 249.2375 328.3603 151.7073
 [9] 297.6116 145.0816
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.847411e-13 -8.526513e-14 -5.684342e-14  2.842171e-14  0.000000e+00
 [6] -1.421085e-14 -2.273737e-13 -8.526513e-14  4.973799e-14 -1.705303e-13
[11] -5.684342e-14  1.421085e-14 -1.136868e-13  5.684342e-14 -8.526513e-14
[16] -8.526513e-14 -1.705303e-13  5.684342e-14 -1.136868e-13 -2.842171e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   10 
5   17 
5   5 
2   10 
6   9 
6   16 
7   5 
1   8 
4   7 
5   17 
10   16 
6   12 
8   20 
8   3 
3   12 
8   20 
6   13 
8   12 
5   16 
1   12 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.576005
> Min(tmp)
[1] -2.788996
> mean(tmp)
[1] -0.09047825
> Sum(tmp)
[1] -9.047825
> Var(tmp)
[1] 1.107691
> 
> rowMeans(tmp)
[1] -0.09047825
> rowSums(tmp)
[1] -9.047825
> rowVars(tmp)
[1] 1.107691
> rowSd(tmp)
[1] 1.052469
> rowMax(tmp)
[1] 2.576005
> rowMin(tmp)
[1] -2.788996
> 
> colMeans(tmp)
  [1]  0.431251038 -1.210743601 -0.160692398 -0.889679009  1.088591746
  [6] -0.844099695  0.605756546  1.167136935  0.614484821  1.427113910
 [11] -0.713388711  0.714316994 -0.276314351  0.449465817 -0.906847601
 [16] -0.368103603  1.126756555  1.353185692 -0.130469831 -2.788996309
 [21] -0.111838771  0.237439931  0.994895202 -0.837438458  0.345702863
 [26] -0.210299042 -1.102736257 -0.823466002 -0.654101465  1.062615647
 [31] -0.036425847 -0.148135434  0.080103337 -1.985690875 -1.176984079
 [36]  1.588553457 -1.459243656  0.121681539  0.368258578 -0.378789809
 [41] -2.412861306  0.421635404  2.439342864  1.000364913 -0.609656921
 [46] -0.122077002  0.819812472 -0.684907207  1.622594765 -0.745549083
 [51]  0.343527359  0.013507753  0.819232481 -0.548500148 -1.433751405
 [56] -1.071345543  1.850160057 -0.280349030 -0.166091175  0.038159824
 [61]  0.528443996 -1.428054466 -1.581964432  2.033164373  0.045816061
 [66]  0.495058384 -0.230495668  0.866588323  0.328866965 -0.516629178
 [71] -0.707735626 -0.579987548  0.430876311  0.966164896  0.345306118
 [76] -2.162649717  2.576005460 -0.445191993 -2.632663875  0.548710467
 [81] -0.532244353 -0.647001878  0.546103541  0.934281062 -0.550501344
 [86] -0.698970205  0.176435850 -0.729665503 -0.633824293  0.729485763
 [91] -1.261335994 -0.674524681 -0.832263877 -0.534513042  0.002089641
 [96] -0.880185279  1.221712789 -1.264947969 -1.717180638  1.563522084
> colSums(tmp)
  [1]  0.431251038 -1.210743601 -0.160692398 -0.889679009  1.088591746
  [6] -0.844099695  0.605756546  1.167136935  0.614484821  1.427113910
 [11] -0.713388711  0.714316994 -0.276314351  0.449465817 -0.906847601
 [16] -0.368103603  1.126756555  1.353185692 -0.130469831 -2.788996309
 [21] -0.111838771  0.237439931  0.994895202 -0.837438458  0.345702863
 [26] -0.210299042 -1.102736257 -0.823466002 -0.654101465  1.062615647
 [31] -0.036425847 -0.148135434  0.080103337 -1.985690875 -1.176984079
 [36]  1.588553457 -1.459243656  0.121681539  0.368258578 -0.378789809
 [41] -2.412861306  0.421635404  2.439342864  1.000364913 -0.609656921
 [46] -0.122077002  0.819812472 -0.684907207  1.622594765 -0.745549083
 [51]  0.343527359  0.013507753  0.819232481 -0.548500148 -1.433751405
 [56] -1.071345543  1.850160057 -0.280349030 -0.166091175  0.038159824
 [61]  0.528443996 -1.428054466 -1.581964432  2.033164373  0.045816061
 [66]  0.495058384 -0.230495668  0.866588323  0.328866965 -0.516629178
 [71] -0.707735626 -0.579987548  0.430876311  0.966164896  0.345306118
 [76] -2.162649717  2.576005460 -0.445191993 -2.632663875  0.548710467
 [81] -0.532244353 -0.647001878  0.546103541  0.934281062 -0.550501344
 [86] -0.698970205  0.176435850 -0.729665503 -0.633824293  0.729485763
 [91] -1.261335994 -0.674524681 -0.832263877 -0.534513042  0.002089641
 [96] -0.880185279  1.221712789 -1.264947969 -1.717180638  1.563522084
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.431251038 -1.210743601 -0.160692398 -0.889679009  1.088591746
  [6] -0.844099695  0.605756546  1.167136935  0.614484821  1.427113910
 [11] -0.713388711  0.714316994 -0.276314351  0.449465817 -0.906847601
 [16] -0.368103603  1.126756555  1.353185692 -0.130469831 -2.788996309
 [21] -0.111838771  0.237439931  0.994895202 -0.837438458  0.345702863
 [26] -0.210299042 -1.102736257 -0.823466002 -0.654101465  1.062615647
 [31] -0.036425847 -0.148135434  0.080103337 -1.985690875 -1.176984079
 [36]  1.588553457 -1.459243656  0.121681539  0.368258578 -0.378789809
 [41] -2.412861306  0.421635404  2.439342864  1.000364913 -0.609656921
 [46] -0.122077002  0.819812472 -0.684907207  1.622594765 -0.745549083
 [51]  0.343527359  0.013507753  0.819232481 -0.548500148 -1.433751405
 [56] -1.071345543  1.850160057 -0.280349030 -0.166091175  0.038159824
 [61]  0.528443996 -1.428054466 -1.581964432  2.033164373  0.045816061
 [66]  0.495058384 -0.230495668  0.866588323  0.328866965 -0.516629178
 [71] -0.707735626 -0.579987548  0.430876311  0.966164896  0.345306118
 [76] -2.162649717  2.576005460 -0.445191993 -2.632663875  0.548710467
 [81] -0.532244353 -0.647001878  0.546103541  0.934281062 -0.550501344
 [86] -0.698970205  0.176435850 -0.729665503 -0.633824293  0.729485763
 [91] -1.261335994 -0.674524681 -0.832263877 -0.534513042  0.002089641
 [96] -0.880185279  1.221712789 -1.264947969 -1.717180638  1.563522084
> colMin(tmp)
  [1]  0.431251038 -1.210743601 -0.160692398 -0.889679009  1.088591746
  [6] -0.844099695  0.605756546  1.167136935  0.614484821  1.427113910
 [11] -0.713388711  0.714316994 -0.276314351  0.449465817 -0.906847601
 [16] -0.368103603  1.126756555  1.353185692 -0.130469831 -2.788996309
 [21] -0.111838771  0.237439931  0.994895202 -0.837438458  0.345702863
 [26] -0.210299042 -1.102736257 -0.823466002 -0.654101465  1.062615647
 [31] -0.036425847 -0.148135434  0.080103337 -1.985690875 -1.176984079
 [36]  1.588553457 -1.459243656  0.121681539  0.368258578 -0.378789809
 [41] -2.412861306  0.421635404  2.439342864  1.000364913 -0.609656921
 [46] -0.122077002  0.819812472 -0.684907207  1.622594765 -0.745549083
 [51]  0.343527359  0.013507753  0.819232481 -0.548500148 -1.433751405
 [56] -1.071345543  1.850160057 -0.280349030 -0.166091175  0.038159824
 [61]  0.528443996 -1.428054466 -1.581964432  2.033164373  0.045816061
 [66]  0.495058384 -0.230495668  0.866588323  0.328866965 -0.516629178
 [71] -0.707735626 -0.579987548  0.430876311  0.966164896  0.345306118
 [76] -2.162649717  2.576005460 -0.445191993 -2.632663875  0.548710467
 [81] -0.532244353 -0.647001878  0.546103541  0.934281062 -0.550501344
 [86] -0.698970205  0.176435850 -0.729665503 -0.633824293  0.729485763
 [91] -1.261335994 -0.674524681 -0.832263877 -0.534513042  0.002089641
 [96] -0.880185279  1.221712789 -1.264947969 -1.717180638  1.563522084
> colMedians(tmp)
  [1]  0.431251038 -1.210743601 -0.160692398 -0.889679009  1.088591746
  [6] -0.844099695  0.605756546  1.167136935  0.614484821  1.427113910
 [11] -0.713388711  0.714316994 -0.276314351  0.449465817 -0.906847601
 [16] -0.368103603  1.126756555  1.353185692 -0.130469831 -2.788996309
 [21] -0.111838771  0.237439931  0.994895202 -0.837438458  0.345702863
 [26] -0.210299042 -1.102736257 -0.823466002 -0.654101465  1.062615647
 [31] -0.036425847 -0.148135434  0.080103337 -1.985690875 -1.176984079
 [36]  1.588553457 -1.459243656  0.121681539  0.368258578 -0.378789809
 [41] -2.412861306  0.421635404  2.439342864  1.000364913 -0.609656921
 [46] -0.122077002  0.819812472 -0.684907207  1.622594765 -0.745549083
 [51]  0.343527359  0.013507753  0.819232481 -0.548500148 -1.433751405
 [56] -1.071345543  1.850160057 -0.280349030 -0.166091175  0.038159824
 [61]  0.528443996 -1.428054466 -1.581964432  2.033164373  0.045816061
 [66]  0.495058384 -0.230495668  0.866588323  0.328866965 -0.516629178
 [71] -0.707735626 -0.579987548  0.430876311  0.966164896  0.345306118
 [76] -2.162649717  2.576005460 -0.445191993 -2.632663875  0.548710467
 [81] -0.532244353 -0.647001878  0.546103541  0.934281062 -0.550501344
 [86] -0.698970205  0.176435850 -0.729665503 -0.633824293  0.729485763
 [91] -1.261335994 -0.674524681 -0.832263877 -0.534513042  0.002089641
 [96] -0.880185279  1.221712789 -1.264947969 -1.717180638  1.563522084
> colRanges(tmp)
         [,1]      [,2]       [,3]      [,4]     [,5]       [,6]      [,7]
[1,] 0.431251 -1.210744 -0.1606924 -0.889679 1.088592 -0.8440997 0.6057565
[2,] 0.431251 -1.210744 -0.1606924 -0.889679 1.088592 -0.8440997 0.6057565
         [,8]      [,9]    [,10]      [,11]    [,12]      [,13]     [,14]
[1,] 1.167137 0.6144848 1.427114 -0.7133887 0.714317 -0.2763144 0.4494658
[2,] 1.167137 0.6144848 1.427114 -0.7133887 0.714317 -0.2763144 0.4494658
          [,15]      [,16]    [,17]    [,18]      [,19]     [,20]      [,21]
[1,] -0.9068476 -0.3681036 1.126757 1.353186 -0.1304698 -2.788996 -0.1118388
[2,] -0.9068476 -0.3681036 1.126757 1.353186 -0.1304698 -2.788996 -0.1118388
         [,22]     [,23]      [,24]     [,25]     [,26]     [,27]     [,28]
[1,] 0.2374399 0.9948952 -0.8374385 0.3457029 -0.210299 -1.102736 -0.823466
[2,] 0.2374399 0.9948952 -0.8374385 0.3457029 -0.210299 -1.102736 -0.823466
          [,29]    [,30]       [,31]      [,32]      [,33]     [,34]     [,35]
[1,] -0.6541015 1.062616 -0.03642585 -0.1481354 0.08010334 -1.985691 -1.176984
[2,] -0.6541015 1.062616 -0.03642585 -0.1481354 0.08010334 -1.985691 -1.176984
        [,36]     [,37]     [,38]     [,39]      [,40]     [,41]     [,42]
[1,] 1.588553 -1.459244 0.1216815 0.3682586 -0.3787898 -2.412861 0.4216354
[2,] 1.588553 -1.459244 0.1216815 0.3682586 -0.3787898 -2.412861 0.4216354
        [,43]    [,44]      [,45]     [,46]     [,47]      [,48]    [,49]
[1,] 2.439343 1.000365 -0.6096569 -0.122077 0.8198125 -0.6849072 1.622595
[2,] 2.439343 1.000365 -0.6096569 -0.122077 0.8198125 -0.6849072 1.622595
          [,50]     [,51]      [,52]     [,53]      [,54]     [,55]     [,56]
[1,] -0.7455491 0.3435274 0.01350775 0.8192325 -0.5485001 -1.433751 -1.071346
[2,] -0.7455491 0.3435274 0.01350775 0.8192325 -0.5485001 -1.433751 -1.071346
       [,57]     [,58]      [,59]      [,60]    [,61]     [,62]     [,63]
[1,] 1.85016 -0.280349 -0.1660912 0.03815982 0.528444 -1.428054 -1.581964
[2,] 1.85016 -0.280349 -0.1660912 0.03815982 0.528444 -1.428054 -1.581964
        [,64]      [,65]     [,66]      [,67]     [,68]    [,69]      [,70]
[1,] 2.033164 0.04581606 0.4950584 -0.2304957 0.8665883 0.328867 -0.5166292
[2,] 2.033164 0.04581606 0.4950584 -0.2304957 0.8665883 0.328867 -0.5166292
          [,71]      [,72]     [,73]     [,74]     [,75]    [,76]    [,77]
[1,] -0.7077356 -0.5799875 0.4308763 0.9661649 0.3453061 -2.16265 2.576005
[2,] -0.7077356 -0.5799875 0.4308763 0.9661649 0.3453061 -2.16265 2.576005
         [,78]     [,79]     [,80]      [,81]      [,82]     [,83]     [,84]
[1,] -0.445192 -2.632664 0.5487105 -0.5322444 -0.6470019 0.5461035 0.9342811
[2,] -0.445192 -2.632664 0.5487105 -0.5322444 -0.6470019 0.5461035 0.9342811
          [,85]      [,86]     [,87]      [,88]      [,89]     [,90]     [,91]
[1,] -0.5505013 -0.6989702 0.1764359 -0.7296655 -0.6338243 0.7294858 -1.261336
[2,] -0.5505013 -0.6989702 0.1764359 -0.7296655 -0.6338243 0.7294858 -1.261336
          [,92]      [,93]     [,94]       [,95]      [,96]    [,97]     [,98]
[1,] -0.6745247 -0.8322639 -0.534513 0.002089641 -0.8801853 1.221713 -1.264948
[2,] -0.6745247 -0.8322639 -0.534513 0.002089641 -0.8801853 1.221713 -1.264948
         [,99]   [,100]
[1,] -1.717181 1.563522
[2,] -1.717181 1.563522
> 
> 
> Max(tmp2)
[1] 2.448695
> Min(tmp2)
[1] -2.849609
> mean(tmp2)
[1] 0.009300602
> Sum(tmp2)
[1] 0.9300602
> Var(tmp2)
[1] 0.8635763
> 
> rowMeans(tmp2)
  [1]  0.871577470 -0.200124362  0.228151509 -0.433092810 -0.732752197
  [6]  0.788155739  0.982452876  0.265626063  1.163766051  0.117266547
 [11] -0.014410221  0.808620603 -0.959293261 -1.583277465 -2.849609141
 [16] -0.143123532 -0.462353387  0.752016688  0.152291819 -1.793605263
 [21]  0.530506655  0.169131191 -0.446376494 -2.556544559 -0.248298884
 [26] -1.414427852  0.395532187 -0.278309104  0.640817963 -0.990552511
 [31]  0.084162211 -0.781984880  0.420523521  0.663225148  0.008103019
 [36] -0.439572033  0.520353135 -0.358391952  0.531301422 -1.843872798
 [41] -0.027252174  1.026847246 -0.017141303  0.328340167  0.353723580
 [46]  1.294726910 -0.217762168 -1.333827395 -0.182813192 -0.927343310
 [51] -0.302244075 -0.076286845  0.279336264 -1.453123913  1.079010064
 [56]  1.799663390 -0.549249547 -0.254344773  0.652328768 -0.010277625
 [61]  0.604112744 -0.632511076 -1.972288325  1.838069948 -0.125197890
 [66] -0.626783267  0.108430516 -0.123505164 -0.059376367  0.465206737
 [71] -0.753230062  1.564739695  0.132885302  2.378783518  0.363791662
 [76]  2.448694642  0.733327074  1.374793512  0.929075560  0.161582727
 [81]  0.698184035 -0.357318626  0.708768476  0.347605451  0.349888684
 [86] -0.268176338 -0.122975371 -0.240756150 -0.329978646  0.375167615
 [91] -1.351600703 -0.117871177  0.375262126 -0.434709742  0.793156494
 [96] -0.723040765 -1.711372952  0.321670714  0.455627113  0.326009247
> rowSums(tmp2)
  [1]  0.871577470 -0.200124362  0.228151509 -0.433092810 -0.732752197
  [6]  0.788155739  0.982452876  0.265626063  1.163766051  0.117266547
 [11] -0.014410221  0.808620603 -0.959293261 -1.583277465 -2.849609141
 [16] -0.143123532 -0.462353387  0.752016688  0.152291819 -1.793605263
 [21]  0.530506655  0.169131191 -0.446376494 -2.556544559 -0.248298884
 [26] -1.414427852  0.395532187 -0.278309104  0.640817963 -0.990552511
 [31]  0.084162211 -0.781984880  0.420523521  0.663225148  0.008103019
 [36] -0.439572033  0.520353135 -0.358391952  0.531301422 -1.843872798
 [41] -0.027252174  1.026847246 -0.017141303  0.328340167  0.353723580
 [46]  1.294726910 -0.217762168 -1.333827395 -0.182813192 -0.927343310
 [51] -0.302244075 -0.076286845  0.279336264 -1.453123913  1.079010064
 [56]  1.799663390 -0.549249547 -0.254344773  0.652328768 -0.010277625
 [61]  0.604112744 -0.632511076 -1.972288325  1.838069948 -0.125197890
 [66] -0.626783267  0.108430516 -0.123505164 -0.059376367  0.465206737
 [71] -0.753230062  1.564739695  0.132885302  2.378783518  0.363791662
 [76]  2.448694642  0.733327074  1.374793512  0.929075560  0.161582727
 [81]  0.698184035 -0.357318626  0.708768476  0.347605451  0.349888684
 [86] -0.268176338 -0.122975371 -0.240756150 -0.329978646  0.375167615
 [91] -1.351600703 -0.117871177  0.375262126 -0.434709742  0.793156494
 [96] -0.723040765 -1.711372952  0.321670714  0.455627113  0.326009247
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.871577470 -0.200124362  0.228151509 -0.433092810 -0.732752197
  [6]  0.788155739  0.982452876  0.265626063  1.163766051  0.117266547
 [11] -0.014410221  0.808620603 -0.959293261 -1.583277465 -2.849609141
 [16] -0.143123532 -0.462353387  0.752016688  0.152291819 -1.793605263
 [21]  0.530506655  0.169131191 -0.446376494 -2.556544559 -0.248298884
 [26] -1.414427852  0.395532187 -0.278309104  0.640817963 -0.990552511
 [31]  0.084162211 -0.781984880  0.420523521  0.663225148  0.008103019
 [36] -0.439572033  0.520353135 -0.358391952  0.531301422 -1.843872798
 [41] -0.027252174  1.026847246 -0.017141303  0.328340167  0.353723580
 [46]  1.294726910 -0.217762168 -1.333827395 -0.182813192 -0.927343310
 [51] -0.302244075 -0.076286845  0.279336264 -1.453123913  1.079010064
 [56]  1.799663390 -0.549249547 -0.254344773  0.652328768 -0.010277625
 [61]  0.604112744 -0.632511076 -1.972288325  1.838069948 -0.125197890
 [66] -0.626783267  0.108430516 -0.123505164 -0.059376367  0.465206737
 [71] -0.753230062  1.564739695  0.132885302  2.378783518  0.363791662
 [76]  2.448694642  0.733327074  1.374793512  0.929075560  0.161582727
 [81]  0.698184035 -0.357318626  0.708768476  0.347605451  0.349888684
 [86] -0.268176338 -0.122975371 -0.240756150 -0.329978646  0.375167615
 [91] -1.351600703 -0.117871177  0.375262126 -0.434709742  0.793156494
 [96] -0.723040765 -1.711372952  0.321670714  0.455627113  0.326009247
> rowMin(tmp2)
  [1]  0.871577470 -0.200124362  0.228151509 -0.433092810 -0.732752197
  [6]  0.788155739  0.982452876  0.265626063  1.163766051  0.117266547
 [11] -0.014410221  0.808620603 -0.959293261 -1.583277465 -2.849609141
 [16] -0.143123532 -0.462353387  0.752016688  0.152291819 -1.793605263
 [21]  0.530506655  0.169131191 -0.446376494 -2.556544559 -0.248298884
 [26] -1.414427852  0.395532187 -0.278309104  0.640817963 -0.990552511
 [31]  0.084162211 -0.781984880  0.420523521  0.663225148  0.008103019
 [36] -0.439572033  0.520353135 -0.358391952  0.531301422 -1.843872798
 [41] -0.027252174  1.026847246 -0.017141303  0.328340167  0.353723580
 [46]  1.294726910 -0.217762168 -1.333827395 -0.182813192 -0.927343310
 [51] -0.302244075 -0.076286845  0.279336264 -1.453123913  1.079010064
 [56]  1.799663390 -0.549249547 -0.254344773  0.652328768 -0.010277625
 [61]  0.604112744 -0.632511076 -1.972288325  1.838069948 -0.125197890
 [66] -0.626783267  0.108430516 -0.123505164 -0.059376367  0.465206737
 [71] -0.753230062  1.564739695  0.132885302  2.378783518  0.363791662
 [76]  2.448694642  0.733327074  1.374793512  0.929075560  0.161582727
 [81]  0.698184035 -0.357318626  0.708768476  0.347605451  0.349888684
 [86] -0.268176338 -0.122975371 -0.240756150 -0.329978646  0.375167615
 [91] -1.351600703 -0.117871177  0.375262126 -0.434709742  0.793156494
 [96] -0.723040765 -1.711372952  0.321670714  0.455627113  0.326009247
> 
> colMeans(tmp2)
[1] 0.009300602
> colSums(tmp2)
[1] 0.9300602
> colVars(tmp2)
[1] 0.8635763
> colSd(tmp2)
[1] 0.9292881
> colMax(tmp2)
[1] 2.448695
> colMin(tmp2)
[1] -2.849609
> colMedians(tmp2)
[1] 0.04613262
> colRanges(tmp2)
          [,1]
[1,] -2.849609
[2,]  2.448695
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.7981530 -1.9854078  2.2720793 -3.2496798 -1.7046161 -2.7156626
 [7]  1.6714121  2.9264416 -0.6905654  4.5857086
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.7939307
[2,] -0.5226464
[3,]  0.1960300
[4,]  0.8493364
[5,]  2.4560720
> 
> rowApply(tmp,sum)
 [1]  3.0555082 -2.5470391  2.0333906 -1.2775325  3.0186659  2.8329490
 [7]  1.2439418  1.3639165 -5.0733226 -0.7426148
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    6   10    8    1    2   10    4    9     7
 [2,]    7    4    5    7    4    9    8    2    3     1
 [3,]    8    8    8   10    8    8    6    5    4     2
 [4,]    1    5    2    4   10    4    1    3    7     4
 [5,]    2    7    4    1    9    6    5    9    2     3
 [6,]    4    2    7    3    5    5    4    8    6     5
 [7,]   10    1    6    2    2   10    3    7   10     6
 [8,]    9    3    3    9    3    7    9    6    5     9
 [9,]    6    9    1    5    6    3    7    1    1    10
[10,]    5   10    9    6    7    1    2   10    8     8
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.9276674 -1.2349115 -1.8292464 -0.3119902  1.0851089  1.2398012
 [7] -1.1678464  1.0129955  2.3212054  0.3666686 -0.2726477 -1.6088526
[13]  1.6014257  2.1304182  1.6673474  0.6302175 -2.3734224 -2.6510371
[19]  0.3793079  0.9584813
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.3072819
[2,]  0.1329218
[3,]  0.2188352
[4,]  0.5299816
[5,]  1.3532106
> 
> rowApply(tmp,sum)
[1]  2.3172339  2.2144168 -4.0605362  0.3005856  3.0989904
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9   11   16   18   11
[2,]   10    2    2   19   10
[3,]    3    4   12   16    2
[4,]    1   10   15   17    5
[5,]   19   13   10    6    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]        [,4]        [,5]        [,6]
[1,] -0.3072819 -0.2413628 -0.7188022 -1.06076629  1.32038428  1.57014331
[2,]  0.1329218 -1.0785239 -1.0329325 -0.05281741  0.39070663 -0.09471263
[3,]  0.5299816 -1.5583879  0.1046530  0.49451542 -0.03733812  0.44914980
[4,]  1.3532106  1.4429068  0.9952366  1.10974623 -0.42494424 -1.35865980
[5,]  0.2188352  0.2004564 -1.1774012 -0.80266819 -0.16369962  0.67388050
           [,7]        [,8]        [,9]      [,10]       [,11]      [,12]
[1,] -0.9690137  0.04225509  0.88896473 -0.3642123  1.08311340 -0.4416435
[2,]  2.0808760 -0.29256136 -0.67827499 -1.2687632 -0.87369667  1.1290958
[3,] -2.2352360 -0.15875030 -0.01123163  0.4333616 -1.03602539 -0.1201085
[4,]  0.1037091  0.17915901  1.59788547 -0.1778193  0.45798669 -1.7252570
[5,] -0.1481818  1.24289304  0.52386179  1.7441018  0.09597425 -0.4509395
          [,13]      [,14]      [,15]      [,16]      [,17]      [,18]
[1,] -0.4115679  0.3127471  0.9325470  0.8591950 -0.5018010 -0.2206482
[2,]  1.1715623  1.3039616  1.3470401 -0.3051813 -1.0491961  0.4670973
[3,] -0.8494004  1.0347153  0.5791395  0.7095480 -0.7075900 -1.1336009
[4,] -0.2225906 -0.7874612 -1.5491128  0.1823791  0.8651965 -0.1654472
[5,]  1.9134224  0.2664553  0.3577336 -0.8157233 -0.9800317 -1.5984382
          [,19]       [,20]
[1,] -0.7122595  1.25724320
[2,]  0.1838636  0.73395198
[3,]  0.6686164 -1.21654762
[4,] -1.4804553 -0.09508297
[5,]  1.7195429  0.27891672
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2      col3     col4       col5       col6      col7
row1 0.4452157 1.413777 -1.782484 1.048332 -0.1318373 -0.4400547 0.4177506
          col8      col9      col10      col11     col12    col13    col14
row1 -1.196345 0.4698539 -0.9687081 -0.6355024 0.8195389 3.543502 0.523921
          col15      col16     col17    col18     col19      col20
row1 -0.8246019 -0.7148874 0.2142155 1.225767 -2.400706 -0.1774662
> tmp[,"col10"]
           col10
row1 -0.96870811
row2 -0.04520558
row3  0.12490448
row4 -0.11940553
row5 -1.13806567
> tmp[c("row1","row5"),]
          col1       col2       col3      col4       col5       col6      col7
row1 0.4452157  1.4137768 -1.7824839  1.048332 -0.1318373 -0.4400547 0.4177506
row5 0.7158315 -0.3909448 -0.8885557 -2.501276 -1.1533427  0.5637512 0.3625869
          col8       col9      col10      col11      col12    col13      col14
row1 -1.196345  0.4698539 -0.9687081 -0.6355024  0.8195389 3.543502  0.5239210
row5  2.129240 -0.2463416 -1.1380657  0.6812436 -1.3845259 1.316940 -0.4201819
          col15      col16     col17    col18       col19      col20
row1 -0.8246019 -0.7148874 0.2142155 1.225767 -2.40070581 -0.1774662
row5 -0.7986649  0.7944467 1.0410411 1.016858  0.04790301  0.7526501
> tmp[,c("col6","col20")]
            col6      col20
row1 -0.44005470 -0.1774662
row2  0.48541912 -0.8633627
row3 -0.09716185 -0.3348282
row4  0.33152085  0.3332815
row5  0.56375116  0.7526501
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.4400547 -0.1774662
row5  0.5637512  0.7526501
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2     col3     col4     col5     col6     col7    col8
row1 50.81623 50.1512 49.90103 48.46085 50.25856 105.4438 47.43884 49.4648
         col9    col10    col11    col12    col13   col14   col15    col16
row1 48.82234 48.65139 50.65491 49.69548 50.32671 50.1016 49.2546 48.46217
        col17    col18    col19    col20
row1 50.35812 48.98216 49.35948 105.1415
> tmp[,"col10"]
        col10
row1 48.65139
row2 30.26169
row3 27.08326
row4 28.95974
row5 50.47005
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7    col8
row1 50.81623 50.15120 49.90103 48.46085 50.25856 105.4438 47.43884 49.4648
row5 50.97648 50.17911 50.29309 48.38178 50.67056 106.6462 49.42528 51.1019
         col9    col10    col11    col12    col13    col14   col15    col16
row1 48.82234 48.65139 50.65491 49.69548 50.32671 50.10160 49.2546 48.46217
row5 49.31979 50.47005 50.05406 48.68356 51.12564 50.85885 49.7043 50.55149
        col17    col18    col19    col20
row1 50.35812 48.98216 49.35948 105.1415
row5 50.66777 49.16300 50.54362 106.6244
> tmp[,c("col6","col20")]
          col6     col20
row1 105.44380 105.14147
row2  74.81637  75.68051
row3  77.24307  76.46497
row4  74.73041  74.34191
row5 106.64619 106.62440
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.4438 105.1415
row5 106.6462 106.6244
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.4438 105.1415
row5 106.6462 106.6244
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -1.92631016
[2,] -0.08401556
[3,] -1.91867681
[4,] -0.08500486
[5,]  0.10792062
> tmp[,c("col17","col7")]
          col17       col7
[1,] -0.5073824 -0.7012922
[2,] -0.6128218 -1.4037226
[3,] -1.2515360 -0.6941807
[4,] -0.7757092 -0.8314149
[5,]  1.0267775 -0.2910403
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.3616790  1.0044923
[2,] -0.3189360 -0.5852226
[3,]  0.5387690 -1.5797746
[4,] -0.5074277 -2.1353703
[5,] -1.0823649  0.6388628
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -0.361679
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -0.361679
[2,] -0.318936
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
row3 -0.6611093 -0.1389121 -0.8161818 -1.4154161 -0.8330560 -0.2419003
row1  0.1521162  0.0346516 -0.9386270  0.8650423 -0.9572473  1.9267615
           [,7]       [,8]      [,9]      [,10]      [,11]     [,12]
row3  0.5750605 -0.1019272 -1.042841 -0.2975535  0.3963911  0.967489
row1 -0.2976225 -1.1903711  1.150910  1.6242537 -0.4937319 -1.081703
           [,13]     [,14]       [,15]      [,16]      [,17]     [,18]    [,19]
row3  0.09798504 -2.623947 -0.08003066  0.8936432  1.5521749 0.3364282 0.563660
row1 -0.49670052 -1.899410 -1.88973839 -1.1063070 -0.1649545 0.2718312 0.172727
          [,20]
row3 -0.8654515
row1 -0.6390356
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]        [,3]     [,4]       [,5]      [,6]     [,7]
row2 0.6966024 -0.8668312 -0.01370016 1.046352 -0.2845781 -1.712196 1.864175
          [,8]      [,9]     [,10]
row2 -1.015212 0.2007294 0.6196436
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row5 -0.781544 0.3590565 -1.322152 -0.9155188 -0.7329713 0.7241956 -0.4154438
           [,8]        [,9]     [,10]      [,11]      [,12]     [,13]    [,14]
row5 0.03903322 -0.08675179 0.6527383 -0.6958317 -0.3335246 0.2637378 0.131814
         [,15]   [,16]     [,17]    [,18]     [,19]      [,20]
row5 -2.127756 0.11019 0.5345896 1.305354 -1.477993 -0.4548628
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5f7978e5b790>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe55888d7090" 
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5585beab6d8"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe558585cffc8"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe558348dcc5f"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe55815890c4d"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe55815c709f8"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5581f7c2921"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5582d2b31da"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe558d9a412e" 
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5581cebcc24"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5587b8c77ca"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe55861f9ce"  
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe5583f181fa7"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe558742eb2c7"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMfe558526679ca"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5f797a932820>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5f797a932820>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5f797a932820>
> rowMedians(tmp)
  [1]  0.5567076639 -0.2473150251  0.4018462351 -0.6507646802 -0.4119420422
  [6]  0.0417496872 -0.0867397184 -0.1902051017  0.4484716568  0.3539271698
 [11]  0.1600823252  0.1185576167  0.5404619590  0.0049979088 -0.3652616530
 [16] -0.0553458724  0.2273728684  0.1783243063  0.5123553663 -0.1986944026
 [21] -0.5168074751  0.1486100254 -0.3277284006 -0.2374442108 -0.3138736421
 [26]  0.0018204283  0.2590749054 -0.2955360057 -0.2042434456 -0.2372650742
 [31]  0.1079684877 -0.3802448068 -0.0471897847  0.6671336138  0.4515870948
 [36] -0.3305080650 -0.2074905463  0.7284679271 -0.0870399158 -0.6997307424
 [41] -0.0105305307 -0.4902227619  0.0511092834  0.0519181149  0.0848442959
 [46]  0.2267840354 -0.2070217671 -0.0785808925  0.0803202737  0.6306417607
 [51] -0.2748596417 -0.4439576767  0.0220600181 -0.2279881124 -0.0242633039
 [56]  0.2407765324 -0.0733838471  0.0799803964 -0.4833079903  0.1247253411
 [61]  0.0148842241  0.0467430532  0.0400631364 -0.3206118452  0.1703417270
 [66]  0.1623785345  0.5380237421  0.2126223968 -0.3472717986  0.2747679272
 [71]  0.3282539078 -0.2839202162 -0.0846849819 -0.6834189453  0.3624292576
 [76]  0.4303411050 -0.3814517908 -0.0727150012  0.2292708751 -0.1650771581
 [81]  0.5098526874  0.2190127605  0.5463574533 -0.2967500415 -0.0127435446
 [86]  0.0982188527  0.0969559904 -0.2813455301  0.2539661557  0.1085213339
 [91]  0.1285442701  0.1896838615 -0.1803056904 -0.2204690935  0.7671207183
 [96] -0.2874326944 -0.5240497131  0.0625005465  0.1386207608  0.4305343743
[101] -0.0866349596 -0.3810233589 -0.2275578186  0.0650603888 -0.0397078280
[106]  0.1888466318  0.2838507341 -0.1432608838  0.0853491088 -0.1657702576
[111]  0.4378936511 -0.4366916604 -0.3093601511 -0.8138003444  0.3381985731
[116]  0.4610539960 -0.2608739685 -0.3039354034 -0.1515944259  0.2060890986
[121]  0.3887544788  0.1602240861  0.0440744814 -0.2633087509 -0.1498293631
[126] -0.0829280614 -0.0359378701  0.5167501312 -0.2424560249  0.5362287234
[131] -0.2375811706  0.3909474520  0.7060242077  0.4785791688  0.5311829939
[136]  0.2787190244  0.2088608167  0.3473015162 -0.2679347480  0.0892981510
[141]  0.3962509629 -0.1621214937 -0.5932014670  0.0078849591 -0.3303156454
[146] -0.5263370446 -0.2466640526  0.3436515771  0.0384845083  0.1781507737
[151] -0.2099178190  0.1484146766 -0.2392109964 -0.0557748145  0.4265808425
[156]  0.2831854507 -0.0113996247  0.0007914361  0.1243909430 -0.0268111544
[161]  0.0064935692  0.0592455811  0.0450622261 -0.2622108786  0.6867259604
[166]  0.2738143305 -0.1460348108  0.3498931768  0.0673766362 -0.1870019725
[171] -0.0214181970 -0.0415309925  0.3955975650 -0.3599370297 -0.3483713488
[176] -0.0915398016 -0.1449258908  0.3591395136 -0.1357429467  0.5079944738
[181]  0.0406507108 -0.1978936725  0.2229496513  0.2128394249  0.1154697308
[186] -0.0729376415 -0.1137294770 -0.3753700023 -0.0538987735  0.1427361746
[191] -0.3845262091  0.1976821253 -0.5982383293 -0.3173576664 -0.0119347737
[196]  0.0279431913 -0.4691221634  0.1494438360 -0.0838649994  0.2069495035
[201]  0.0149327194  0.2503436425 -0.4296158828 -0.4104018251 -0.4464247076
[206] -0.0370589504  0.2707755462  0.0665764360 -0.0076820681  0.5138861871
[211] -0.5183460193  0.1369017476 -0.5233271149  0.2237962959 -0.1602833424
[216] -0.2919676683  0.1404464684  0.3846925284  0.0616277363 -0.4552370832
[221] -0.2742499057  0.0203689906  0.1713294678 -0.0449546834  1.1555805095
[226] -0.6675122505  0.5421732167  0.3005282761 -0.2445596321  0.5010138717
> 
> proc.time()
   user  system elapsed 
  1.321   0.664   1.975 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e4f824c9240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e4f824c9240>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e4f824c9240>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5e4f824c9240>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5e4f827ac1a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f827ac1a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5e4f827ac1a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f827ac1a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e4f827ac1a0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f814604a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f814604a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e4f814604a0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5e4f814604a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e4f814604a0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5e4f814604a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e4f814604a0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5e4f814604a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e4f814604a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f814fc410>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5e4f814fc410>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f814fc410>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f814fc410>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilefe65360b0d696" "BufferedMatrixFilefe653993f616" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilefe65360b0d696" "BufferedMatrixFilefe653993f616" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5e4f81d7b6d0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f82f024b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e4f82f024b0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5e4f82f024b0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5e4f82f024b0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e4f831f72d0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e4f831f72d0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.257   0.050   0.294 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.243   0.041   0.275 

Example timings