Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:32 -0400 (Wed, 02 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-04-01 04:20:45 -0400 (Tue, 01 Apr 2025) |
EndedAt: 2025-04-01 04:30:10 -0400 (Tue, 01 Apr 2025) |
EllapsedTime: 564.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 52.417 1.734 59.213 FSmethod 50.602 1.770 54.871 corr_plot 50.508 1.703 55.258 pred_ensembel 25.423 0.392 24.998 calculateTC 4.738 0.478 5.506 enrichfindP 0.889 0.082 13.583 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.133346 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.922085 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.793805 final value 94.312038 converged Fitting Repeat 4 # weights: 103 initial value 100.265776 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.665182 iter 10 value 89.798081 iter 20 value 88.824461 iter 30 value 87.335922 iter 40 value 87.284138 final value 87.283810 converged Fitting Repeat 1 # weights: 305 initial value 114.806764 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 95.648612 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.597643 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 114.251881 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.082389 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 117.548843 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 111.010280 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.515447 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 107.478746 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 100.010424 iter 10 value 94.461209 final value 94.461207 converged Fitting Repeat 1 # weights: 103 initial value 102.906022 iter 10 value 94.528015 iter 20 value 94.481741 iter 30 value 94.344617 iter 40 value 94.186523 iter 50 value 94.143868 iter 60 value 88.341388 iter 70 value 86.758858 iter 80 value 85.833178 final value 85.824337 converged Fitting Repeat 2 # weights: 103 initial value 96.371154 iter 10 value 94.514179 iter 20 value 94.486919 iter 30 value 94.486442 iter 40 value 90.912461 iter 50 value 88.156239 iter 60 value 87.594545 iter 70 value 87.424071 iter 80 value 87.338467 final value 87.338440 converged Fitting Repeat 3 # weights: 103 initial value 101.447292 iter 10 value 94.415999 iter 20 value 92.843183 iter 30 value 89.984376 iter 40 value 86.417939 iter 50 value 85.595765 iter 60 value 83.957092 iter 70 value 83.266738 iter 80 value 82.681074 final value 82.678456 converged Fitting Repeat 4 # weights: 103 initial value 99.452742 iter 10 value 94.490391 iter 20 value 93.979969 iter 30 value 91.130871 iter 40 value 90.950526 iter 50 value 90.223068 iter 60 value 88.242936 iter 70 value 85.235291 iter 80 value 84.583005 iter 90 value 84.185543 iter 100 value 83.653595 final value 83.653595 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.954569 iter 10 value 94.493397 iter 20 value 92.747712 iter 30 value 92.558360 iter 40 value 92.527359 iter 50 value 92.521034 iter 60 value 92.510030 iter 70 value 85.985994 iter 80 value 85.580066 iter 90 value 85.462297 iter 100 value 85.186706 final value 85.186706 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.610495 iter 10 value 94.444905 iter 20 value 93.838474 iter 30 value 91.149171 iter 40 value 85.897781 iter 50 value 84.547688 iter 60 value 83.255980 iter 70 value 82.544872 iter 80 value 81.943765 iter 90 value 81.746032 iter 100 value 81.510395 final value 81.510395 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.246657 iter 10 value 97.344946 iter 20 value 93.406449 iter 30 value 87.265135 iter 40 value 85.013093 iter 50 value 84.639547 iter 60 value 83.798907 iter 70 value 83.081754 iter 80 value 82.711915 iter 90 value 82.449473 iter 100 value 82.282505 final value 82.282505 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.971984 iter 10 value 94.495717 iter 20 value 91.832593 iter 30 value 87.616758 iter 40 value 87.494611 iter 50 value 87.401772 iter 60 value 86.223756 iter 70 value 85.996311 iter 80 value 84.473179 iter 90 value 84.097070 iter 100 value 83.928365 final value 83.928365 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.621966 iter 10 value 94.137731 iter 20 value 89.007932 iter 30 value 88.139568 iter 40 value 87.672952 iter 50 value 86.342973 iter 60 value 84.747901 iter 70 value 83.548796 iter 80 value 83.008204 iter 90 value 82.651968 iter 100 value 82.616368 final value 82.616368 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.083075 iter 10 value 94.385438 iter 20 value 90.395758 iter 30 value 87.602653 iter 40 value 84.713658 iter 50 value 82.724089 iter 60 value 82.542181 iter 70 value 82.321162 iter 80 value 82.047954 iter 90 value 82.009671 iter 100 value 81.698160 final value 81.698160 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.372906 iter 10 value 94.499018 iter 20 value 94.218840 iter 30 value 89.737783 iter 40 value 87.719725 iter 50 value 84.963267 iter 60 value 82.219780 iter 70 value 81.928203 iter 80 value 81.795204 iter 90 value 81.306401 iter 100 value 81.093187 final value 81.093187 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.243350 iter 10 value 93.452968 iter 20 value 88.235889 iter 30 value 84.316933 iter 40 value 82.699266 iter 50 value 81.816776 iter 60 value 81.458751 iter 70 value 81.028235 iter 80 value 80.677578 iter 90 value 80.562258 iter 100 value 80.508911 final value 80.508911 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.433120 iter 10 value 94.519815 iter 20 value 86.906284 iter 30 value 85.509535 iter 40 value 84.986418 iter 50 value 83.158428 iter 60 value 82.470781 iter 70 value 81.680391 iter 80 value 81.316395 iter 90 value 81.132124 iter 100 value 80.928237 final value 80.928237 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.609537 iter 10 value 91.910362 iter 20 value 87.569210 iter 30 value 86.518565 iter 40 value 85.455700 iter 50 value 85.039196 iter 60 value 84.816345 iter 70 value 82.543294 iter 80 value 81.609373 iter 90 value 81.466731 iter 100 value 81.001541 final value 81.001541 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.093106 iter 10 value 94.549566 iter 20 value 92.766630 iter 30 value 92.454253 iter 40 value 92.325468 iter 50 value 92.104885 iter 60 value 90.810810 iter 70 value 85.541945 iter 80 value 84.421388 iter 90 value 83.603608 iter 100 value 83.481279 final value 83.481279 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.512945 final value 94.486023 converged Fitting Repeat 2 # weights: 103 initial value 102.881632 final value 93.703607 converged Fitting Repeat 3 # weights: 103 initial value 96.283169 final value 94.485662 converged Fitting Repeat 4 # weights: 103 initial value 106.583093 final value 94.486033 converged Fitting Repeat 5 # weights: 103 initial value 97.628987 final value 94.485837 converged Fitting Repeat 1 # weights: 305 initial value 106.510549 iter 10 value 94.471839 iter 20 value 89.230035 iter 30 value 84.725344 iter 40 value 84.725073 iter 50 value 84.724675 iter 60 value 84.669799 iter 70 value 82.274048 iter 80 value 82.074882 iter 90 value 81.903377 iter 100 value 81.856883 final value 81.856883 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.062570 iter 10 value 94.471405 iter 20 value 94.466917 iter 30 value 91.140196 iter 40 value 87.296475 iter 50 value 87.289058 iter 60 value 86.178878 final value 86.158678 converged Fitting Repeat 3 # weights: 305 initial value 96.840420 iter 10 value 93.712626 iter 20 value 93.710433 iter 30 value 93.709573 iter 40 value 87.047464 final value 86.957384 converged Fitting Repeat 4 # weights: 305 initial value 98.759118 iter 10 value 94.489562 iter 20 value 94.466192 iter 30 value 87.201702 iter 40 value 87.097252 iter 50 value 87.095636 final value 87.095537 converged Fitting Repeat 5 # weights: 305 initial value 100.740745 iter 10 value 94.486891 iter 20 value 89.576669 iter 30 value 87.191156 iter 40 value 87.190202 iter 40 value 87.190202 final value 87.190202 converged Fitting Repeat 1 # weights: 507 initial value 92.415581 iter 10 value 88.342975 iter 20 value 86.541207 iter 30 value 86.495809 iter 40 value 86.491792 iter 50 value 86.489618 iter 60 value 86.488149 iter 70 value 86.487685 iter 80 value 86.487186 iter 90 value 84.691618 final value 84.627462 converged Fitting Repeat 2 # weights: 507 initial value 100.150367 iter 10 value 94.469307 iter 20 value 93.902532 iter 30 value 89.291776 iter 40 value 87.440568 iter 50 value 86.588057 iter 60 value 85.213371 iter 70 value 84.403773 iter 80 value 84.059486 iter 90 value 83.946469 final value 83.945751 converged Fitting Repeat 3 # weights: 507 initial value 110.546206 iter 10 value 94.254275 iter 20 value 94.243858 iter 30 value 94.242955 iter 40 value 94.238937 iter 50 value 94.176093 iter 60 value 94.169006 iter 70 value 87.796940 iter 80 value 84.746929 iter 80 value 84.746928 iter 90 value 84.280585 final value 84.280581 converged Fitting Repeat 4 # weights: 507 initial value 110.733992 iter 10 value 93.711766 iter 20 value 91.489388 iter 30 value 87.985386 iter 40 value 84.531708 iter 50 value 81.950174 iter 60 value 81.871004 iter 70 value 81.825469 final value 81.824271 converged Fitting Repeat 5 # weights: 507 initial value 133.829609 iter 10 value 94.562441 iter 20 value 94.451056 iter 30 value 94.443252 iter 40 value 94.267341 iter 50 value 94.250062 iter 60 value 94.151329 iter 70 value 94.150739 iter 80 value 94.150524 final value 94.150049 converged Fitting Repeat 1 # weights: 103 initial value 96.054443 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 104.547410 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.515928 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.097586 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.763803 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.211214 iter 10 value 93.869431 final value 93.867974 converged Fitting Repeat 2 # weights: 305 initial value 110.788415 iter 10 value 93.817685 final value 93.810010 converged Fitting Repeat 3 # weights: 305 initial value 106.111085 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.029861 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.953820 final value 93.836066 converged Fitting Repeat 1 # weights: 507 initial value 102.152758 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 94.661642 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 96.430260 iter 10 value 93.773505 iter 20 value 92.906778 iter 30 value 92.892555 iter 40 value 88.069604 iter 50 value 87.389253 final value 87.389148 converged Fitting Repeat 4 # weights: 507 initial value 110.867436 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 100.806822 iter 10 value 93.571534 final value 93.571529 converged Fitting Repeat 1 # weights: 103 initial value 99.620574 iter 10 value 94.056724 iter 20 value 92.719109 iter 30 value 87.362938 iter 40 value 86.340996 iter 50 value 85.876376 iter 60 value 85.823707 iter 70 value 85.818387 final value 85.817530 converged Fitting Repeat 2 # weights: 103 initial value 98.627027 iter 10 value 94.055008 iter 20 value 93.789881 iter 30 value 93.523225 iter 40 value 93.510401 iter 50 value 89.943314 iter 60 value 89.290539 iter 70 value 89.118302 iter 80 value 88.495096 iter 90 value 87.554005 iter 100 value 87.514303 final value 87.514303 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.742646 iter 10 value 93.778398 iter 20 value 90.087637 iter 30 value 89.285195 iter 40 value 86.497183 iter 50 value 85.823933 iter 60 value 85.817645 final value 85.817530 converged Fitting Repeat 4 # weights: 103 initial value 96.618090 iter 10 value 94.069762 iter 20 value 93.625882 iter 30 value 93.573982 iter 40 value 93.571722 iter 50 value 93.569798 iter 60 value 87.939333 iter 70 value 86.718117 iter 80 value 85.743414 iter 90 value 85.533560 iter 100 value 85.504843 final value 85.504843 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.517674 iter 10 value 93.909492 iter 20 value 90.291848 iter 30 value 89.247847 iter 40 value 88.047692 iter 50 value 87.519719 iter 60 value 87.514296 final value 87.514288 converged Fitting Repeat 1 # weights: 305 initial value 116.576648 iter 10 value 89.131667 iter 20 value 87.062559 iter 30 value 86.488882 iter 40 value 85.488968 iter 50 value 85.261637 iter 60 value 85.092776 iter 70 value 85.007514 iter 80 value 84.991521 iter 90 value 84.974645 iter 100 value 84.871290 final value 84.871290 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.690558 iter 10 value 91.762153 iter 20 value 89.656116 iter 30 value 85.862996 iter 40 value 85.631821 iter 50 value 85.219020 iter 60 value 84.131707 iter 70 value 83.977746 iter 80 value 83.739165 iter 90 value 83.516643 iter 100 value 83.240274 final value 83.240274 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.782745 iter 10 value 93.614713 iter 20 value 92.435391 iter 30 value 91.999299 iter 40 value 91.515698 iter 50 value 91.352279 iter 60 value 84.153149 iter 70 value 83.660877 iter 80 value 83.576660 iter 90 value 83.466115 iter 100 value 83.359682 final value 83.359682 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.458311 iter 10 value 94.094677 iter 20 value 88.760275 iter 30 value 87.649736 iter 40 value 85.415895 iter 50 value 83.955318 iter 60 value 83.761707 iter 70 value 83.671816 iter 80 value 83.429515 iter 90 value 83.319399 iter 100 value 83.306734 final value 83.306734 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.251410 iter 10 value 94.014251 iter 20 value 88.981785 iter 30 value 88.003515 iter 40 value 87.234056 iter 50 value 86.542941 iter 60 value 86.436170 iter 70 value 86.222972 iter 80 value 84.229696 iter 90 value 83.939989 iter 100 value 83.907091 final value 83.907091 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.342796 iter 10 value 94.425865 iter 20 value 90.363586 iter 30 value 87.920301 iter 40 value 87.456305 iter 50 value 87.219073 iter 60 value 85.930359 iter 70 value 85.289635 iter 80 value 85.070260 iter 90 value 84.890161 iter 100 value 84.863947 final value 84.863947 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.385699 iter 10 value 94.176217 iter 20 value 94.045810 iter 30 value 93.510274 iter 40 value 90.259189 iter 50 value 87.798316 iter 60 value 84.759119 iter 70 value 84.065816 iter 80 value 83.732421 iter 90 value 83.422537 iter 100 value 83.335176 final value 83.335176 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 132.284491 iter 10 value 94.423400 iter 20 value 93.742474 iter 30 value 89.092836 iter 40 value 85.837787 iter 50 value 84.646490 iter 60 value 84.134533 iter 70 value 83.817943 iter 80 value 83.563701 iter 90 value 83.470364 iter 100 value 83.434202 final value 83.434202 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.267439 iter 10 value 93.793936 iter 20 value 92.224860 iter 30 value 87.458383 iter 40 value 86.902676 iter 50 value 85.391617 iter 60 value 84.424788 iter 70 value 83.874538 iter 80 value 83.678363 iter 90 value 83.580570 iter 100 value 83.493092 final value 83.493092 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.167208 iter 10 value 93.765386 iter 20 value 92.321993 iter 30 value 89.523785 iter 40 value 85.831683 iter 50 value 84.599648 iter 60 value 84.457301 iter 70 value 84.262151 iter 80 value 83.464175 iter 90 value 83.277720 iter 100 value 83.182117 final value 83.182117 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.174878 final value 94.054379 converged Fitting Repeat 2 # weights: 103 initial value 100.646888 iter 10 value 93.456828 final value 93.456688 converged Fitting Repeat 3 # weights: 103 initial value 101.874084 iter 10 value 94.054701 iter 20 value 94.052596 iter 30 value 87.483297 iter 40 value 87.377455 iter 50 value 87.375038 iter 60 value 86.172112 iter 70 value 86.169570 final value 86.169506 converged Fitting Repeat 4 # weights: 103 initial value 97.634376 final value 94.054456 converged Fitting Repeat 5 # weights: 103 initial value 97.364124 final value 94.055095 converged Fitting Repeat 1 # weights: 305 initial value 95.022610 iter 10 value 90.086845 iter 20 value 89.300005 iter 30 value 88.220858 iter 40 value 88.218991 iter 50 value 88.158099 iter 60 value 88.157200 iter 70 value 88.153777 final value 88.153596 converged Fitting Repeat 2 # weights: 305 initial value 102.140800 iter 10 value 94.057965 iter 20 value 94.053239 iter 30 value 93.459328 iter 40 value 90.104247 iter 50 value 86.172962 final value 86.169879 converged Fitting Repeat 3 # weights: 305 initial value 112.003009 iter 10 value 93.841162 iter 20 value 93.693823 iter 30 value 88.200057 iter 40 value 88.157234 iter 50 value 88.156733 iter 60 value 88.155224 iter 70 value 87.887548 iter 80 value 87.648365 iter 90 value 86.119068 iter 100 value 84.519872 final value 84.519872 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.367487 iter 10 value 94.057686 iter 20 value 94.052924 iter 30 value 93.460088 final value 93.455259 converged Fitting Repeat 5 # weights: 305 initial value 96.796915 iter 10 value 94.057063 iter 20 value 92.856777 iter 30 value 87.377717 iter 40 value 86.201240 iter 50 value 86.171072 iter 60 value 86.170926 iter 70 value 86.098050 iter 80 value 85.951581 iter 80 value 85.951581 final value 85.951581 converged Fitting Repeat 1 # weights: 507 initial value 124.693226 iter 10 value 94.079509 iter 20 value 93.059401 iter 30 value 92.779116 iter 40 value 92.717949 iter 50 value 92.511769 iter 60 value 91.461071 iter 70 value 90.409573 iter 80 value 90.368420 iter 90 value 84.042222 iter 100 value 83.301631 final value 83.301631 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.695393 iter 10 value 91.035995 iter 20 value 90.537239 iter 30 value 90.533534 iter 40 value 88.655369 iter 50 value 87.915837 iter 60 value 87.752717 final value 87.752710 converged Fitting Repeat 3 # weights: 507 initial value 111.468169 iter 10 value 93.950721 iter 20 value 93.438567 iter 30 value 93.398781 iter 40 value 93.390064 iter 50 value 93.385725 iter 60 value 93.382386 iter 70 value 93.381417 iter 80 value 92.472527 iter 90 value 90.475633 iter 100 value 87.582535 final value 87.582535 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.700599 iter 10 value 93.818151 iter 20 value 93.752883 iter 30 value 93.450889 iter 30 value 93.450888 iter 30 value 93.450888 final value 93.450888 converged Fitting Repeat 5 # weights: 507 initial value 108.445620 iter 10 value 93.844231 iter 20 value 93.837970 final value 93.836843 converged Fitting Repeat 1 # weights: 103 initial value 100.492009 final value 94.472273 converged Fitting Repeat 2 # weights: 103 initial value 98.631288 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.128717 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 109.817078 final value 94.354396 converged Fitting Repeat 5 # weights: 103 initial value 103.423799 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.575998 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.979629 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.526122 iter 10 value 94.354715 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 106.076408 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.885511 final value 94.206005 converged Fitting Repeat 1 # weights: 507 initial value 104.120885 iter 10 value 94.448052 iter 10 value 94.448052 iter 10 value 94.448052 final value 94.448052 converged Fitting Repeat 2 # weights: 507 initial value 102.759310 iter 10 value 94.309525 iter 10 value 94.309524 iter 10 value 94.309524 final value 94.309524 converged Fitting Repeat 3 # weights: 507 initial value 102.311945 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 95.230034 iter 10 value 91.839528 final value 91.834445 converged Fitting Repeat 5 # weights: 507 initial value 107.960497 final value 94.322896 converged Fitting Repeat 1 # weights: 103 initial value 104.292115 iter 10 value 94.488662 iter 20 value 94.392483 iter 30 value 94.382309 iter 40 value 93.687592 iter 50 value 85.284412 iter 60 value 83.921627 iter 70 value 82.976303 iter 80 value 82.223279 iter 90 value 82.124034 iter 100 value 81.523161 final value 81.523161 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.190452 iter 10 value 94.467315 iter 20 value 91.702642 iter 30 value 87.300244 iter 40 value 87.154999 iter 50 value 87.123601 iter 60 value 87.105411 iter 70 value 85.281053 iter 80 value 85.250415 iter 90 value 85.204327 iter 100 value 85.189528 final value 85.189528 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 113.842040 iter 10 value 94.490464 iter 20 value 94.481759 iter 30 value 90.987087 iter 40 value 88.540258 iter 50 value 86.418767 iter 60 value 85.922618 iter 70 value 85.038844 iter 80 value 84.680981 iter 90 value 83.894287 iter 100 value 83.871774 final value 83.871774 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.064401 iter 10 value 94.490683 iter 20 value 89.190755 iter 30 value 86.024734 iter 40 value 85.111967 iter 50 value 82.830561 iter 60 value 82.215851 iter 70 value 81.302685 iter 80 value 80.773726 iter 90 value 80.745616 final value 80.745568 converged Fitting Repeat 5 # weights: 103 initial value 96.506122 iter 10 value 92.957426 iter 20 value 91.099616 iter 30 value 91.064491 iter 40 value 91.058814 iter 50 value 91.057738 iter 50 value 91.057738 iter 50 value 91.057738 final value 91.057738 converged Fitting Repeat 1 # weights: 305 initial value 103.723805 iter 10 value 94.444221 iter 20 value 90.818582 iter 30 value 87.510142 iter 40 value 86.645251 iter 50 value 85.402490 iter 60 value 82.402295 iter 70 value 80.734463 iter 80 value 80.277065 iter 90 value 80.042104 iter 100 value 79.841207 final value 79.841207 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.427018 iter 10 value 94.473307 iter 20 value 92.996836 iter 30 value 86.838609 iter 40 value 85.895265 iter 50 value 84.380682 iter 60 value 82.933614 iter 70 value 81.114865 iter 80 value 80.333167 iter 90 value 80.142194 iter 100 value 80.035982 final value 80.035982 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.401448 iter 10 value 94.526490 iter 20 value 91.825129 iter 30 value 87.004611 iter 40 value 83.500241 iter 50 value 81.720416 iter 60 value 80.752086 iter 70 value 79.978420 iter 80 value 79.242759 iter 90 value 79.137875 iter 100 value 79.036367 final value 79.036367 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.932630 iter 10 value 94.523846 iter 20 value 94.491401 iter 30 value 94.381861 iter 40 value 93.550046 iter 50 value 86.777060 iter 60 value 85.122775 iter 70 value 84.906216 iter 80 value 84.416259 iter 90 value 83.449878 iter 100 value 81.965926 final value 81.965926 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.413034 iter 10 value 94.426305 iter 20 value 90.347740 iter 30 value 87.767218 iter 40 value 83.626992 iter 50 value 82.106614 iter 60 value 80.949586 iter 70 value 80.211824 iter 80 value 79.968542 iter 90 value 79.825041 iter 100 value 79.785256 final value 79.785256 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.461882 iter 10 value 91.509224 iter 20 value 85.642852 iter 30 value 82.816077 iter 40 value 81.915673 iter 50 value 81.051230 iter 60 value 80.491529 iter 70 value 80.400771 iter 80 value 79.905214 iter 90 value 79.606199 iter 100 value 79.538053 final value 79.538053 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.588419 iter 10 value 94.953371 iter 20 value 94.538584 iter 30 value 88.147747 iter 40 value 87.790731 iter 50 value 86.204471 iter 60 value 83.741354 iter 70 value 81.187724 iter 80 value 80.026615 iter 90 value 79.481094 iter 100 value 79.269050 final value 79.269050 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.632088 iter 10 value 94.798923 iter 20 value 92.255506 iter 30 value 84.524506 iter 40 value 84.255061 iter 50 value 82.928317 iter 60 value 81.312449 iter 70 value 81.152461 iter 80 value 80.795055 iter 90 value 80.301476 iter 100 value 79.861535 final value 79.861535 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.698256 iter 10 value 92.645876 iter 20 value 88.277579 iter 30 value 84.516534 iter 40 value 82.512553 iter 50 value 81.408828 iter 60 value 80.296442 iter 70 value 79.849746 iter 80 value 79.619141 iter 90 value 79.481723 iter 100 value 79.467467 final value 79.467467 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.497358 iter 10 value 94.568741 iter 20 value 91.621754 iter 30 value 86.246688 iter 40 value 84.966986 iter 50 value 82.956576 iter 60 value 81.864994 iter 70 value 81.602367 iter 80 value 81.480578 iter 90 value 81.009209 iter 100 value 80.268981 final value 80.268981 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.090771 final value 94.485677 converged Fitting Repeat 2 # weights: 103 initial value 99.179187 final value 94.485853 converged Fitting Repeat 3 # weights: 103 initial value 99.153852 final value 94.485919 converged Fitting Repeat 4 # weights: 103 initial value 105.331675 final value 94.485984 converged Fitting Repeat 5 # weights: 103 initial value 98.258538 iter 10 value 94.485962 final value 94.484214 converged Fitting Repeat 1 # weights: 305 initial value 107.128450 iter 10 value 94.343897 iter 20 value 93.491950 iter 30 value 89.730695 iter 40 value 83.604455 iter 50 value 79.714178 iter 60 value 79.663599 iter 70 value 79.357646 iter 80 value 79.328490 final value 79.328106 converged Fitting Repeat 2 # weights: 305 initial value 114.764073 iter 10 value 94.488476 iter 20 value 94.442447 final value 94.354434 converged Fitting Repeat 3 # weights: 305 initial value 95.144973 iter 10 value 94.489272 iter 20 value 94.484227 iter 30 value 94.128959 iter 40 value 93.179710 iter 50 value 86.751240 iter 60 value 86.293783 iter 70 value 84.734420 iter 80 value 84.075760 iter 90 value 83.968388 iter 100 value 83.967017 final value 83.967017 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.041815 iter 10 value 94.489092 iter 20 value 89.587509 iter 30 value 88.771924 iter 40 value 88.249406 iter 50 value 85.813085 iter 60 value 85.775257 iter 70 value 84.537180 iter 80 value 79.730831 iter 90 value 78.639977 iter 100 value 78.300690 final value 78.300690 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.017686 iter 10 value 93.651676 iter 20 value 92.927548 iter 30 value 92.851169 iter 40 value 92.621309 iter 50 value 92.619716 iter 60 value 92.619258 final value 92.619133 converged Fitting Repeat 1 # weights: 507 initial value 117.258068 iter 10 value 94.363283 iter 20 value 94.357768 iter 30 value 94.351223 iter 40 value 88.516620 iter 50 value 85.916983 iter 60 value 85.585121 final value 85.585117 converged Fitting Repeat 2 # weights: 507 initial value 116.909596 iter 10 value 94.397027 iter 20 value 93.599570 iter 30 value 93.050971 iter 40 value 92.403688 iter 50 value 92.376855 iter 60 value 92.242448 iter 70 value 90.962231 iter 80 value 89.438392 iter 90 value 89.413660 iter 100 value 87.693767 final value 87.693767 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.780427 iter 10 value 94.390985 iter 20 value 94.313674 iter 30 value 94.210378 iter 40 value 93.309178 iter 50 value 88.968088 iter 60 value 87.465814 iter 70 value 87.337935 iter 80 value 87.329487 iter 90 value 87.183550 iter 100 value 84.888499 final value 84.888499 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.743238 iter 10 value 94.362330 iter 20 value 94.355311 iter 30 value 94.306731 iter 40 value 91.486662 iter 50 value 89.402892 iter 60 value 89.140676 iter 70 value 89.119687 iter 80 value 89.118622 iter 90 value 89.114020 final value 89.112716 converged Fitting Repeat 5 # weights: 507 initial value 106.290149 iter 10 value 94.238444 iter 20 value 93.827200 iter 30 value 87.332533 iter 40 value 87.327153 iter 50 value 87.321754 iter 60 value 86.920699 iter 70 value 86.909232 iter 80 value 86.879502 iter 90 value 85.896395 iter 100 value 83.747936 final value 83.747936 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.326405 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.808063 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.010651 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 109.206664 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.333859 final value 94.275362 converged Fitting Repeat 1 # weights: 305 initial value 96.683314 iter 10 value 94.053305 final value 94.052436 converged Fitting Repeat 2 # weights: 305 initial value 100.525349 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 112.648342 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.538703 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 100.645912 iter 10 value 84.819024 iter 20 value 82.218401 iter 30 value 82.052278 iter 40 value 82.015678 final value 81.944321 converged Fitting Repeat 1 # weights: 507 initial value 95.862761 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 108.123842 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.322743 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 113.382029 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.176162 iter 10 value 94.061133 iter 20 value 83.968403 final value 83.952465 converged Fitting Repeat 1 # weights: 103 initial value 97.666704 iter 10 value 93.352929 iter 20 value 89.659683 iter 30 value 84.437554 iter 40 value 83.931837 iter 50 value 82.871648 iter 60 value 79.565139 iter 70 value 78.854900 iter 80 value 78.756752 final value 78.736768 converged Fitting Repeat 2 # weights: 103 initial value 103.676805 iter 10 value 94.333595 iter 20 value 92.907778 iter 30 value 91.841124 iter 40 value 91.384297 iter 50 value 90.546706 iter 60 value 83.734866 iter 70 value 82.081677 iter 80 value 81.319236 iter 90 value 81.225736 final value 81.224330 converged Fitting Repeat 3 # weights: 103 initial value 99.700432 iter 10 value 93.796945 iter 20 value 84.678729 iter 30 value 82.806828 iter 40 value 82.109191 iter 50 value 81.390235 iter 60 value 80.768885 iter 70 value 80.628155 iter 80 value 80.610377 final value 80.610374 converged Fitting Repeat 4 # weights: 103 initial value 97.864565 iter 10 value 94.240228 iter 20 value 90.820367 iter 30 value 90.179786 iter 40 value 89.599330 iter 50 value 89.142148 iter 60 value 85.879452 iter 70 value 85.508304 iter 80 value 83.130124 iter 90 value 82.476700 iter 100 value 80.402247 final value 80.402247 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.422199 iter 10 value 94.488713 iter 20 value 93.645150 iter 30 value 91.761610 iter 40 value 84.494093 iter 50 value 84.283163 iter 60 value 81.730570 iter 70 value 81.256497 iter 80 value 81.225419 final value 81.224330 converged Fitting Repeat 1 # weights: 305 initial value 118.277028 iter 10 value 94.467276 iter 20 value 93.274856 iter 30 value 85.020839 iter 40 value 83.456155 iter 50 value 83.218405 iter 60 value 81.586524 iter 70 value 80.998657 iter 80 value 79.094051 iter 90 value 78.297012 iter 100 value 77.933628 final value 77.933628 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.329602 iter 10 value 94.474691 iter 20 value 92.077895 iter 30 value 81.462571 iter 40 value 79.933801 iter 50 value 79.459959 iter 60 value 78.689314 iter 70 value 77.904410 iter 80 value 77.178709 iter 90 value 76.947508 iter 100 value 76.830353 final value 76.830353 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.740583 iter 10 value 92.308457 iter 20 value 87.630280 iter 30 value 84.548028 iter 40 value 83.481016 iter 50 value 82.588782 iter 60 value 79.330209 iter 70 value 78.066887 iter 80 value 77.766770 iter 90 value 77.694068 iter 100 value 77.421672 final value 77.421672 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.848008 iter 10 value 93.422951 iter 20 value 83.670846 iter 30 value 82.677836 iter 40 value 81.799946 iter 50 value 81.307023 iter 60 value 81.209333 iter 70 value 81.182590 iter 80 value 80.842044 iter 90 value 80.540945 iter 100 value 80.099687 final value 80.099687 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.419615 iter 10 value 94.307839 iter 20 value 90.717120 iter 30 value 87.684351 iter 40 value 85.490672 iter 50 value 84.620376 iter 60 value 82.667853 iter 70 value 82.287481 iter 80 value 80.238128 iter 90 value 79.877977 iter 100 value 78.196311 final value 78.196311 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.722024 iter 10 value 95.185644 iter 20 value 88.756434 iter 30 value 85.767677 iter 40 value 85.156874 iter 50 value 84.778472 iter 60 value 80.364166 iter 70 value 79.356204 iter 80 value 77.622908 iter 90 value 77.216753 iter 100 value 77.028219 final value 77.028219 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.900925 iter 10 value 95.205791 iter 20 value 89.024272 iter 30 value 80.589705 iter 40 value 77.711645 iter 50 value 77.305798 iter 60 value 77.176224 iter 70 value 76.830920 iter 80 value 76.762779 iter 90 value 76.745528 iter 100 value 76.612201 final value 76.612201 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.907488 iter 10 value 94.366749 iter 20 value 90.966703 iter 30 value 90.110813 iter 40 value 89.360336 iter 50 value 81.350017 iter 60 value 80.500009 iter 70 value 78.607520 iter 80 value 78.000068 iter 90 value 77.372726 iter 100 value 77.315179 final value 77.315179 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.271643 iter 10 value 88.740884 iter 20 value 80.883026 iter 30 value 78.888153 iter 40 value 78.363653 iter 50 value 77.875416 iter 60 value 77.744776 iter 70 value 77.131800 iter 80 value 76.899922 iter 90 value 76.530678 iter 100 value 76.428696 final value 76.428696 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 136.056296 iter 10 value 93.986446 iter 20 value 86.997826 iter 30 value 81.306351 iter 40 value 79.173303 iter 50 value 78.041202 iter 60 value 77.012881 iter 70 value 76.900573 iter 80 value 76.826646 iter 90 value 76.749375 iter 100 value 76.735529 final value 76.735529 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.617938 final value 94.485678 converged Fitting Repeat 2 # weights: 103 initial value 104.992714 final value 94.485781 converged Fitting Repeat 3 # weights: 103 initial value 95.816493 final value 94.486045 converged Fitting Repeat 4 # weights: 103 initial value 94.819799 final value 94.485974 converged Fitting Repeat 5 # weights: 103 initial value 103.018715 final value 94.485695 converged Fitting Repeat 1 # weights: 305 initial value 127.399324 iter 10 value 94.489203 iter 20 value 94.282450 iter 30 value 81.072685 iter 40 value 80.046060 final value 80.032725 converged Fitting Repeat 2 # weights: 305 initial value 102.797744 iter 10 value 94.280725 iter 20 value 86.843355 iter 30 value 80.885445 iter 40 value 80.877468 iter 50 value 80.144188 iter 60 value 80.026753 final value 80.025456 converged Fitting Repeat 3 # weights: 305 initial value 103.697128 iter 10 value 94.489274 iter 20 value 94.478126 iter 30 value 84.609342 final value 84.591578 converged Fitting Repeat 4 # weights: 305 initial value 94.687224 iter 10 value 94.464488 iter 20 value 94.280061 iter 30 value 94.275846 iter 40 value 91.302100 iter 50 value 81.765136 iter 60 value 79.884267 iter 70 value 79.561037 final value 79.560007 converged Fitting Repeat 5 # weights: 305 initial value 110.428969 iter 10 value 94.381103 iter 20 value 94.281107 iter 30 value 93.772377 iter 40 value 90.221985 final value 90.221828 converged Fitting Repeat 1 # weights: 507 initial value 103.515412 iter 10 value 94.282916 iter 20 value 94.279378 iter 30 value 94.278480 iter 40 value 94.071921 iter 50 value 91.998573 iter 60 value 85.925845 final value 85.925830 converged Fitting Repeat 2 # weights: 507 initial value 106.010888 iter 10 value 94.490738 iter 20 value 90.503488 iter 30 value 90.118957 iter 40 value 90.117531 iter 40 value 90.117530 final value 90.117530 converged Fitting Repeat 3 # weights: 507 initial value 123.889448 iter 10 value 94.492966 iter 20 value 91.707417 iter 30 value 85.885721 iter 40 value 84.155242 iter 50 value 79.245445 iter 60 value 78.995911 iter 70 value 78.985126 iter 80 value 78.973930 iter 90 value 78.971251 iter 100 value 78.969465 final value 78.969465 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.441151 iter 10 value 94.283392 iter 20 value 94.279828 iter 30 value 85.142040 iter 40 value 83.926285 iter 50 value 83.876916 iter 60 value 82.252576 iter 70 value 81.578903 iter 80 value 81.574777 iter 90 value 81.574169 iter 100 value 81.571930 final value 81.571930 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.792935 iter 10 value 94.151836 iter 20 value 91.595848 iter 30 value 80.964327 iter 40 value 80.528705 iter 50 value 80.521289 iter 60 value 80.514331 iter 70 value 80.511406 iter 80 value 80.328309 iter 90 value 79.469424 iter 100 value 77.690239 final value 77.690239 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.436306 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.416495 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.749301 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.594425 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 100.618909 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.380517 final value 93.890110 converged Fitting Repeat 2 # weights: 305 initial value 102.152670 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.965684 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 116.275388 final value 93.890110 converged Fitting Repeat 5 # weights: 305 initial value 108.726149 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 117.085546 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.336152 iter 10 value 85.209237 iter 20 value 83.068497 iter 30 value 82.984952 iter 30 value 82.984952 iter 30 value 82.984952 final value 82.984952 converged Fitting Repeat 3 # weights: 507 initial value 97.799569 iter 10 value 93.286498 final value 93.093311 converged Fitting Repeat 4 # weights: 507 initial value 106.287547 iter 10 value 94.008697 final value 94.008696 converged Fitting Repeat 5 # weights: 507 initial value 98.590505 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 103.075408 iter 10 value 94.055649 iter 20 value 90.788394 iter 30 value 87.117077 iter 40 value 86.248713 iter 50 value 84.914378 iter 60 value 83.207115 iter 70 value 83.045091 iter 80 value 83.002417 iter 90 value 82.822826 iter 100 value 82.555022 final value 82.555022 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.568490 iter 10 value 93.823737 iter 20 value 83.277672 iter 30 value 82.301766 iter 40 value 81.865800 iter 50 value 81.360092 iter 60 value 80.657570 iter 70 value 80.581620 iter 80 value 80.522586 iter 80 value 80.522585 iter 80 value 80.522585 final value 80.522585 converged Fitting Repeat 3 # weights: 103 initial value 103.485697 iter 10 value 93.996677 iter 20 value 93.452412 iter 30 value 91.754008 iter 40 value 90.693204 iter 50 value 90.537277 iter 60 value 90.477925 final value 90.477622 converged Fitting Repeat 4 # weights: 103 initial value 108.039110 iter 10 value 94.013517 iter 20 value 84.928464 iter 30 value 83.605440 iter 40 value 83.043380 iter 50 value 82.353888 iter 60 value 82.113530 iter 70 value 82.081206 iter 80 value 82.076742 final value 82.076725 converged Fitting Repeat 5 # weights: 103 initial value 98.489647 iter 10 value 94.077277 iter 20 value 94.010091 iter 30 value 90.257261 iter 40 value 84.678263 iter 50 value 82.361215 iter 60 value 81.150576 iter 70 value 80.957913 iter 80 value 80.714823 iter 90 value 80.658261 iter 100 value 80.603158 final value 80.603158 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.716020 iter 10 value 93.936677 iter 20 value 91.994272 iter 30 value 89.251860 iter 40 value 88.165639 iter 50 value 87.710388 iter 60 value 83.120740 iter 70 value 81.205901 iter 80 value 80.333975 iter 90 value 79.902215 iter 100 value 79.837899 final value 79.837899 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.207586 iter 10 value 92.100712 iter 20 value 85.234884 iter 30 value 82.292606 iter 40 value 81.536040 iter 50 value 80.738615 iter 60 value 80.160153 iter 70 value 79.852206 iter 80 value 79.574573 iter 90 value 79.446550 iter 100 value 79.330258 final value 79.330258 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.592440 iter 10 value 93.956300 iter 20 value 85.882024 iter 30 value 84.672072 iter 40 value 83.407898 iter 50 value 81.249285 iter 60 value 80.123310 iter 70 value 79.862579 iter 80 value 79.636045 iter 90 value 79.604401 iter 100 value 79.594720 final value 79.594720 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.679571 iter 10 value 94.134998 iter 20 value 90.764876 iter 30 value 89.413111 iter 40 value 87.568170 iter 50 value 86.836848 iter 60 value 81.907819 iter 70 value 80.403675 iter 80 value 80.125806 iter 90 value 80.003908 iter 100 value 79.789084 final value 79.789084 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.132051 iter 10 value 94.144355 iter 20 value 94.073385 iter 30 value 92.625552 iter 40 value 85.340128 iter 50 value 84.068405 iter 60 value 81.826235 iter 70 value 81.006916 iter 80 value 80.761392 iter 90 value 80.281674 iter 100 value 79.897269 final value 79.897269 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.727612 iter 10 value 94.241088 iter 20 value 92.712928 iter 30 value 83.899191 iter 40 value 82.923812 iter 50 value 81.694476 iter 60 value 81.130462 iter 70 value 80.636864 iter 80 value 80.550899 iter 90 value 80.499582 iter 100 value 80.429327 final value 80.429327 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.889731 iter 10 value 94.054898 iter 20 value 86.176519 iter 30 value 84.688948 iter 40 value 84.062527 iter 50 value 82.842560 iter 60 value 82.577449 iter 70 value 81.636939 iter 80 value 80.220229 iter 90 value 79.445940 iter 100 value 79.210557 final value 79.210557 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.232499 iter 10 value 94.193889 iter 20 value 89.793671 iter 30 value 86.724031 iter 40 value 83.909743 iter 50 value 81.633088 iter 60 value 80.790065 iter 70 value 80.571671 iter 80 value 80.450392 iter 90 value 80.417012 iter 100 value 80.334425 final value 80.334425 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.174865 iter 10 value 94.211686 iter 20 value 90.735734 iter 30 value 84.572909 iter 40 value 81.909480 iter 50 value 80.556973 iter 60 value 80.171974 iter 70 value 79.776710 iter 80 value 79.556845 iter 90 value 79.443377 iter 100 value 79.382407 final value 79.382407 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.675814 iter 10 value 95.196140 iter 20 value 92.247439 iter 30 value 87.741398 iter 40 value 85.810243 iter 50 value 85.302041 iter 60 value 83.505833 iter 70 value 82.245372 iter 80 value 81.724843 iter 90 value 81.061540 iter 100 value 80.545784 final value 80.545784 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.768918 final value 94.055081 converged Fitting Repeat 2 # weights: 103 initial value 94.741103 iter 10 value 93.895667 iter 20 value 93.894791 iter 30 value 93.810851 iter 30 value 93.810851 iter 30 value 93.810851 final value 93.810851 converged Fitting Repeat 3 # weights: 103 initial value 100.541702 iter 10 value 94.055248 final value 94.053622 converged Fitting Repeat 4 # weights: 103 initial value 99.840786 final value 94.054667 converged Fitting Repeat 5 # weights: 103 initial value 105.343513 iter 10 value 94.054583 iter 20 value 94.053005 iter 30 value 92.805235 iter 40 value 92.301780 iter 50 value 92.289686 final value 92.289679 converged Fitting Repeat 1 # weights: 305 initial value 96.156038 iter 10 value 94.057658 iter 20 value 93.768193 iter 30 value 91.406288 iter 40 value 91.241641 final value 91.176655 converged Fitting Repeat 2 # weights: 305 initial value 95.163089 iter 10 value 94.057992 iter 20 value 93.912693 iter 30 value 91.499330 iter 40 value 87.828561 iter 50 value 85.974065 iter 60 value 84.836739 iter 70 value 84.835273 iter 80 value 84.835019 iter 90 value 84.382265 iter 100 value 82.730617 final value 82.730617 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.450382 iter 10 value 87.826995 iter 20 value 83.002017 iter 30 value 82.214721 iter 40 value 82.214072 iter 50 value 82.163213 iter 60 value 82.151023 iter 70 value 82.147984 final value 82.146395 converged Fitting Repeat 4 # weights: 305 initial value 94.466153 iter 10 value 93.790567 iter 20 value 93.788133 iter 30 value 93.787005 iter 40 value 93.786820 iter 50 value 93.786225 final value 93.786205 converged Fitting Repeat 5 # weights: 305 initial value 100.671490 iter 10 value 94.057765 iter 20 value 92.471460 iter 30 value 84.786747 final value 84.746058 converged Fitting Repeat 1 # weights: 507 initial value 94.337452 iter 10 value 94.017129 iter 20 value 91.991518 iter 30 value 85.752895 iter 40 value 85.750105 iter 50 value 85.211636 iter 60 value 84.917838 iter 70 value 84.743401 final value 84.739548 converged Fitting Repeat 2 # weights: 507 initial value 106.603412 iter 10 value 94.020676 iter 20 value 93.853462 iter 30 value 93.806196 iter 40 value 93.781918 iter 50 value 93.781526 iter 60 value 91.586948 iter 70 value 91.380075 iter 80 value 91.033001 iter 90 value 90.743160 iter 100 value 90.732287 final value 90.732287 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.928648 iter 10 value 94.016304 iter 20 value 94.010447 iter 30 value 93.965528 iter 40 value 84.150223 iter 50 value 83.144915 iter 60 value 83.144634 iter 70 value 83.008987 iter 80 value 81.180154 iter 90 value 81.114308 iter 100 value 81.095331 final value 81.095331 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.220990 iter 10 value 93.722632 iter 20 value 93.391838 iter 30 value 84.404631 iter 40 value 82.746630 iter 50 value 82.724234 iter 60 value 82.557372 iter 70 value 81.285835 iter 80 value 81.277214 iter 90 value 81.277168 iter 100 value 80.709065 final value 80.709065 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.287616 iter 10 value 94.017420 iter 20 value 94.008598 iter 30 value 93.675368 iter 40 value 88.504821 iter 50 value 85.861730 iter 60 value 85.858290 iter 70 value 85.694955 iter 80 value 85.691422 iter 90 value 85.687373 iter 100 value 85.184969 final value 85.184969 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 177.625295 iter 10 value 119.811723 iter 20 value 114.654343 iter 30 value 110.344871 iter 40 value 110.108281 iter 50 value 109.255143 iter 60 value 105.291778 iter 70 value 103.905918 iter 80 value 102.921033 iter 90 value 102.355942 iter 100 value 101.809372 final value 101.809372 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 159.933225 iter 10 value 118.311454 iter 20 value 117.901536 iter 30 value 117.669746 iter 40 value 112.865977 iter 50 value 105.829992 iter 60 value 105.581327 iter 70 value 104.502682 iter 80 value 103.202125 iter 90 value 102.155682 iter 100 value 101.866970 final value 101.866970 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 133.599541 iter 10 value 114.969007 iter 20 value 107.858431 iter 30 value 106.435964 iter 40 value 104.300090 iter 50 value 103.049683 iter 60 value 102.726754 iter 70 value 101.588851 iter 80 value 101.540931 iter 90 value 101.390280 iter 100 value 101.339081 final value 101.339081 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 156.683575 iter 10 value 117.803552 iter 20 value 117.378828 iter 30 value 107.132492 iter 40 value 104.966974 iter 50 value 102.662864 iter 60 value 101.963056 iter 70 value 101.646635 iter 80 value 101.414985 iter 90 value 101.143830 iter 100 value 101.046851 final value 101.046851 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 138.069745 iter 10 value 117.580006 iter 20 value 117.205672 iter 30 value 106.271345 iter 40 value 106.119751 iter 50 value 105.505184 iter 60 value 103.173090 iter 70 value 102.144635 iter 80 value 101.429116 iter 90 value 101.151370 iter 100 value 101.063117 final value 101.063117 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 1 04:29:55 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 76.887 2.048 153.930
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.602 | 1.770 | 54.871 | |
FreqInteractors | 0.471 | 0.027 | 0.509 | |
calculateAAC | 0.071 | 0.012 | 0.085 | |
calculateAutocor | 0.856 | 0.106 | 1.003 | |
calculateCTDC | 0.147 | 0.007 | 0.158 | |
calculateCTDD | 1.256 | 0.037 | 1.346 | |
calculateCTDT | 0.438 | 0.015 | 0.515 | |
calculateCTriad | 0.771 | 0.057 | 0.847 | |
calculateDC | 0.261 | 0.030 | 0.330 | |
calculateF | 0.715 | 0.027 | 0.775 | |
calculateKSAAP | 0.290 | 0.023 | 0.326 | |
calculateQD_Sm | 3.562 | 0.177 | 3.921 | |
calculateTC | 4.738 | 0.478 | 5.506 | |
calculateTC_Sm | 0.580 | 0.034 | 0.663 | |
corr_plot | 50.508 | 1.703 | 55.258 | |
enrichfindP | 0.889 | 0.082 | 13.583 | |
enrichfind_hp | 0.129 | 0.027 | 1.197 | |
enrichplot | 0.850 | 0.012 | 0.943 | |
filter_missing_values | 0.002 | 0.001 | 0.004 | |
getFASTA | 0.123 | 0.017 | 3.021 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.004 | |
get_positivePPI | 0.001 | 0.001 | 0.002 | |
impute_missing_data | 0.002 | 0.001 | 0.004 | |
plotPPI | 0.139 | 0.007 | 0.185 | |
pred_ensembel | 25.423 | 0.392 | 24.998 | |
var_imp | 52.417 | 1.734 | 59.213 | |