Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-02 12:04 -0500 (Thu, 02 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4744 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4515 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4467 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-12-31 02:21:55 -0500 (Tue, 31 Dec 2024) |
EndedAt: 2024-12-31 02:27:16 -0500 (Tue, 31 Dec 2024) |
EllapsedTime: 321.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.2 (2024-10-31 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 35.17 2.22 37.64 var_imp 35.96 1.36 37.33 corr_plot 32.87 1.76 34.66 pred_ensembel 13.65 0.37 12.66 enrichfindP 0.57 0.11 14.94 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.434735 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.247075 final value 93.810011 converged Fitting Repeat 3 # weights: 103 initial value 108.712700 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.488354 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.700451 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.674804 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 102.007897 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 114.376782 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.203430 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.847933 iter 10 value 92.096995 iter 20 value 92.095554 iter 30 value 92.010119 iter 40 value 91.297562 iter 40 value 91.297562 iter 40 value 91.297562 final value 91.297562 converged Fitting Repeat 1 # weights: 507 initial value 101.486766 iter 10 value 88.837271 iter 20 value 86.092527 iter 30 value 85.978603 final value 85.972196 converged Fitting Repeat 2 # weights: 507 initial value 124.826022 iter 10 value 93.685444 final value 93.671508 converged Fitting Repeat 3 # weights: 507 initial value 115.133236 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.921825 iter 10 value 93.832158 iter 20 value 93.831044 final value 93.831042 converged Fitting Repeat 5 # weights: 507 initial value 118.532487 iter 10 value 94.039781 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 102.134771 iter 10 value 93.919315 iter 20 value 88.102465 iter 30 value 86.974495 iter 40 value 86.766850 iter 50 value 86.653798 iter 60 value 86.323676 iter 70 value 86.245557 iter 80 value 86.231573 final value 86.231571 converged Fitting Repeat 2 # weights: 103 initial value 100.559248 iter 10 value 94.221660 iter 20 value 89.087736 iter 30 value 86.831110 iter 40 value 86.464416 iter 50 value 86.386308 iter 60 value 85.802253 iter 70 value 85.509818 iter 80 value 85.119032 iter 90 value 84.208032 iter 100 value 83.880316 final value 83.880316 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.025300 iter 10 value 94.047203 iter 20 value 91.502601 iter 30 value 89.628119 iter 40 value 88.466591 iter 50 value 88.344167 iter 60 value 88.316005 iter 70 value 87.994356 iter 80 value 86.026183 iter 90 value 85.914984 iter 100 value 85.819535 final value 85.819535 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 111.749996 iter 10 value 93.598090 iter 20 value 88.541820 iter 30 value 86.833237 iter 40 value 84.846130 iter 50 value 84.689172 iter 60 value 84.603837 iter 70 value 84.433879 iter 80 value 84.387243 iter 90 value 84.141147 iter 100 value 83.883604 final value 83.883604 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.995003 iter 10 value 93.883446 iter 20 value 91.812370 iter 30 value 88.325367 iter 40 value 88.066655 iter 50 value 86.678755 iter 60 value 85.908719 iter 70 value 85.068734 iter 80 value 84.159994 iter 90 value 83.881140 final value 83.878012 converged Fitting Repeat 1 # weights: 305 initial value 102.160413 iter 10 value 94.048584 iter 20 value 93.831238 iter 30 value 91.155746 iter 40 value 89.270613 iter 50 value 85.969370 iter 60 value 85.402827 iter 70 value 85.144855 iter 80 value 84.269685 iter 90 value 83.307995 iter 100 value 82.867234 final value 82.867234 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.309104 iter 10 value 94.227524 iter 20 value 88.499292 iter 30 value 87.902491 iter 40 value 87.727507 iter 50 value 87.637207 iter 60 value 85.748250 iter 70 value 83.652943 iter 80 value 83.346977 iter 90 value 83.290656 iter 100 value 83.249713 final value 83.249713 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.593974 iter 10 value 93.871716 iter 20 value 89.144779 iter 30 value 87.382985 iter 40 value 86.985752 iter 50 value 84.637627 iter 60 value 83.729294 iter 70 value 83.227025 iter 80 value 83.124924 iter 90 value 82.823795 iter 100 value 82.664255 final value 82.664255 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.516081 iter 10 value 94.364130 iter 20 value 92.928129 iter 30 value 87.529879 iter 40 value 85.327097 iter 50 value 85.113050 iter 60 value 84.983329 iter 70 value 84.677266 iter 80 value 83.767096 iter 90 value 83.269514 iter 100 value 83.133229 final value 83.133229 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.565608 iter 10 value 94.003199 iter 20 value 91.177186 iter 30 value 87.244473 iter 40 value 85.785435 iter 50 value 84.819216 iter 60 value 84.043594 iter 70 value 83.110435 iter 80 value 82.975580 iter 90 value 82.941432 iter 100 value 82.834108 final value 82.834108 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.983420 iter 10 value 94.113355 iter 20 value 93.648132 iter 30 value 91.128506 iter 40 value 90.623207 iter 50 value 88.414129 iter 60 value 86.269346 iter 70 value 84.223716 iter 80 value 83.511632 iter 90 value 83.003054 iter 100 value 82.800231 final value 82.800231 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.084563 iter 10 value 95.879383 iter 20 value 91.320113 iter 30 value 86.231999 iter 40 value 84.938961 iter 50 value 84.011766 iter 60 value 83.349374 iter 70 value 83.064774 iter 80 value 82.966613 iter 90 value 82.897790 iter 100 value 82.869994 final value 82.869994 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.097344 iter 10 value 94.038791 iter 20 value 88.207987 iter 30 value 87.779580 iter 40 value 86.894762 iter 50 value 84.481513 iter 60 value 83.100380 iter 70 value 82.822663 iter 80 value 82.664849 iter 90 value 82.515233 iter 100 value 82.304039 final value 82.304039 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.003455 iter 10 value 93.354869 iter 20 value 89.677439 iter 30 value 86.567428 iter 40 value 85.222510 iter 50 value 83.242688 iter 60 value 82.816652 iter 70 value 82.699728 iter 80 value 82.565947 iter 90 value 82.321002 iter 100 value 82.265822 final value 82.265822 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 136.036958 iter 10 value 92.257009 iter 20 value 87.802917 iter 30 value 86.320879 iter 40 value 85.675158 iter 50 value 85.134596 iter 60 value 83.841587 iter 70 value 83.654546 iter 80 value 83.441821 iter 90 value 83.272068 iter 100 value 83.251370 final value 83.251370 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.128403 final value 94.054633 converged Fitting Repeat 2 # weights: 103 initial value 100.644118 final value 94.054525 converged Fitting Repeat 3 # weights: 103 initial value 97.336444 iter 10 value 93.841293 iter 20 value 93.839665 final value 93.839630 converged Fitting Repeat 4 # weights: 103 initial value 95.362967 iter 10 value 94.054335 iter 20 value 94.042652 final value 93.839870 converged Fitting Repeat 5 # weights: 103 initial value 110.495571 iter 10 value 94.029579 iter 20 value 94.029423 iter 30 value 92.867100 iter 40 value 89.631513 iter 50 value 88.450704 iter 60 value 88.445182 iter 70 value 88.423930 iter 80 value 87.723359 iter 90 value 87.717484 iter 100 value 87.716365 final value 87.716365 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 127.405193 iter 10 value 94.057664 iter 20 value 94.025707 iter 30 value 91.726063 iter 40 value 88.123616 iter 50 value 87.923798 iter 60 value 87.779681 iter 70 value 87.720435 iter 80 value 86.949203 iter 90 value 82.739251 iter 100 value 82.340064 final value 82.340064 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.997009 iter 10 value 93.676401 iter 20 value 90.493537 iter 30 value 87.092916 iter 40 value 84.276827 iter 50 value 83.325934 iter 60 value 82.581627 iter 70 value 82.580924 final value 82.580625 converged Fitting Repeat 3 # weights: 305 initial value 105.807538 iter 10 value 94.057606 iter 20 value 94.052928 iter 20 value 94.052927 iter 20 value 94.052927 final value 94.052927 converged Fitting Repeat 4 # weights: 305 initial value 105.557711 iter 10 value 94.057638 iter 20 value 92.977831 iter 30 value 92.047768 iter 40 value 92.046692 final value 92.046635 converged Fitting Repeat 5 # weights: 305 initial value 101.871145 iter 10 value 94.057246 iter 20 value 87.602402 iter 30 value 85.833523 iter 40 value 85.712342 iter 50 value 85.711814 iter 60 value 85.710890 iter 70 value 85.707731 iter 80 value 85.706580 iter 90 value 84.172826 iter 100 value 83.411139 final value 83.411139 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.463436 iter 10 value 94.059971 iter 20 value 93.987716 iter 30 value 91.429441 iter 40 value 90.146584 iter 50 value 87.811834 iter 60 value 86.597353 iter 70 value 85.413257 iter 80 value 85.327029 iter 90 value 85.326081 iter 100 value 85.325734 final value 85.325734 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.614472 iter 10 value 94.040940 iter 20 value 94.021681 iter 30 value 92.746181 iter 40 value 88.138491 iter 50 value 84.834522 iter 60 value 83.955552 iter 70 value 83.632652 iter 80 value 82.654599 iter 90 value 82.538217 iter 100 value 82.528365 final value 82.528365 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.335764 iter 10 value 93.679251 iter 20 value 93.672731 iter 30 value 92.734843 iter 40 value 88.823506 iter 50 value 86.336743 iter 60 value 86.128298 iter 70 value 86.104536 final value 86.104461 converged Fitting Repeat 4 # weights: 507 initial value 116.737030 iter 10 value 94.043197 iter 20 value 94.035720 iter 30 value 94.034627 iter 40 value 94.034096 iter 50 value 94.033696 final value 94.033684 converged Fitting Repeat 5 # weights: 507 initial value 95.951066 iter 10 value 93.839806 iter 20 value 93.834296 iter 30 value 89.752146 iter 40 value 88.979840 iter 50 value 85.922520 iter 60 value 83.804263 iter 70 value 83.351495 iter 80 value 83.224382 iter 90 value 83.161049 iter 100 value 83.160342 final value 83.160342 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.253645 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.106429 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.183552 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.255405 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.174375 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.689056 final value 93.922222 converged Fitting Repeat 2 # weights: 305 initial value 102.803827 iter 10 value 86.484729 iter 20 value 83.307118 iter 30 value 83.283762 iter 40 value 82.882899 final value 82.881718 converged Fitting Repeat 3 # weights: 305 initial value 103.374831 iter 10 value 93.539022 iter 20 value 92.178146 iter 30 value 92.151314 iter 40 value 91.855594 final value 91.852510 converged Fitting Repeat 4 # weights: 305 initial value 105.434296 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 100.013883 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 105.631608 final value 94.252920 converged Fitting Repeat 2 # weights: 507 initial value 95.498160 final value 93.922222 converged Fitting Repeat 3 # weights: 507 initial value 99.967763 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 121.301613 final value 93.102857 converged Fitting Repeat 5 # weights: 507 initial value 100.965219 iter 10 value 88.417674 iter 20 value 83.064303 final value 83.045768 converged Fitting Repeat 1 # weights: 103 initial value 107.081242 iter 10 value 94.429754 iter 20 value 86.627937 iter 30 value 86.032024 iter 40 value 80.815163 iter 50 value 80.313924 iter 60 value 80.198554 iter 70 value 79.145015 iter 80 value 78.889560 final value 78.880593 converged Fitting Repeat 2 # weights: 103 initial value 97.980751 iter 10 value 94.273665 iter 20 value 84.689904 iter 30 value 82.294473 iter 40 value 81.602101 iter 50 value 81.382880 iter 60 value 81.155059 iter 70 value 80.937575 iter 80 value 79.405068 iter 90 value 79.102870 iter 100 value 79.050730 final value 79.050730 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.038431 iter 10 value 94.049565 iter 20 value 92.532242 iter 30 value 92.258637 iter 40 value 92.149551 iter 50 value 84.421323 iter 60 value 81.812848 iter 70 value 80.461506 iter 80 value 80.120625 iter 90 value 80.000625 iter 100 value 79.474247 final value 79.474247 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.509982 iter 10 value 94.466824 iter 20 value 87.648440 iter 30 value 84.309332 iter 40 value 83.625736 iter 50 value 82.937491 iter 60 value 82.303302 iter 70 value 81.868982 iter 80 value 81.680041 iter 90 value 81.044138 iter 100 value 80.724396 final value 80.724396 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.487604 iter 10 value 93.919097 iter 20 value 81.784989 iter 30 value 81.217695 iter 40 value 80.820907 iter 50 value 80.705030 iter 60 value 80.664391 iter 70 value 79.063418 iter 80 value 78.689590 iter 90 value 78.687371 final value 78.687365 converged Fitting Repeat 1 # weights: 305 initial value 103.070125 iter 10 value 94.451098 iter 20 value 92.848673 iter 30 value 82.427244 iter 40 value 80.603175 iter 50 value 79.317105 iter 60 value 78.278986 iter 70 value 78.023000 iter 80 value 77.921346 iter 90 value 77.843928 iter 100 value 77.760100 final value 77.760100 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.853514 iter 10 value 85.627759 iter 20 value 84.310407 iter 30 value 81.988385 iter 40 value 80.434740 iter 50 value 80.267324 iter 60 value 79.248426 iter 70 value 78.939825 iter 80 value 78.719403 iter 90 value 78.451854 iter 100 value 77.994722 final value 77.994722 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.325023 iter 10 value 94.447718 iter 20 value 84.263655 iter 30 value 82.442282 iter 40 value 82.265401 iter 50 value 82.081024 iter 60 value 80.645001 iter 70 value 80.092458 iter 80 value 79.996860 iter 90 value 79.104258 iter 100 value 78.860150 final value 78.860150 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.770869 iter 10 value 94.500547 iter 20 value 90.232870 iter 30 value 85.620627 iter 40 value 84.444064 iter 50 value 84.097719 iter 60 value 81.972212 iter 70 value 80.003522 iter 80 value 79.746718 iter 90 value 78.618519 iter 100 value 78.385018 final value 78.385018 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.995771 iter 10 value 94.554079 iter 20 value 93.207954 iter 30 value 86.051339 iter 40 value 85.656889 iter 50 value 84.893051 iter 60 value 82.136553 iter 70 value 81.564240 iter 80 value 80.083401 iter 90 value 79.872753 iter 100 value 79.371956 final value 79.371956 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 131.602541 iter 10 value 94.527769 iter 20 value 87.925187 iter 30 value 82.772717 iter 40 value 80.183153 iter 50 value 78.830485 iter 60 value 78.497529 iter 70 value 78.313266 iter 80 value 78.287693 iter 90 value 78.038207 iter 100 value 77.666505 final value 77.666505 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 140.823881 iter 10 value 98.069949 iter 20 value 93.657099 iter 30 value 82.025087 iter 40 value 81.151637 iter 50 value 80.825986 iter 60 value 80.800989 iter 70 value 80.548081 iter 80 value 79.098142 iter 90 value 78.999615 iter 100 value 78.932123 final value 78.932123 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.427728 iter 10 value 95.370948 iter 20 value 82.952412 iter 30 value 82.532796 iter 40 value 82.295937 iter 50 value 81.312449 iter 60 value 79.932866 iter 70 value 79.094423 iter 80 value 78.706452 iter 90 value 78.245021 iter 100 value 77.776500 final value 77.776500 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.618921 iter 10 value 94.486614 iter 20 value 90.987816 iter 30 value 89.871256 iter 40 value 82.560944 iter 50 value 80.241893 iter 60 value 78.540664 iter 70 value 78.087940 iter 80 value 77.832860 iter 90 value 77.757583 iter 100 value 77.725483 final value 77.725483 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.807558 iter 10 value 94.478487 iter 20 value 93.876876 iter 30 value 92.030123 iter 40 value 86.618236 iter 50 value 82.418328 iter 60 value 80.745430 iter 70 value 79.967071 iter 80 value 79.343921 iter 90 value 79.319242 iter 100 value 79.230473 final value 79.230473 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.082561 iter 10 value 94.485745 final value 94.484383 converged Fitting Repeat 2 # weights: 103 initial value 99.505615 final value 94.485926 converged Fitting Repeat 3 # weights: 103 initial value 102.670237 final value 94.032354 converged Fitting Repeat 4 # weights: 103 initial value 110.404651 final value 94.485834 converged Fitting Repeat 5 # weights: 103 initial value 96.784874 final value 94.485668 converged Fitting Repeat 1 # weights: 305 initial value 103.409402 iter 10 value 90.616448 iter 20 value 86.151265 iter 30 value 86.096559 final value 86.096234 converged Fitting Repeat 2 # weights: 305 initial value 100.051175 iter 10 value 94.488784 iter 20 value 93.882869 iter 30 value 84.494382 iter 40 value 83.857093 iter 50 value 83.373243 iter 60 value 83.330851 iter 70 value 80.151250 iter 80 value 79.915161 iter 90 value 79.763810 iter 100 value 79.762625 final value 79.762625 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.289205 iter 10 value 94.471812 iter 20 value 94.432653 iter 30 value 90.748301 iter 40 value 85.061721 iter 50 value 84.752112 iter 60 value 80.144286 iter 70 value 78.597108 iter 80 value 77.939681 iter 90 value 77.938825 iter 100 value 77.937608 final value 77.937608 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.005151 iter 10 value 94.488296 iter 20 value 93.647204 iter 30 value 81.784425 iter 40 value 81.555422 iter 50 value 81.554000 iter 60 value 81.540838 iter 70 value 81.538786 iter 80 value 81.536416 final value 81.535681 converged Fitting Repeat 5 # weights: 305 initial value 97.823940 iter 10 value 94.471261 iter 20 value 94.335976 iter 30 value 94.095745 iter 40 value 93.813026 iter 50 value 93.484538 iter 60 value 93.484392 final value 93.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.496250 iter 10 value 94.388073 iter 20 value 94.387618 iter 30 value 94.382114 iter 40 value 94.230650 iter 50 value 81.789956 iter 60 value 81.102721 iter 70 value 81.092967 iter 80 value 81.043199 iter 90 value 81.042693 iter 100 value 80.890632 final value 80.890632 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 93.493746 iter 10 value 92.276051 iter 20 value 92.270913 iter 30 value 92.066039 iter 40 value 91.340271 iter 50 value 83.915303 iter 60 value 83.413311 iter 70 value 83.353021 final value 83.353010 converged Fitting Repeat 3 # weights: 507 initial value 96.777775 iter 10 value 94.491982 iter 20 value 94.413499 iter 30 value 83.423494 iter 40 value 80.303376 iter 50 value 78.548399 iter 60 value 77.066565 iter 70 value 76.984653 iter 80 value 76.954594 iter 90 value 76.829315 iter 100 value 76.717590 final value 76.717590 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.509094 iter 10 value 94.486472 iter 20 value 91.840385 iter 30 value 82.975131 final value 82.974681 converged Fitting Repeat 5 # weights: 507 initial value 105.365231 iter 10 value 94.495431 iter 20 value 94.475378 iter 30 value 93.693026 iter 40 value 93.691498 iter 50 value 93.511506 iter 60 value 89.053434 iter 70 value 88.854568 iter 80 value 88.853549 iter 90 value 87.588598 iter 100 value 87.540629 final value 87.540629 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.551920 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.333232 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.325802 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.945960 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.126298 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.152255 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 107.036148 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.265480 final value 93.356643 converged Fitting Repeat 4 # weights: 305 initial value 99.133780 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 102.685584 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 105.220814 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 2 # weights: 507 initial value 94.443797 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.335829 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 100.475259 iter 10 value 92.293928 final value 92.293924 converged Fitting Repeat 5 # weights: 507 initial value 97.733229 final value 93.582418 converged Fitting Repeat 1 # weights: 103 initial value 110.311225 iter 10 value 93.966023 iter 20 value 87.701130 iter 30 value 83.432717 iter 40 value 83.097516 iter 50 value 82.736666 iter 60 value 82.628245 iter 70 value 82.625332 final value 82.625328 converged Fitting Repeat 2 # weights: 103 initial value 104.915437 iter 10 value 94.121140 iter 20 value 94.041199 iter 30 value 90.207048 iter 40 value 88.015627 iter 50 value 87.546031 iter 60 value 85.742446 iter 70 value 85.447407 iter 80 value 85.333243 iter 90 value 82.602057 iter 100 value 82.253508 final value 82.253508 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.040446 iter 10 value 94.056850 iter 20 value 94.055030 final value 94.054870 converged Fitting Repeat 4 # weights: 103 initial value 99.394792 iter 10 value 94.069915 iter 20 value 94.057160 iter 30 value 88.030511 iter 40 value 84.936532 iter 50 value 83.507466 iter 60 value 83.218616 iter 70 value 82.704404 iter 80 value 82.625716 iter 90 value 82.625317 final value 82.625301 converged Fitting Repeat 5 # weights: 103 initial value 103.556953 iter 10 value 93.841434 iter 20 value 89.596499 iter 30 value 85.029101 iter 40 value 81.372195 iter 50 value 80.545885 iter 60 value 80.055557 iter 70 value 79.675622 iter 80 value 79.632689 iter 90 value 79.613981 final value 79.613648 converged Fitting Repeat 1 # weights: 305 initial value 100.031459 iter 10 value 93.464093 iter 20 value 91.978542 iter 30 value 91.388097 iter 40 value 84.427606 iter 50 value 81.162418 iter 60 value 80.976107 iter 70 value 80.619584 iter 80 value 80.464505 iter 90 value 80.280796 iter 100 value 79.779919 final value 79.779919 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.723034 iter 10 value 94.794111 iter 20 value 91.587213 iter 30 value 85.761611 iter 40 value 84.715811 iter 50 value 83.031810 iter 60 value 82.140772 iter 70 value 81.508049 iter 80 value 80.987896 iter 90 value 79.807171 iter 100 value 79.422908 final value 79.422908 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 125.300069 iter 10 value 94.782317 iter 20 value 94.203921 iter 30 value 89.925485 iter 40 value 84.713700 iter 50 value 83.848286 iter 60 value 82.185127 iter 70 value 81.298491 iter 80 value 80.854085 iter 90 value 80.025652 iter 100 value 79.941399 final value 79.941399 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.883667 iter 10 value 94.063153 iter 20 value 93.649592 iter 30 value 92.614985 iter 40 value 87.720903 iter 50 value 82.868325 iter 60 value 79.721915 iter 70 value 78.748864 iter 80 value 78.711477 iter 90 value 78.448039 iter 100 value 78.416778 final value 78.416778 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.626433 iter 10 value 94.060478 iter 20 value 90.041642 iter 30 value 85.584982 iter 40 value 83.073576 iter 50 value 82.451960 iter 60 value 82.263344 iter 70 value 81.102606 iter 80 value 80.184285 iter 90 value 79.432414 iter 100 value 78.483705 final value 78.483705 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.624273 iter 10 value 94.120407 iter 20 value 93.468405 iter 30 value 90.175755 iter 40 value 88.719767 iter 50 value 88.228390 iter 60 value 81.553023 iter 70 value 80.392013 iter 80 value 79.646799 iter 90 value 78.855460 iter 100 value 78.611314 final value 78.611314 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.486505 iter 10 value 94.027832 iter 20 value 91.967617 iter 30 value 89.818045 iter 40 value 84.804317 iter 50 value 79.717814 iter 60 value 78.928853 iter 70 value 78.718848 iter 80 value 78.688840 iter 90 value 78.654214 iter 100 value 78.556547 final value 78.556547 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.731443 iter 10 value 93.947642 iter 20 value 84.864791 iter 30 value 83.195701 iter 40 value 80.031604 iter 50 value 79.531807 iter 60 value 79.219137 iter 70 value 78.682900 iter 80 value 78.583064 iter 90 value 78.371427 iter 100 value 78.148526 final value 78.148526 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.728084 iter 10 value 92.933119 iter 20 value 86.213136 iter 30 value 85.485866 iter 40 value 84.795685 iter 50 value 83.851587 iter 60 value 80.989453 iter 70 value 80.405035 iter 80 value 79.352449 iter 90 value 78.760467 iter 100 value 78.667085 final value 78.667085 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.270536 iter 10 value 94.348232 iter 20 value 93.716581 iter 30 value 92.646406 iter 40 value 86.608927 iter 50 value 83.661202 iter 60 value 82.855520 iter 70 value 79.697033 iter 80 value 79.498260 iter 90 value 78.915549 iter 100 value 78.707676 final value 78.707676 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.811497 final value 94.054496 converged Fitting Repeat 2 # weights: 103 initial value 95.430620 final value 94.054875 converged Fitting Repeat 3 # weights: 103 initial value 96.254760 final value 94.054567 converged Fitting Repeat 4 # weights: 103 initial value 96.728922 iter 10 value 93.870699 final value 93.870675 converged Fitting Repeat 5 # weights: 103 initial value 99.322152 iter 10 value 94.054691 final value 94.052918 converged Fitting Repeat 1 # weights: 305 initial value 119.366084 iter 10 value 94.057532 iter 20 value 93.995080 iter 30 value 84.135582 iter 40 value 84.061027 iter 50 value 83.993746 final value 83.993744 converged Fitting Repeat 2 # weights: 305 initial value 113.129087 iter 10 value 94.057431 iter 20 value 93.936633 iter 30 value 91.808172 iter 40 value 87.053189 iter 50 value 82.055460 iter 60 value 81.582939 iter 70 value 81.581835 iter 80 value 81.579749 iter 90 value 81.578302 iter 100 value 81.522535 final value 81.522535 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.752199 iter 10 value 94.057956 final value 94.054192 converged Fitting Repeat 4 # weights: 305 initial value 123.922254 iter 10 value 84.863306 iter 20 value 84.809380 iter 30 value 84.653852 iter 40 value 84.652758 iter 50 value 84.633535 iter 60 value 81.700125 iter 70 value 81.226900 final value 81.220230 converged Fitting Repeat 5 # weights: 305 initial value 104.060441 iter 10 value 94.058241 iter 20 value 94.052926 final value 94.052919 converged Fitting Repeat 1 # weights: 507 initial value 113.620464 iter 10 value 94.060751 iter 20 value 94.052200 iter 30 value 93.368345 final value 93.357534 converged Fitting Repeat 2 # weights: 507 initial value 108.144290 iter 10 value 94.060809 iter 20 value 93.578854 iter 30 value 91.483440 iter 40 value 83.151790 iter 50 value 81.354265 iter 60 value 80.406349 iter 70 value 80.386649 iter 80 value 80.132433 iter 90 value 78.937329 iter 100 value 78.275304 final value 78.275304 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.305227 iter 10 value 92.699463 iter 20 value 91.475910 iter 30 value 91.474603 iter 40 value 89.670175 iter 50 value 85.205622 iter 60 value 82.598935 iter 70 value 82.408413 iter 80 value 81.982070 iter 90 value 81.977705 iter 100 value 81.972244 final value 81.972244 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.394579 iter 10 value 94.061078 iter 20 value 88.804748 iter 30 value 86.148287 iter 40 value 82.003930 iter 50 value 81.997836 iter 60 value 81.834107 iter 70 value 81.140498 iter 80 value 81.132682 final value 81.132093 converged Fitting Repeat 5 # weights: 507 initial value 98.057006 iter 10 value 91.149974 iter 20 value 79.929587 iter 30 value 79.374634 iter 40 value 79.374252 iter 50 value 79.366444 iter 60 value 79.314746 iter 70 value 79.310454 iter 80 value 79.309095 iter 90 value 78.959778 iter 100 value 78.941331 final value 78.941331 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.797237 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 114.340354 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.927380 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.080178 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 106.425463 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.432522 final value 94.443243 converged Fitting Repeat 2 # weights: 305 initial value 105.637138 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.965809 iter 10 value 94.443355 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 95.984536 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 95.221608 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 98.224282 iter 10 value 92.659687 iter 20 value 90.597387 final value 90.594100 converged Fitting Repeat 2 # weights: 507 initial value 94.505148 iter 10 value 94.327256 iter 20 value 94.085036 final value 94.084848 converged Fitting Repeat 3 # weights: 507 initial value 105.396446 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 127.121514 iter 10 value 94.267500 iter 10 value 94.267500 iter 10 value 94.267500 final value 94.267500 converged Fitting Repeat 5 # weights: 507 initial value 96.625863 iter 10 value 94.480312 iter 20 value 94.447087 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 99.116277 iter 10 value 94.361723 iter 20 value 91.595085 iter 30 value 85.881662 iter 40 value 84.420686 iter 50 value 83.907298 iter 60 value 83.401325 iter 70 value 83.391312 iter 70 value 83.391312 iter 70 value 83.391312 final value 83.391312 converged Fitting Repeat 2 # weights: 103 initial value 97.444105 iter 10 value 94.502693 iter 20 value 94.486603 iter 30 value 86.008416 iter 40 value 84.565965 iter 50 value 83.580466 iter 60 value 83.422446 iter 70 value 81.740255 iter 80 value 81.332311 iter 90 value 81.276956 iter 100 value 81.263113 final value 81.263113 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.187947 iter 10 value 94.463714 iter 20 value 94.244495 iter 30 value 88.163456 iter 40 value 86.006091 iter 50 value 85.396083 iter 60 value 85.059532 iter 70 value 85.025837 iter 80 value 85.017640 final value 85.017470 converged Fitting Repeat 4 # weights: 103 initial value 96.344715 iter 10 value 94.488750 iter 20 value 90.116000 iter 30 value 85.140203 iter 40 value 85.033792 iter 50 value 84.262523 iter 60 value 83.733358 iter 70 value 83.374068 iter 80 value 83.197825 iter 90 value 83.142264 final value 83.142208 converged Fitting Repeat 5 # weights: 103 initial value 98.807434 iter 10 value 94.205283 iter 20 value 86.365775 iter 30 value 85.683342 iter 40 value 84.728699 iter 50 value 83.643126 iter 60 value 83.567570 final value 83.567545 converged Fitting Repeat 1 # weights: 305 initial value 99.520471 iter 10 value 94.409592 iter 20 value 84.088502 iter 30 value 83.075008 iter 40 value 82.093368 iter 50 value 81.214218 iter 60 value 81.079464 iter 70 value 80.168301 iter 80 value 79.822408 iter 90 value 79.723389 iter 100 value 79.693804 final value 79.693804 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.586264 iter 10 value 94.455510 iter 20 value 88.701635 iter 30 value 87.707194 iter 40 value 84.744473 iter 50 value 82.918741 iter 60 value 81.773436 iter 70 value 81.054667 iter 80 value 80.742573 iter 90 value 80.360658 iter 100 value 80.215989 final value 80.215989 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.449164 iter 10 value 94.508852 iter 20 value 89.281158 iter 30 value 88.589537 iter 40 value 88.288888 iter 50 value 87.412037 iter 60 value 84.176709 iter 70 value 81.518327 iter 80 value 80.976931 iter 90 value 80.891556 iter 100 value 80.706283 final value 80.706283 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.337432 iter 10 value 91.673933 iter 20 value 84.967212 iter 30 value 82.354780 iter 40 value 80.883648 iter 50 value 80.391968 iter 60 value 80.103156 iter 70 value 80.008190 iter 80 value 79.955396 iter 90 value 79.951521 iter 100 value 79.951136 final value 79.951136 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.096330 iter 10 value 97.354586 iter 20 value 91.961988 iter 30 value 91.680375 iter 40 value 90.731488 iter 50 value 88.265093 iter 60 value 86.152559 iter 70 value 85.012695 iter 80 value 84.221217 iter 90 value 83.805770 iter 100 value 82.327886 final value 82.327886 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.283947 iter 10 value 94.561793 iter 20 value 89.388839 iter 30 value 86.102709 iter 40 value 84.431835 iter 50 value 80.864555 iter 60 value 80.300934 iter 70 value 79.924674 iter 80 value 79.530843 iter 90 value 79.486441 iter 100 value 79.445934 final value 79.445934 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.216201 iter 10 value 94.493532 iter 20 value 86.970560 iter 30 value 83.822063 iter 40 value 81.212292 iter 50 value 80.876418 iter 60 value 80.194334 iter 70 value 79.589631 iter 80 value 79.396247 iter 90 value 79.358749 iter 100 value 79.238921 final value 79.238921 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.427534 iter 10 value 90.359912 iter 20 value 85.803541 iter 30 value 83.724968 iter 40 value 81.212257 iter 50 value 80.356601 iter 60 value 80.274656 iter 70 value 80.211454 iter 80 value 79.975593 iter 90 value 79.890496 iter 100 value 79.875096 final value 79.875096 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.592925 iter 10 value 95.157150 iter 20 value 88.102753 iter 30 value 84.436355 iter 40 value 83.445937 iter 50 value 82.174257 iter 60 value 81.656029 iter 70 value 80.548489 iter 80 value 80.160139 iter 90 value 79.629778 iter 100 value 79.520230 final value 79.520230 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 132.069039 iter 10 value 94.891959 iter 20 value 85.374432 iter 30 value 82.353787 iter 40 value 81.648651 iter 50 value 80.679529 iter 60 value 80.154803 iter 70 value 80.032085 iter 80 value 79.807743 iter 90 value 79.710169 iter 100 value 79.643543 final value 79.643543 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.330844 iter 10 value 94.485893 iter 20 value 94.458190 iter 30 value 93.270762 iter 40 value 87.458107 iter 50 value 87.223703 iter 60 value 87.223217 iter 70 value 87.222817 final value 87.222816 converged Fitting Repeat 2 # weights: 103 initial value 95.950322 final value 94.485948 converged Fitting Repeat 3 # weights: 103 initial value 96.392872 final value 94.485879 converged Fitting Repeat 4 # weights: 103 initial value 94.655898 final value 94.485968 converged Fitting Repeat 5 # weights: 103 initial value 94.664595 final value 94.485964 converged Fitting Repeat 1 # weights: 305 initial value 105.760638 iter 10 value 89.504221 iter 20 value 87.301527 iter 30 value 87.237159 iter 40 value 87.236059 iter 50 value 87.232171 iter 60 value 87.231718 iter 70 value 87.231103 iter 80 value 87.229631 final value 87.229556 converged Fitting Repeat 2 # weights: 305 initial value 105.353376 iter 10 value 94.488809 iter 20 value 94.212068 iter 30 value 93.483634 iter 40 value 93.482014 iter 50 value 92.504788 final value 87.785076 converged Fitting Repeat 3 # weights: 305 initial value 113.934679 iter 10 value 94.489488 iter 20 value 92.261726 iter 30 value 83.703451 iter 40 value 83.437771 iter 50 value 83.437218 iter 60 value 83.433735 iter 70 value 82.958981 iter 80 value 82.956838 iter 90 value 82.225789 iter 100 value 79.640614 final value 79.640614 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.606645 iter 10 value 94.448170 iter 20 value 93.874387 iter 30 value 86.052938 final value 86.052606 converged Fitting Repeat 5 # weights: 305 initial value 111.455093 iter 10 value 94.448422 iter 20 value 93.717050 iter 30 value 84.934709 iter 40 value 84.556146 iter 50 value 84.553264 final value 84.553261 converged Fitting Repeat 1 # weights: 507 initial value 126.438537 iter 10 value 93.687067 iter 20 value 92.766571 iter 30 value 92.547086 iter 40 value 92.543815 iter 50 value 92.461774 iter 60 value 86.605740 iter 70 value 83.690201 iter 80 value 81.275465 iter 90 value 79.989154 iter 100 value 78.989889 final value 78.989889 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.575488 iter 10 value 92.413039 iter 20 value 84.129111 iter 30 value 81.576354 iter 40 value 80.662372 iter 50 value 80.654479 iter 60 value 80.651208 iter 70 value 80.446765 iter 80 value 79.769346 iter 90 value 79.308129 iter 100 value 79.117502 final value 79.117502 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.322459 iter 10 value 94.451456 iter 20 value 94.068556 iter 30 value 84.461038 iter 40 value 83.492180 iter 50 value 83.465862 iter 60 value 82.970700 iter 70 value 82.906971 iter 80 value 82.906594 iter 90 value 82.906093 iter 100 value 82.858257 final value 82.858257 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.489216 iter 10 value 94.492557 iter 20 value 94.484573 iter 30 value 94.162923 iter 40 value 86.132810 iter 50 value 84.260993 iter 60 value 84.097596 iter 70 value 84.097467 iter 80 value 84.097342 iter 90 value 83.674292 iter 100 value 83.587557 final value 83.587557 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.123195 iter 10 value 94.492933 iter 20 value 94.471190 iter 30 value 90.094107 iter 40 value 86.546546 iter 50 value 83.071504 iter 60 value 83.016800 iter 70 value 82.973718 iter 80 value 82.665037 iter 90 value 81.508027 iter 100 value 81.502087 final value 81.502087 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.327454 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 106.647109 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.186800 iter 10 value 86.669748 iter 20 value 86.622127 iter 20 value 86.622126 iter 20 value 86.622126 final value 86.622126 converged Fitting Repeat 4 # weights: 103 initial value 97.504834 final value 94.482149 converged Fitting Repeat 5 # weights: 103 initial value 95.690185 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.672123 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.126942 iter 10 value 94.484213 iter 10 value 94.484212 iter 10 value 94.484212 final value 94.484212 converged Fitting Repeat 3 # weights: 305 initial value 105.073992 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.753388 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.982056 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.186286 iter 10 value 94.484221 final value 94.484212 converged Fitting Repeat 2 # weights: 507 initial value 108.360450 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 107.109146 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 108.561765 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 97.183025 final value 94.484137 converged Fitting Repeat 1 # weights: 103 initial value 105.398779 iter 10 value 94.157173 iter 20 value 90.614159 iter 30 value 89.207364 iter 40 value 88.993871 iter 50 value 87.776097 iter 60 value 84.975657 iter 70 value 84.858201 iter 80 value 84.690195 final value 84.689349 converged Fitting Repeat 2 # weights: 103 initial value 101.501522 iter 10 value 94.488030 iter 20 value 86.626856 iter 30 value 86.265250 iter 40 value 86.134986 final value 86.130043 converged Fitting Repeat 3 # weights: 103 initial value 104.763117 iter 10 value 93.960670 iter 20 value 86.736797 iter 30 value 86.323685 iter 40 value 86.264105 iter 50 value 86.176542 iter 60 value 86.122471 final value 86.122394 converged Fitting Repeat 4 # weights: 103 initial value 105.724020 iter 10 value 94.545507 iter 20 value 88.665779 iter 30 value 87.894123 iter 40 value 86.522728 iter 50 value 86.201595 iter 60 value 86.193041 iter 70 value 86.174525 iter 80 value 86.131727 final value 86.130043 converged Fitting Repeat 5 # weights: 103 initial value 100.698946 iter 10 value 94.358296 iter 20 value 89.585068 iter 30 value 87.409801 iter 40 value 87.223297 iter 50 value 86.534212 iter 60 value 85.381320 iter 70 value 85.215272 iter 80 value 85.136747 iter 90 value 84.991054 iter 100 value 84.930197 final value 84.930197 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 121.498542 iter 10 value 95.134632 iter 20 value 94.498334 iter 30 value 87.285595 iter 40 value 85.172929 iter 50 value 84.788062 iter 60 value 84.614552 iter 70 value 84.603138 iter 80 value 84.386315 iter 90 value 83.682543 iter 100 value 83.428973 final value 83.428973 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.747949 iter 10 value 94.491436 iter 20 value 93.811066 iter 30 value 88.410084 iter 40 value 86.662972 iter 50 value 86.366201 iter 60 value 85.059551 iter 70 value 84.403919 iter 80 value 84.131246 iter 90 value 83.807555 iter 100 value 83.396070 final value 83.396070 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.547011 iter 10 value 94.357850 iter 20 value 93.589956 iter 30 value 89.790547 iter 40 value 87.183466 iter 50 value 86.616154 iter 60 value 84.672332 iter 70 value 83.600598 iter 80 value 83.004929 iter 90 value 82.167265 iter 100 value 81.803402 final value 81.803402 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.208349 iter 10 value 94.366266 iter 20 value 88.160337 iter 30 value 86.590049 iter 40 value 85.427969 iter 50 value 84.956567 iter 60 value 83.829031 iter 70 value 82.691875 iter 80 value 82.321942 iter 90 value 82.196001 iter 100 value 82.066756 final value 82.066756 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.633988 iter 10 value 93.643403 iter 20 value 90.128465 iter 30 value 88.078412 iter 40 value 87.191922 iter 50 value 86.879971 iter 60 value 84.488072 iter 70 value 82.368769 iter 80 value 82.170741 iter 90 value 82.082492 iter 100 value 82.003176 final value 82.003176 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.331074 iter 10 value 95.754642 iter 20 value 92.097779 iter 30 value 88.897756 iter 40 value 86.915268 iter 50 value 85.660540 iter 60 value 84.907203 iter 70 value 84.578126 iter 80 value 84.098613 iter 90 value 82.565312 iter 100 value 82.060006 final value 82.060006 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.338663 iter 10 value 93.562835 iter 20 value 85.672599 iter 30 value 84.857834 iter 40 value 84.353998 iter 50 value 82.866408 iter 60 value 82.282457 iter 70 value 81.977439 iter 80 value 81.957389 iter 90 value 81.905169 iter 100 value 81.864482 final value 81.864482 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.699038 iter 10 value 94.773750 iter 20 value 94.441517 iter 30 value 90.212583 iter 40 value 87.117945 iter 50 value 85.845608 iter 60 value 85.622363 iter 70 value 85.412494 iter 80 value 85.227361 iter 90 value 84.387703 iter 100 value 82.644465 final value 82.644465 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.859408 iter 10 value 94.122146 iter 20 value 91.730522 iter 30 value 87.914362 iter 40 value 87.623345 iter 50 value 84.470471 iter 60 value 83.454782 iter 70 value 82.307153 iter 80 value 82.143583 iter 90 value 82.019446 iter 100 value 81.934131 final value 81.934131 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.768997 iter 10 value 94.826396 iter 20 value 93.878871 iter 30 value 88.288523 iter 40 value 87.918096 iter 50 value 86.768870 iter 60 value 86.680821 iter 70 value 86.513948 iter 80 value 85.052550 iter 90 value 82.970244 iter 100 value 82.608431 final value 82.608431 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.521543 iter 10 value 94.277034 iter 20 value 94.275531 final value 94.275438 converged Fitting Repeat 2 # weights: 103 initial value 99.889524 iter 10 value 94.276731 final value 94.276607 converged Fitting Repeat 3 # weights: 103 initial value 97.270174 final value 94.485892 converged Fitting Repeat 4 # weights: 103 initial value 104.451345 final value 94.485769 converged Fitting Repeat 5 # weights: 103 initial value 103.978885 final value 94.485986 converged Fitting Repeat 1 # weights: 305 initial value 96.429490 iter 10 value 94.487515 iter 20 value 94.405893 iter 30 value 88.312613 iter 40 value 84.595393 iter 50 value 82.446019 iter 60 value 82.353707 iter 70 value 82.337022 iter 80 value 82.335060 final value 82.335050 converged Fitting Repeat 2 # weights: 305 initial value 95.848409 iter 10 value 94.488494 final value 94.485420 converged Fitting Repeat 3 # weights: 305 initial value 100.841852 iter 10 value 94.488429 iter 20 value 94.409699 iter 30 value 90.760039 iter 40 value 85.421232 iter 50 value 85.065024 iter 60 value 85.047997 iter 70 value 84.306145 iter 80 value 83.072802 final value 83.038473 converged Fitting Repeat 4 # weights: 305 initial value 97.851201 iter 10 value 94.280269 iter 20 value 94.258437 iter 30 value 93.421514 iter 40 value 90.559189 iter 50 value 86.526987 iter 60 value 86.517018 iter 70 value 86.516638 iter 80 value 86.516277 final value 86.516188 converged Fitting Repeat 5 # weights: 305 initial value 101.064447 iter 10 value 94.488923 iter 20 value 94.484255 final value 94.484216 converged Fitting Repeat 1 # weights: 507 initial value 110.972234 iter 10 value 94.283905 iter 20 value 94.271589 iter 30 value 93.940864 iter 40 value 92.578435 iter 50 value 91.865161 iter 60 value 91.854990 iter 70 value 91.854857 iter 80 value 91.854572 iter 90 value 91.844558 iter 100 value 88.203695 final value 88.203695 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.544622 iter 10 value 94.491531 iter 20 value 94.484233 final value 94.275785 converged Fitting Repeat 3 # weights: 507 initial value 101.212791 iter 10 value 94.419556 iter 20 value 94.277267 iter 30 value 94.276658 iter 40 value 94.275137 iter 50 value 89.565255 iter 60 value 83.837509 iter 70 value 83.833456 iter 80 value 83.825025 iter 90 value 83.705922 iter 100 value 83.652999 final value 83.652999 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.230054 iter 10 value 94.492905 iter 20 value 94.219215 iter 30 value 90.467777 final value 90.434884 converged Fitting Repeat 5 # weights: 507 initial value 119.436891 iter 10 value 94.452454 iter 20 value 94.419298 iter 30 value 94.283380 iter 40 value 94.045753 iter 50 value 88.669353 iter 60 value 88.474824 iter 70 value 88.471892 final value 88.471871 converged Fitting Repeat 1 # weights: 507 initial value 140.619371 iter 10 value 117.701125 iter 20 value 116.586052 iter 30 value 110.063697 iter 40 value 108.921165 iter 50 value 105.348523 iter 60 value 104.444689 iter 70 value 103.560046 iter 80 value 103.179119 iter 90 value 102.176162 iter 100 value 101.854902 final value 101.854902 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 142.655497 iter 10 value 117.841962 iter 20 value 114.017814 iter 30 value 108.470939 iter 40 value 107.203959 iter 50 value 105.686007 iter 60 value 105.008427 iter 70 value 104.866667 iter 80 value 103.832572 iter 90 value 103.384045 iter 100 value 103.061223 final value 103.061223 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.584530 iter 10 value 117.878374 iter 20 value 110.229523 iter 30 value 109.126699 iter 40 value 108.996971 iter 50 value 108.566042 iter 60 value 105.017086 iter 70 value 103.765957 iter 80 value 103.513334 iter 90 value 102.756506 iter 100 value 101.831757 final value 101.831757 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 159.385835 iter 10 value 119.034207 iter 20 value 112.328679 iter 30 value 108.941335 iter 40 value 106.761549 iter 50 value 105.740321 iter 60 value 103.972396 iter 70 value 102.158323 iter 80 value 101.655006 iter 90 value 101.556484 iter 100 value 101.438394 final value 101.438394 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 156.542636 iter 10 value 118.472386 iter 20 value 111.093382 iter 30 value 107.825056 iter 40 value 107.375419 iter 50 value 106.445229 iter 60 value 105.399406 iter 70 value 103.490297 iter 80 value 103.222694 iter 90 value 103.115086 iter 100 value 103.052791 final value 103.052791 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Dec 31 02:26:57 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.18 1.48 54.14
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.17 | 2.22 | 37.64 | |
FreqInteractors | 0.32 | 0.01 | 0.36 | |
calculateAAC | 0.05 | 0.02 | 0.06 | |
calculateAutocor | 0.53 | 0.03 | 0.57 | |
calculateCTDC | 0.10 | 0.00 | 0.09 | |
calculateCTDD | 0.89 | 0.01 | 0.90 | |
calculateCTDT | 0.32 | 0.04 | 0.35 | |
calculateCTriad | 0.42 | 0.06 | 0.48 | |
calculateDC | 0.11 | 0.00 | 0.11 | |
calculateF | 0.37 | 0.01 | 0.39 | |
calculateKSAAP | 0.14 | 0.02 | 0.16 | |
calculateQD_Sm | 2.47 | 0.08 | 2.55 | |
calculateTC | 1.92 | 0.19 | 2.11 | |
calculateTC_Sm | 0.28 | 0.06 | 0.34 | |
corr_plot | 32.87 | 1.76 | 34.66 | |
enrichfindP | 0.57 | 0.11 | 14.94 | |
enrichfind_hp | 0.08 | 0.03 | 1.06 | |
enrichplot | 0.42 | 0.04 | 0.45 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.01 | 2.03 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.10 | 0.00 | 0.09 | |
pred_ensembel | 13.65 | 0.37 | 12.66 | |
var_imp | 35.96 | 1.36 | 37.33 | |