Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-06 12:00 -0500 (Thu, 06 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4902
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4638
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.74.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-05 13:45 -0500 (Wed, 05 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_22
git_last_commit: d2ce144
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.74.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
StartedAt: 2025-11-05 21:48:38 -0500 (Wed, 05 Nov 2025)
EndedAt: 2025-11-05 21:49:02 -0500 (Wed, 05 Nov 2025)
EllapsedTime: 24.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.74.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.74.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.247   0.041   0.276 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478419 25.6    1047111   56   639600 34.2
Vcells 885237  6.8    8388608   64  2081604 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Nov  5 21:48:52 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Nov  5 21:48:53 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5888d099bb10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Nov  5 21:48:53 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Nov  5 21:48:53 2025"
> 
> ColMode(tmp2)
<pointer: 0x5888d099bb10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]       [,3]       [,4]
[1,] 101.20516128 -0.2440651 -0.7224820  1.0131812
[2,]   0.08357464  1.0089183  0.6305501 -1.3252133
[3,]  -1.40325841 -0.7504562 -0.7632363  0.8103518
[4,]   0.35912175  1.2931055 -0.8716729  0.1144923
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 101.20516128 0.2440651 0.7224820 1.0131812
[2,]   0.08357464 1.0089183 0.6305501 1.3252133
[3,]   1.40325841 0.7504562 0.7632363 0.8103518
[4,]   0.35912175 1.2931055 0.8716729 0.1144923
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0600776 0.4940295 0.8499894 1.0065690
[2,]  0.2890928 1.0044492 0.7940719 1.1511791
[3,]  1.1845921 0.8662888 0.8736340 0.9001954
[4,]  0.5992677 1.1371480 0.9336343 0.3383671
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 226.80594 30.18436 34.22238 36.07887
[2,]  27.97450 36.05341 33.57127 37.83700
[3,]  38.24918 34.41334 34.49958 34.81231
[4,]  31.35180 37.66459 35.20802 28.49816
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5888cf76e7c0>
> exp(tmp5)
<pointer: 0x5888cf76e7c0>
> log(tmp5,2)
<pointer: 0x5888cf76e7c0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 472.0668
> Min(tmp5)
[1] 53.11309
> mean(tmp5)
[1] 73.10695
> Sum(tmp5)
[1] 14621.39
> Var(tmp5)
[1] 875.0581
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.77357 68.87747 73.01070 72.10745 71.72193 70.74545 71.69693 69.25588
 [9] 72.08375 70.79641
> rowSums(tmp5)
 [1] 1815.471 1377.549 1460.214 1442.149 1434.439 1414.909 1433.939 1385.118
 [9] 1441.675 1415.928
> rowVars(tmp5)
 [1] 8179.15087   63.10769   38.74312   87.70670   64.95076   70.28287
 [7]   62.47455   56.89627   74.95312   86.07317
> rowSd(tmp5)
 [1] 90.438658  7.944035  6.224397  9.365186  8.059204  8.383488  7.904084
 [8]  7.542962  8.657547  9.277563
> rowMax(tmp5)
 [1] 472.06684  87.24172  83.55756  87.17783  86.04361  83.19162  86.27629
 [8]  82.48753  86.46689  94.68398
> rowMin(tmp5)
 [1] 57.69010 58.22526 63.11148 54.53240 53.11309 56.27935 57.73356 53.19680
 [9] 54.44142 54.11241
> 
> colMeans(tmp5)
 [1] 108.57020  71.18515  71.71653  73.07814  71.52107  72.89443  69.63112
 [8]  66.57773  74.20214  67.39497  69.56819  73.48993  69.32148  72.84130
[15]  73.70191  75.18904  69.39161  69.88222  75.69068  66.29125
> colSums(tmp5)
 [1] 1085.7020  711.8515  717.1653  730.7814  715.2107  728.9443  696.3112
 [8]  665.7773  742.0214  673.9497  695.6819  734.8993  693.2148  728.4130
[15]  737.0191  751.8904  693.9161  698.8222  756.9068  662.9125
> colVars(tmp5)
 [1] 16344.33662    88.93087    74.07265    64.68343    65.63390    37.96258
 [7]   117.08532    26.11630   100.39992    40.98208   197.12495    51.88740
[13]    60.53481    71.31279    52.12906    35.53110    82.04685    64.39955
[19]    78.17573    69.09551
> colSd(tmp5)
 [1] 127.844971   9.430317   8.606547   8.042601   8.101475   6.161378
 [7]  10.820597   5.110411  10.019976   6.401725  14.040119   7.203291
[13]   7.780412   8.444690   7.220046   5.960797   9.057971   8.024933
[19]   8.841704   8.312371
> colMax(tmp5)
 [1] 472.06684  82.48753  86.04361  82.35071  85.12256  82.87467  87.24172
 [8]  77.47563  87.55020  77.71026  99.93539  85.29549  79.97700  84.21032
[15]  85.01602  81.60957  87.17783  80.59667  94.68398  81.57174
> colMin(tmp5)
 [1] 58.22526 54.44142 53.19680 59.10872 60.46920 65.21697 58.11602 57.70087
 [9] 56.27935 56.81270 54.53240 60.68149 53.11309 58.43803 62.71949 61.68216
[17] 57.69010 55.89450 62.51373 54.11241
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.77357 68.87747 73.01070 72.10745       NA 70.74545 71.69693 69.25588
 [9] 72.08375 70.79641
> rowSums(tmp5)
 [1] 1815.471 1377.549 1460.214 1442.149       NA 1414.909 1433.939 1385.118
 [9] 1441.675 1415.928
> rowVars(tmp5)
 [1] 8179.15087   63.10769   38.74312   87.70670   68.13882   70.28287
 [7]   62.47455   56.89627   74.95312   86.07317
> rowSd(tmp5)
 [1] 90.438658  7.944035  6.224397  9.365186  8.254624  8.383488  7.904084
 [8]  7.542962  8.657547  9.277563
> rowMax(tmp5)
 [1] 472.06684  87.24172  83.55756  87.17783        NA  83.19162  86.27629
 [8]  82.48753  86.46689  94.68398
> rowMin(tmp5)
 [1] 57.69010 58.22526 63.11148 54.53240       NA 56.27935 57.73356 53.19680
 [9] 54.44142 54.11241
> 
> colMeans(tmp5)
 [1] 108.57020  71.18515  71.71653  73.07814  71.52107  72.89443  69.63112
 [8]  66.57773  74.20214  67.39497  69.56819  73.48993  69.32148  72.84130
[15]        NA  75.18904  69.39161  69.88222  75.69068  66.29125
> colSums(tmp5)
 [1] 1085.7020  711.8515  717.1653  730.7814  715.2107  728.9443  696.3112
 [8]  665.7773  742.0214  673.9497  695.6819  734.8993  693.2148  728.4130
[15]        NA  751.8904  693.9161  698.8222  756.9068  662.9125
> colVars(tmp5)
 [1] 16344.33662    88.93087    74.07265    64.68343    65.63390    37.96258
 [7]   117.08532    26.11630   100.39992    40.98208   197.12495    51.88740
[13]    60.53481    71.31279          NA    35.53110    82.04685    64.39955
[19]    78.17573    69.09551
> colSd(tmp5)
 [1] 127.844971   9.430317   8.606547   8.042601   8.101475   6.161378
 [7]  10.820597   5.110411  10.019976   6.401725  14.040119   7.203291
[13]   7.780412   8.444690         NA   5.960797   9.057971   8.024933
[19]   8.841704   8.312371
> colMax(tmp5)
 [1] 472.06684  82.48753  86.04361  82.35071  85.12256  82.87467  87.24172
 [8]  77.47563  87.55020  77.71026  99.93539  85.29549  79.97700  84.21032
[15]        NA  81.60957  87.17783  80.59667  94.68398  81.57174
> colMin(tmp5)
 [1] 58.22526 54.44142 53.19680 59.10872 60.46920 65.21697 58.11602 57.70087
 [9] 56.27935 56.81270 54.53240 60.68149 53.11309 58.43803       NA 61.68216
[17] 57.69010 55.89450 62.51373 54.11241
> 
> Max(tmp5,na.rm=TRUE)
[1] 472.0668
> Min(tmp5,na.rm=TRUE)
[1] 53.11309
> mean(tmp5,na.rm=TRUE)
[1] 73.12739
> Sum(tmp5,na.rm=TRUE)
[1] 14552.35
> Var(tmp5,na.rm=TRUE)
[1] 879.3937
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.77357 68.87747 73.01070 72.10745 71.86303 70.74545 71.69693 69.25588
 [9] 72.08375 70.79641
> rowSums(tmp5,na.rm=TRUE)
 [1] 1815.471 1377.549 1460.214 1442.149 1365.398 1414.909 1433.939 1385.118
 [9] 1441.675 1415.928
> rowVars(tmp5,na.rm=TRUE)
 [1] 8179.15087   63.10769   38.74312   87.70670   68.13882   70.28287
 [7]   62.47455   56.89627   74.95312   86.07317
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.438658  7.944035  6.224397  9.365186  8.254624  8.383488  7.904084
 [8]  7.542962  8.657547  9.277563
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.06684  87.24172  83.55756  87.17783  86.04361  83.19162  86.27629
 [8]  82.48753  86.46689  94.68398
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.69010 58.22526 63.11148 54.53240 53.11309 56.27935 57.73356 53.19680
 [9] 54.44142 54.11241
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.57020  71.18515  71.71653  73.07814  71.52107  72.89443  69.63112
 [8]  66.57773  74.20214  67.39497  69.56819  73.48993  69.32148  72.84130
[15]  74.21979  75.18904  69.39161  69.88222  75.69068  66.29125
> colSums(tmp5,na.rm=TRUE)
 [1] 1085.7020  711.8515  717.1653  730.7814  715.2107  728.9443  696.3112
 [8]  665.7773  742.0214  673.9497  695.6819  734.8993  693.2148  728.4130
[15]  667.9781  751.8904  693.9161  698.8222  756.9068  662.9125
> colVars(tmp5,na.rm=TRUE)
 [1] 16344.33662    88.93087    74.07265    64.68343    65.63390    37.96258
 [7]   117.08532    26.11630   100.39992    40.98208   197.12495    51.88740
[13]    60.53481    71.31279    55.62793    35.53110    82.04685    64.39955
[19]    78.17573    69.09551
> colSd(tmp5,na.rm=TRUE)
 [1] 127.844971   9.430317   8.606547   8.042601   8.101475   6.161378
 [7]  10.820597   5.110411  10.019976   6.401725  14.040119   7.203291
[13]   7.780412   8.444690   7.458413   5.960797   9.057971   8.024933
[19]   8.841704   8.312371
> colMax(tmp5,na.rm=TRUE)
 [1] 472.06684  82.48753  86.04361  82.35071  85.12256  82.87467  87.24172
 [8]  77.47563  87.55020  77.71026  99.93539  85.29549  79.97700  84.21032
[15]  85.01602  81.60957  87.17783  80.59667  94.68398  81.57174
> colMin(tmp5,na.rm=TRUE)
 [1] 58.22526 54.44142 53.19680 59.10872 60.46920 65.21697 58.11602 57.70087
 [9] 56.27935 56.81270 54.53240 60.68149 53.11309 58.43803 62.71949 61.68216
[17] 57.69010 55.89450 62.51373 54.11241
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.77357 68.87747 73.01070 72.10745      NaN 70.74545 71.69693 69.25588
 [9] 72.08375 70.79641
> rowSums(tmp5,na.rm=TRUE)
 [1] 1815.471 1377.549 1460.214 1442.149    0.000 1414.909 1433.939 1385.118
 [9] 1441.675 1415.928
> rowVars(tmp5,na.rm=TRUE)
 [1] 8179.15087   63.10769   38.74312   87.70670         NA   70.28287
 [7]   62.47455   56.89627   74.95312   86.07317
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.438658  7.944035  6.224397  9.365186        NA  8.383488  7.904084
 [8]  7.542962  8.657547  9.277563
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.06684  87.24172  83.55756  87.17783        NA  83.19162  86.27629
 [8]  82.48753  86.46689  94.68398
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.69010 58.22526 63.11148 54.53240       NA 56.27935 57.73356 53.19680
 [9] 54.44142 54.11241
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.26672  70.40599  70.12463  73.11291  72.63029  72.59058  70.08300
 [8]  66.75349  73.79980  68.16056  69.09018  73.58606  71.12241  72.10651
[15]       NaN  75.13863  69.26478  69.86675  75.30041  64.59342
> colSums(tmp5,na.rm=TRUE)
 [1] 1019.4004  633.6539  631.1217  658.0162  653.6726  653.3152  630.7470
 [8]  600.7814  664.1982  613.4451  621.8116  662.2745  640.1017  648.9586
[15]    0.0000  676.2477  623.3830  628.8007  677.7037  581.3408
> colVars(tmp5,na.rm=TRUE)
 [1] 18139.23412    93.21745    54.82266    72.75526    59.99637    41.66925
 [7]   129.42372    29.03329   111.12877    39.51088   219.19503    58.26938
[13]    31.61392    74.15292          NA    39.94391    92.12172    72.44680
[19]    86.23417    45.30281
> colSd(tmp5,na.rm=TRUE)
 [1] 134.681974   9.654918   7.404233   8.529669   7.745732   6.455172
 [7]  11.376455   5.388255  10.541763   6.285768  14.805237   7.633438
[13]   5.622626   8.611209         NA   6.320120   9.598006   8.511569
[19]   9.286235   6.730737
> colMax(tmp5,na.rm=TRUE)
 [1] 472.06684  82.48753  80.39327  82.35071  85.12256  82.87467  87.24172
 [8]  77.47563  87.55020  77.71026  99.93539  85.29549  79.97700  84.21032
[15]      -Inf  81.60957  87.17783  80.59667  94.68398  77.83500
> colMin(tmp5,na.rm=TRUE)
 [1] 58.22526 54.44142 53.19680 59.10872 60.46920 65.21697 58.11602 57.70087
 [9] 56.27935 56.81270 54.53240 60.68149 62.38454 58.43803      Inf 61.68216
[17] 57.69010 55.89450 62.51373 54.11241
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 113.3496 305.6694 237.9801 299.7428 188.6144 142.8646 137.2278 167.3509
 [9] 166.6900 218.5021
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 113.3496 305.6694 237.9801 299.7428 188.6144 142.8646 137.2278 167.3509
 [9] 166.6900 218.5021
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  1.136868e-13 -8.526513e-14  0.000000e+00 -1.705303e-13 -1.136868e-13
 [6]  1.136868e-13 -5.684342e-14  0.000000e+00 -2.842171e-14 -1.705303e-13
[11] -1.278977e-13 -3.410605e-13  1.705303e-13  0.000000e+00 -1.421085e-13
[16]  2.842171e-14  5.684342e-14  0.000000e+00 -1.136868e-13  1.421085e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   6 
7   7 
3   7 
6   9 
3   5 
6   3 
5   13 
6   3 
2   10 
6   7 
10   18 
4   14 
1   15 
9   5 
1   18 
1   10 
5   15 
8   8 
5   14 
4   5 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.239123
> Min(tmp)
[1] -2.545196
> mean(tmp)
[1] 0.01987807
> Sum(tmp)
[1] 1.987807
> Var(tmp)
[1] 1.231096
> 
> rowMeans(tmp)
[1] 0.01987807
> rowSums(tmp)
[1] 1.987807
> rowVars(tmp)
[1] 1.231096
> rowSd(tmp)
[1] 1.109548
> rowMax(tmp)
[1] 2.239123
> rowMin(tmp)
[1] -2.545196
> 
> colMeans(tmp)
  [1]  2.23084243  0.08526329  0.43691611  0.03103435  0.75513565 -1.78390712
  [7]  0.22988794  1.44186350  0.30353743  0.39434290 -1.09371782  0.51502720
 [13]  1.52760879 -1.53545364  0.27760738 -2.18786323  0.17379224  1.32206764
 [19]  1.45619775 -1.06971931 -0.25487018 -0.03610762  0.68116805  0.54862096
 [25] -0.66528767 -0.48582401 -0.22271382  0.87320127 -0.67556041 -1.43746213
 [31]  0.76733680 -0.29941453 -1.99000393 -1.60789743  0.60555835 -0.35923590
 [37] -0.72700110  0.96248324 -0.12330526  1.91941779  1.47126313 -0.51699093
 [43]  2.15158106  0.49272698 -0.84216884 -0.07984503 -0.62069028 -0.05205426
 [49]  1.93082129 -1.85764145 -2.02814319 -0.49199442 -0.11896899  1.93808311
 [55]  1.78701917 -1.56054919  0.03060846 -0.87232959  1.66335801 -0.18808207
 [61] -0.19815199  2.23912276 -1.26826206 -0.11519929 -0.34069652  0.50790125
 [67] -0.12652390 -0.15960501 -0.64518391  1.29036625 -0.40180900  0.60032040
 [73] -2.54519625 -0.28118877 -0.63788051  1.13470354 -0.66287028  0.80802385
 [79]  0.25066101  1.06475867 -1.76579318  0.76257579 -0.45599063  0.63599010
 [85]  1.54666567 -1.19691543 -1.72929397 -1.69497075  0.70360014  0.32618372
 [91] -0.50616457  1.10215575  1.96990490 -0.84461684 -0.84843818 -1.19273551
 [97]  0.21385795 -0.06323952  0.63933373  0.65283828
> colSums(tmp)
  [1]  2.23084243  0.08526329  0.43691611  0.03103435  0.75513565 -1.78390712
  [7]  0.22988794  1.44186350  0.30353743  0.39434290 -1.09371782  0.51502720
 [13]  1.52760879 -1.53545364  0.27760738 -2.18786323  0.17379224  1.32206764
 [19]  1.45619775 -1.06971931 -0.25487018 -0.03610762  0.68116805  0.54862096
 [25] -0.66528767 -0.48582401 -0.22271382  0.87320127 -0.67556041 -1.43746213
 [31]  0.76733680 -0.29941453 -1.99000393 -1.60789743  0.60555835 -0.35923590
 [37] -0.72700110  0.96248324 -0.12330526  1.91941779  1.47126313 -0.51699093
 [43]  2.15158106  0.49272698 -0.84216884 -0.07984503 -0.62069028 -0.05205426
 [49]  1.93082129 -1.85764145 -2.02814319 -0.49199442 -0.11896899  1.93808311
 [55]  1.78701917 -1.56054919  0.03060846 -0.87232959  1.66335801 -0.18808207
 [61] -0.19815199  2.23912276 -1.26826206 -0.11519929 -0.34069652  0.50790125
 [67] -0.12652390 -0.15960501 -0.64518391  1.29036625 -0.40180900  0.60032040
 [73] -2.54519625 -0.28118877 -0.63788051  1.13470354 -0.66287028  0.80802385
 [79]  0.25066101  1.06475867 -1.76579318  0.76257579 -0.45599063  0.63599010
 [85]  1.54666567 -1.19691543 -1.72929397 -1.69497075  0.70360014  0.32618372
 [91] -0.50616457  1.10215575  1.96990490 -0.84461684 -0.84843818 -1.19273551
 [97]  0.21385795 -0.06323952  0.63933373  0.65283828
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  2.23084243  0.08526329  0.43691611  0.03103435  0.75513565 -1.78390712
  [7]  0.22988794  1.44186350  0.30353743  0.39434290 -1.09371782  0.51502720
 [13]  1.52760879 -1.53545364  0.27760738 -2.18786323  0.17379224  1.32206764
 [19]  1.45619775 -1.06971931 -0.25487018 -0.03610762  0.68116805  0.54862096
 [25] -0.66528767 -0.48582401 -0.22271382  0.87320127 -0.67556041 -1.43746213
 [31]  0.76733680 -0.29941453 -1.99000393 -1.60789743  0.60555835 -0.35923590
 [37] -0.72700110  0.96248324 -0.12330526  1.91941779  1.47126313 -0.51699093
 [43]  2.15158106  0.49272698 -0.84216884 -0.07984503 -0.62069028 -0.05205426
 [49]  1.93082129 -1.85764145 -2.02814319 -0.49199442 -0.11896899  1.93808311
 [55]  1.78701917 -1.56054919  0.03060846 -0.87232959  1.66335801 -0.18808207
 [61] -0.19815199  2.23912276 -1.26826206 -0.11519929 -0.34069652  0.50790125
 [67] -0.12652390 -0.15960501 -0.64518391  1.29036625 -0.40180900  0.60032040
 [73] -2.54519625 -0.28118877 -0.63788051  1.13470354 -0.66287028  0.80802385
 [79]  0.25066101  1.06475867 -1.76579318  0.76257579 -0.45599063  0.63599010
 [85]  1.54666567 -1.19691543 -1.72929397 -1.69497075  0.70360014  0.32618372
 [91] -0.50616457  1.10215575  1.96990490 -0.84461684 -0.84843818 -1.19273551
 [97]  0.21385795 -0.06323952  0.63933373  0.65283828
> colMin(tmp)
  [1]  2.23084243  0.08526329  0.43691611  0.03103435  0.75513565 -1.78390712
  [7]  0.22988794  1.44186350  0.30353743  0.39434290 -1.09371782  0.51502720
 [13]  1.52760879 -1.53545364  0.27760738 -2.18786323  0.17379224  1.32206764
 [19]  1.45619775 -1.06971931 -0.25487018 -0.03610762  0.68116805  0.54862096
 [25] -0.66528767 -0.48582401 -0.22271382  0.87320127 -0.67556041 -1.43746213
 [31]  0.76733680 -0.29941453 -1.99000393 -1.60789743  0.60555835 -0.35923590
 [37] -0.72700110  0.96248324 -0.12330526  1.91941779  1.47126313 -0.51699093
 [43]  2.15158106  0.49272698 -0.84216884 -0.07984503 -0.62069028 -0.05205426
 [49]  1.93082129 -1.85764145 -2.02814319 -0.49199442 -0.11896899  1.93808311
 [55]  1.78701917 -1.56054919  0.03060846 -0.87232959  1.66335801 -0.18808207
 [61] -0.19815199  2.23912276 -1.26826206 -0.11519929 -0.34069652  0.50790125
 [67] -0.12652390 -0.15960501 -0.64518391  1.29036625 -0.40180900  0.60032040
 [73] -2.54519625 -0.28118877 -0.63788051  1.13470354 -0.66287028  0.80802385
 [79]  0.25066101  1.06475867 -1.76579318  0.76257579 -0.45599063  0.63599010
 [85]  1.54666567 -1.19691543 -1.72929397 -1.69497075  0.70360014  0.32618372
 [91] -0.50616457  1.10215575  1.96990490 -0.84461684 -0.84843818 -1.19273551
 [97]  0.21385795 -0.06323952  0.63933373  0.65283828
> colMedians(tmp)
  [1]  2.23084243  0.08526329  0.43691611  0.03103435  0.75513565 -1.78390712
  [7]  0.22988794  1.44186350  0.30353743  0.39434290 -1.09371782  0.51502720
 [13]  1.52760879 -1.53545364  0.27760738 -2.18786323  0.17379224  1.32206764
 [19]  1.45619775 -1.06971931 -0.25487018 -0.03610762  0.68116805  0.54862096
 [25] -0.66528767 -0.48582401 -0.22271382  0.87320127 -0.67556041 -1.43746213
 [31]  0.76733680 -0.29941453 -1.99000393 -1.60789743  0.60555835 -0.35923590
 [37] -0.72700110  0.96248324 -0.12330526  1.91941779  1.47126313 -0.51699093
 [43]  2.15158106  0.49272698 -0.84216884 -0.07984503 -0.62069028 -0.05205426
 [49]  1.93082129 -1.85764145 -2.02814319 -0.49199442 -0.11896899  1.93808311
 [55]  1.78701917 -1.56054919  0.03060846 -0.87232959  1.66335801 -0.18808207
 [61] -0.19815199  2.23912276 -1.26826206 -0.11519929 -0.34069652  0.50790125
 [67] -0.12652390 -0.15960501 -0.64518391  1.29036625 -0.40180900  0.60032040
 [73] -2.54519625 -0.28118877 -0.63788051  1.13470354 -0.66287028  0.80802385
 [79]  0.25066101  1.06475867 -1.76579318  0.76257579 -0.45599063  0.63599010
 [85]  1.54666567 -1.19691543 -1.72929397 -1.69497075  0.70360014  0.32618372
 [91] -0.50616457  1.10215575  1.96990490 -0.84461684 -0.84843818 -1.19273551
 [97]  0.21385795 -0.06323952  0.63933373  0.65283828
> colRanges(tmp)
         [,1]       [,2]      [,3]       [,4]      [,5]      [,6]      [,7]
[1,] 2.230842 0.08526329 0.4369161 0.03103435 0.7551356 -1.783907 0.2298879
[2,] 2.230842 0.08526329 0.4369161 0.03103435 0.7551356 -1.783907 0.2298879
         [,8]      [,9]     [,10]     [,11]     [,12]    [,13]     [,14]
[1,] 1.441863 0.3035374 0.3943429 -1.093718 0.5150272 1.527609 -1.535454
[2,] 1.441863 0.3035374 0.3943429 -1.093718 0.5150272 1.527609 -1.535454
         [,15]     [,16]     [,17]    [,18]    [,19]     [,20]      [,21]
[1,] 0.2776074 -2.187863 0.1737922 1.322068 1.456198 -1.069719 -0.2548702
[2,] 0.2776074 -2.187863 0.1737922 1.322068 1.456198 -1.069719 -0.2548702
           [,22]     [,23]    [,24]      [,25]     [,26]      [,27]     [,28]
[1,] -0.03610762 0.6811681 0.548621 -0.6652877 -0.485824 -0.2227138 0.8732013
[2,] -0.03610762 0.6811681 0.548621 -0.6652877 -0.485824 -0.2227138 0.8732013
          [,29]     [,30]     [,31]      [,32]     [,33]     [,34]     [,35]
[1,] -0.6755604 -1.437462 0.7673368 -0.2994145 -1.990004 -1.607897 0.6055583
[2,] -0.6755604 -1.437462 0.7673368 -0.2994145 -1.990004 -1.607897 0.6055583
          [,36]      [,37]     [,38]      [,39]    [,40]    [,41]      [,42]
[1,] -0.3592359 -0.7270011 0.9624832 -0.1233053 1.919418 1.471263 -0.5169909
[2,] -0.3592359 -0.7270011 0.9624832 -0.1233053 1.919418 1.471263 -0.5169909
        [,43]    [,44]      [,45]       [,46]      [,47]       [,48]    [,49]
[1,] 2.151581 0.492727 -0.8421688 -0.07984503 -0.6206903 -0.05205426 1.930821
[2,] 2.151581 0.492727 -0.8421688 -0.07984503 -0.6206903 -0.05205426 1.930821
         [,50]     [,51]      [,52]     [,53]    [,54]    [,55]     [,56]
[1,] -1.857641 -2.028143 -0.4919944 -0.118969 1.938083 1.787019 -1.560549
[2,] -1.857641 -2.028143 -0.4919944 -0.118969 1.938083 1.787019 -1.560549
          [,57]      [,58]    [,59]      [,60]     [,61]    [,62]     [,63]
[1,] 0.03060846 -0.8723296 1.663358 -0.1880821 -0.198152 2.239123 -1.268262
[2,] 0.03060846 -0.8723296 1.663358 -0.1880821 -0.198152 2.239123 -1.268262
          [,64]      [,65]     [,66]      [,67]     [,68]      [,69]    [,70]
[1,] -0.1151993 -0.3406965 0.5079012 -0.1265239 -0.159605 -0.6451839 1.290366
[2,] -0.1151993 -0.3406965 0.5079012 -0.1265239 -0.159605 -0.6451839 1.290366
         [,71]     [,72]     [,73]      [,74]      [,75]    [,76]      [,77]
[1,] -0.401809 0.6003204 -2.545196 -0.2811888 -0.6378805 1.134704 -0.6628703
[2,] -0.401809 0.6003204 -2.545196 -0.2811888 -0.6378805 1.134704 -0.6628703
         [,78]    [,79]    [,80]     [,81]     [,82]      [,83]     [,84]
[1,] 0.8080239 0.250661 1.064759 -1.765793 0.7625758 -0.4559906 0.6359901
[2,] 0.8080239 0.250661 1.064759 -1.765793 0.7625758 -0.4559906 0.6359901
        [,85]     [,86]     [,87]     [,88]     [,89]     [,90]      [,91]
[1,] 1.546666 -1.196915 -1.729294 -1.694971 0.7036001 0.3261837 -0.5061646
[2,] 1.546666 -1.196915 -1.729294 -1.694971 0.7036001 0.3261837 -0.5061646
        [,92]    [,93]      [,94]      [,95]     [,96]     [,97]       [,98]
[1,] 1.102156 1.969905 -0.8446168 -0.8484382 -1.192736 0.2138579 -0.06323952
[2,] 1.102156 1.969905 -0.8446168 -0.8484382 -1.192736 0.2138579 -0.06323952
         [,99]    [,100]
[1,] 0.6393337 0.6528383
[2,] 0.6393337 0.6528383
> 
> 
> Max(tmp2)
[1] 2.501417
> Min(tmp2)
[1] -2.87746
> mean(tmp2)
[1] 0.08183611
> Sum(tmp2)
[1] 8.183611
> Var(tmp2)
[1] 1.132997
> 
> rowMeans(tmp2)
  [1] -1.6506554604  0.4752131632  1.2010731583 -0.1023526413  0.0007961525
  [6]  1.7364756081 -1.2281160897  0.6887479009 -1.1288925519  0.4959269834
 [11]  1.1433762388  0.4054530367 -1.4574203285 -0.8692579252  1.4371067816
 [16] -0.1426540162  1.1438369208 -2.8774600405  0.4259757635 -1.5143691802
 [21]  0.0914077191  0.3843843473  1.2254525238 -1.9158958648  0.6266983953
 [26] -0.2049651432  1.5861682776  0.3980727828 -0.3744173109  0.6178953010
 [31] -0.0676857393  1.3215484778  1.2597547718 -0.2579432287  1.0790048311
 [36]  2.0463545160  0.1828426412 -0.5948260990 -1.1833854654  0.6314218592
 [41]  0.7494373391  0.0385757150  1.9398158559 -0.1445359613  0.6895696635
 [46]  0.8361589609 -0.3667119482  1.4801549797 -0.4856732886  0.4008044268
 [51] -0.2316041191 -1.3630455237 -0.2467065821 -1.4737571691  0.8217671722
 [56] -2.1244154249  1.3123283630 -0.5364841690 -0.0051070564  0.6949152907
 [61]  1.3751931947  1.6009773734  0.1575255182  1.3263478960 -0.1182276609
 [66]  0.1891287439 -0.0742897636  1.2751441836  0.6578388083  0.5860487196
 [71] -0.2922393635 -0.9684390649  0.7161570724 -0.3167429870 -0.0965601435
 [76] -0.0371070744 -0.7727556912  1.0308494181 -0.2949323119 -1.4497194782
 [81] -0.4641077189  0.6807713864 -1.1425845338 -0.1864447923 -0.8756422462
 [86] -0.0733806270 -0.4298722065 -0.0349527073 -0.1213937896 -0.2229323278
 [91]  2.3728745266 -1.5172960064 -1.5267238334  0.9386622341 -2.6927671847
 [96]  0.3006007061  0.6149297852  2.5014174423 -0.5944722315 -0.8574495770
> rowSums(tmp2)
  [1] -1.6506554604  0.4752131632  1.2010731583 -0.1023526413  0.0007961525
  [6]  1.7364756081 -1.2281160897  0.6887479009 -1.1288925519  0.4959269834
 [11]  1.1433762388  0.4054530367 -1.4574203285 -0.8692579252  1.4371067816
 [16] -0.1426540162  1.1438369208 -2.8774600405  0.4259757635 -1.5143691802
 [21]  0.0914077191  0.3843843473  1.2254525238 -1.9158958648  0.6266983953
 [26] -0.2049651432  1.5861682776  0.3980727828 -0.3744173109  0.6178953010
 [31] -0.0676857393  1.3215484778  1.2597547718 -0.2579432287  1.0790048311
 [36]  2.0463545160  0.1828426412 -0.5948260990 -1.1833854654  0.6314218592
 [41]  0.7494373391  0.0385757150  1.9398158559 -0.1445359613  0.6895696635
 [46]  0.8361589609 -0.3667119482  1.4801549797 -0.4856732886  0.4008044268
 [51] -0.2316041191 -1.3630455237 -0.2467065821 -1.4737571691  0.8217671722
 [56] -2.1244154249  1.3123283630 -0.5364841690 -0.0051070564  0.6949152907
 [61]  1.3751931947  1.6009773734  0.1575255182  1.3263478960 -0.1182276609
 [66]  0.1891287439 -0.0742897636  1.2751441836  0.6578388083  0.5860487196
 [71] -0.2922393635 -0.9684390649  0.7161570724 -0.3167429870 -0.0965601435
 [76] -0.0371070744 -0.7727556912  1.0308494181 -0.2949323119 -1.4497194782
 [81] -0.4641077189  0.6807713864 -1.1425845338 -0.1864447923 -0.8756422462
 [86] -0.0733806270 -0.4298722065 -0.0349527073 -0.1213937896 -0.2229323278
 [91]  2.3728745266 -1.5172960064 -1.5267238334  0.9386622341 -2.6927671847
 [96]  0.3006007061  0.6149297852  2.5014174423 -0.5944722315 -0.8574495770
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -1.6506554604  0.4752131632  1.2010731583 -0.1023526413  0.0007961525
  [6]  1.7364756081 -1.2281160897  0.6887479009 -1.1288925519  0.4959269834
 [11]  1.1433762388  0.4054530367 -1.4574203285 -0.8692579252  1.4371067816
 [16] -0.1426540162  1.1438369208 -2.8774600405  0.4259757635 -1.5143691802
 [21]  0.0914077191  0.3843843473  1.2254525238 -1.9158958648  0.6266983953
 [26] -0.2049651432  1.5861682776  0.3980727828 -0.3744173109  0.6178953010
 [31] -0.0676857393  1.3215484778  1.2597547718 -0.2579432287  1.0790048311
 [36]  2.0463545160  0.1828426412 -0.5948260990 -1.1833854654  0.6314218592
 [41]  0.7494373391  0.0385757150  1.9398158559 -0.1445359613  0.6895696635
 [46]  0.8361589609 -0.3667119482  1.4801549797 -0.4856732886  0.4008044268
 [51] -0.2316041191 -1.3630455237 -0.2467065821 -1.4737571691  0.8217671722
 [56] -2.1244154249  1.3123283630 -0.5364841690 -0.0051070564  0.6949152907
 [61]  1.3751931947  1.6009773734  0.1575255182  1.3263478960 -0.1182276609
 [66]  0.1891287439 -0.0742897636  1.2751441836  0.6578388083  0.5860487196
 [71] -0.2922393635 -0.9684390649  0.7161570724 -0.3167429870 -0.0965601435
 [76] -0.0371070744 -0.7727556912  1.0308494181 -0.2949323119 -1.4497194782
 [81] -0.4641077189  0.6807713864 -1.1425845338 -0.1864447923 -0.8756422462
 [86] -0.0733806270 -0.4298722065 -0.0349527073 -0.1213937896 -0.2229323278
 [91]  2.3728745266 -1.5172960064 -1.5267238334  0.9386622341 -2.6927671847
 [96]  0.3006007061  0.6149297852  2.5014174423 -0.5944722315 -0.8574495770
> rowMin(tmp2)
  [1] -1.6506554604  0.4752131632  1.2010731583 -0.1023526413  0.0007961525
  [6]  1.7364756081 -1.2281160897  0.6887479009 -1.1288925519  0.4959269834
 [11]  1.1433762388  0.4054530367 -1.4574203285 -0.8692579252  1.4371067816
 [16] -0.1426540162  1.1438369208 -2.8774600405  0.4259757635 -1.5143691802
 [21]  0.0914077191  0.3843843473  1.2254525238 -1.9158958648  0.6266983953
 [26] -0.2049651432  1.5861682776  0.3980727828 -0.3744173109  0.6178953010
 [31] -0.0676857393  1.3215484778  1.2597547718 -0.2579432287  1.0790048311
 [36]  2.0463545160  0.1828426412 -0.5948260990 -1.1833854654  0.6314218592
 [41]  0.7494373391  0.0385757150  1.9398158559 -0.1445359613  0.6895696635
 [46]  0.8361589609 -0.3667119482  1.4801549797 -0.4856732886  0.4008044268
 [51] -0.2316041191 -1.3630455237 -0.2467065821 -1.4737571691  0.8217671722
 [56] -2.1244154249  1.3123283630 -0.5364841690 -0.0051070564  0.6949152907
 [61]  1.3751931947  1.6009773734  0.1575255182  1.3263478960 -0.1182276609
 [66]  0.1891287439 -0.0742897636  1.2751441836  0.6578388083  0.5860487196
 [71] -0.2922393635 -0.9684390649  0.7161570724 -0.3167429870 -0.0965601435
 [76] -0.0371070744 -0.7727556912  1.0308494181 -0.2949323119 -1.4497194782
 [81] -0.4641077189  0.6807713864 -1.1425845338 -0.1864447923 -0.8756422462
 [86] -0.0733806270 -0.4298722065 -0.0349527073 -0.1213937896 -0.2229323278
 [91]  2.3728745266 -1.5172960064 -1.5267238334  0.9386622341 -2.6927671847
 [96]  0.3006007061  0.6149297852  2.5014174423 -0.5944722315 -0.8574495770
> 
> colMeans(tmp2)
[1] 0.08183611
> colSums(tmp2)
[1] 8.183611
> colVars(tmp2)
[1] 1.132997
> colSd(tmp2)
[1] 1.064423
> colMax(tmp2)
[1] 2.501417
> colMin(tmp2)
[1] -2.87746
> colMedians(tmp2)
[1] -0.002155452
> colRanges(tmp2)
          [,1]
[1,] -2.877460
[2,]  2.501417
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.2910255 -1.1600568 -3.3930607 -7.7525250 -1.8567153 -3.4287725
 [7] -3.7864833  4.3156794  0.2137558 -0.7073178
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2660454
[2,]  0.1331344
[3,]  0.4474350
[4,]  0.7582362
[5,]  1.1070468
> 
> rowApply(tmp,sum)
 [1]  0.1949305 -2.4355002 -0.3390619  0.5801501 -4.8302236 -0.1433923
 [7] -0.2101399 -5.3318463 -4.8763395  3.1269522
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    7    9   10    7    7    8    9    2     6
 [2,]    9    6    6    3    6    4    2    8    7     1
 [3,]   10    1    8    5    9    1    1    2    5     4
 [4,]    4    3    5    6    5    2    6    1    1     7
 [5,]    2    2   10    1    8    8    5    3   10     5
 [6,]    3    8    3    8    2    5    7    4    8     2
 [7,]    1    5    1    4    1    9    4   10    4     8
 [8,]    7    9    2    7   10    6   10    5    6    10
 [9,]    5   10    7    9    4    3    9    7    3     3
[10,]    6    4    4    2    3   10    3    6    9     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.1337000  0.6457879 -0.7607477 -0.5606612 -3.1392443  0.1902777
 [7]  0.6615061  0.3346262 -5.0887051  1.8676647 -4.1675778 -1.6268965
[13]  3.5351274 -2.0897096 -1.7757004  1.1803111  1.7496430 -3.5258624
[19]  1.2961427 -3.5265398
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.1875455
[2,] -0.8300565
[3,] -0.3850523
[4,]  0.5934016
[5,]  0.6755527
> 
> rowApply(tmp,sum)
[1]  0.1392817 -5.0093796 -4.5669973 -4.6348197 -2.8623430
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   17    6    8    1   18
[2,]    7   20    5    5   10
[3,]    4   12   16   11    8
[4,]   19   10    4    7   13
[5,]    1   19   11   14    1
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]       [,4]        [,5]        [,6]
[1,]  0.6755527 -0.35473324 -0.7464069  0.8315419 -1.61336376  0.04837354
[2,] -0.8300565  2.70852521 -0.1291094 -0.2339378  0.91240704  0.53494514
[3,] -0.3850523 -0.66986412  0.5204440 -1.0872950 -0.12341112 -0.04239572
[4,] -2.1875455 -1.10024335 -0.2547517 -0.4514434  0.01571908  0.15278827
[5,]  0.5934016  0.06210336 -0.1509237  0.3804731 -2.33059552 -0.50343350
           [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,]  0.2252711 -0.5213488  0.1756070  0.6373236 -1.3774250  0.1493567
[2,] -0.8642605  0.6398288 -2.0089097 -0.0197115 -2.2443025  0.4253229
[3,]  0.3196855  0.2058389 -1.1613302  0.9618128  1.1006346 -0.5255644
[4,]  0.3721709 -0.3612130 -1.1316195  0.4214330 -0.0746988 -0.7958415
[5,]  0.6086391  0.3715203 -0.9624527 -0.1331933 -1.5717860 -0.8801702
          [,13]      [,14]      [,15]       [,16]      [,17]      [,18]
[1,]  0.1837670 -0.4370415  0.8253862 -0.91187264  1.7939905 -0.1618252
[2,] -1.2605010 -0.1324515 -1.0318376  0.31028061 -0.4508916 -0.7268795
[3,]  1.5137634 -0.3543775 -0.3458541  1.30662101 -0.4898931 -1.9450997
[4,]  2.6508671 -0.3635938 -1.6643656  0.37973695  1.2711239 -1.1349408
[5,]  0.4472309 -0.8022452  0.4409707  0.09554517 -0.3746868  0.4428828
            [,19]      [,20]
[1,]  0.356835840  0.3602925
[2,]  0.034694371 -0.6425346
[3,]  0.007900989 -3.3735613
[4,] -0.085800540 -0.2926015
[5,]  0.982512071  0.4218650
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  648  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
            col1      col2     col3      col4     col5      col6     col7
row1 -0.05445384 -1.647776 2.199172 -1.076874 1.345439 -1.108156 1.472288
           col8     col9     col10      col11    col12    col13      col14
row1 -0.8884376 1.616127 0.9409028 0.07255759 2.090855 1.576446 -0.7713326
        col15    col16     col17     col18      col19      col20
row1 1.048323 2.076076 0.1240048 -2.488254 -0.7815347 -0.2835427
> tmp[,"col10"]
          col10
row1  0.9409028
row2  1.7526841
row3  0.8163549
row4 -0.5952242
row5  1.3300652
> tmp[c("row1","row5"),]
            col1      col2      col3      col4      col5       col6      col7
row1 -0.05445384 -1.647776 2.1991720 -1.076874  1.345439 -1.1081556 1.4722882
row5  0.80555953 -1.735078 0.3315346 -1.636521 -1.071785 -0.7487762 0.8826189
           col8     col9     col10      col11      col12      col13      col14
row1 -0.8884376 1.616127 0.9409028 0.07255759  2.0908545  1.5764458 -0.7713326
row5  0.3873986 0.586920 1.3300652 0.69619502 -0.3338173 -0.7538385 -1.5052229
        col15     col16       col17     col18      col19      col20
row1 1.048323  2.076076  0.12400482 -2.488254 -0.7815347 -0.2835427
row5 2.542401 -1.465630 -0.04866742  0.558410 -1.8410769  0.8564487
> tmp[,c("col6","col20")]
            col6      col20
row1 -1.10815557 -0.2835427
row2 -0.83851684  0.6386464
row3 -0.71276454  0.1621177
row4  0.03731468  1.1446355
row5 -0.74877619  0.8564487
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -1.1081556 -0.2835427
row5 -0.7487762  0.8564487
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
        col1     col2     col3     col4     col5     col6     col7     col8
row1 50.2063 51.51219 50.02499 49.33051 48.86736 106.1265 49.11938 50.20715
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.40003 50.64935 49.48046 49.83471 51.78597 50.50515 48.97526 50.59762
        col17    col18    col19    col20
row1 48.58416 48.92334 49.56588 103.5173
> tmp[,"col10"]
        col10
row1 50.64935
row2 30.58870
row3 30.36246
row4 29.44029
row5 49.03814
> tmp[c("row1","row5"),]
        col1     col2     col3     col4     col5     col6     col7     col8
row1 50.2063 51.51219 50.02499 49.33051 48.86736 106.1265 49.11938 50.20715
row5 49.0668 49.00238 49.64583 47.58510 49.69256 105.2207 47.18159 48.00979
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.40003 50.64935 49.48046 49.83471 51.78597 50.50515 48.97526 50.59762
row5 50.43505 49.03814 52.34067 51.38374 49.97273 51.35997 50.13859 50.11503
        col17    col18    col19    col20
row1 48.58416 48.92334 49.56588 103.5173
row5 50.54017 51.03007 50.59223 105.5752
> tmp[,c("col6","col20")]
          col6     col20
row1 106.12654 103.51733
row2  73.66614  75.90946
row3  74.96288  77.43510
row4  75.19559  75.94164
row5 105.22066 105.57524
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.1265 103.5173
row5 105.2207 105.5752
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.1265 103.5173
row5 105.2207 105.5752
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
            col13
[1,] -0.509346947
[2,] -0.007080843
[3,]  2.431606008
[4,] -0.043756990
[5,]  1.699751326
> tmp[,c("col17","col7")]
          col17       col7
[1,]  0.6791103  0.4970328
[2,] -1.0837052 -0.3460637
[3,] -0.3229235  0.5929058
[4,]  2.0610496 -0.6356024
[5,] -0.5036523  1.1627215
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,]  0.3608697  0.96294326
[2,] -0.1317205  0.68423188
[3,] -0.3134311 -0.04178335
[4,]  0.0993920  0.06692178
[5,]  0.7407049  0.35828872
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.3608697
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.3608697
[2,] -0.1317205
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]      [,5]       [,6]      [,7]
row3  1.2087556 -0.6361908  1.3095086 0.08848397 -1.793993  0.6311944 0.4687332
row1 -0.6095756  2.5514103 -0.5024624 0.88630031 -1.042152 -0.2543144 0.1855716
            [,8]       [,9]       [,10]      [,11]     [,12]      [,13]
row3 -1.26825565 -0.9665201 -0.01292236 -0.4884578 1.8403704 -0.2669895
row1  0.06719713 -0.3379007 -0.43401017  0.2762251 0.2932351 -0.4918028
          [,14]      [,15]       [,16]      [,17]      [,18]     [,19]
row3 -0.2564513 -0.6667137  0.06063619 -0.6567485  0.3313841 0.3496636
row1  0.5194872  0.2110302 -0.51134387 -0.6979572 -0.9719370 0.7183266
          [,20]
row3 0.15439056
row1 0.09773684
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]       [,3]        [,4]     [,5]       [,6]      [,7]
row2 0.8323329 -0.6529103 -0.1933226 -0.09417235 1.077366 -0.4952856 0.3070154
           [,8]      [,9]     [,10]
row2 -0.2568982 0.9584716 0.5243239
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]       [,3]      [,4]      [,5]      [,6]       [,7]
row5 0.2454997 -0.2926906 -0.3165263 0.3731111 -1.423376 0.5754674 -0.2418234
           [,8]      [,9]      [,10]       [,11]      [,12]    [,13]
row5 -0.6981782 -0.802141 -0.1328516 -0.05259713 -0.4247902 1.307754
           [,14]      [,15]      [,16]     [,17]      [,18]    [,19]     [,20]
row5 -0.01193899 -0.4367115 -0.1145003 -1.011725 -0.2097001 -2.13752 -1.009958
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5888d19d1460>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa526d01656c"
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa522343f6e4"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa52306afa89"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa521779b627"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa5219d5c2c3"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa524bae5156"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa52348c58ff"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa523a0315f7"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa5236472a38"
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa52123047dd"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa527a4f1c54"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa5258610e10"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa526a152b26"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa52e748e84" 
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM8fa528cbaf2a" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5888cf633610>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5888cf633610>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5888cf633610>
> rowMedians(tmp)
  [1]  0.608772701  0.489669477 -0.377041939 -0.302527205 -0.423748077
  [6] -0.413208591  0.327339718  0.469620672 -0.029295378  0.374236219
 [11]  0.062876364  0.078532646  0.517462295  0.464629746 -0.014697133
 [16]  0.072118189  0.149914678 -0.135017791  0.331529349 -0.194149099
 [21] -0.010670576 -0.252304371  0.114460227 -0.204912048  0.294188825
 [26]  0.200378951 -0.308648625 -0.188848793  0.243654981  0.157359015
 [31] -0.085814073  0.115296528 -0.389696380 -0.215751810 -0.418317732
 [36]  0.564409898 -0.315565340  0.168232876  0.086823780 -0.094518197
 [41]  0.199988913  0.037877751 -0.479364165 -0.185827862 -0.707132192
 [46]  0.315823723 -0.347756519  0.069606913 -0.017300821 -0.098340940
 [51]  0.031578449  0.675316935 -0.672906313  0.385306135 -0.167199562
 [56] -0.006731304  0.262510737 -0.172269254  0.120411653 -0.412279790
 [61]  0.255392236 -0.335331152  0.353362814 -0.060016837  0.182808777
 [66]  0.138046649 -0.385999725  0.036865316 -0.223323922  0.189255658
 [71] -0.491220968  0.025206304 -0.049680432  0.030196618  0.120693470
 [76]  0.279794149 -0.021366490  0.967847919  0.415743167 -0.705433549
 [81]  0.255833119 -0.275571178  0.219951836  0.130795707 -0.019334724
 [86]  0.179798823 -0.481345375  0.171869643  0.169736617  0.105874883
 [91] -0.150515180 -0.350337330  0.015393239 -0.250330418 -0.013756961
 [96]  0.213387098 -0.136578209 -0.028532227  0.541174168 -0.669842356
[101]  0.032511905  0.290231386  0.015066145 -0.034605615 -0.085256080
[106]  0.356017793 -0.336834256  0.234774785 -0.039004603  0.207222498
[111] -0.227935327 -0.279745219  0.165362131  0.305582290 -0.267584903
[116]  0.325426601  0.198145855  0.065449710 -0.521593718  0.060627350
[121] -0.289815067  0.543639730 -0.473626231  0.190154922  0.093446467
[126]  0.468412637  0.355076661  0.157451557  0.542945608 -0.095039297
[131]  0.073195939 -0.100225662 -0.620922263 -0.206003175 -0.345898410
[136] -0.407808575 -0.058480308 -0.522274059  0.035531545  0.013934193
[141]  0.323458103  0.074162575  0.374144078 -0.103354568 -0.525450943
[146] -0.398704116 -0.193216847  0.219109730  0.158433363  0.114640310
[151] -0.883136740 -0.093113934  0.352967308  0.527997740  0.027763660
[156]  0.078674739 -0.188687144  0.333603404 -0.402065111  0.177170527
[161]  0.182417538  0.090521438  0.066237929 -0.302540440 -0.106576168
[166] -0.544700412  0.237678727 -0.104600605  0.101420690  0.534360944
[171] -0.408180958  0.216105553  0.192578083 -0.460431879  0.597591444
[176]  0.440181915 -0.299986004  0.296304956 -0.077608012  0.094283597
[181]  0.213613175 -0.086610754  0.107013097  0.299929815  0.268936208
[186] -0.491429160 -0.014087553  0.356731757  0.354556651  0.288799684
[191] -0.571669123 -0.143796671  0.151753914 -0.007789959 -0.034788698
[196]  0.060561047 -0.016828909  0.029701631 -0.847315899 -0.243357842
[201] -0.502805831 -0.062602089 -0.316153390 -0.021555756 -0.262322594
[206]  0.382786085 -0.523786637  0.069054203  0.384336112  0.361025101
[211]  0.283228925  0.229901512  0.029987361  0.074548487  0.073110684
[216] -0.073465014 -0.209513770  0.001605968 -0.018216020  0.126359181
[221] -0.316813253  0.049902184  0.176137006  0.717344075 -0.247268803
[226] -0.101637447 -0.491331482 -0.029314901 -0.308940246  0.394997327
> 
> proc.time()
   user  system elapsed 
  1.242   0.669   1.899 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6541f86d3b10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6541f86d3b10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6541f86d3b10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6541f86d3b10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6541f72baa00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f72baa00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6541f72baa00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f72baa00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6541f72baa00>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f78e0fd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f78e0fd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6541f78e0fd0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6541f78e0fd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6541f78e0fd0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6541f78e0fd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6541f78e0fd0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6541f78e0fd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6541f78e0fd0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f9a043b0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6541f9a043b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f9a043b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f9a043b0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile8faeb4b610919" "BufferedMatrixFile8faeb5888e774"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile8faeb4b610919" "BufferedMatrixFile8faeb5888e774"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6541f7efefe0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f8134060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6541f8134060>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6541f8134060>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6541f8134060>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6541f7385660>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6541f7385660>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.247   0.050   0.283 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.240   0.041   0.269 

Example timings