| Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:28 -0400 (Wed, 02 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
| palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.12.0 |
| Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
| StartedAt: 2025-03-31 23:01:32 -0400 (Mon, 31 Mar 2025) |
| EndedAt: 2025-03-31 23:16:55 -0400 (Mon, 31 Mar 2025) |
| EllapsedTime: 923.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 34.375 0.578 34.955
corr_plot 33.388 0.299 33.743
FSmethod 33.020 0.365 33.387
pred_ensembel 13.168 0.146 11.954
enrichfindP 0.540 0.030 8.094
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 95.361750
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.449989
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.593969
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 97.728448
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.055267
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.697914
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 98.841025
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 96.622468
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 97.552752
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 98.740004
final value 94.052909
converged
Fitting Repeat 1
# weights: 507
initial value 97.410348
final value 94.032967
converged
Fitting Repeat 2
# weights: 507
initial value 97.915117
final value 94.032967
converged
Fitting Repeat 3
# weights: 507
initial value 97.400740
iter 10 value 93.387472
iter 20 value 91.068002
iter 30 value 91.057682
iter 30 value 91.057682
iter 30 value 91.057682
final value 91.057682
converged
Fitting Repeat 4
# weights: 507
initial value 103.398945
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 94.869078
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 99.042469
iter 10 value 93.876170
iter 20 value 88.844378
iter 30 value 86.273118
iter 40 value 85.956208
iter 50 value 85.584768
iter 60 value 85.339433
iter 70 value 85.324309
final value 85.324281
converged
Fitting Repeat 2
# weights: 103
initial value 104.492024
iter 10 value 94.053363
iter 20 value 93.521993
iter 30 value 91.924769
iter 40 value 91.888531
iter 50 value 91.867262
iter 60 value 88.587704
iter 70 value 86.035978
iter 80 value 84.374286
iter 90 value 83.414839
iter 100 value 82.970645
final value 82.970645
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.044901
iter 10 value 93.774468
iter 20 value 87.024526
iter 30 value 86.678774
iter 40 value 86.073820
iter 50 value 85.336214
iter 60 value 85.286882
final value 85.286879
converged
Fitting Repeat 4
# weights: 103
initial value 100.587588
iter 10 value 93.869066
iter 20 value 87.436942
iter 30 value 86.965025
iter 40 value 86.723517
iter 50 value 86.234963
iter 60 value 85.142730
iter 70 value 84.964093
final value 84.958015
converged
Fitting Repeat 5
# weights: 103
initial value 101.284252
iter 10 value 94.033056
iter 20 value 93.007841
iter 30 value 88.718151
iter 40 value 86.899970
iter 50 value 84.436317
iter 60 value 83.497932
final value 83.483235
converged
Fitting Repeat 1
# weights: 305
initial value 104.598439
iter 10 value 94.099327
iter 20 value 93.778767
iter 30 value 89.947521
iter 40 value 88.979662
iter 50 value 85.832038
iter 60 value 84.739793
iter 70 value 83.224742
iter 80 value 82.797319
iter 90 value 82.294830
iter 100 value 82.053130
final value 82.053130
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.631350
iter 10 value 93.074528
iter 20 value 88.853352
iter 30 value 85.607480
iter 40 value 84.313081
iter 50 value 82.416174
iter 60 value 81.742158
iter 70 value 81.346197
iter 80 value 80.990757
iter 90 value 80.898247
iter 100 value 80.836909
final value 80.836909
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.948936
iter 10 value 94.052021
iter 20 value 87.399768
iter 30 value 87.001396
iter 40 value 86.608300
iter 50 value 85.892225
iter 60 value 85.500941
iter 70 value 85.358297
iter 80 value 85.114335
iter 90 value 84.985528
iter 100 value 84.335192
final value 84.335192
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.388524
iter 10 value 94.037772
iter 20 value 86.201410
iter 30 value 85.707828
iter 40 value 85.048979
iter 50 value 84.397123
iter 60 value 81.949494
iter 70 value 81.644694
iter 80 value 81.522509
iter 90 value 81.431961
iter 100 value 81.273732
final value 81.273732
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.488470
iter 10 value 93.988634
iter 20 value 91.278206
iter 30 value 88.521277
iter 40 value 85.141817
iter 50 value 84.585827
iter 60 value 83.757565
iter 70 value 82.663563
iter 80 value 82.158998
iter 90 value 81.701111
iter 100 value 81.367328
final value 81.367328
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.754294
iter 10 value 93.735299
iter 20 value 86.509610
iter 30 value 84.781607
iter 40 value 84.236389
iter 50 value 83.181204
iter 60 value 82.574278
iter 70 value 82.450380
iter 80 value 82.226359
iter 90 value 81.861358
iter 100 value 81.413118
final value 81.413118
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.175506
iter 10 value 94.325865
iter 20 value 91.234915
iter 30 value 90.814097
iter 40 value 90.691936
iter 50 value 90.610695
iter 60 value 89.525403
iter 70 value 86.183501
iter 80 value 84.059625
iter 90 value 82.225156
iter 100 value 81.658040
final value 81.658040
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.713322
iter 10 value 93.991301
iter 20 value 88.994920
iter 30 value 85.232927
iter 40 value 83.365608
iter 50 value 82.148044
iter 60 value 81.849045
iter 70 value 81.715611
iter 80 value 81.551300
iter 90 value 81.448191
iter 100 value 81.168911
final value 81.168911
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.008360
iter 10 value 93.964557
iter 20 value 86.363486
iter 30 value 85.520262
iter 40 value 83.915619
iter 50 value 83.097227
iter 60 value 82.858416
iter 70 value 81.729019
iter 80 value 81.445647
iter 90 value 81.313263
iter 100 value 80.993825
final value 80.993825
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.382311
iter 10 value 94.073791
iter 20 value 92.585940
iter 30 value 88.120129
iter 40 value 85.871203
iter 50 value 84.583891
iter 60 value 83.585986
iter 70 value 82.554660
iter 80 value 82.088379
iter 90 value 81.818398
iter 100 value 81.635823
final value 81.635823
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.131566
iter 10 value 93.841078
iter 20 value 93.673139
iter 20 value 93.673138
iter 20 value 93.673138
final value 93.673138
converged
Fitting Repeat 2
# weights: 103
initial value 97.408680
iter 10 value 94.054707
iter 20 value 94.052926
iter 30 value 94.004372
iter 40 value 93.810289
iter 40 value 93.810289
iter 40 value 93.810289
final value 93.810289
converged
Fitting Repeat 3
# weights: 103
initial value 100.269429
final value 94.054686
converged
Fitting Repeat 4
# weights: 103
initial value 94.361581
final value 94.054853
converged
Fitting Repeat 5
# weights: 103
initial value 95.348737
final value 94.054523
converged
Fitting Repeat 1
# weights: 305
initial value 98.428972
iter 10 value 91.762410
iter 20 value 86.362311
iter 30 value 85.995929
iter 40 value 84.869402
iter 50 value 84.867405
iter 60 value 84.537767
iter 70 value 84.265276
iter 80 value 84.262844
iter 90 value 84.259361
iter 100 value 83.871380
final value 83.871380
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.638569
iter 10 value 93.905943
iter 20 value 93.673382
final value 93.672236
converged
Fitting Repeat 3
# weights: 305
initial value 102.286677
iter 10 value 94.037849
iter 20 value 94.033473
final value 94.033313
converged
Fitting Repeat 4
# weights: 305
initial value 100.163504
iter 10 value 94.057271
iter 20 value 94.043733
iter 30 value 93.202951
iter 40 value 87.147163
iter 50 value 83.898781
iter 60 value 83.344571
iter 70 value 82.577309
iter 80 value 82.403035
iter 90 value 81.540474
iter 100 value 80.354685
final value 80.354685
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.611402
iter 10 value 94.057767
iter 20 value 93.483188
final value 92.703136
converged
Fitting Repeat 1
# weights: 507
initial value 105.150646
iter 10 value 91.622025
iter 20 value 90.869408
iter 30 value 90.820865
iter 40 value 90.819787
iter 50 value 90.809710
iter 60 value 90.804089
iter 70 value 90.599557
iter 80 value 86.082154
iter 90 value 84.870961
iter 100 value 83.190585
final value 83.190585
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.059261
iter 10 value 94.007871
iter 20 value 93.266941
iter 30 value 92.721584
iter 40 value 92.671785
iter 50 value 92.670088
iter 60 value 92.103792
iter 70 value 92.081831
iter 80 value 92.039358
iter 90 value 86.694030
iter 100 value 84.017118
final value 84.017118
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.598921
iter 10 value 93.177331
iter 20 value 93.064810
iter 30 value 91.820845
iter 40 value 91.819837
iter 50 value 91.805963
iter 60 value 90.774932
iter 70 value 88.583307
iter 80 value 87.462407
iter 90 value 87.028799
iter 100 value 86.926222
final value 86.926222
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 97.127708
iter 10 value 94.041407
iter 20 value 94.030824
iter 30 value 91.907144
iter 40 value 85.516662
iter 50 value 85.199975
iter 60 value 85.105342
final value 85.105198
converged
Fitting Repeat 5
# weights: 507
initial value 101.111208
iter 10 value 93.552118
iter 20 value 93.543292
iter 30 value 93.183891
iter 40 value 90.946466
iter 50 value 85.529656
iter 60 value 85.266322
iter 70 value 84.815171
iter 80 value 84.498636
iter 90 value 83.986690
final value 83.986678
converged
Fitting Repeat 1
# weights: 103
initial value 106.684757
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.085092
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.019878
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.255582
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 103.312929
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.207110
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 99.363767
iter 10 value 90.690983
iter 20 value 89.925516
final value 89.925513
converged
Fitting Repeat 3
# weights: 305
initial value 126.861371
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 101.391956
iter 10 value 94.057231
final value 94.057229
converged
Fitting Repeat 5
# weights: 305
initial value 101.224988
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 95.429966
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 114.196562
iter 10 value 93.109891
final value 93.109890
converged
Fitting Repeat 3
# weights: 507
initial value 105.888715
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 116.597163
final value 94.025063
converged
Fitting Repeat 5
# weights: 507
initial value 96.675821
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 100.540247
iter 10 value 94.488745
iter 20 value 94.118983
iter 30 value 94.065353
iter 40 value 94.033754
iter 50 value 87.716032
iter 60 value 86.556117
iter 70 value 86.439389
iter 80 value 85.561812
iter 90 value 85.044112
final value 85.040692
converged
Fitting Repeat 2
# weights: 103
initial value 109.224099
iter 10 value 93.709806
iter 20 value 88.182929
iter 30 value 85.500587
iter 40 value 84.402831
iter 50 value 83.137935
iter 60 value 82.115467
iter 70 value 82.058709
final value 82.057348
converged
Fitting Repeat 3
# weights: 103
initial value 98.928758
iter 10 value 94.277490
iter 20 value 91.058569
iter 30 value 90.807323
iter 40 value 83.618052
iter 50 value 82.162745
iter 60 value 82.032364
iter 70 value 81.930650
iter 80 value 81.886340
final value 81.886339
converged
Fitting Repeat 4
# weights: 103
initial value 96.689671
iter 10 value 94.477245
iter 20 value 94.099596
iter 30 value 92.140185
iter 40 value 84.673012
iter 50 value 82.734251
iter 60 value 82.479723
iter 70 value 82.290386
iter 80 value 82.227000
iter 90 value 82.154751
final value 82.154750
converged
Fitting Repeat 5
# weights: 103
initial value 116.395862
iter 10 value 94.488937
iter 20 value 88.143558
iter 30 value 87.520931
iter 40 value 86.843834
iter 50 value 85.957622
iter 60 value 83.155412
iter 70 value 82.791006
iter 80 value 82.172155
iter 90 value 82.165926
iter 100 value 82.158604
final value 82.158604
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.434303
iter 10 value 94.478137
iter 20 value 93.286584
iter 30 value 92.880542
iter 40 value 86.498435
iter 50 value 83.636686
iter 60 value 83.411958
iter 70 value 82.953390
iter 80 value 82.249982
iter 90 value 81.915123
iter 100 value 81.859204
final value 81.859204
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 125.033843
iter 10 value 94.315282
iter 20 value 88.052988
iter 30 value 83.620441
iter 40 value 83.204634
iter 50 value 83.047269
iter 60 value 82.389179
iter 70 value 81.299065
iter 80 value 81.180420
iter 90 value 80.892194
iter 100 value 80.154154
final value 80.154154
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.044314
iter 10 value 94.496556
iter 20 value 93.972286
iter 30 value 93.292050
iter 40 value 87.411235
iter 50 value 82.907227
iter 60 value 82.841921
iter 70 value 82.331028
iter 80 value 81.698203
iter 90 value 80.609252
iter 100 value 79.736482
final value 79.736482
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.759711
iter 10 value 95.711393
iter 20 value 93.206880
iter 30 value 87.630013
iter 40 value 85.100211
iter 50 value 82.526097
iter 60 value 81.338462
iter 70 value 80.645202
iter 80 value 80.419086
iter 90 value 80.057317
iter 100 value 79.706323
final value 79.706323
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.876064
iter 10 value 94.380858
iter 20 value 94.043816
iter 30 value 93.219337
iter 40 value 90.103552
iter 50 value 88.965660
iter 60 value 88.365017
iter 70 value 88.057873
iter 80 value 87.670633
iter 90 value 86.007462
iter 100 value 84.625066
final value 84.625066
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.658568
iter 10 value 94.437766
iter 20 value 87.505448
iter 30 value 84.400437
iter 40 value 82.125815
iter 50 value 80.948873
iter 60 value 80.503775
iter 70 value 80.226759
iter 80 value 79.716085
iter 90 value 79.109696
iter 100 value 78.816016
final value 78.816016
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 134.125760
iter 10 value 95.159867
iter 20 value 94.886071
iter 30 value 83.863985
iter 40 value 83.302393
iter 50 value 82.302447
iter 60 value 81.151600
iter 70 value 80.406493
iter 80 value 79.456870
iter 90 value 79.047538
iter 100 value 78.829609
final value 78.829609
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.481474
iter 10 value 95.047460
iter 20 value 94.932035
iter 30 value 90.780935
iter 40 value 86.601437
iter 50 value 86.274002
iter 60 value 86.222994
iter 70 value 83.096515
iter 80 value 83.038435
iter 90 value 82.033467
iter 100 value 80.742536
final value 80.742536
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.691483
iter 10 value 94.523250
iter 20 value 89.680506
iter 30 value 87.525791
iter 40 value 86.357698
iter 50 value 85.083786
iter 60 value 84.277206
iter 70 value 83.930997
iter 80 value 82.522803
iter 90 value 80.715100
iter 100 value 80.219440
final value 80.219440
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.075134
iter 10 value 94.801943
iter 20 value 87.677662
iter 30 value 85.291820
iter 40 value 84.401008
iter 50 value 81.961906
iter 60 value 80.725806
iter 70 value 79.974532
iter 80 value 79.630831
iter 90 value 79.442136
iter 100 value 79.348167
final value 79.348167
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.952576
final value 94.486065
converged
Fitting Repeat 2
# weights: 103
initial value 107.622810
final value 94.486116
converged
Fitting Repeat 3
# weights: 103
initial value 97.239977
final value 94.485579
converged
Fitting Repeat 4
# weights: 103
initial value 95.874843
iter 10 value 94.445127
iter 20 value 94.439477
iter 30 value 86.227645
iter 40 value 86.038224
iter 50 value 85.977858
iter 60 value 85.819429
iter 70 value 84.107526
iter 80 value 84.063545
final value 84.063172
converged
Fitting Repeat 5
# weights: 103
initial value 94.953214
final value 94.485980
converged
Fitting Repeat 1
# weights: 305
initial value 97.888028
iter 10 value 92.944995
iter 20 value 91.560824
final value 91.559734
converged
Fitting Repeat 2
# weights: 305
initial value 96.315068
iter 10 value 94.475674
iter 20 value 94.470395
iter 30 value 94.367419
iter 40 value 83.765797
iter 50 value 81.337820
iter 60 value 81.170902
iter 70 value 81.159814
iter 80 value 81.158623
iter 90 value 81.157437
final value 81.157347
converged
Fitting Repeat 3
# weights: 305
initial value 107.053452
iter 10 value 94.488979
iter 20 value 94.385289
iter 30 value 91.903122
iter 40 value 91.633597
final value 91.632769
converged
Fitting Repeat 4
# weights: 305
initial value 99.466945
iter 10 value 93.614694
iter 20 value 90.602274
iter 30 value 85.259710
iter 40 value 83.791067
iter 50 value 83.445709
iter 60 value 83.282747
iter 70 value 82.429241
iter 80 value 82.019937
iter 90 value 82.019141
iter 100 value 81.933014
final value 81.933014
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.216986
iter 10 value 94.489361
iter 20 value 94.288998
final value 94.057495
converged
Fitting Repeat 1
# weights: 507
initial value 107.625677
iter 10 value 94.491429
iter 20 value 84.747160
iter 30 value 82.171875
iter 40 value 81.160029
iter 50 value 81.076307
final value 81.074151
converged
Fitting Repeat 2
# weights: 507
initial value 97.052453
iter 10 value 94.034801
iter 20 value 94.032646
iter 30 value 94.025748
iter 40 value 93.904658
iter 50 value 84.525842
final value 84.525816
converged
Fitting Repeat 3
# weights: 507
initial value 101.044706
iter 10 value 94.491861
iter 20 value 85.287744
iter 30 value 81.563541
iter 40 value 81.465848
final value 81.465505
converged
Fitting Repeat 4
# weights: 507
initial value 107.696637
iter 10 value 94.491713
iter 20 value 94.189830
iter 30 value 94.004374
iter 40 value 93.871939
iter 50 value 87.404485
iter 60 value 87.302361
iter 70 value 87.301005
iter 80 value 87.299321
iter 90 value 87.296466
iter 100 value 87.092358
final value 87.092358
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 93.034265
iter 10 value 81.632006
iter 20 value 78.662472
iter 30 value 78.478917
iter 40 value 78.306161
iter 50 value 78.023554
iter 60 value 77.856428
iter 70 value 77.850864
iter 80 value 77.848975
iter 90 value 77.844106
final value 77.844086
converged
Fitting Repeat 1
# weights: 103
initial value 96.822888
final value 94.252920
converged
Fitting Repeat 2
# weights: 103
initial value 96.912392
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.941106
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.937202
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 103.645512
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 108.825467
iter 10 value 94.245894
final value 94.229692
converged
Fitting Repeat 2
# weights: 305
initial value 98.081845
iter 10 value 85.449640
iter 20 value 85.245528
iter 30 value 85.244710
iter 40 value 85.244579
final value 85.244555
converged
Fitting Repeat 3
# weights: 305
initial value 111.428649
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.240584
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 107.136852
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 102.588484
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 124.320259
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 96.843787
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 105.185633
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 110.762224
final value 94.275362
converged
Fitting Repeat 1
# weights: 103
initial value 98.234852
iter 10 value 94.486889
iter 20 value 94.163222
iter 30 value 91.653771
iter 40 value 90.839654
iter 50 value 85.775422
iter 60 value 84.331723
iter 70 value 84.275955
iter 80 value 83.985117
iter 90 value 83.964859
iter 90 value 83.964859
iter 90 value 83.964859
final value 83.964859
converged
Fitting Repeat 2
# weights: 103
initial value 101.452060
iter 10 value 94.463735
iter 20 value 86.765371
iter 30 value 85.940664
iter 40 value 85.636325
iter 50 value 83.814539
iter 60 value 83.548606
iter 70 value 83.526036
final value 83.525857
converged
Fitting Repeat 3
# weights: 103
initial value 101.813272
iter 10 value 94.488432
iter 20 value 94.332496
iter 30 value 94.328983
iter 40 value 94.276144
iter 50 value 91.232458
iter 60 value 90.333330
iter 70 value 90.213031
iter 80 value 89.699086
iter 90 value 85.154370
iter 100 value 82.996881
final value 82.996881
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.188072
iter 10 value 94.497906
iter 20 value 94.488679
iter 30 value 94.303273
iter 40 value 94.243170
iter 50 value 94.230589
iter 60 value 86.603653
iter 70 value 85.883881
iter 80 value 85.863416
iter 90 value 85.860001
iter 100 value 85.627435
final value 85.627435
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 108.956395
iter 10 value 94.259146
iter 20 value 86.947913
iter 30 value 86.484469
iter 40 value 84.534316
iter 50 value 83.976235
iter 60 value 83.965000
iter 70 value 83.964867
final value 83.964860
converged
Fitting Repeat 1
# weights: 305
initial value 102.928421
iter 10 value 94.521228
iter 20 value 90.418918
iter 30 value 89.038645
iter 40 value 86.466144
iter 50 value 84.623202
iter 60 value 82.200011
iter 70 value 81.281305
iter 80 value 80.312429
iter 90 value 80.059081
iter 100 value 79.729940
final value 79.729940
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 123.660595
iter 10 value 94.495739
iter 20 value 92.274151
iter 30 value 84.732341
iter 40 value 84.566571
iter 50 value 83.942402
iter 60 value 82.270780
iter 70 value 82.191698
iter 80 value 81.785102
iter 90 value 81.271657
iter 100 value 80.097431
final value 80.097431
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.611084
iter 10 value 94.541691
iter 20 value 94.494281
iter 30 value 94.047350
iter 40 value 90.821012
iter 50 value 87.873469
iter 60 value 86.202392
iter 70 value 82.434993
iter 80 value 81.528807
iter 90 value 80.750247
iter 100 value 80.536630
final value 80.536630
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.906046
iter 10 value 94.395232
iter 20 value 87.417415
iter 30 value 86.822216
iter 40 value 84.558069
iter 50 value 82.704500
iter 60 value 81.922701
iter 70 value 81.784328
iter 80 value 81.637552
iter 90 value 81.566948
iter 100 value 81.505209
final value 81.505209
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.614864
iter 10 value 94.488682
iter 20 value 93.983108
iter 30 value 91.917940
iter 40 value 85.438174
iter 50 value 85.036814
iter 60 value 83.506420
iter 70 value 82.148778
iter 80 value 81.357476
iter 90 value 80.981433
iter 100 value 80.107324
final value 80.107324
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.927415
iter 10 value 93.494114
iter 20 value 90.417588
iter 30 value 89.343182
iter 40 value 84.813865
iter 50 value 84.499743
iter 60 value 84.155961
iter 70 value 83.869737
iter 80 value 83.645585
iter 90 value 83.515903
iter 100 value 82.621504
final value 82.621504
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 135.054722
iter 10 value 100.858535
iter 20 value 98.068395
iter 30 value 92.725641
iter 40 value 87.723289
iter 50 value 84.645657
iter 60 value 83.605450
iter 70 value 83.146770
iter 80 value 82.884800
iter 90 value 82.540811
iter 100 value 80.542594
final value 80.542594
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.841415
iter 10 value 95.056315
iter 20 value 92.923566
iter 30 value 84.346428
iter 40 value 84.058291
iter 50 value 83.197080
iter 60 value 82.199285
iter 70 value 81.240391
iter 80 value 80.109876
iter 90 value 79.653288
iter 100 value 79.488468
final value 79.488468
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 123.728823
iter 10 value 94.150767
iter 20 value 88.834218
iter 30 value 87.173538
iter 40 value 87.081802
iter 50 value 84.706861
iter 60 value 83.950602
iter 70 value 82.941752
iter 80 value 81.824325
iter 90 value 81.591797
iter 100 value 81.098369
final value 81.098369
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.482850
iter 10 value 94.235764
iter 20 value 92.747335
iter 30 value 90.911764
iter 40 value 83.828850
iter 50 value 82.937739
iter 60 value 82.001091
iter 70 value 81.005268
iter 80 value 79.821990
iter 90 value 79.448473
iter 100 value 79.368248
final value 79.368248
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.888049
final value 94.485838
converged
Fitting Repeat 2
# weights: 103
initial value 97.351930
final value 94.485805
converged
Fitting Repeat 3
# weights: 103
initial value 94.674192
final value 94.485724
converged
Fitting Repeat 4
# weights: 103
initial value 95.280719
iter 10 value 94.485864
iter 20 value 94.484250
final value 94.484216
converged
Fitting Repeat 5
# weights: 103
initial value 101.936553
final value 94.486245
converged
Fitting Repeat 1
# weights: 305
initial value 96.050648
iter 10 value 94.489146
iter 20 value 94.484382
final value 94.484261
converged
Fitting Repeat 2
# weights: 305
initial value 95.769971
iter 10 value 94.462045
iter 20 value 94.033953
iter 30 value 83.403276
iter 40 value 83.145063
iter 50 value 82.347867
iter 60 value 82.251755
final value 82.251720
converged
Fitting Repeat 3
# weights: 305
initial value 101.112501
iter 10 value 94.484483
iter 20 value 94.276403
iter 30 value 94.275847
iter 40 value 94.256761
iter 50 value 94.185556
iter 60 value 85.040880
iter 70 value 84.523939
iter 80 value 84.434147
iter 90 value 84.433966
iter 90 value 84.433965
iter 90 value 84.433965
final value 84.433965
converged
Fitting Repeat 4
# weights: 305
initial value 103.626638
iter 10 value 94.488946
iter 20 value 93.833013
final value 93.702085
converged
Fitting Repeat 5
# weights: 305
initial value 98.682350
iter 10 value 94.489016
iter 20 value 94.484361
iter 30 value 94.040739
iter 40 value 83.812332
iter 50 value 83.749314
iter 60 value 83.745009
iter 70 value 83.738397
iter 80 value 83.736999
iter 90 value 83.734581
iter 100 value 82.754565
final value 82.754565
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 99.359955
iter 10 value 94.283321
iter 20 value 94.228595
iter 30 value 91.516156
iter 40 value 90.293121
iter 50 value 89.609067
iter 60 value 83.226085
iter 70 value 81.685875
iter 80 value 81.549650
iter 90 value 81.321329
iter 100 value 81.302389
final value 81.302389
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.150674
iter 10 value 93.511955
iter 20 value 93.507132
iter 30 value 87.291119
iter 40 value 85.250682
iter 50 value 85.247665
iter 60 value 84.446858
final value 84.362215
converged
Fitting Repeat 3
# weights: 507
initial value 99.822308
iter 10 value 86.408791
iter 20 value 85.656485
iter 30 value 85.251073
iter 40 value 85.249775
iter 50 value 85.248449
iter 60 value 85.248010
final value 85.247941
converged
Fitting Repeat 4
# weights: 507
initial value 117.407335
iter 10 value 94.493014
iter 20 value 94.481895
iter 30 value 88.719966
iter 40 value 88.411813
iter 40 value 88.411813
iter 40 value 88.411813
final value 88.411813
converged
Fitting Repeat 5
# weights: 507
initial value 102.656022
iter 10 value 90.031825
iter 20 value 86.516513
iter 30 value 86.514869
iter 40 value 86.506663
iter 50 value 86.491159
iter 60 value 84.236831
iter 70 value 83.033337
iter 80 value 83.028906
iter 90 value 82.889452
iter 100 value 82.390248
final value 82.390248
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.698691
iter 10 value 93.773018
final value 93.772973
converged
Fitting Repeat 2
# weights: 103
initial value 95.556094
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.217429
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.698755
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 105.719804
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.188605
final value 94.046703
converged
Fitting Repeat 2
# weights: 305
initial value 96.567206
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 108.130829
iter 10 value 94.486975
iter 20 value 94.484213
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.579678
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.228444
final value 93.772974
converged
Fitting Repeat 1
# weights: 507
initial value 95.798415
final value 94.484137
converged
Fitting Repeat 2
# weights: 507
initial value 97.055336
iter 10 value 93.773994
final value 93.772973
converged
Fitting Repeat 3
# weights: 507
initial value 102.402948
iter 10 value 93.778551
iter 20 value 93.724301
iter 30 value 93.722226
final value 93.722223
converged
Fitting Repeat 4
# weights: 507
initial value 108.234652
iter 10 value 93.797481
iter 20 value 93.194713
iter 30 value 93.108075
iter 40 value 93.086119
final value 93.070833
converged
Fitting Repeat 5
# weights: 507
initial value 107.495993
iter 10 value 93.772973
iter 10 value 93.772973
iter 10 value 93.772973
final value 93.772973
converged
Fitting Repeat 1
# weights: 103
initial value 98.334893
iter 10 value 94.556903
iter 20 value 94.464794
iter 30 value 92.785039
iter 40 value 90.973082
iter 50 value 89.134402
iter 60 value 85.341435
iter 70 value 84.759076
iter 80 value 84.317768
iter 90 value 84.216229
final value 84.210353
converged
Fitting Repeat 2
# weights: 103
initial value 97.601693
iter 10 value 94.490049
iter 20 value 91.083450
iter 30 value 90.884897
iter 40 value 87.146358
iter 50 value 82.399257
iter 60 value 81.433256
iter 70 value 81.221688
iter 80 value 81.026433
iter 90 value 80.974049
iter 100 value 80.958129
final value 80.958129
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 115.085194
iter 10 value 94.449155
iter 20 value 88.936802
iter 30 value 87.250843
iter 40 value 84.772186
iter 50 value 84.608984
iter 60 value 84.606907
iter 60 value 84.606906
iter 60 value 84.606906
final value 84.606906
converged
Fitting Repeat 4
# weights: 103
initial value 97.794635
iter 10 value 93.989179
iter 20 value 93.968713
iter 30 value 93.575015
iter 40 value 87.004255
iter 50 value 84.679744
iter 60 value 83.513126
iter 70 value 82.835455
iter 80 value 82.045770
iter 90 value 81.771049
iter 100 value 80.900679
final value 80.900679
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.980458
iter 10 value 94.476432
iter 20 value 91.041222
iter 30 value 84.915417
iter 40 value 83.177618
iter 50 value 82.170544
iter 60 value 81.495728
iter 70 value 80.964818
final value 80.957415
converged
Fitting Repeat 1
# weights: 305
initial value 101.391160
iter 10 value 94.574124
iter 20 value 89.609988
iter 30 value 85.654162
iter 40 value 84.904810
iter 50 value 83.826816
iter 60 value 83.083774
iter 70 value 82.428884
iter 80 value 82.001023
iter 90 value 80.701823
iter 100 value 80.255153
final value 80.255153
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.746824
iter 10 value 94.032493
iter 20 value 93.315840
iter 30 value 86.983190
iter 40 value 83.455233
iter 50 value 81.954546
iter 60 value 81.251975
iter 70 value 80.562144
iter 80 value 79.475594
iter 90 value 79.225862
iter 100 value 79.191718
final value 79.191718
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.125646
iter 10 value 88.678920
iter 20 value 87.683287
iter 30 value 87.151679
iter 40 value 86.613330
iter 50 value 83.568480
iter 60 value 81.371735
iter 70 value 79.876597
iter 80 value 79.795967
iter 90 value 79.415496
iter 100 value 79.274696
final value 79.274696
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 124.873313
iter 10 value 94.507134
iter 20 value 92.414481
iter 30 value 89.591965
iter 40 value 85.441753
iter 50 value 85.028101
iter 60 value 84.923088
iter 70 value 84.394525
iter 80 value 82.668683
iter 90 value 80.654475
iter 100 value 79.956041
final value 79.956041
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 133.733087
iter 10 value 93.528490
iter 20 value 90.058028
iter 30 value 89.632845
iter 40 value 88.085581
iter 50 value 83.647406
iter 60 value 82.015078
iter 70 value 81.531852
iter 80 value 81.349614
iter 90 value 80.895888
iter 100 value 80.669720
final value 80.669720
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.371842
iter 10 value 92.490055
iter 20 value 89.327222
iter 30 value 86.065121
iter 40 value 85.562310
iter 50 value 84.950509
iter 60 value 82.621723
iter 70 value 82.170412
iter 80 value 81.695691
iter 90 value 81.288800
iter 100 value 81.131120
final value 81.131120
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.371043
iter 10 value 95.603842
iter 20 value 88.860678
iter 30 value 86.134484
iter 40 value 85.652335
iter 50 value 84.677610
iter 60 value 84.003541
iter 70 value 81.773051
iter 80 value 80.218188
iter 90 value 79.877103
iter 100 value 79.647591
final value 79.647591
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.871976
iter 10 value 94.068258
iter 20 value 91.548986
iter 30 value 88.199583
iter 40 value 87.382393
iter 50 value 84.824818
iter 60 value 81.782231
iter 70 value 80.563114
iter 80 value 80.168612
iter 90 value 80.058494
iter 100 value 79.821963
final value 79.821963
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.728144
iter 10 value 94.409875
iter 20 value 88.687315
iter 30 value 84.811114
iter 40 value 82.140843
iter 50 value 80.913647
iter 60 value 80.558451
iter 70 value 80.216510
iter 80 value 80.127356
iter 90 value 80.064203
iter 100 value 79.925504
final value 79.925504
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.353245
iter 10 value 94.771628
iter 20 value 90.141114
iter 30 value 88.711885
iter 40 value 87.509374
iter 50 value 86.059954
iter 60 value 83.535957
iter 70 value 82.542388
iter 80 value 82.414376
iter 90 value 81.654269
iter 100 value 81.518482
final value 81.518482
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.454367
iter 10 value 94.389158
iter 20 value 93.731457
iter 30 value 93.727386
final value 93.727359
converged
Fitting Repeat 2
# weights: 103
initial value 97.858468
final value 94.485719
converged
Fitting Repeat 3
# weights: 103
initial value 95.641446
final value 94.485595
converged
Fitting Repeat 4
# weights: 103
initial value 96.029859
final value 94.485901
converged
Fitting Repeat 5
# weights: 103
initial value 101.663165
iter 10 value 93.469160
iter 20 value 93.458330
iter 30 value 92.925526
iter 40 value 92.114126
final value 92.114118
converged
Fitting Repeat 1
# weights: 305
initial value 104.245418
iter 10 value 94.488463
iter 20 value 93.966514
final value 93.773326
converged
Fitting Repeat 2
# weights: 305
initial value 96.589730
iter 10 value 92.843383
iter 20 value 89.497432
final value 89.362492
converged
Fitting Repeat 3
# weights: 305
initial value 137.482258
iter 10 value 94.059599
iter 20 value 94.054828
iter 30 value 92.067916
iter 40 value 87.123933
iter 50 value 81.575016
iter 60 value 80.610645
iter 70 value 79.325215
iter 80 value 78.887750
iter 90 value 78.702382
iter 100 value 78.668504
final value 78.668504
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.759250
iter 10 value 94.489044
iter 20 value 94.476852
iter 30 value 92.618324
final value 92.617570
converged
Fitting Repeat 5
# weights: 305
initial value 97.666092
iter 10 value 93.573826
iter 20 value 92.868929
iter 30 value 92.859486
iter 40 value 92.858503
iter 50 value 92.857247
iter 60 value 92.772883
iter 70 value 92.770756
iter 80 value 92.770705
iter 90 value 92.770604
final value 92.770574
converged
Fitting Repeat 1
# weights: 507
initial value 102.600836
iter 10 value 94.132459
iter 20 value 93.624275
iter 30 value 93.210011
iter 40 value 92.096147
iter 50 value 91.870050
iter 60 value 91.181763
iter 70 value 91.151296
iter 80 value 91.149755
iter 90 value 91.147462
iter 100 value 90.587336
final value 90.587336
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.346415
iter 10 value 93.781830
iter 20 value 93.770116
iter 30 value 93.723802
iter 40 value 93.723517
iter 50 value 88.684789
iter 60 value 80.279687
iter 70 value 79.781325
iter 80 value 79.755901
iter 90 value 79.734610
iter 100 value 79.166897
final value 79.166897
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.988556
iter 10 value 94.491377
iter 20 value 94.452331
iter 30 value 90.766971
iter 40 value 90.646816
iter 50 value 90.547596
iter 60 value 90.329303
iter 70 value 90.324993
iter 80 value 90.322160
iter 90 value 90.123922
final value 90.123832
converged
Fitting Repeat 4
# weights: 507
initial value 106.037489
iter 10 value 92.974561
iter 20 value 85.825603
iter 30 value 85.792989
iter 40 value 84.747953
iter 50 value 83.423512
iter 60 value 83.367662
iter 70 value 83.296934
iter 80 value 83.295589
iter 90 value 83.293099
iter 100 value 83.222894
final value 83.222894
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 122.384482
iter 10 value 94.492076
iter 20 value 93.081060
iter 30 value 87.353218
iter 40 value 85.000007
iter 50 value 80.204034
iter 60 value 79.389720
iter 70 value 79.366779
iter 80 value 79.332914
iter 90 value 79.240968
iter 100 value 79.236899
final value 79.236899
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.464811
iter 10 value 94.044615
final value 94.044529
converged
Fitting Repeat 2
# weights: 103
initial value 97.998056
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.615156
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 107.151721
iter 10 value 93.768924
iter 20 value 93.714334
final value 93.714286
converged
Fitting Repeat 5
# weights: 103
initial value 99.200346
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.481329
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 102.883432
final value 94.032967
converged
Fitting Repeat 3
# weights: 305
initial value 94.150395
iter 10 value 91.026871
iter 20 value 90.770754
iter 30 value 90.764004
final value 90.763994
converged
Fitting Repeat 4
# weights: 305
initial value 96.522027
iter 10 value 93.746082
iter 20 value 83.876215
iter 30 value 82.848939
final value 82.848894
converged
Fitting Repeat 5
# weights: 305
initial value 103.935166
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 97.463471
final value 94.052906
converged
Fitting Repeat 2
# weights: 507
initial value 101.408871
iter 10 value 93.818049
iter 20 value 93.712398
iter 30 value 93.682529
iter 40 value 93.651924
iter 50 value 93.649811
iter 60 value 93.625641
iter 70 value 93.611857
final value 93.611849
converged
Fitting Repeat 3
# weights: 507
initial value 109.456537
final value 93.697143
converged
Fitting Repeat 4
# weights: 507
initial value 105.935585
iter 10 value 88.797806
final value 86.618182
converged
Fitting Repeat 5
# weights: 507
initial value 126.502930
final value 93.697143
converged
Fitting Repeat 1
# weights: 103
initial value 97.689117
iter 10 value 94.057396
iter 20 value 93.958292
iter 30 value 93.266382
iter 40 value 87.431511
iter 50 value 86.287668
iter 60 value 86.115528
iter 70 value 86.005585
iter 80 value 85.948784
iter 90 value 85.630070
iter 100 value 81.400398
final value 81.400398
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.208441
iter 10 value 94.106792
iter 20 value 94.055278
iter 30 value 93.296334
iter 40 value 93.261549
iter 50 value 93.257227
iter 60 value 93.246540
iter 70 value 91.266765
iter 80 value 84.955082
iter 90 value 83.467544
iter 100 value 82.903475
final value 82.903475
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.568710
iter 10 value 93.730253
iter 20 value 84.894112
iter 30 value 84.008849
iter 40 value 83.292275
iter 50 value 82.889094
final value 82.876460
converged
Fitting Repeat 4
# weights: 103
initial value 98.911833
iter 10 value 94.056699
iter 20 value 86.653628
iter 30 value 84.011537
iter 40 value 83.106852
iter 50 value 82.876572
final value 82.876460
converged
Fitting Repeat 5
# weights: 103
initial value 101.417963
iter 10 value 94.055306
iter 20 value 93.363905
iter 30 value 93.264337
iter 40 value 93.259850
iter 50 value 93.257498
iter 60 value 93.257293
iter 70 value 90.998997
iter 80 value 85.147951
iter 90 value 83.691418
iter 100 value 82.984030
final value 82.984030
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 115.821218
iter 10 value 94.081661
iter 20 value 92.886991
iter 30 value 87.425463
iter 40 value 84.399506
iter 50 value 83.117363
iter 60 value 82.630196
iter 70 value 82.544513
iter 80 value 82.470191
iter 90 value 82.294291
iter 100 value 81.243242
final value 81.243242
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.249158
iter 10 value 84.922475
iter 20 value 83.692472
iter 30 value 82.718477
iter 40 value 81.385268
iter 50 value 80.600583
iter 60 value 80.456163
iter 70 value 80.334594
iter 80 value 80.183387
iter 90 value 79.874367
iter 100 value 79.751936
final value 79.751936
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.381114
iter 10 value 94.030027
iter 20 value 93.401003
iter 30 value 93.184205
iter 40 value 92.230415
iter 50 value 84.616348
iter 60 value 83.091443
iter 70 value 82.638903
iter 80 value 81.312712
iter 90 value 80.623695
iter 100 value 80.430997
final value 80.430997
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.111992
iter 10 value 94.095837
iter 20 value 92.293466
iter 30 value 87.956191
iter 40 value 85.511339
iter 50 value 84.480292
iter 60 value 82.288542
iter 70 value 81.315798
iter 80 value 80.529721
iter 90 value 80.329751
iter 100 value 80.236652
final value 80.236652
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 115.042371
iter 10 value 94.150372
iter 20 value 93.986808
iter 30 value 84.352373
iter 40 value 83.627770
iter 50 value 81.744835
iter 60 value 81.346345
iter 70 value 81.283701
iter 80 value 81.243808
iter 90 value 81.057208
iter 100 value 80.926371
final value 80.926371
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.686677
iter 10 value 94.048468
iter 20 value 87.781384
iter 30 value 84.049974
iter 40 value 83.122547
iter 50 value 82.475976
iter 60 value 81.901209
iter 70 value 81.498030
iter 80 value 81.198568
iter 90 value 80.838778
iter 100 value 80.375011
final value 80.375011
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 129.208091
iter 10 value 93.945665
iter 20 value 91.090858
iter 30 value 82.901339
iter 40 value 81.245898
iter 50 value 80.729881
iter 60 value 80.328963
iter 70 value 80.124027
iter 80 value 79.844060
iter 90 value 79.444753
iter 100 value 79.378687
final value 79.378687
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.883503
iter 10 value 94.180988
iter 20 value 86.926938
iter 30 value 84.668052
iter 40 value 83.800112
iter 50 value 83.464264
iter 60 value 82.939770
iter 70 value 81.791266
iter 80 value 80.309952
iter 90 value 79.956475
iter 100 value 79.791640
final value 79.791640
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 129.542951
iter 10 value 95.466591
iter 20 value 84.823382
iter 30 value 83.131714
iter 40 value 82.035149
iter 50 value 80.955946
iter 60 value 80.332825
iter 70 value 80.131888
iter 80 value 79.941549
iter 90 value 79.719075
iter 100 value 79.550310
final value 79.550310
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.161243
iter 10 value 91.346171
iter 20 value 84.029965
iter 30 value 82.054377
iter 40 value 80.990305
iter 50 value 80.765909
iter 60 value 80.667377
iter 70 value 80.522748
iter 80 value 80.289421
iter 90 value 80.054828
iter 100 value 79.779094
final value 79.779094
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.515122
final value 94.034426
converged
Fitting Repeat 2
# weights: 103
initial value 101.740726
final value 94.054421
converged
Fitting Repeat 3
# weights: 103
initial value 98.670997
final value 94.054486
converged
Fitting Repeat 4
# weights: 103
initial value 96.257541
final value 94.054350
converged
Fitting Repeat 5
# weights: 103
initial value 94.907011
final value 94.054550
converged
Fitting Repeat 1
# weights: 305
initial value 94.491473
iter 10 value 94.055104
iter 20 value 92.983716
iter 30 value 85.746376
iter 40 value 85.592189
iter 50 value 85.378921
iter 60 value 83.468879
iter 70 value 80.576440
iter 80 value 80.157539
iter 90 value 79.554469
iter 100 value 79.339880
final value 79.339880
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 94.531410
iter 10 value 93.702151
iter 20 value 93.171324
iter 30 value 93.053878
iter 40 value 84.115434
iter 50 value 83.911742
iter 60 value 83.905390
iter 70 value 83.872358
final value 83.871927
converged
Fitting Repeat 3
# weights: 305
initial value 98.411498
iter 10 value 94.057857
iter 20 value 93.973119
iter 30 value 86.598968
iter 40 value 84.414062
iter 50 value 81.230062
iter 60 value 81.225724
final value 81.225037
converged
Fitting Repeat 4
# weights: 305
initial value 99.492962
iter 10 value 93.672103
iter 20 value 93.669914
iter 30 value 91.092673
iter 40 value 83.471794
iter 50 value 83.432469
iter 60 value 83.430825
iter 70 value 82.560051
iter 80 value 81.259129
iter 90 value 81.090199
iter 100 value 81.079324
final value 81.079324
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.147266
iter 10 value 94.058126
iter 20 value 94.052935
iter 30 value 93.193089
iter 40 value 86.100723
iter 50 value 86.034628
iter 60 value 84.916811
iter 60 value 84.916810
iter 60 value 84.916810
final value 84.916810
converged
Fitting Repeat 1
# weights: 507
initial value 99.241458
iter 10 value 93.686687
iter 20 value 93.674477
iter 30 value 93.215187
iter 40 value 92.890847
iter 50 value 91.963760
iter 60 value 84.164316
iter 70 value 81.806311
iter 80 value 81.213737
iter 90 value 81.095384
iter 100 value 81.044752
final value 81.044752
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.821443
iter 10 value 92.032245
iter 20 value 91.799909
iter 30 value 91.797011
iter 40 value 91.793994
final value 91.786807
converged
Fitting Repeat 3
# weights: 507
initial value 142.874073
iter 10 value 94.041077
iter 20 value 85.911688
iter 30 value 84.764984
iter 40 value 84.763452
iter 50 value 84.717120
iter 60 value 84.031553
iter 70 value 84.020347
iter 80 value 84.019542
iter 90 value 83.722220
iter 100 value 81.453566
final value 81.453566
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.966328
iter 10 value 94.060572
iter 20 value 87.791234
iter 30 value 83.872823
iter 40 value 83.864700
iter 50 value 83.828470
iter 60 value 83.051248
iter 70 value 80.447130
iter 80 value 79.244095
iter 90 value 78.994400
iter 100 value 78.868917
final value 78.868917
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 128.994555
iter 10 value 91.967112
iter 20 value 85.658264
iter 30 value 85.657573
iter 40 value 83.636918
iter 50 value 82.461746
iter 60 value 82.306239
iter 70 value 82.305312
iter 80 value 81.284173
final value 81.280363
converged
Fitting Repeat 1
# weights: 305
initial value 120.657455
iter 10 value 117.895501
iter 20 value 117.886826
iter 30 value 113.160967
iter 40 value 105.493539
iter 50 value 105.344839
iter 60 value 105.342538
iter 70 value 105.342205
iter 80 value 104.369492
iter 90 value 103.695140
final value 103.691754
converged
Fitting Repeat 2
# weights: 305
initial value 120.474312
iter 10 value 117.763522
iter 20 value 117.746750
iter 30 value 108.568597
iter 40 value 108.524704
iter 50 value 104.872331
iter 60 value 102.811244
final value 102.747210
converged
Fitting Repeat 3
# weights: 305
initial value 123.407314
iter 10 value 117.894463
iter 20 value 117.889478
iter 30 value 115.023678
iter 40 value 115.018635
iter 50 value 108.982918
iter 60 value 104.167813
iter 70 value 103.983731
iter 80 value 103.388054
iter 90 value 101.275506
iter 100 value 100.633426
final value 100.633426
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 134.343170
iter 10 value 117.894785
iter 20 value 117.890367
final value 117.890300
converged
Fitting Repeat 5
# weights: 305
initial value 142.573598
iter 10 value 117.102887
iter 20 value 116.937084
iter 30 value 113.881456
iter 40 value 113.682456
iter 50 value 113.676115
iter 50 value 113.676114
final value 113.676114
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Mar 31 23:07:08 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
41.670 1.350 128.802
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.020 | 0.365 | 33.387 | |
| FreqInteractors | 0.199 | 0.016 | 0.216 | |
| calculateAAC | 0.033 | 0.003 | 0.036 | |
| calculateAutocor | 0.273 | 0.020 | 0.294 | |
| calculateCTDC | 0.067 | 0.000 | 0.067 | |
| calculateCTDD | 0.475 | 0.000 | 0.475 | |
| calculateCTDT | 0.184 | 0.000 | 0.184 | |
| calculateCTriad | 0.359 | 0.008 | 0.368 | |
| calculateDC | 0.080 | 0.000 | 0.079 | |
| calculateF | 0.280 | 0.001 | 0.281 | |
| calculateKSAAP | 0.086 | 0.000 | 0.086 | |
| calculateQD_Sm | 1.496 | 0.042 | 1.538 | |
| calculateTC | 1.412 | 0.031 | 1.443 | |
| calculateTC_Sm | 0.314 | 0.001 | 0.315 | |
| corr_plot | 33.388 | 0.299 | 33.743 | |
| enrichfindP | 0.540 | 0.030 | 8.094 | |
| enrichfind_hp | 0.088 | 0.002 | 1.044 | |
| enrichplot | 0.338 | 0.000 | 0.338 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.439 | 0.005 | 3.959 | |
| getHPI | 0.001 | 0.000 | 0.000 | |
| get_negativePPI | 0.002 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.001 | 0.002 | |
| plotPPI | 0.067 | 0.003 | 0.071 | |
| pred_ensembel | 13.168 | 0.146 | 11.954 | |
| var_imp | 34.375 | 0.578 | 34.955 | |