Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-09 12:04 -0500 (Thu, 09 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4744
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4487
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4515
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4467
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4358
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-01-02 13:00 -0500 (Thu, 02 Jan 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-01-02 20:28:19 -0500 (Thu, 02 Jan 2025)
EndedAt: 2025-01-02 20:28:42 -0500 (Thu, 02 Jan 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0
    GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0
* running under: Ubuntu 24.04.1 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c init_package.c -o init_package.o
gcc -shared -L/home/biocbuild/bbs-3.20-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.20-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.20-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.235   0.050   0.273 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471792 25.2    1026261 54.9   643431 34.4
Vcells 871947  6.7    8388608 64.0  2046621 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Jan  2 20:28:34 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Jan  2 20:28:34 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5ba02f9672a0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Jan  2 20:28:34 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Jan  2 20:28:34 2025"
> 
> ColMode(tmp2)
<pointer: 0x5ba02f9672a0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]         [,3]       [,4]
[1,] 98.2343317  0.05270518  0.355764975  0.5648359
[2,]  0.8598121  1.55563853  0.661862368 -0.9884364
[3,]  1.2354303 -0.87905449 -1.714955000 -1.0326256
[4,]  0.2525230  0.02921777 -0.007779454 -0.7137423
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]        [,3]      [,4]
[1,] 98.2343317 0.05270518 0.355764975 0.5648359
[2,]  0.8598121 1.55563853 0.661862368 0.9884364
[3,]  1.2354303 0.87905449 1.714955000 1.0326256
[4,]  0.2525230 0.02921777 0.007779454 0.7137423
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]       [,3]      [,4]
[1,] 9.9113234 0.2295761 0.59646037 0.7515556
[2,] 0.9272605 1.2472524 0.81354924 0.9942014
[3,] 1.1114991 0.9375791 1.30956290 1.0161819
[4,] 0.5025166 0.1709321 0.08820121 0.8448327
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 222.34757 27.34847 31.32037 33.08039
[2,]  35.13242 39.02816 33.79735 35.93045
[3,]  37.35042 35.25485 39.81058 36.19444
[4,]  30.27769 26.73854 25.88979 34.16207
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5ba02f97f510>
> exp(tmp5)
<pointer: 0x5ba02f97f510>
> log(tmp5,2)
<pointer: 0x5ba02f97f510>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 462.7873
> Min(tmp5)
[1] 53.88621
> mean(tmp5)
[1] 72.45576
> Sum(tmp5)
[1] 14491.15
> Var(tmp5)
[1] 834.3136
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 88.60703 71.07740 72.99749 68.10647 68.89227 68.72571 72.24811 72.41608
 [9] 69.70766 71.77940
> rowSums(tmp5)
 [1] 1772.141 1421.548 1459.950 1362.129 1377.845 1374.514 1444.962 1448.322
 [9] 1394.153 1435.588
> rowVars(tmp5)
 [1] 7823.41254   51.53787   40.47958   79.77519   54.55537   75.33549
 [7]   67.95325   85.96726   67.92178   58.09400
> rowSd(tmp5)
 [1] 88.450057  7.178988  6.362357  8.931696  7.386161  8.679602  8.243376
 [8]  9.271853  8.241467  7.621942
> rowMax(tmp5)
 [1] 462.78733  81.24670  83.41698  84.17032  81.95400  84.36099  86.75527
 [8]  89.73012  85.35878  86.36205
> rowMin(tmp5)
 [1] 55.40426 55.57858 57.85857 53.88621 57.18616 55.19586 59.42873 57.46288
 [9] 60.32684 57.06416
> 
> colMeans(tmp5)
 [1] 112.96203  65.09319  68.18878  68.38085  71.73691  68.67088  75.42791
 [8]  74.52377  71.96010  68.17840  69.66798  69.71697  72.68818  66.95671
[15]  68.09644  69.37338  72.72552  73.45579  72.13182  69.17959
> colSums(tmp5)
 [1] 1129.6203  650.9319  681.8878  683.8085  717.3691  686.7088  754.2791
 [8]  745.2377  719.6010  681.7840  696.6798  697.1697  726.8818  669.5671
[15]  680.9644  693.7338  727.2552  734.5579  721.3182  691.7959
> colVars(tmp5)
 [1] 15134.87285    72.45543    88.55952    30.42360    85.68485    56.19511
 [7]   132.92374    81.74520    42.38317    57.93545    80.32564    52.24486
[13]    32.10635    59.91509    57.43576    51.98654    77.39002    76.26823
[19]    56.19246    51.38613
> colSd(tmp5)
 [1] 123.023871   8.512075   9.410607   5.515759   9.256611   7.496340
 [7]  11.529256   9.041305   6.510236   7.611534   8.962457   7.228061
[13]   5.666247   7.740484   7.578639   7.210169   8.797160   8.733168
[19]   7.496163   7.168412
> colMax(tmp5)
 [1] 462.78733  81.23201  84.99894  75.33399  86.75527  82.22512  89.73012
 [8]  86.36205  79.00639  78.37090  85.66667  83.41698  80.85878  78.77099
[15]  76.66537  83.17828  85.35878  85.83938  84.36099  81.17251
> colMin(tmp5)
 [1] 63.01904 55.65276 53.88621 59.43771 55.40426 57.18616 55.19586 62.82960
 [9] 59.15116 57.01026 58.11594 57.86128 62.40433 55.57858 57.06416 60.50761
[17] 59.42873 58.70368 61.61869 57.85857
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 88.60703 71.07740 72.99749 68.10647 68.89227 68.72571 72.24811 72.41608
 [9]       NA 71.77940
> rowSums(tmp5)
 [1] 1772.141 1421.548 1459.950 1362.129 1377.845 1374.514 1444.962 1448.322
 [9]       NA 1435.588
> rowVars(tmp5)
 [1] 7823.41254   51.53787   40.47958   79.77519   54.55537   75.33549
 [7]   67.95325   85.96726   71.62458   58.09400
> rowSd(tmp5)
 [1] 88.450057  7.178988  6.362357  8.931696  7.386161  8.679602  8.243376
 [8]  9.271853  8.463131  7.621942
> rowMax(tmp5)
 [1] 462.78733  81.24670  83.41698  84.17032  81.95400  84.36099  86.75527
 [8]  89.73012        NA  86.36205
> rowMin(tmp5)
 [1] 55.40426 55.57858 57.85857 53.88621 57.18616 55.19586 59.42873 57.46288
 [9]       NA 57.06416
> 
> colMeans(tmp5)
 [1] 112.96203  65.09319  68.18878  68.38085  71.73691  68.67088  75.42791
 [8]  74.52377  71.96010        NA  69.66798  69.71697  72.68818  66.95671
[15]  68.09644  69.37338  72.72552  73.45579  72.13182  69.17959
> colSums(tmp5)
 [1] 1129.6203  650.9319  681.8878  683.8085  717.3691  686.7088  754.2791
 [8]  745.2377  719.6010        NA  696.6798  697.1697  726.8818  669.5671
[15]  680.9644  693.7338  727.2552  734.5579  721.3182  691.7959
> colVars(tmp5)
 [1] 15134.87285    72.45543    88.55952    30.42360    85.68485    56.19511
 [7]   132.92374    81.74520    42.38317          NA    80.32564    52.24486
[13]    32.10635    59.91509    57.43576    51.98654    77.39002    76.26823
[19]    56.19246    51.38613
> colSd(tmp5)
 [1] 123.023871   8.512075   9.410607   5.515759   9.256611   7.496340
 [7]  11.529256   9.041305   6.510236         NA   8.962457   7.228061
[13]   5.666247   7.740484   7.578639   7.210169   8.797160   8.733168
[19]   7.496163   7.168412
> colMax(tmp5)
 [1] 462.78733  81.23201  84.99894  75.33399  86.75527  82.22512  89.73012
 [8]  86.36205  79.00639        NA  85.66667  83.41698  80.85878  78.77099
[15]  76.66537  83.17828  85.35878  85.83938  84.36099  81.17251
> colMin(tmp5)
 [1] 63.01904 55.65276 53.88621 59.43771 55.40426 57.18616 55.19586 62.82960
 [9] 59.15116       NA 58.11594 57.86128 62.40433 55.57858 57.06416 60.50761
[17] 59.42873 58.70368 61.61869 57.85857
> 
> Max(tmp5,na.rm=TRUE)
[1] 462.7873
> Min(tmp5,na.rm=TRUE)
[1] 53.88621
> mean(tmp5,na.rm=TRUE)
[1] 72.47509
> Sum(tmp5,na.rm=TRUE)
[1] 14422.54
> Var(tmp5,na.rm=TRUE)
[1] 838.4521
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.60703 71.07740 72.99749 68.10647 68.89227 68.72571 72.24811 72.41608
 [9] 69.76550 71.77940
> rowSums(tmp5,na.rm=TRUE)
 [1] 1772.141 1421.548 1459.950 1362.129 1377.845 1374.514 1444.962 1448.322
 [9] 1325.544 1435.588
> rowVars(tmp5,na.rm=TRUE)
 [1] 7823.41254   51.53787   40.47958   79.77519   54.55537   75.33549
 [7]   67.95325   85.96726   71.62458   58.09400
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.450057  7.178988  6.362357  8.931696  7.386161  8.679602  8.243376
 [8]  9.271853  8.463131  7.621942
> rowMax(tmp5,na.rm=TRUE)
 [1] 462.78733  81.24670  83.41698  84.17032  81.95400  84.36099  86.75527
 [8]  89.73012  85.35878  86.36205
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.40426 55.57858 57.85857 53.88621 57.18616 55.19586 59.42873 57.46288
 [9] 60.32684 57.06416
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.96203  65.09319  68.18878  68.38085  71.73691  68.67088  75.42791
 [8]  74.52377  71.96010  68.13059  69.66798  69.71697  72.68818  66.95671
[15]  68.09644  69.37338  72.72552  73.45579  72.13182  69.17959
> colSums(tmp5,na.rm=TRUE)
 [1] 1129.6203  650.9319  681.8878  683.8085  717.3691  686.7088  754.2791
 [8]  745.2377  719.6010  613.1753  696.6798  697.1697  726.8818  669.5671
[15]  680.9644  693.7338  727.2552  734.5579  721.3182  691.7959
> colVars(tmp5,na.rm=TRUE)
 [1] 15134.87285    72.45543    88.55952    30.42360    85.68485    56.19511
 [7]   132.92374    81.74520    42.38317    65.15166    80.32564    52.24486
[13]    32.10635    59.91509    57.43576    51.98654    77.39002    76.26823
[19]    56.19246    51.38613
> colSd(tmp5,na.rm=TRUE)
 [1] 123.023871   8.512075   9.410607   5.515759   9.256611   7.496340
 [7]  11.529256   9.041305   6.510236   8.071658   8.962457   7.228061
[13]   5.666247   7.740484   7.578639   7.210169   8.797160   8.733168
[19]   7.496163   7.168412
> colMax(tmp5,na.rm=TRUE)
 [1] 462.78733  81.23201  84.99894  75.33399  86.75527  82.22512  89.73012
 [8]  86.36205  79.00639  78.37090  85.66667  83.41698  80.85878  78.77099
[15]  76.66537  83.17828  85.35878  85.83938  84.36099  81.17251
> colMin(tmp5,na.rm=TRUE)
 [1] 63.01904 55.65276 53.88621 59.43771 55.40426 57.18616 55.19586 62.82960
 [9] 59.15116 57.01026 58.11594 57.86128 62.40433 55.57858 57.06416 60.50761
[17] 59.42873 58.70368 61.61869 57.85857
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.60703 71.07740 72.99749 68.10647 68.89227 68.72571 72.24811 72.41608
 [9]      NaN 71.77940
> rowSums(tmp5,na.rm=TRUE)
 [1] 1772.141 1421.548 1459.950 1362.129 1377.845 1374.514 1444.962 1448.322
 [9]    0.000 1435.588
> rowVars(tmp5,na.rm=TRUE)
 [1] 7823.41254   51.53787   40.47958   79.77519   54.55537   75.33549
 [7]   67.95325   85.96726         NA   58.09400
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.450057  7.178988  6.362357  8.931696  7.386161  8.679602  8.243376
 [8]  9.271853        NA  7.621942
> rowMax(tmp5,na.rm=TRUE)
 [1] 462.78733  81.24670  83.41698  84.17032  81.95400  84.36099  86.75527
 [8]  89.73012        NA  86.36205
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.40426 55.57858 57.85857 53.88621 57.18616 55.19586 59.42873 57.46288
 [9]       NA 57.06416
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 117.96869  65.45811  68.15724  69.07349  72.21609  69.59800  74.81469
 [8]  75.56368  72.97740       NaN  70.62958  70.21934  72.92104  67.67857
[15]  67.16598  67.83950  71.32183  73.94072  70.78310  68.76450
> colSums(tmp5,na.rm=TRUE)
 [1] 1061.7182  589.1230  613.4152  621.6615  649.9448  626.3820  673.3322
 [8]  680.0732  656.7966    0.0000  635.6662  631.9740  656.2893  609.1071
[15]  604.4938  610.5555  641.8965  665.4665  637.0479  618.8805
> colVars(tmp5,na.rm=TRUE)
 [1] 16744.73196    80.01423    99.61827    28.82936    93.81233    53.54963
 [7]   145.30872    79.79742    36.03846          NA    79.96383    55.93631
[13]    35.50965    61.54242    54.87559    32.01607    64.89721    83.15629
[19]    42.75210    55.87096
> colSd(tmp5,na.rm=TRUE)
 [1] 129.401437   8.945067   9.980895   5.369298   9.685677   7.317761
 [7]  12.054407   8.932940   6.003204         NA   8.942250   7.479058
[13]   5.958997   7.844898   7.407806   5.658275   8.055881   9.119007
[19]   6.538509   7.474688
> colMax(tmp5,na.rm=TRUE)
 [1] 462.78733  81.23201  84.99894  75.33399  86.75527  82.22512  89.73012
 [8]  86.36205  79.00639      -Inf  85.66667  83.41698  80.85878  78.77099
[15]  76.66537  76.63141  83.65683  85.83938  84.36099  81.17251
> colMin(tmp5,na.rm=TRUE)
 [1] 63.01904 55.65276 53.88621 59.43771 55.40426 57.18616 55.19586 62.82960
 [9] 59.15116      Inf 58.11594 57.86128 62.40433 55.57858 57.06416 60.50761
[17] 59.42873 58.70368 61.61869 57.85857
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 196.7450 168.1291 166.7786 216.5723 187.6105 206.0328 237.5851 234.9929
 [9] 223.1086 194.7980
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 196.7450 168.1291 166.7786 216.5723 187.6105 206.0328 237.5851 234.9929
 [9] 223.1086 194.7980
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14 -1.136868e-13  1.136868e-13  1.136868e-13  2.842171e-14
 [6]  1.136868e-13 -1.705303e-13 -1.563194e-13 -2.842171e-14 -5.684342e-14
[11]  5.684342e-14  1.136868e-13  5.684342e-14  1.136868e-13 -2.273737e-13
[16]  2.842171e-13  2.273737e-13  2.842171e-13  3.694822e-13  1.563194e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
5   12 
9   5 
6   18 
9   20 
6   8 
3   1 
7   12 
9   5 
8   17 
4   16 
6   7 
6   16 
7   6 
1   18 
8   13 
7   8 
10   20 
5   3 
9   6 
10   12 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.273439
> Min(tmp)
[1] -2.844432
> mean(tmp)
[1] 0.03635851
> Sum(tmp)
[1] 3.635851
> Var(tmp)
[1] 1.094351
> 
> rowMeans(tmp)
[1] 0.03635851
> rowSums(tmp)
[1] 3.635851
> rowVars(tmp)
[1] 1.094351
> rowSd(tmp)
[1] 1.046112
> rowMax(tmp)
[1] 2.273439
> rowMin(tmp)
[1] -2.844432
> 
> colMeans(tmp)
  [1] -0.530900098 -0.401340444  0.920680501 -1.261051597 -0.492946245
  [6]  1.593223146  0.604010316  0.902346204  1.877231668  0.291766533
 [11] -0.916996916  1.657923788 -0.970384692  0.570031650  1.617061554
 [16]  0.369966583  0.460491665  0.223227732 -0.263668003 -0.590055923
 [21]  0.697181893 -0.294350719  0.497949369 -0.397178995  0.310225523
 [26] -2.070585325  1.368098872  0.550523944 -0.956486878 -2.083170224
 [31]  0.168655310  0.197451220  0.433023903 -0.389454648 -0.070871861
 [36]  0.023398243 -0.535566973  0.609949807 -0.089977730 -0.094467259
 [41]  0.262208110 -0.515208393 -0.389641480  1.026526322 -1.590020547
 [46] -1.128901217  0.680887362  1.553961278 -1.018618618  1.825233556
 [51] -2.844431735 -0.001686586 -1.693547677  0.755553286 -0.924634255
 [56]  0.533306176  0.935857164  0.502406096 -0.174763468 -0.786322423
 [61]  0.582367349  1.154141633 -0.423985756 -1.372679327  0.541154717
 [66] -0.428920219 -1.691260257  0.862797815 -1.564587734  0.858528861
 [71] -1.337396363  0.515807409 -1.322330808  0.223169487  0.769790037
 [76]  0.512390566 -0.174602178 -0.640717088  1.571738905  0.679297814
 [81]  1.881355440 -0.218952830  2.273439481  1.058069090 -1.982183691
 [86]  1.188103805 -0.920276320  0.403875191 -0.043092790 -0.455546513
 [91]  0.288407217  1.082501519  0.129137154  0.802107762  0.470303921
 [96] -0.021493695  0.008316929 -1.740396588 -2.218452941  1.792796489
> colSums(tmp)
  [1] -0.530900098 -0.401340444  0.920680501 -1.261051597 -0.492946245
  [6]  1.593223146  0.604010316  0.902346204  1.877231668  0.291766533
 [11] -0.916996916  1.657923788 -0.970384692  0.570031650  1.617061554
 [16]  0.369966583  0.460491665  0.223227732 -0.263668003 -0.590055923
 [21]  0.697181893 -0.294350719  0.497949369 -0.397178995  0.310225523
 [26] -2.070585325  1.368098872  0.550523944 -0.956486878 -2.083170224
 [31]  0.168655310  0.197451220  0.433023903 -0.389454648 -0.070871861
 [36]  0.023398243 -0.535566973  0.609949807 -0.089977730 -0.094467259
 [41]  0.262208110 -0.515208393 -0.389641480  1.026526322 -1.590020547
 [46] -1.128901217  0.680887362  1.553961278 -1.018618618  1.825233556
 [51] -2.844431735 -0.001686586 -1.693547677  0.755553286 -0.924634255
 [56]  0.533306176  0.935857164  0.502406096 -0.174763468 -0.786322423
 [61]  0.582367349  1.154141633 -0.423985756 -1.372679327  0.541154717
 [66] -0.428920219 -1.691260257  0.862797815 -1.564587734  0.858528861
 [71] -1.337396363  0.515807409 -1.322330808  0.223169487  0.769790037
 [76]  0.512390566 -0.174602178 -0.640717088  1.571738905  0.679297814
 [81]  1.881355440 -0.218952830  2.273439481  1.058069090 -1.982183691
 [86]  1.188103805 -0.920276320  0.403875191 -0.043092790 -0.455546513
 [91]  0.288407217  1.082501519  0.129137154  0.802107762  0.470303921
 [96] -0.021493695  0.008316929 -1.740396588 -2.218452941  1.792796489
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.530900098 -0.401340444  0.920680501 -1.261051597 -0.492946245
  [6]  1.593223146  0.604010316  0.902346204  1.877231668  0.291766533
 [11] -0.916996916  1.657923788 -0.970384692  0.570031650  1.617061554
 [16]  0.369966583  0.460491665  0.223227732 -0.263668003 -0.590055923
 [21]  0.697181893 -0.294350719  0.497949369 -0.397178995  0.310225523
 [26] -2.070585325  1.368098872  0.550523944 -0.956486878 -2.083170224
 [31]  0.168655310  0.197451220  0.433023903 -0.389454648 -0.070871861
 [36]  0.023398243 -0.535566973  0.609949807 -0.089977730 -0.094467259
 [41]  0.262208110 -0.515208393 -0.389641480  1.026526322 -1.590020547
 [46] -1.128901217  0.680887362  1.553961278 -1.018618618  1.825233556
 [51] -2.844431735 -0.001686586 -1.693547677  0.755553286 -0.924634255
 [56]  0.533306176  0.935857164  0.502406096 -0.174763468 -0.786322423
 [61]  0.582367349  1.154141633 -0.423985756 -1.372679327  0.541154717
 [66] -0.428920219 -1.691260257  0.862797815 -1.564587734  0.858528861
 [71] -1.337396363  0.515807409 -1.322330808  0.223169487  0.769790037
 [76]  0.512390566 -0.174602178 -0.640717088  1.571738905  0.679297814
 [81]  1.881355440 -0.218952830  2.273439481  1.058069090 -1.982183691
 [86]  1.188103805 -0.920276320  0.403875191 -0.043092790 -0.455546513
 [91]  0.288407217  1.082501519  0.129137154  0.802107762  0.470303921
 [96] -0.021493695  0.008316929 -1.740396588 -2.218452941  1.792796489
> colMin(tmp)
  [1] -0.530900098 -0.401340444  0.920680501 -1.261051597 -0.492946245
  [6]  1.593223146  0.604010316  0.902346204  1.877231668  0.291766533
 [11] -0.916996916  1.657923788 -0.970384692  0.570031650  1.617061554
 [16]  0.369966583  0.460491665  0.223227732 -0.263668003 -0.590055923
 [21]  0.697181893 -0.294350719  0.497949369 -0.397178995  0.310225523
 [26] -2.070585325  1.368098872  0.550523944 -0.956486878 -2.083170224
 [31]  0.168655310  0.197451220  0.433023903 -0.389454648 -0.070871861
 [36]  0.023398243 -0.535566973  0.609949807 -0.089977730 -0.094467259
 [41]  0.262208110 -0.515208393 -0.389641480  1.026526322 -1.590020547
 [46] -1.128901217  0.680887362  1.553961278 -1.018618618  1.825233556
 [51] -2.844431735 -0.001686586 -1.693547677  0.755553286 -0.924634255
 [56]  0.533306176  0.935857164  0.502406096 -0.174763468 -0.786322423
 [61]  0.582367349  1.154141633 -0.423985756 -1.372679327  0.541154717
 [66] -0.428920219 -1.691260257  0.862797815 -1.564587734  0.858528861
 [71] -1.337396363  0.515807409 -1.322330808  0.223169487  0.769790037
 [76]  0.512390566 -0.174602178 -0.640717088  1.571738905  0.679297814
 [81]  1.881355440 -0.218952830  2.273439481  1.058069090 -1.982183691
 [86]  1.188103805 -0.920276320  0.403875191 -0.043092790 -0.455546513
 [91]  0.288407217  1.082501519  0.129137154  0.802107762  0.470303921
 [96] -0.021493695  0.008316929 -1.740396588 -2.218452941  1.792796489
> colMedians(tmp)
  [1] -0.530900098 -0.401340444  0.920680501 -1.261051597 -0.492946245
  [6]  1.593223146  0.604010316  0.902346204  1.877231668  0.291766533
 [11] -0.916996916  1.657923788 -0.970384692  0.570031650  1.617061554
 [16]  0.369966583  0.460491665  0.223227732 -0.263668003 -0.590055923
 [21]  0.697181893 -0.294350719  0.497949369 -0.397178995  0.310225523
 [26] -2.070585325  1.368098872  0.550523944 -0.956486878 -2.083170224
 [31]  0.168655310  0.197451220  0.433023903 -0.389454648 -0.070871861
 [36]  0.023398243 -0.535566973  0.609949807 -0.089977730 -0.094467259
 [41]  0.262208110 -0.515208393 -0.389641480  1.026526322 -1.590020547
 [46] -1.128901217  0.680887362  1.553961278 -1.018618618  1.825233556
 [51] -2.844431735 -0.001686586 -1.693547677  0.755553286 -0.924634255
 [56]  0.533306176  0.935857164  0.502406096 -0.174763468 -0.786322423
 [61]  0.582367349  1.154141633 -0.423985756 -1.372679327  0.541154717
 [66] -0.428920219 -1.691260257  0.862797815 -1.564587734  0.858528861
 [71] -1.337396363  0.515807409 -1.322330808  0.223169487  0.769790037
 [76]  0.512390566 -0.174602178 -0.640717088  1.571738905  0.679297814
 [81]  1.881355440 -0.218952830  2.273439481  1.058069090 -1.982183691
 [86]  1.188103805 -0.920276320  0.403875191 -0.043092790 -0.455546513
 [91]  0.288407217  1.082501519  0.129137154  0.802107762  0.470303921
 [96] -0.021493695  0.008316929 -1.740396588 -2.218452941  1.792796489
> colRanges(tmp)
           [,1]       [,2]      [,3]      [,4]       [,5]     [,6]      [,7]
[1,] -0.5309001 -0.4013404 0.9206805 -1.261052 -0.4929462 1.593223 0.6040103
[2,] -0.5309001 -0.4013404 0.9206805 -1.261052 -0.4929462 1.593223 0.6040103
          [,8]     [,9]     [,10]      [,11]    [,12]      [,13]     [,14]
[1,] 0.9023462 1.877232 0.2917665 -0.9169969 1.657924 -0.9703847 0.5700316
[2,] 0.9023462 1.877232 0.2917665 -0.9169969 1.657924 -0.9703847 0.5700316
        [,15]     [,16]     [,17]     [,18]     [,19]      [,20]     [,21]
[1,] 1.617062 0.3699666 0.4604917 0.2232277 -0.263668 -0.5900559 0.6971819
[2,] 1.617062 0.3699666 0.4604917 0.2232277 -0.263668 -0.5900559 0.6971819
          [,22]     [,23]     [,24]     [,25]     [,26]    [,27]     [,28]
[1,] -0.2943507 0.4979494 -0.397179 0.3102255 -2.070585 1.368099 0.5505239
[2,] -0.2943507 0.4979494 -0.397179 0.3102255 -2.070585 1.368099 0.5505239
          [,29]    [,30]     [,31]     [,32]     [,33]      [,34]       [,35]
[1,] -0.9564869 -2.08317 0.1686553 0.1974512 0.4330239 -0.3894546 -0.07087186
[2,] -0.9564869 -2.08317 0.1686553 0.1974512 0.4330239 -0.3894546 -0.07087186
          [,36]     [,37]     [,38]       [,39]       [,40]     [,41]
[1,] 0.02339824 -0.535567 0.6099498 -0.08997773 -0.09446726 0.2622081
[2,] 0.02339824 -0.535567 0.6099498 -0.08997773 -0.09446726 0.2622081
          [,42]      [,43]    [,44]     [,45]     [,46]     [,47]    [,48]
[1,] -0.5152084 -0.3896415 1.026526 -1.590021 -1.128901 0.6808874 1.553961
[2,] -0.5152084 -0.3896415 1.026526 -1.590021 -1.128901 0.6808874 1.553961
         [,49]    [,50]     [,51]        [,52]     [,53]     [,54]      [,55]
[1,] -1.018619 1.825234 -2.844432 -0.001686586 -1.693548 0.7555533 -0.9246343
[2,] -1.018619 1.825234 -2.844432 -0.001686586 -1.693548 0.7555533 -0.9246343
         [,56]     [,57]     [,58]      [,59]      [,60]     [,61]    [,62]
[1,] 0.5333062 0.9358572 0.5024061 -0.1747635 -0.7863224 0.5823673 1.154142
[2,] 0.5333062 0.9358572 0.5024061 -0.1747635 -0.7863224 0.5823673 1.154142
          [,63]     [,64]     [,65]      [,66]    [,67]     [,68]     [,69]
[1,] -0.4239858 -1.372679 0.5411547 -0.4289202 -1.69126 0.8627978 -1.564588
[2,] -0.4239858 -1.372679 0.5411547 -0.4289202 -1.69126 0.8627978 -1.564588
         [,70]     [,71]     [,72]     [,73]     [,74]   [,75]     [,76]
[1,] 0.8585289 -1.337396 0.5158074 -1.322331 0.2231695 0.76979 0.5123906
[2,] 0.8585289 -1.337396 0.5158074 -1.322331 0.2231695 0.76979 0.5123906
          [,77]      [,78]    [,79]     [,80]    [,81]      [,82]    [,83]
[1,] -0.1746022 -0.6407171 1.571739 0.6792978 1.881355 -0.2189528 2.273439
[2,] -0.1746022 -0.6407171 1.571739 0.6792978 1.881355 -0.2189528 2.273439
        [,84]     [,85]    [,86]      [,87]     [,88]       [,89]      [,90]
[1,] 1.058069 -1.982184 1.188104 -0.9202763 0.4038752 -0.04309279 -0.4555465
[2,] 1.058069 -1.982184 1.188104 -0.9202763 0.4038752 -0.04309279 -0.4555465
         [,91]    [,92]     [,93]     [,94]     [,95]      [,96]       [,97]
[1,] 0.2884072 1.082502 0.1291372 0.8021078 0.4703039 -0.0214937 0.008316929
[2,] 0.2884072 1.082502 0.1291372 0.8021078 0.4703039 -0.0214937 0.008316929
         [,98]     [,99]   [,100]
[1,] -1.740397 -2.218453 1.792796
[2,] -1.740397 -2.218453 1.792796
> 
> 
> Max(tmp2)
[1] 2.125535
> Min(tmp2)
[1] -1.799624
> mean(tmp2)
[1] 0.192176
> Sum(tmp2)
[1] 19.2176
> Var(tmp2)
[1] 0.9431555
> 
> rowMeans(tmp2)
  [1]  1.04779926  1.88942641  1.81703795 -0.40255131  0.87393453  0.32651649
  [7]  0.78242764 -0.72821457 -0.96974545  0.71720504  0.06610143  1.40819191
 [13]  0.68795699 -0.21641737  0.67168204  0.59100798 -0.01346101  1.47851945
 [19]  0.54414100  0.55571620 -1.23834218  0.29158499  1.08756936 -0.95637088
 [25]  1.65035620  1.10747285  1.74452315 -1.31767117  1.26286277 -1.49881128
 [31]  0.11412442  0.03673089 -0.13488219  0.15602600  0.29312506 -1.18969204
 [37] -0.37941752  0.39332041  1.52108791 -0.95864818  0.49112503 -0.27504111
 [43]  0.67196589  0.23560553  0.81336973  1.59324506  1.61258455  0.61172628
 [49]  1.37934413 -1.09594426  0.63359848 -1.15992422 -0.46866679 -0.12551703
 [55]  1.20375414  2.12553533 -1.36340067 -0.05406860  1.90590748  1.33428509
 [61] -0.60769195 -0.83706902 -0.22030483 -0.02900826  0.29055211  1.48827027
 [67] -0.49793517  0.11237363  0.35788697 -0.60826921  0.92835699 -0.24036781
 [73] -0.16561913  0.74050751  1.50288744  0.36658931  0.68824890  1.81721984
 [79] -0.78105300  0.63564875 -1.41485600 -1.79962351 -1.03848380 -1.00057433
 [85]  0.62456233  1.68897789 -0.97101366 -0.41856260 -1.51383238 -0.30219883
 [91]  0.01668166  0.04910345 -0.68192545 -0.78507992 -0.95015381 -0.82704538
 [97] -0.95207871  0.49789188  1.31360914 -0.44072667
> rowSums(tmp2)
  [1]  1.04779926  1.88942641  1.81703795 -0.40255131  0.87393453  0.32651649
  [7]  0.78242764 -0.72821457 -0.96974545  0.71720504  0.06610143  1.40819191
 [13]  0.68795699 -0.21641737  0.67168204  0.59100798 -0.01346101  1.47851945
 [19]  0.54414100  0.55571620 -1.23834218  0.29158499  1.08756936 -0.95637088
 [25]  1.65035620  1.10747285  1.74452315 -1.31767117  1.26286277 -1.49881128
 [31]  0.11412442  0.03673089 -0.13488219  0.15602600  0.29312506 -1.18969204
 [37] -0.37941752  0.39332041  1.52108791 -0.95864818  0.49112503 -0.27504111
 [43]  0.67196589  0.23560553  0.81336973  1.59324506  1.61258455  0.61172628
 [49]  1.37934413 -1.09594426  0.63359848 -1.15992422 -0.46866679 -0.12551703
 [55]  1.20375414  2.12553533 -1.36340067 -0.05406860  1.90590748  1.33428509
 [61] -0.60769195 -0.83706902 -0.22030483 -0.02900826  0.29055211  1.48827027
 [67] -0.49793517  0.11237363  0.35788697 -0.60826921  0.92835699 -0.24036781
 [73] -0.16561913  0.74050751  1.50288744  0.36658931  0.68824890  1.81721984
 [79] -0.78105300  0.63564875 -1.41485600 -1.79962351 -1.03848380 -1.00057433
 [85]  0.62456233  1.68897789 -0.97101366 -0.41856260 -1.51383238 -0.30219883
 [91]  0.01668166  0.04910345 -0.68192545 -0.78507992 -0.95015381 -0.82704538
 [97] -0.95207871  0.49789188  1.31360914 -0.44072667
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.04779926  1.88942641  1.81703795 -0.40255131  0.87393453  0.32651649
  [7]  0.78242764 -0.72821457 -0.96974545  0.71720504  0.06610143  1.40819191
 [13]  0.68795699 -0.21641737  0.67168204  0.59100798 -0.01346101  1.47851945
 [19]  0.54414100  0.55571620 -1.23834218  0.29158499  1.08756936 -0.95637088
 [25]  1.65035620  1.10747285  1.74452315 -1.31767117  1.26286277 -1.49881128
 [31]  0.11412442  0.03673089 -0.13488219  0.15602600  0.29312506 -1.18969204
 [37] -0.37941752  0.39332041  1.52108791 -0.95864818  0.49112503 -0.27504111
 [43]  0.67196589  0.23560553  0.81336973  1.59324506  1.61258455  0.61172628
 [49]  1.37934413 -1.09594426  0.63359848 -1.15992422 -0.46866679 -0.12551703
 [55]  1.20375414  2.12553533 -1.36340067 -0.05406860  1.90590748  1.33428509
 [61] -0.60769195 -0.83706902 -0.22030483 -0.02900826  0.29055211  1.48827027
 [67] -0.49793517  0.11237363  0.35788697 -0.60826921  0.92835699 -0.24036781
 [73] -0.16561913  0.74050751  1.50288744  0.36658931  0.68824890  1.81721984
 [79] -0.78105300  0.63564875 -1.41485600 -1.79962351 -1.03848380 -1.00057433
 [85]  0.62456233  1.68897789 -0.97101366 -0.41856260 -1.51383238 -0.30219883
 [91]  0.01668166  0.04910345 -0.68192545 -0.78507992 -0.95015381 -0.82704538
 [97] -0.95207871  0.49789188  1.31360914 -0.44072667
> rowMin(tmp2)
  [1]  1.04779926  1.88942641  1.81703795 -0.40255131  0.87393453  0.32651649
  [7]  0.78242764 -0.72821457 -0.96974545  0.71720504  0.06610143  1.40819191
 [13]  0.68795699 -0.21641737  0.67168204  0.59100798 -0.01346101  1.47851945
 [19]  0.54414100  0.55571620 -1.23834218  0.29158499  1.08756936 -0.95637088
 [25]  1.65035620  1.10747285  1.74452315 -1.31767117  1.26286277 -1.49881128
 [31]  0.11412442  0.03673089 -0.13488219  0.15602600  0.29312506 -1.18969204
 [37] -0.37941752  0.39332041  1.52108791 -0.95864818  0.49112503 -0.27504111
 [43]  0.67196589  0.23560553  0.81336973  1.59324506  1.61258455  0.61172628
 [49]  1.37934413 -1.09594426  0.63359848 -1.15992422 -0.46866679 -0.12551703
 [55]  1.20375414  2.12553533 -1.36340067 -0.05406860  1.90590748  1.33428509
 [61] -0.60769195 -0.83706902 -0.22030483 -0.02900826  0.29055211  1.48827027
 [67] -0.49793517  0.11237363  0.35788697 -0.60826921  0.92835699 -0.24036781
 [73] -0.16561913  0.74050751  1.50288744  0.36658931  0.68824890  1.81721984
 [79] -0.78105300  0.63564875 -1.41485600 -1.79962351 -1.03848380 -1.00057433
 [85]  0.62456233  1.68897789 -0.97101366 -0.41856260 -1.51383238 -0.30219883
 [91]  0.01668166  0.04910345 -0.68192545 -0.78507992 -0.95015381 -0.82704538
 [97] -0.95207871  0.49789188  1.31360914 -0.44072667
> 
> colMeans(tmp2)
[1] 0.192176
> colSums(tmp2)
[1] 19.2176
> colVars(tmp2)
[1] 0.9431555
> colSd(tmp2)
[1] 0.9711619
> colMax(tmp2)
[1] 2.125535
> colMin(tmp2)
[1] -1.799624
> colMedians(tmp2)
[1] 0.1958158
> colRanges(tmp2)
          [,1]
[1,] -1.799624
[2,]  2.125535
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.2180127 -2.9957409 -4.4560374  4.4127787  3.9168085  0.2501834
 [7] -5.9229683  2.6240426 -1.4032817 -1.8629558
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1733986
[2,] -0.7890903
[3,] -0.5199472
[4,]  0.6400756
[5,]  1.3391089
> 
> rowApply(tmp,sum)
 [1]  1.8475458 -3.3240981 -2.3576379 -3.5304355  1.4569988  1.7553518
 [7]  3.0200161  0.8462353 -1.3870658 -4.9820940
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    2    5   10    4    2    9    8    2    4     3
 [2,]    3    6    5    3   10    3    3    6    7     2
 [3,]    1    2    2   10    4    4    1    8    8     5
 [4,]    7    1    7    9    3    8   10    9    9    10
 [5,]   10   10    8    8    9    1    7    3    5     7
 [6,]    6    8    1    6    6    7    5   10    1     4
 [7,]    4    3    3    2    5    2    6    5   10     1
 [8,]    5    9    6    5    7   10    9    1    2     8
 [9,]    8    7    4    7    1    5    2    7    6     9
[10,]    9    4    9    1    8    6    4    4    3     6
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.2570914  4.2601614  0.2156977 -2.4735076 -1.3938588 -1.1042636
 [7]  0.7544839  0.7658290 -2.4774184  0.7743180  0.4632108 -1.1636708
[13]  3.2863867 -1.6029048  2.0171981  2.3678193  3.0331511 -2.9544163
[19]  2.9908228  2.3199509
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.6928275
[2,] -0.3982823
[3,]  0.3471110
[4,]  0.5661805
[5,]  1.4349096
> 
> rowApply(tmp,sum)
[1] -0.21697453 -0.04502105  1.74167716  6.42743150  3.42896763
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   15   20    7    4   12
[2,]   16    8   19   15   19
[3,]   14    4    1    7   18
[4,]    2   12   12    5    3
[5,]    8    3   17   14    1
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  0.5661805  0.7359674  0.4657883 -1.0795863 -0.4881129 -0.9748585
[2,]  1.4349096 -0.2132182 -0.5605487  0.2434804 -0.8965235  0.2926646
[3,] -0.3982823  1.0957314 -1.0224086  0.1873364  0.7501666 -0.6702970
[4,] -0.6928275  1.1166867 -0.1160013 -0.6095481  0.8651003  1.5227161
[5,]  0.3471110  1.5249941  1.4488680 -1.2151900 -1.6244893 -1.2744889
            [,7]        [,8]       [,9]      [,10]       [,11]       [,12]
[1,]  0.08210622 -0.18777945 -1.3216571 -0.3956626  1.32209780 -0.54409741
[2,] -1.30089607  0.04835851  0.2916363  1.0112693  0.50497174  0.26782436
[3,]  0.60378421 -0.40408698 -0.9339797 -0.7320712  0.03007936  0.53794343
[4,]  0.55660052  0.51595930  0.2483281  0.1440279 -0.74381944 -1.40798528
[5,]  0.81288906  0.79337764 -0.7617460  0.7467546 -0.65011870 -0.01735586
          [,13]       [,14]       [,15]      [,16]      [,17]      [,18]
[1,]  1.3659759 -0.99270064 -0.50102851  1.1211340 1.02912448  0.1713239
[2,]  0.2389427 -0.48288121  0.01592722 -0.5004089 0.25008590 -1.4701128
[3,]  0.6110976 -0.20387994  0.59010445 -0.5135963 0.02195671 -0.1036762
[4,] -0.5696432  0.10367554  1.83106302  1.8098677 1.42062858 -1.3596398
[5,]  1.6400137 -0.02711856  0.08113189  0.4508228 0.31135540 -0.1923114
          [,19]       [,20]
[1,] -0.5154859 -0.07570385
[2,]  1.0816762 -0.30217841
[3,]  1.3598300  0.93592517
[4,]  1.3986225  0.39361998
[5,] -0.3338200  1.36828806
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2      col3     col4      col5        col6       col7
row1 -2.353404 -1.82331 0.2508006 2.202809 0.7368962 0.008458188 -0.9918238
          col8      col9      col10      col11     col12     col13     col14
row1 0.1983467 0.6857525 0.07324546 -0.6747363 -0.585628 -1.339798 0.5479835
       col15    col16     col17      col18     col19     col20
row1 1.25418 1.720199 -1.513667 -0.7420892 -1.154898 -2.130837
> tmp[,"col10"]
           col10
row1  0.07324546
row2  0.98130645
row3  0.87788907
row4 -0.73643558
row5  0.36259889
> tmp[c("row1","row5"),]
           col1      col2      col3       col4       col5        col6
row1 -2.3534043 -1.823310 0.2508006  2.2028090  0.7368962 0.008458188
row5 -0.3078248 -1.450125 1.3137096 -0.5686056 -0.5709660 0.228840439
           col7       col8      col9      col10      col11     col12     col13
row1 -0.9918238  0.1983467 0.6857525 0.07324546 -0.6747363 -0.585628 -1.339798
row5 -1.5571885 -0.5900407 0.7445305 0.36259889 -0.1650843  2.056451  1.413493
          col14      col15     col16      col17      col18     col19     col20
row1  0.5479835  1.2541796 1.7201989 -1.5136666 -0.7420892 -1.154898 -2.130837
row5 -1.8182306 -0.1939792 0.4826774 -0.8362033 -0.1963107 -1.108250  1.120881
> tmp[,c("col6","col20")]
             col6      col20
row1  0.008458188 -2.1308372
row2 -1.813334225  1.0777545
row3  2.355961679 -0.3618547
row4  0.102385796 -0.5304866
row5  0.228840439  1.1208805
> tmp[c("row1","row5"),c("col6","col20")]
            col6     col20
row1 0.008458188 -2.130837
row5 0.228840439  1.120881
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.49813 50.31002 50.20267 49.07131 50.99408 105.9404 48.44028 49.73265
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.87472 51.20367 51.39439 49.89932 47.10843 51.25947 49.03597 51.75161
        col17    col18   col19    col20
row1 48.86095 48.43287 49.8706 105.0144
> tmp[,"col10"]
        col10
row1 51.20367
row2 29.66615
row3 29.43978
row4 29.10080
row5 49.64477
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.49813 50.31002 50.20267 49.07131 50.99408 105.9404 48.44028 49.73265
row5 50.29794 49.78225 50.14627 50.16558 51.88868 106.5777 50.68965 49.04340
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.87472 51.20367 51.39439 49.89932 47.10843 51.25947 49.03597 51.75161
row5 51.11383 49.64477 51.12352 50.90707 49.98792 49.02057 49.96438 49.02896
        col17    col18    col19    col20
row1 48.86095 48.43287 49.87060 105.0144
row5 49.22917 51.34127 49.47734 104.8942
> tmp[,c("col6","col20")]
          col6     col20
row1 105.94043 105.01441
row2  73.61324  75.40149
row3  74.30704  74.15401
row4  74.52427  75.25452
row5 106.57775 104.89423
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.9404 105.0144
row5 106.5777 104.8942
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.9404 105.0144
row5 106.5777 104.8942
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.7812490
[2,]  0.3190659
[3,] -0.1772951
[4,]  1.5102209
[5,]  0.6907734
> tmp[,c("col17","col7")]
           col17       col7
[1,] -0.14664205  0.6333895
[2,] -0.67023443 -0.7356087
[3,] -0.04909495 -0.2253773
[4,] -0.53914530  2.2286172
[5,] -0.30344264 -1.6335697
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
             col6      col20
[1,]  0.557173331  0.1365640
[2,] -0.001678105  1.2839397
[3,]  0.446376675 -1.1622699
[4,]  0.702761912  1.1540115
[5,]  1.036989947 -0.2771241
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.5571733
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
             col6
[1,]  0.557173331
[2,] -0.001678105
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
row3 -0.1264682  0.5149791 0.09527298  0.4814576 -0.6056521  0.6874392
row1 -1.5289064 -0.3778877 0.07168573 -0.8725541 -1.2164252 -0.6114874
          [,7]      [,8]        [,9]      [,10]       [,11]      [,12]
row3 0.2226336 -1.502585  0.09192304 -1.4850117  0.09469666 -0.2116631
row1 0.3920322  1.408482 -1.62213915 -0.5839762 -0.83568720  1.2886554
          [,13]      [,14]      [,15]      [,16]     [,17]      [,18]
row3 -0.4448311 -1.6984140 -0.5759888  0.6813380 -2.045372 -1.1106622
row1  0.3919849 -0.7068253  0.5724275 -0.7804407 -1.640878 -0.6387934
          [,19]      [,20]
row3  0.6338645  0.2735494
row1 -0.8009008 -0.5587402
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]       [,3]     [,4]       [,5]       [,6]       [,7]
row2 0.8274336 -0.4497596 -0.8997527 1.474177 -0.9535813 -0.9181589 -0.1230423
          [,8]     [,9]     [,10]
row2 -0.982159 2.217258 -0.427009
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]       [,2]      [,3]       [,4]      [,5]       [,6]       [,7]
row5 0.115715 -0.6800147 0.5867727 -0.6499899 -1.208664 -0.4035469 -0.8876135
         [,8]      [,9]     [,10]      [,11]    [,12]     [,13]     [,14]
row5 1.394575 -1.759267 -1.548343 -0.6851341 1.300493 0.1929532 0.9161434
          [,15]      [,16]      [,17]    [,18]      [,19]     [,20]
row5 -0.6948259 -0.8264766 -0.3611695 1.168548 -0.3980507 0.4467748
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5ba02da9f970>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f16559e0721"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f1667ebb7f6"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f16659f6529"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f161e1860bd"
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f161ec226a5"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f1624412182"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f1610063064"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f164b6a29a9"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f16100cb340"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f161bbb10cc"
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f1621469bc2"
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f164c9c5d24"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f1656937cc0"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f163ca88d40"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM220f166b63a300"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5ba02ea19a50>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5ba02ea19a50>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5ba02ea19a50>
> rowMedians(tmp)
  [1] -0.037883444  0.001316529 -0.019392367  0.272268767 -0.221133492
  [6] -0.500030978 -0.066583069  0.886872006 -0.008704576 -0.105068561
 [11] -0.068262593 -0.557267639 -0.178039036  0.069463192  0.079341319
 [16]  0.107738213 -0.215924748 -0.053818109  0.124582261 -0.208692681
 [21] -0.327583003 -0.134385025 -0.570649228  0.122643434 -0.106304166
 [26] -0.054188970  0.433918613  0.158160689  0.140417359 -0.086366125
 [31]  0.148905150  0.293658851 -0.054797619  0.329220003  0.149041726
 [36] -0.227237301 -0.035505227 -0.341359936 -0.564293417  0.191332570
 [41]  0.585311355  0.119921517 -0.361980950  0.219034321  0.296675691
 [46] -0.151696393 -0.026011124 -0.084151503  0.677733999 -0.784881424
 [51]  0.063173866  0.208974675  0.252325616 -0.058399292  0.053034614
 [56] -0.245904904  0.400893368 -0.213584023 -0.368958473  0.540249547
 [61]  0.331625484  0.169530520  0.283939092  0.296475165  0.356367777
 [66] -0.064378538 -0.335115450  0.221314563 -0.248575381  0.038319482
 [71]  0.033795760 -0.017488408  0.018106592  0.033341836 -0.038890452
 [76] -0.529905146 -0.234234212 -0.687896834  0.135988868  0.182313931
 [81] -0.230185354 -0.480733786  0.173826743  0.017328561  0.774055162
 [86] -0.175942033 -0.244466896 -0.232995720 -0.097711816 -0.396593911
 [91]  0.491482182  0.025271366  0.299170639 -0.126827030  0.354899289
 [96]  0.575552980 -0.464069852  0.368596116 -0.324269368  0.092326084
[101] -0.107628857 -0.224119297  0.041028169  0.558416386 -0.075609641
[106]  0.134637567  0.350515237 -0.059525967 -0.201812611  0.143933740
[111]  0.093801046  0.003793444 -0.571427639 -0.615541112 -0.256937463
[116] -0.226611895 -0.650427791 -0.769554333  0.135075997 -0.257447092
[121]  0.049309526  0.205214447 -0.005528252  0.164359930 -0.287312742
[126]  0.377467943 -0.005325588 -0.199633151 -0.228727746 -0.302390557
[131] -0.106044719 -0.343486075 -0.446110892 -0.353943521 -0.358022789
[136]  0.085213396  0.414679323  0.051402338 -0.129081514  0.363354519
[141] -0.451422456  0.447271670 -0.939544700 -0.101864597  0.054793960
[146] -0.012666961 -0.023240195 -0.344800194  0.145328897 -0.308808078
[151]  0.411306024 -0.039014736  0.038123493 -0.509331951 -0.100155454
[156] -0.511764618 -0.154833597 -0.143401264  0.233821166 -0.586670289
[161]  0.080268448 -0.298525332  0.093689030  0.518292590  0.091443291
[166]  0.091706622 -0.264745831  0.412756058  0.029908511  0.741633578
[171] -0.134592658 -0.183330169 -0.137391464 -0.108114250 -0.237077333
[176] -0.531634507 -0.529333062  0.068117273 -0.552255363 -0.033390593
[181] -0.252072873  0.237388520  0.194641702  0.554071169  0.228152915
[186]  0.364498789 -0.728302670 -0.023442623 -0.557563639 -0.393028265
[191]  0.474870665  0.230832445  0.634740943  0.008245096  0.310751907
[196]  0.421247435  0.360680505 -0.821589738 -0.190980701 -0.188082964
[201] -0.215544274 -0.175921186 -0.176168713  0.087872486  0.550106093
[206] -0.488043163 -0.017159498 -0.118349752  0.206167723 -0.227336443
[211]  0.816679264  0.150576477  0.291558082  0.289973447 -0.056599591
[216] -0.127464859  0.319141973  0.134477619  0.618380834 -0.155794582
[221]  0.020291587 -0.202981343  0.173788487  0.094056222  0.247641255
[226] -0.224698749  0.584522987  0.462562929  0.137091786 -0.469349542
> 
> proc.time()
   user  system elapsed 
  1.302   0.672   1.964 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e45ff71c2a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e45ff71c2a0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e45ff71c2a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5e45ff71c2a0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5e45fed93920>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45fed93920>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5e45fed93920>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45fed93920>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e45fed93920>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff721d80>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff721d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e45ff721d80>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5e45ff721d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e45ff721d80>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5e45ff721d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e45ff721d80>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5e45ff721d80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5e45ff721d80>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff7250b0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5e45ff7250b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff7250b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff7250b0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile220f9917642530" "BufferedMatrixFile220f993e78c16d"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile220f9917642530" "BufferedMatrixFile220f993e78c16d"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5e45ff87d1d0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45fe49aba0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5e45fe49aba0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5e45fe49aba0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5e45fe49aba0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e45fe560180>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5e45fe560180>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.234   0.043   0.266 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.224   0.048   0.259 

Example timings