Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-31 12:09 -0400 (Mon, 31 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-28 04:24:34 -0400 (Fri, 28 Mar 2025) |
EndedAt: 2025-03-28 04:33:19 -0400 (Fri, 28 Mar 2025) |
EllapsedTime: 525.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 50.820 1.741 57.928 FSmethod 50.614 1.782 54.999 corr_plot 50.566 1.723 55.273 pred_ensembel 25.251 0.386 24.456 calculateTC 4.681 0.430 5.382 enrichfindP 0.888 0.083 13.294 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.301351 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 106.896610 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.959773 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.871800 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.790477 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 129.024654 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.171080 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 92.747216 iter 10 value 85.285590 iter 20 value 84.394455 iter 30 value 82.345598 iter 40 value 82.147537 iter 50 value 81.966481 iter 60 value 81.966124 final value 81.966116 converged Fitting Repeat 4 # weights: 305 initial value 99.475011 iter 10 value 89.274152 iter 20 value 84.749041 iter 30 value 84.410663 iter 40 value 84.348223 iter 50 value 84.236204 iter 60 value 84.234783 iter 60 value 84.234783 iter 60 value 84.234783 final value 84.234783 converged Fitting Repeat 5 # weights: 305 initial value 102.477490 iter 10 value 93.553009 iter 20 value 93.551914 iter 20 value 93.551913 iter 20 value 93.551913 final value 93.551913 converged Fitting Repeat 1 # weights: 507 initial value 103.011590 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.290993 iter 10 value 90.471379 iter 20 value 85.079894 iter 30 value 84.517634 iter 40 value 84.517584 iter 40 value 84.517583 iter 40 value 84.517583 final value 84.517583 converged Fitting Repeat 3 # weights: 507 initial value 102.591959 final value 93.867391 converged Fitting Repeat 4 # weights: 507 initial value 103.332665 iter 10 value 93.961057 iter 20 value 93.954973 iter 30 value 91.078142 iter 40 value 90.157955 iter 50 value 89.775923 final value 89.775920 converged Fitting Repeat 5 # weights: 507 initial value 100.787069 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.950414 iter 10 value 94.037611 iter 20 value 91.953830 iter 30 value 89.159362 iter 40 value 87.031804 iter 50 value 84.457735 iter 60 value 84.091614 iter 70 value 83.840699 iter 80 value 83.832230 iter 90 value 83.745402 iter 100 value 83.707037 final value 83.707037 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.408847 iter 10 value 93.922615 iter 20 value 93.914642 iter 30 value 92.113689 iter 40 value 91.105395 iter 50 value 90.847555 iter 60 value 90.740924 iter 70 value 84.969620 iter 80 value 83.732160 iter 90 value 83.416994 iter 100 value 83.336144 final value 83.336144 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.001317 iter 10 value 94.054307 iter 20 value 93.926018 iter 30 value 93.909409 iter 40 value 93.738646 iter 50 value 89.979675 iter 60 value 84.986200 iter 70 value 84.029466 iter 80 value 83.657313 iter 90 value 83.345829 iter 100 value 83.288271 final value 83.288271 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 111.236650 iter 10 value 93.860656 iter 20 value 87.724419 iter 30 value 86.897757 iter 40 value 86.698361 iter 50 value 86.506190 iter 60 value 86.344104 iter 70 value 83.858994 iter 80 value 83.206331 iter 90 value 82.384289 iter 100 value 82.310635 final value 82.310635 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.799929 iter 10 value 94.054016 iter 20 value 91.285812 iter 30 value 88.241139 iter 40 value 88.089530 iter 50 value 87.908242 iter 60 value 87.524894 iter 70 value 87.211684 iter 80 value 86.100718 iter 90 value 85.775114 iter 100 value 85.453843 final value 85.453843 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.871708 iter 10 value 93.882922 iter 20 value 89.160762 iter 30 value 86.056230 iter 40 value 84.134908 iter 50 value 83.793163 iter 60 value 83.759920 iter 70 value 82.771127 iter 80 value 82.375963 iter 90 value 82.205457 iter 100 value 81.898155 final value 81.898155 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.225482 iter 10 value 94.029487 iter 20 value 89.317448 iter 30 value 88.646118 iter 40 value 87.895436 iter 50 value 87.533072 iter 60 value 84.872926 iter 70 value 84.251660 iter 80 value 83.547573 iter 90 value 82.840773 iter 100 value 82.196031 final value 82.196031 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.378867 iter 10 value 89.131144 iter 20 value 85.261855 iter 30 value 83.832257 iter 40 value 82.217295 iter 50 value 81.554284 iter 60 value 81.216936 iter 70 value 81.002252 iter 80 value 80.953850 iter 90 value 80.747057 iter 100 value 80.619237 final value 80.619237 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.429966 iter 10 value 94.072628 iter 20 value 93.861706 iter 30 value 91.235026 iter 40 value 89.939033 iter 50 value 86.244351 iter 60 value 85.947988 iter 70 value 84.723482 iter 80 value 84.221541 iter 90 value 82.329466 iter 100 value 81.962567 final value 81.962567 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.301007 iter 10 value 94.061049 iter 20 value 85.296747 iter 30 value 84.939898 iter 40 value 84.107114 iter 50 value 83.783004 iter 60 value 83.567746 iter 70 value 83.302248 iter 80 value 83.045069 iter 90 value 81.957958 iter 100 value 81.722618 final value 81.722618 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.530358 iter 10 value 94.915048 iter 20 value 92.674148 iter 30 value 89.490877 iter 40 value 88.554324 iter 50 value 87.477496 iter 60 value 87.217575 iter 70 value 86.511851 iter 80 value 85.424232 iter 90 value 83.504958 iter 100 value 82.153020 final value 82.153020 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.930666 iter 10 value 94.147740 iter 20 value 84.770477 iter 30 value 83.230924 iter 40 value 81.732026 iter 50 value 81.054675 iter 60 value 80.753122 iter 70 value 80.569523 iter 80 value 80.526683 iter 90 value 80.485958 iter 100 value 80.445235 final value 80.445235 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.709315 iter 10 value 95.322830 iter 20 value 93.807772 iter 30 value 91.600386 iter 40 value 91.329725 iter 50 value 88.505295 iter 60 value 85.149933 iter 70 value 84.025728 iter 80 value 83.480151 iter 90 value 83.159968 iter 100 value 83.010255 final value 83.010255 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.208192 iter 10 value 93.833851 iter 20 value 87.037327 iter 30 value 86.754261 iter 40 value 86.486460 iter 50 value 86.186319 iter 60 value 86.076665 iter 70 value 85.818961 iter 80 value 85.241470 iter 90 value 82.884607 iter 100 value 82.109161 final value 82.109161 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.902152 iter 10 value 94.888887 iter 20 value 94.280315 iter 30 value 86.101597 iter 40 value 85.781778 iter 50 value 84.969127 iter 60 value 84.433656 iter 70 value 83.913362 iter 80 value 83.692275 iter 90 value 83.534364 iter 100 value 83.188535 final value 83.188535 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.198746 final value 94.054430 converged Fitting Repeat 2 # weights: 103 initial value 104.567841 final value 94.054340 converged Fitting Repeat 3 # weights: 103 initial value 99.933463 final value 94.054605 converged Fitting Repeat 4 # weights: 103 initial value 100.771307 final value 93.868971 converged Fitting Repeat 5 # weights: 103 initial value 96.979278 iter 10 value 94.081142 iter 20 value 94.063062 iter 30 value 93.788952 iter 40 value 91.956009 iter 50 value 91.952792 iter 50 value 91.952792 final value 91.952787 converged Fitting Repeat 1 # weights: 305 initial value 96.849505 iter 10 value 94.052934 iter 20 value 93.890583 iter 30 value 93.870133 final value 93.869876 converged Fitting Repeat 2 # weights: 305 initial value 107.446350 iter 10 value 94.062417 iter 20 value 94.029494 iter 30 value 93.876192 iter 40 value 93.874857 iter 50 value 93.870615 final value 93.870181 converged Fitting Repeat 3 # weights: 305 initial value 102.218043 iter 10 value 93.872230 iter 20 value 93.867884 final value 93.867612 converged Fitting Repeat 4 # weights: 305 initial value 97.068003 iter 10 value 94.057033 iter 20 value 92.112463 iter 30 value 90.875440 iter 40 value 90.652424 final value 90.652353 converged Fitting Repeat 5 # weights: 305 initial value 99.259588 iter 10 value 94.057571 iter 20 value 94.052939 iter 30 value 93.632149 iter 40 value 85.450455 iter 50 value 84.764694 iter 60 value 84.265734 iter 70 value 84.263474 iter 80 value 84.250922 iter 90 value 84.234404 iter 100 value 84.233344 final value 84.233344 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.801201 iter 10 value 93.875532 iter 20 value 93.869925 iter 30 value 93.702832 iter 40 value 93.701975 iter 50 value 93.674840 iter 60 value 87.482903 iter 70 value 83.271364 iter 80 value 81.996220 iter 90 value 81.717341 iter 100 value 81.318934 final value 81.318934 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.967392 iter 10 value 93.877725 iter 20 value 93.870378 iter 30 value 92.341506 iter 40 value 91.434362 iter 50 value 91.240189 iter 60 value 90.460471 iter 70 value 85.603657 iter 80 value 82.753068 iter 90 value 82.748070 iter 100 value 82.746286 final value 82.746286 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.122369 iter 10 value 93.875220 iter 20 value 93.868076 iter 30 value 91.782402 iter 40 value 88.161807 iter 50 value 84.212816 iter 60 value 83.816942 iter 70 value 81.944439 iter 80 value 81.083928 iter 90 value 81.052078 iter 100 value 80.934527 final value 80.934527 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 92.743841 iter 10 value 87.405061 iter 20 value 87.389546 iter 30 value 87.176196 iter 40 value 86.932983 iter 50 value 86.925922 iter 60 value 86.925070 iter 70 value 86.923439 final value 86.923427 converged Fitting Repeat 5 # weights: 507 initial value 109.475597 iter 10 value 88.762552 iter 20 value 88.178687 iter 30 value 88.051668 iter 40 value 88.049204 iter 50 value 86.936720 iter 60 value 86.927245 iter 70 value 86.925385 iter 80 value 86.609986 iter 90 value 86.349711 iter 100 value 86.348387 final value 86.348387 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.917940 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.440738 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.945122 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.170314 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 103.913447 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.552676 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.335441 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 103.007930 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.358643 final value 93.893850 converged Fitting Repeat 5 # weights: 305 initial value 95.180038 iter 10 value 93.328262 final value 93.328261 converged Fitting Repeat 1 # weights: 507 initial value 96.475386 final value 92.563129 converged Fitting Repeat 2 # weights: 507 initial value 105.800314 final value 94.052911 converged Fitting Repeat 3 # weights: 507 initial value 115.036071 iter 10 value 91.563615 iter 20 value 91.278831 iter 20 value 91.278831 iter 20 value 91.278831 final value 91.278831 converged Fitting Repeat 4 # weights: 507 initial value 105.809875 iter 10 value 93.328268 iter 20 value 92.877717 final value 92.833427 converged Fitting Repeat 5 # weights: 507 initial value 113.783611 iter 10 value 94.053282 iter 20 value 91.254976 iter 30 value 89.992015 iter 40 value 89.955849 iter 40 value 89.955848 iter 40 value 89.955848 final value 89.955848 converged Fitting Repeat 1 # weights: 103 initial value 97.157317 iter 10 value 94.086532 iter 20 value 93.959621 iter 30 value 93.629813 iter 40 value 93.557511 iter 50 value 92.824092 iter 60 value 87.379888 iter 70 value 82.969423 iter 80 value 82.185906 iter 90 value 81.039474 iter 100 value 80.497442 final value 80.497442 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.395819 iter 10 value 90.905609 iter 20 value 83.012426 iter 30 value 82.413739 iter 40 value 81.473469 iter 50 value 80.164844 iter 60 value 79.608210 iter 70 value 79.594189 iter 80 value 79.541002 iter 90 value 79.453186 final value 79.453181 converged Fitting Repeat 3 # weights: 103 initial value 96.663810 iter 10 value 94.059773 iter 20 value 93.717132 iter 30 value 93.543612 iter 40 value 93.536574 iter 50 value 92.086583 iter 60 value 85.121301 iter 70 value 84.542635 iter 80 value 83.382834 iter 90 value 83.301513 final value 83.296109 converged Fitting Repeat 4 # weights: 103 initial value 107.591422 iter 10 value 94.004472 iter 20 value 92.912211 iter 30 value 92.837412 iter 40 value 92.827439 iter 50 value 92.826044 iter 60 value 92.825797 iter 70 value 92.825453 iter 80 value 92.292388 iter 90 value 90.119648 iter 100 value 85.620377 final value 85.620377 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.653907 iter 10 value 93.832057 iter 20 value 85.502076 iter 30 value 81.848681 iter 40 value 81.632071 iter 50 value 80.736483 iter 60 value 80.070084 iter 70 value 78.848067 iter 80 value 78.564498 final value 78.564430 converged Fitting Repeat 1 # weights: 305 initial value 101.913049 iter 10 value 94.087874 iter 20 value 93.725153 iter 30 value 93.070243 iter 40 value 91.068375 iter 50 value 89.693017 iter 60 value 87.043907 iter 70 value 82.024643 iter 80 value 79.915579 iter 90 value 79.287661 iter 100 value 78.316677 final value 78.316677 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.039966 iter 10 value 93.970721 iter 20 value 93.040192 iter 30 value 90.461805 iter 40 value 84.819428 iter 50 value 83.534978 iter 60 value 80.550393 iter 70 value 79.551285 iter 80 value 78.036904 iter 90 value 77.470234 iter 100 value 77.294529 final value 77.294529 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.076406 iter 10 value 93.476816 iter 20 value 84.033786 iter 30 value 82.166192 iter 40 value 79.635289 iter 50 value 78.064394 iter 60 value 77.416584 iter 70 value 77.307138 iter 80 value 77.075220 iter 90 value 76.839213 iter 100 value 76.784017 final value 76.784017 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.209034 iter 10 value 94.224872 iter 20 value 88.791720 iter 30 value 84.850083 iter 40 value 80.631756 iter 50 value 79.003662 iter 60 value 78.424184 iter 70 value 78.353950 iter 80 value 77.518267 iter 90 value 77.350153 iter 100 value 77.034756 final value 77.034756 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.954222 iter 10 value 93.386679 iter 20 value 83.756934 iter 30 value 80.500173 iter 40 value 79.569361 iter 50 value 79.462544 iter 60 value 78.378641 iter 70 value 77.809396 iter 80 value 77.719706 iter 90 value 77.648606 iter 100 value 77.637341 final value 77.637341 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.230379 iter 10 value 96.801175 iter 20 value 93.636777 iter 30 value 93.593241 iter 40 value 92.761159 iter 50 value 82.729483 iter 60 value 81.277233 iter 70 value 79.697515 iter 80 value 78.036110 iter 90 value 77.833137 iter 100 value 77.683442 final value 77.683442 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.056793 iter 10 value 94.447145 iter 20 value 87.223001 iter 30 value 83.216927 iter 40 value 82.108819 iter 50 value 81.650273 iter 60 value 79.973287 iter 70 value 78.718072 iter 80 value 77.534671 iter 90 value 77.132228 iter 100 value 76.892124 final value 76.892124 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.004838 iter 10 value 94.510991 iter 20 value 92.853055 iter 30 value 92.161161 iter 40 value 88.348189 iter 50 value 82.199284 iter 60 value 80.363764 iter 70 value 79.926975 iter 80 value 78.598286 iter 90 value 77.458400 iter 100 value 77.054541 final value 77.054541 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.777248 iter 10 value 94.332553 iter 20 value 93.563942 iter 30 value 85.398500 iter 40 value 83.765390 iter 50 value 81.050729 iter 60 value 78.455531 iter 70 value 77.762791 iter 80 value 77.107704 iter 90 value 76.912520 iter 100 value 76.802833 final value 76.802833 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.845310 iter 10 value 95.690316 iter 20 value 93.253577 iter 30 value 88.077083 iter 40 value 81.571189 iter 50 value 80.443558 iter 60 value 79.728937 iter 70 value 79.069719 iter 80 value 78.080726 iter 90 value 77.826819 iter 100 value 77.577738 final value 77.577738 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.504089 final value 94.057652 converged Fitting Repeat 2 # weights: 103 initial value 103.191535 final value 94.054315 converged Fitting Repeat 3 # weights: 103 initial value 95.492134 final value 94.054510 converged Fitting Repeat 4 # weights: 103 initial value 95.117448 final value 94.054465 converged Fitting Repeat 5 # weights: 103 initial value 94.157238 iter 10 value 93.330776 iter 20 value 93.329936 iter 30 value 93.329126 final value 93.329109 converged Fitting Repeat 1 # weights: 305 initial value 98.557929 iter 10 value 93.431502 iter 20 value 93.429908 iter 30 value 91.256957 iter 40 value 91.255509 iter 50 value 91.219328 iter 60 value 90.842694 iter 70 value 89.416497 final value 89.292527 converged Fitting Repeat 2 # weights: 305 initial value 99.661138 iter 10 value 94.058535 iter 20 value 94.037062 iter 30 value 91.767346 iter 40 value 89.552169 final value 89.550850 converged Fitting Repeat 3 # weights: 305 initial value 120.091061 iter 10 value 94.479841 iter 20 value 93.703059 iter 30 value 93.699802 iter 40 value 83.689379 iter 50 value 82.628976 iter 60 value 82.627256 iter 70 value 80.881969 iter 80 value 80.182025 iter 90 value 80.079704 iter 100 value 80.048897 final value 80.048897 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.009436 iter 10 value 94.057717 iter 20 value 92.254659 iter 30 value 85.256026 iter 40 value 82.895028 iter 50 value 79.203077 iter 60 value 76.170439 iter 70 value 75.404690 iter 80 value 75.308726 iter 90 value 75.256602 iter 100 value 75.253862 final value 75.253862 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.969946 iter 10 value 94.072262 iter 20 value 93.993546 iter 30 value 93.379636 iter 40 value 93.344077 iter 50 value 93.330699 iter 60 value 92.236986 iter 70 value 83.824805 iter 80 value 80.129427 iter 90 value 80.049588 iter 100 value 79.872377 final value 79.872377 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 136.999331 iter 10 value 94.061541 iter 20 value 93.949248 final value 92.564049 converged Fitting Repeat 2 # weights: 507 initial value 107.576109 iter 10 value 94.060346 iter 20 value 94.051510 iter 30 value 92.344005 iter 40 value 90.911245 iter 50 value 89.572455 iter 60 value 89.416058 iter 70 value 79.869146 iter 80 value 79.765727 iter 90 value 79.762930 iter 100 value 79.680737 final value 79.680737 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.472494 iter 10 value 93.475584 iter 20 value 93.337884 iter 30 value 91.783335 iter 40 value 84.140658 iter 50 value 84.032462 iter 60 value 84.031790 iter 70 value 83.560229 iter 80 value 81.854649 iter 90 value 77.834722 iter 100 value 76.131840 final value 76.131840 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.008359 iter 10 value 85.658488 iter 20 value 85.620181 iter 30 value 83.342955 iter 40 value 83.340224 final value 83.340040 converged Fitting Repeat 5 # weights: 507 initial value 103.115521 iter 10 value 94.060934 iter 20 value 93.824244 iter 30 value 85.034881 iter 40 value 84.375527 iter 50 value 84.365171 iter 60 value 84.346652 iter 70 value 84.343797 final value 84.342576 converged Fitting Repeat 1 # weights: 103 initial value 97.207746 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 108.514487 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.930117 iter 10 value 94.466835 final value 94.466826 converged Fitting Repeat 4 # weights: 103 initial value 96.924238 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.223956 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.830827 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.417857 final value 94.387430 converged Fitting Repeat 3 # weights: 305 initial value 97.125932 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 103.862848 iter 10 value 88.969403 final value 88.912565 converged Fitting Repeat 5 # weights: 305 initial value 122.183259 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 109.394140 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.325091 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 107.532852 final value 94.428839 converged Fitting Repeat 4 # weights: 507 initial value 108.034978 final value 94.428841 converged Fitting Repeat 5 # weights: 507 initial value 107.024770 iter 10 value 86.861708 iter 20 value 85.399313 iter 30 value 84.630909 final value 84.630876 converged Fitting Repeat 1 # weights: 103 initial value 102.504277 iter 10 value 94.442651 iter 20 value 92.845177 iter 30 value 91.125898 iter 40 value 87.437043 iter 50 value 85.634954 iter 60 value 84.739029 iter 70 value 84.112183 iter 80 value 83.611520 iter 90 value 83.341468 iter 100 value 83.093675 final value 83.093675 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.793886 iter 10 value 94.417640 iter 20 value 87.899051 iter 30 value 87.026821 iter 40 value 86.183723 iter 50 value 85.756062 final value 85.753656 converged Fitting Repeat 3 # weights: 103 initial value 101.672711 iter 10 value 94.486781 iter 20 value 94.384747 iter 30 value 88.455059 iter 40 value 85.703106 iter 50 value 85.378335 iter 60 value 85.237056 iter 70 value 83.839969 iter 80 value 83.501132 iter 90 value 83.297622 final value 83.292856 converged Fitting Repeat 4 # weights: 103 initial value 106.709262 iter 10 value 94.407548 iter 20 value 90.535164 iter 30 value 88.207327 iter 40 value 85.490316 iter 50 value 84.823194 iter 60 value 84.084170 iter 70 value 83.608646 iter 80 value 83.514829 iter 90 value 83.388563 iter 100 value 83.292867 final value 83.292867 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 109.185619 iter 10 value 91.482661 iter 20 value 88.860462 iter 30 value 86.665430 iter 40 value 85.969463 iter 50 value 85.788030 iter 60 value 85.753681 final value 85.753656 converged Fitting Repeat 1 # weights: 305 initial value 104.218550 iter 10 value 88.732969 iter 20 value 86.453819 iter 30 value 85.860363 iter 40 value 85.430293 iter 50 value 85.196031 iter 60 value 83.982325 iter 70 value 83.891179 iter 80 value 83.401693 iter 90 value 82.830445 iter 100 value 82.666456 final value 82.666456 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.275681 iter 10 value 94.271303 iter 20 value 93.059000 iter 30 value 92.830648 iter 40 value 87.701282 iter 50 value 87.113426 iter 60 value 86.502286 iter 70 value 86.362436 iter 80 value 86.071277 iter 90 value 85.859188 iter 100 value 85.053365 final value 85.053365 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.244767 iter 10 value 94.515262 iter 20 value 93.185218 iter 30 value 86.188405 iter 40 value 85.330011 iter 50 value 84.698089 iter 60 value 83.304956 iter 70 value 82.829401 iter 80 value 82.572894 iter 90 value 82.301569 iter 100 value 82.155557 final value 82.155557 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.646865 iter 10 value 94.148721 iter 20 value 88.902161 iter 30 value 87.938739 iter 40 value 86.985260 iter 50 value 85.797901 iter 60 value 85.558115 iter 70 value 85.460948 iter 80 value 84.429144 iter 90 value 83.870336 iter 100 value 83.835351 final value 83.835351 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.310696 iter 10 value 94.859532 iter 20 value 88.097137 iter 30 value 87.369781 iter 40 value 85.875577 iter 50 value 85.506434 iter 60 value 85.188996 iter 70 value 85.007558 iter 80 value 83.759320 iter 90 value 82.674028 iter 100 value 82.373027 final value 82.373027 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.823572 iter 10 value 94.886507 iter 20 value 89.892286 iter 30 value 88.657968 iter 40 value 87.746571 iter 50 value 87.123572 iter 60 value 86.817495 iter 70 value 85.808663 iter 80 value 82.831261 iter 90 value 82.166002 iter 100 value 82.010836 final value 82.010836 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.768954 iter 10 value 95.912604 iter 20 value 94.477318 iter 30 value 93.731005 iter 40 value 91.726446 iter 50 value 86.098666 iter 60 value 84.681863 iter 70 value 83.978288 iter 80 value 82.940179 iter 90 value 81.941115 iter 100 value 81.530778 final value 81.530778 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.493667 iter 10 value 93.976673 iter 20 value 88.961432 iter 30 value 88.033105 iter 40 value 87.489798 iter 50 value 86.077057 iter 60 value 86.003538 iter 70 value 85.874199 iter 80 value 85.188488 iter 90 value 84.265941 iter 100 value 83.929979 final value 83.929979 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.792497 iter 10 value 94.469595 iter 20 value 88.294678 iter 30 value 87.490973 iter 40 value 86.855740 iter 50 value 83.948924 iter 60 value 82.461883 iter 70 value 82.305467 iter 80 value 81.887659 iter 90 value 81.723821 iter 100 value 81.627222 final value 81.627222 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.741467 iter 10 value 99.204659 iter 20 value 88.107660 iter 30 value 83.631310 iter 40 value 82.861352 iter 50 value 82.563261 iter 60 value 82.120351 iter 70 value 81.738101 iter 80 value 81.596401 iter 90 value 81.536379 iter 100 value 81.447496 final value 81.447496 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.509894 iter 10 value 93.089686 iter 20 value 86.951801 iter 30 value 86.471514 iter 40 value 86.454083 iter 40 value 86.454082 final value 86.454082 converged Fitting Repeat 2 # weights: 103 initial value 95.129168 final value 94.486020 converged Fitting Repeat 3 # weights: 103 initial value 100.988785 iter 10 value 94.485881 iter 20 value 94.484271 iter 30 value 94.390257 iter 40 value 94.029586 final value 93.746226 converged Fitting Repeat 4 # weights: 103 initial value 98.819716 final value 94.485842 converged Fitting Repeat 5 # weights: 103 initial value 105.109160 final value 94.485854 converged Fitting Repeat 1 # weights: 305 initial value 102.853481 iter 10 value 94.472015 iter 20 value 94.468112 final value 94.467896 converged Fitting Repeat 2 # weights: 305 initial value 112.091357 iter 10 value 94.143746 iter 20 value 89.852349 iter 30 value 89.636724 iter 40 value 89.367665 final value 89.367211 converged Fitting Repeat 3 # weights: 305 initial value 110.043293 iter 10 value 93.845275 iter 20 value 93.750884 iter 30 value 93.745443 iter 40 value 88.109821 iter 50 value 86.519765 iter 60 value 86.507032 iter 70 value 86.506790 iter 80 value 86.506532 iter 90 value 86.504436 iter 100 value 85.816141 final value 85.816141 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.926323 iter 10 value 94.471661 iter 20 value 94.466998 iter 30 value 94.444227 iter 40 value 92.634181 iter 50 value 92.633094 iter 60 value 92.557584 iter 70 value 92.286318 iter 80 value 91.439143 final value 91.438972 converged Fitting Repeat 5 # weights: 305 initial value 96.535228 iter 10 value 94.487422 iter 20 value 94.231133 iter 30 value 87.613046 iter 40 value 83.718480 iter 50 value 83.135210 iter 60 value 82.997572 iter 70 value 82.970509 iter 80 value 82.554825 iter 90 value 81.644774 iter 100 value 81.175214 final value 81.175214 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.432896 iter 10 value 94.492064 iter 20 value 90.416927 iter 30 value 89.378832 iter 40 value 89.376688 iter 50 value 89.359603 iter 60 value 88.070320 iter 70 value 86.703337 iter 80 value 86.078447 final value 86.078264 converged Fitting Repeat 2 # weights: 507 initial value 98.290424 iter 10 value 94.503342 iter 20 value 94.494081 iter 30 value 93.930560 iter 40 value 88.097770 iter 50 value 87.632486 final value 87.630344 converged Fitting Repeat 3 # weights: 507 initial value 123.807844 iter 10 value 94.492024 iter 20 value 88.580750 iter 30 value 86.947828 iter 40 value 86.825002 final value 86.782538 converged Fitting Repeat 4 # weights: 507 initial value 108.008841 iter 10 value 94.492662 iter 20 value 94.450783 iter 30 value 94.023975 iter 40 value 93.799329 iter 50 value 88.084837 iter 60 value 85.185940 iter 70 value 84.891513 iter 80 value 84.692160 iter 90 value 84.643874 iter 100 value 84.613416 final value 84.613416 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.271878 iter 10 value 89.447665 iter 20 value 86.073664 iter 30 value 85.890046 iter 40 value 85.884173 iter 40 value 85.884173 final value 85.884173 converged Fitting Repeat 1 # weights: 103 initial value 95.908527 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.731110 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.555824 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.989212 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.042155 iter 10 value 92.764220 iter 20 value 88.031081 iter 30 value 87.658227 iter 40 value 87.605786 iter 50 value 87.601213 final value 87.601115 converged Fitting Repeat 1 # weights: 305 initial value 99.217651 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 119.938878 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.676829 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 106.106206 iter 10 value 94.187451 iter 20 value 93.300014 iter 20 value 93.300014 final value 93.300002 converged Fitting Repeat 5 # weights: 305 initial value 96.744300 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 110.332539 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 102.794609 final value 93.701657 converged Fitting Repeat 3 # weights: 507 initial value 115.559358 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.943328 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 108.598301 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 119.076853 iter 10 value 94.487815 iter 20 value 93.795051 iter 30 value 92.820321 iter 40 value 86.749582 iter 50 value 86.599533 iter 60 value 86.483130 iter 70 value 85.829435 iter 80 value 85.268823 iter 90 value 85.136981 iter 100 value 85.134363 final value 85.134363 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.375311 final value 94.488547 converged Fitting Repeat 3 # weights: 103 initial value 97.502723 iter 10 value 94.472605 iter 20 value 93.261540 iter 30 value 91.547721 iter 40 value 89.522510 iter 50 value 86.030594 iter 60 value 85.707578 iter 70 value 84.876454 iter 80 value 84.775920 final value 84.775918 converged Fitting Repeat 4 # weights: 103 initial value 99.116302 iter 10 value 94.387916 iter 20 value 93.644323 iter 30 value 93.251532 iter 40 value 91.260351 iter 50 value 83.348547 iter 60 value 83.024242 iter 70 value 81.771939 iter 80 value 80.522175 iter 90 value 80.327019 iter 100 value 80.257036 final value 80.257036 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.517669 iter 10 value 94.352476 iter 20 value 93.627608 iter 30 value 93.543764 iter 40 value 92.922142 iter 50 value 88.463982 iter 60 value 86.655245 iter 70 value 83.544450 iter 80 value 83.250815 iter 90 value 83.209730 final value 83.209548 converged Fitting Repeat 1 # weights: 305 initial value 102.828545 iter 10 value 94.506558 iter 20 value 94.459199 iter 30 value 90.652853 iter 40 value 85.193448 iter 50 value 84.674293 iter 60 value 82.944825 iter 70 value 82.696398 iter 80 value 82.669211 iter 90 value 82.595382 iter 100 value 81.426615 final value 81.426615 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.485813 iter 10 value 94.624236 iter 20 value 94.453874 iter 30 value 85.513475 iter 40 value 84.960865 iter 50 value 84.414686 iter 60 value 83.269163 iter 70 value 83.153011 iter 80 value 82.953582 iter 90 value 82.657362 iter 100 value 82.613055 final value 82.613055 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.715418 iter 10 value 93.734010 iter 20 value 87.359125 iter 30 value 86.664563 iter 40 value 83.840893 iter 50 value 83.270053 iter 60 value 82.687092 iter 70 value 82.182234 iter 80 value 82.125493 iter 90 value 82.044304 iter 100 value 81.872714 final value 81.872714 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.039168 iter 10 value 94.381730 iter 20 value 93.612154 iter 30 value 93.524461 iter 40 value 92.865188 iter 50 value 90.775969 iter 60 value 84.917279 iter 70 value 84.736191 iter 80 value 83.007188 iter 90 value 82.459857 iter 100 value 81.557414 final value 81.557414 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.531436 iter 10 value 94.150037 iter 20 value 88.755780 iter 30 value 82.983445 iter 40 value 82.568916 iter 50 value 80.747997 iter 60 value 80.519147 iter 70 value 80.394369 iter 80 value 80.233791 iter 90 value 79.493080 iter 100 value 79.135584 final value 79.135584 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.224921 iter 10 value 92.858537 iter 20 value 87.360608 iter 30 value 86.233201 iter 40 value 85.589836 iter 50 value 83.787196 iter 60 value 82.195644 iter 70 value 80.933794 iter 80 value 79.477084 iter 90 value 78.826954 iter 100 value 78.308410 final value 78.308410 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.393537 iter 10 value 94.548889 iter 20 value 87.505304 iter 30 value 83.623479 iter 40 value 83.411109 iter 50 value 82.974134 iter 60 value 82.013469 iter 70 value 81.167732 iter 80 value 80.394448 iter 90 value 79.603186 iter 100 value 79.366641 final value 79.366641 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.900519 iter 10 value 94.426227 iter 20 value 91.396617 iter 30 value 88.865027 iter 40 value 88.373374 iter 50 value 86.918650 iter 60 value 83.832758 iter 70 value 82.310874 iter 80 value 81.755381 iter 90 value 80.027334 iter 100 value 78.938981 final value 78.938981 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.345772 iter 10 value 94.463004 iter 20 value 90.194338 iter 30 value 86.691093 iter 40 value 82.964583 iter 50 value 79.811315 iter 60 value 79.480001 iter 70 value 79.344135 iter 80 value 79.089586 iter 90 value 78.787586 iter 100 value 78.612262 final value 78.612262 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.025180 iter 10 value 94.621388 iter 20 value 90.988946 iter 30 value 87.476971 iter 40 value 86.938005 iter 50 value 85.724942 iter 60 value 83.115705 iter 70 value 81.553541 iter 80 value 80.928288 iter 90 value 80.749306 iter 100 value 80.566546 final value 80.566546 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.046882 iter 10 value 94.485889 iter 20 value 94.484174 iter 30 value 87.301605 iter 40 value 85.415946 iter 50 value 83.512804 iter 60 value 83.510894 iter 70 value 83.375168 iter 70 value 83.375167 iter 70 value 83.375167 final value 83.375167 converged Fitting Repeat 2 # weights: 103 initial value 100.050369 final value 94.485764 converged Fitting Repeat 3 # weights: 103 initial value 96.904132 final value 94.486093 converged Fitting Repeat 4 # weights: 103 initial value 97.688958 iter 10 value 94.486058 final value 94.484222 converged Fitting Repeat 5 # weights: 103 initial value 94.796146 final value 94.486028 converged Fitting Repeat 1 # weights: 305 initial value 109.481300 iter 10 value 94.488805 iter 20 value 94.484265 iter 30 value 94.340503 iter 40 value 93.702963 iter 50 value 93.702456 iter 50 value 93.702456 iter 50 value 93.702456 final value 93.702456 converged Fitting Repeat 2 # weights: 305 initial value 101.529121 iter 10 value 94.487741 iter 20 value 94.472658 iter 30 value 92.109871 iter 40 value 85.723359 iter 50 value 84.893194 iter 60 value 81.249401 iter 70 value 80.508993 iter 80 value 80.502479 iter 90 value 79.481488 iter 100 value 76.894569 final value 76.894569 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.149837 iter 10 value 94.317465 iter 20 value 94.313219 iter 30 value 94.310782 iter 40 value 94.236953 iter 50 value 90.474751 iter 60 value 84.131377 iter 70 value 81.706978 iter 80 value 81.670280 iter 90 value 81.669092 iter 100 value 81.666288 final value 81.666288 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.850849 iter 10 value 94.359312 iter 20 value 94.348697 iter 30 value 85.340601 iter 40 value 84.203798 iter 50 value 84.199073 iter 60 value 82.338113 final value 82.337424 converged Fitting Repeat 5 # weights: 305 initial value 97.592492 iter 10 value 94.488517 iter 20 value 94.484223 iter 20 value 94.484222 iter 20 value 94.484222 final value 94.484222 converged Fitting Repeat 1 # weights: 507 initial value 112.995540 iter 10 value 94.492177 iter 20 value 94.475969 iter 30 value 93.702085 iter 30 value 93.702084 iter 30 value 93.702084 final value 93.702084 converged Fitting Repeat 2 # weights: 507 initial value 99.427849 iter 10 value 94.363018 iter 20 value 94.355533 final value 94.354975 converged Fitting Repeat 3 # weights: 507 initial value 106.135503 iter 10 value 94.208856 iter 20 value 93.608219 iter 30 value 93.515616 iter 40 value 93.038961 iter 50 value 83.511146 iter 60 value 83.296252 iter 70 value 82.562645 iter 80 value 82.561266 iter 90 value 82.401982 iter 100 value 81.658294 final value 81.658294 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.286929 iter 10 value 94.185904 iter 20 value 93.622468 iter 30 value 93.619279 iter 40 value 92.093142 iter 50 value 92.091494 final value 92.091476 converged Fitting Repeat 5 # weights: 507 initial value 101.747516 iter 10 value 93.479575 iter 20 value 93.473274 final value 93.471254 converged Fitting Repeat 1 # weights: 103 initial value 101.914955 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.481500 iter 10 value 86.538772 iter 20 value 85.647798 iter 30 value 85.647281 iter 30 value 85.647280 iter 30 value 85.647280 final value 85.647280 converged Fitting Repeat 3 # weights: 103 initial value 98.787554 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.363342 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.019094 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 117.399617 iter 10 value 93.637302 final value 93.634731 converged Fitting Repeat 2 # weights: 305 initial value 97.649052 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.030538 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.594906 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.795350 iter 10 value 90.653929 iter 20 value 90.085137 iter 30 value 89.975061 iter 40 value 89.974592 final value 89.974577 converged Fitting Repeat 1 # weights: 507 initial value 96.512400 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.667155 iter 10 value 94.028703 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 103.802007 iter 10 value 93.323356 final value 93.320225 converged Fitting Repeat 4 # weights: 507 initial value 101.712015 iter 10 value 93.320231 final value 93.320225 converged Fitting Repeat 5 # weights: 507 initial value 107.406877 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 99.626197 iter 10 value 94.490970 iter 20 value 94.485979 iter 30 value 91.362935 iter 40 value 87.627269 iter 50 value 86.255271 iter 60 value 85.816860 iter 70 value 85.797787 iter 80 value 84.916720 iter 90 value 84.499487 iter 100 value 84.079971 final value 84.079971 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 110.013929 iter 10 value 94.569264 iter 20 value 93.578712 iter 30 value 87.048522 iter 40 value 86.403042 iter 50 value 86.271838 iter 60 value 85.245887 iter 70 value 84.718131 iter 80 value 84.350303 iter 90 value 84.214107 final value 84.214054 converged Fitting Repeat 3 # weights: 103 initial value 100.443753 iter 10 value 94.460630 iter 20 value 94.160841 iter 30 value 93.487286 iter 40 value 92.584482 iter 50 value 85.892799 iter 60 value 84.698296 iter 70 value 84.434547 iter 80 value 83.662380 iter 90 value 83.002658 iter 100 value 82.220154 final value 82.220154 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.313481 iter 10 value 88.017480 iter 20 value 84.681204 iter 30 value 84.275261 iter 40 value 84.240172 final value 84.240114 converged Fitting Repeat 5 # weights: 103 initial value 97.261572 iter 10 value 89.309933 iter 20 value 85.108408 iter 30 value 84.666926 iter 40 value 84.490215 iter 50 value 84.361179 iter 60 value 83.990411 iter 70 value 83.839902 final value 83.832437 converged Fitting Repeat 1 # weights: 305 initial value 117.538743 iter 10 value 95.410815 iter 20 value 90.527693 iter 30 value 86.806482 iter 40 value 84.832283 iter 50 value 82.563290 iter 60 value 81.597576 iter 70 value 81.275361 iter 80 value 80.973442 iter 90 value 80.881801 iter 100 value 80.795769 final value 80.795769 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.891393 iter 10 value 93.630020 iter 20 value 85.182166 iter 30 value 84.958772 iter 40 value 84.542758 iter 50 value 84.157075 iter 60 value 83.940894 iter 70 value 82.939423 iter 80 value 81.503926 iter 90 value 81.430681 iter 100 value 81.124345 final value 81.124345 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.059715 iter 10 value 94.513413 iter 20 value 87.502718 iter 30 value 86.213139 iter 40 value 83.033891 iter 50 value 82.198311 iter 60 value 81.684709 iter 70 value 81.157235 iter 80 value 81.040576 iter 90 value 80.989043 iter 100 value 80.980293 final value 80.980293 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 124.616120 iter 10 value 94.609298 iter 20 value 91.315394 iter 30 value 88.241609 iter 40 value 85.821242 iter 50 value 83.485736 iter 60 value 82.935588 iter 70 value 81.905816 iter 80 value 81.347794 iter 90 value 80.989664 iter 100 value 80.597767 final value 80.597767 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.944005 iter 10 value 94.258173 iter 20 value 91.355246 iter 30 value 87.134612 iter 40 value 85.865364 iter 50 value 83.483033 iter 60 value 82.082706 iter 70 value 81.729974 iter 80 value 81.471801 iter 90 value 81.221422 iter 100 value 81.151040 final value 81.151040 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.886261 iter 10 value 91.404887 iter 20 value 90.744070 iter 30 value 87.562257 iter 40 value 83.540207 iter 50 value 82.576645 iter 60 value 81.474765 iter 70 value 80.613509 iter 80 value 80.370417 iter 90 value 80.292078 iter 100 value 80.212724 final value 80.212724 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.039533 iter 10 value 99.658467 iter 20 value 94.477539 iter 30 value 90.191959 iter 40 value 85.327377 iter 50 value 84.113574 iter 60 value 83.637044 iter 70 value 83.362977 iter 80 value 83.213540 iter 90 value 83.180702 iter 100 value 82.276965 final value 82.276965 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.390945 iter 10 value 94.521923 iter 20 value 87.252563 iter 30 value 85.460051 iter 40 value 84.058229 iter 50 value 82.235497 iter 60 value 81.568444 iter 70 value 81.172743 iter 80 value 81.060642 iter 90 value 80.988973 iter 100 value 80.921064 final value 80.921064 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.551935 iter 10 value 98.934756 iter 20 value 91.294529 iter 30 value 86.182249 iter 40 value 83.203557 iter 50 value 81.666114 iter 60 value 81.313289 iter 70 value 80.954977 iter 80 value 80.801955 iter 90 value 80.750209 iter 100 value 80.652066 final value 80.652066 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.296413 iter 10 value 94.414519 iter 20 value 86.889582 iter 30 value 86.153735 iter 40 value 85.461905 iter 50 value 83.937449 iter 60 value 83.062703 iter 70 value 82.625820 iter 80 value 82.388376 iter 90 value 81.391526 iter 100 value 80.817452 final value 80.817452 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.820786 final value 94.485913 converged Fitting Repeat 2 # weights: 103 initial value 105.600917 final value 94.485684 converged Fitting Repeat 3 # weights: 103 initial value 105.795518 iter 10 value 94.485972 iter 20 value 94.484303 iter 30 value 93.320715 final value 93.320711 converged Fitting Repeat 4 # weights: 103 initial value 94.507369 final value 94.486153 converged Fitting Repeat 5 # weights: 103 initial value 99.873549 iter 10 value 94.485066 iter 20 value 94.114224 iter 30 value 85.471224 iter 40 value 84.539859 iter 50 value 83.875354 iter 60 value 82.688336 iter 70 value 82.650939 iter 80 value 82.238339 iter 90 value 81.567167 iter 100 value 81.474848 final value 81.474848 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 96.120356 iter 10 value 88.427450 iter 20 value 85.657316 iter 30 value 85.652948 iter 40 value 85.651684 iter 50 value 85.651292 iter 60 value 84.431200 iter 70 value 84.418317 iter 70 value 84.418316 final value 84.418307 converged Fitting Repeat 2 # weights: 305 initial value 103.658345 iter 10 value 93.325880 iter 20 value 93.322672 iter 30 value 93.322513 iter 40 value 92.580777 iter 50 value 85.985103 iter 60 value 85.275850 iter 70 value 83.206086 iter 80 value 82.762988 iter 90 value 82.628273 iter 100 value 82.389857 final value 82.389857 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.373113 iter 10 value 94.031780 iter 20 value 94.029275 iter 30 value 94.026780 iter 40 value 93.775943 iter 50 value 93.743131 iter 60 value 93.742722 final value 93.742717 converged Fitting Repeat 4 # weights: 305 initial value 108.701401 iter 10 value 94.031631 iter 20 value 93.679069 iter 30 value 85.666895 iter 40 value 84.762839 final value 84.762649 converged Fitting Repeat 5 # weights: 305 initial value 101.542141 iter 10 value 94.448410 iter 20 value 94.296130 iter 30 value 94.147505 iter 40 value 94.147071 iter 40 value 94.147071 iter 40 value 94.147071 final value 94.147071 converged Fitting Repeat 1 # weights: 507 initial value 109.523354 iter 10 value 94.451943 iter 20 value 94.446914 iter 30 value 93.382966 iter 40 value 85.513796 iter 50 value 84.913210 final value 84.913114 converged Fitting Repeat 2 # weights: 507 initial value 96.175443 iter 10 value 93.072912 iter 20 value 92.821844 iter 30 value 92.642797 iter 40 value 92.449904 iter 50 value 92.449603 iter 60 value 92.448651 final value 92.448621 converged Fitting Repeat 3 # weights: 507 initial value 97.464569 iter 10 value 93.710195 iter 20 value 93.666219 iter 30 value 93.642298 iter 40 value 93.635783 iter 50 value 91.916987 iter 60 value 88.577399 iter 70 value 86.017938 iter 80 value 85.101744 iter 90 value 81.428443 iter 100 value 81.111789 final value 81.111789 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.649672 iter 10 value 94.519319 iter 20 value 94.465185 iter 30 value 94.150163 iter 40 value 94.101714 iter 50 value 94.032689 iter 60 value 93.383819 iter 70 value 93.113060 iter 80 value 90.044419 iter 90 value 85.331282 iter 100 value 84.595459 final value 84.595459 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.127706 iter 10 value 94.007676 iter 20 value 94.006445 iter 30 value 93.711967 iter 40 value 93.374040 iter 50 value 93.360081 iter 60 value 93.114627 iter 70 value 93.114413 iter 80 value 92.815110 iter 90 value 92.674568 iter 100 value 92.615535 final value 92.615535 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.422071 iter 10 value 110.858281 iter 20 value 110.845397 iter 30 value 108.534647 iter 40 value 108.529312 iter 50 value 108.529109 iter 60 value 107.665371 final value 107.181467 converged Fitting Repeat 2 # weights: 507 initial value 119.785124 iter 10 value 117.897004 iter 20 value 117.104199 iter 30 value 109.413408 iter 40 value 108.339763 iter 50 value 102.221092 iter 60 value 101.300066 iter 70 value 100.885430 iter 80 value 100.864472 iter 90 value 100.863653 iter 100 value 100.857987 final value 100.857987 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.326055 iter 10 value 117.897734 iter 20 value 117.467690 iter 30 value 114.561298 iter 40 value 114.397531 iter 50 value 114.393096 final value 114.392739 converged Fitting Repeat 4 # weights: 507 initial value 149.105731 iter 10 value 117.898395 iter 20 value 117.848264 iter 30 value 106.063167 iter 40 value 102.103226 iter 50 value 101.191829 iter 60 value 101.001504 iter 70 value 100.911838 iter 80 value 100.910538 iter 90 value 100.349918 iter 100 value 99.673704 final value 99.673704 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.499100 iter 10 value 117.022253 iter 20 value 115.217680 iter 30 value 115.040769 iter 40 value 115.040286 iter 40 value 115.040285 iter 40 value 115.040285 final value 115.040285 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 28 04:33:04 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 76.214 1.988 118.864
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.614 | 1.782 | 54.999 | |
FreqInteractors | 0.481 | 0.028 | 0.531 | |
calculateAAC | 0.069 | 0.013 | 0.087 | |
calculateAutocor | 0.859 | 0.101 | 1.008 | |
calculateCTDC | 0.144 | 0.009 | 0.159 | |
calculateCTDD | 1.206 | 0.036 | 1.312 | |
calculateCTDT | 0.433 | 0.016 | 0.477 | |
calculateCTriad | 0.740 | 0.045 | 0.820 | |
calculateDC | 0.249 | 0.027 | 0.286 | |
calculateF | 0.689 | 0.025 | 0.749 | |
calculateKSAAP | 0.280 | 0.025 | 0.318 | |
calculateQD_Sm | 3.565 | 0.187 | 4.043 | |
calculateTC | 4.681 | 0.430 | 5.382 | |
calculateTC_Sm | 0.591 | 0.042 | 0.647 | |
corr_plot | 50.566 | 1.723 | 55.273 | |
enrichfindP | 0.888 | 0.083 | 13.294 | |
enrichfind_hp | 0.125 | 0.025 | 1.155 | |
enrichplot | 0.840 | 0.011 | 0.889 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.125 | 0.019 | 3.400 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.003 | 0.001 | 0.004 | |
plotPPI | 0.135 | 0.005 | 0.141 | |
pred_ensembel | 25.251 | 0.386 | 24.456 | |
var_imp | 50.820 | 1.741 | 57.928 | |