Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:34 -0400 (Wed, 02 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-04-01 21:59:06 -0400 (Tue, 01 Apr 2025) |
EndedAt: 2025-04-01 22:04:59 -0400 (Tue, 01 Apr 2025) |
EllapsedTime: 352.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 51.831 2.299 54.351 FSmethod 52.080 2.029 54.169 var_imp 51.395 2.298 53.922 pred_ensembel 16.321 0.551 14.810 enrichfindP 0.509 0.077 7.184 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 106.406750 final value 94.448052 converged Fitting Repeat 2 # weights: 103 initial value 101.671467 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.532859 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.422538 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.260860 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.453595 iter 10 value 94.346954 final value 94.346668 converged Fitting Repeat 2 # weights: 305 initial value 100.197674 final value 94.448052 converged Fitting Repeat 3 # weights: 305 initial value 95.251659 final value 94.313817 converged Fitting Repeat 4 # weights: 305 initial value 105.915125 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 112.102179 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 112.327435 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 96.346738 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 101.096323 iter 10 value 94.467391 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 94.675825 iter 10 value 93.330717 iter 20 value 93.051064 iter 30 value 93.049983 final value 93.049968 converged Fitting Repeat 5 # weights: 507 initial value 124.627934 final value 94.313817 converged Fitting Repeat 1 # weights: 103 initial value 104.112266 iter 10 value 94.329459 iter 20 value 87.966514 iter 30 value 87.637263 iter 40 value 87.323767 iter 50 value 85.976942 iter 60 value 85.081867 iter 70 value 84.282674 iter 80 value 84.119590 iter 90 value 83.909250 iter 100 value 83.888287 final value 83.888287 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.347067 iter 10 value 94.488976 iter 20 value 92.312780 iter 30 value 87.205068 iter 40 value 84.264932 iter 50 value 83.764262 iter 60 value 83.262081 iter 70 value 83.132926 iter 80 value 82.858330 final value 82.857910 converged Fitting Repeat 3 # weights: 103 initial value 107.817303 iter 10 value 94.504900 iter 20 value 94.121476 iter 30 value 86.257231 iter 40 value 85.506818 iter 50 value 84.658061 iter 60 value 84.414441 iter 70 value 82.412036 final value 82.398409 converged Fitting Repeat 4 # weights: 103 initial value 107.690452 iter 10 value 94.446700 iter 20 value 93.478458 iter 30 value 93.221715 iter 40 value 88.948325 iter 50 value 88.359435 iter 60 value 86.936091 iter 70 value 84.260705 iter 80 value 83.462758 iter 90 value 83.347181 iter 100 value 82.971808 final value 82.971808 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 115.804984 iter 10 value 94.058901 iter 20 value 86.348208 iter 30 value 85.130721 iter 40 value 83.688786 iter 50 value 82.134613 iter 60 value 81.516276 iter 70 value 81.299419 iter 80 value 81.023780 iter 90 value 80.949356 iter 100 value 80.919823 final value 80.919823 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.970194 iter 10 value 94.476961 iter 20 value 88.972926 iter 30 value 85.530594 iter 40 value 84.955924 iter 50 value 84.651703 iter 60 value 84.531849 iter 70 value 84.417119 iter 80 value 83.078781 iter 90 value 82.578429 iter 100 value 82.253895 final value 82.253895 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.809394 iter 10 value 92.652046 iter 20 value 86.261965 iter 30 value 84.202987 iter 40 value 82.740280 iter 50 value 82.346028 iter 60 value 82.221539 iter 70 value 82.132548 iter 80 value 82.076694 iter 90 value 81.915742 iter 100 value 81.812259 final value 81.812259 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.221401 iter 10 value 93.011780 iter 20 value 85.935446 iter 30 value 85.308224 iter 40 value 84.455987 iter 50 value 84.396441 iter 60 value 83.536507 iter 70 value 82.634299 iter 80 value 82.526018 iter 90 value 82.520223 iter 100 value 82.494436 final value 82.494436 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.491289 iter 10 value 94.501269 iter 20 value 94.410475 iter 30 value 91.393388 iter 40 value 88.138961 iter 50 value 83.329641 iter 60 value 81.185918 iter 70 value 80.232495 iter 80 value 79.809571 iter 90 value 79.577745 iter 100 value 79.486565 final value 79.486565 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.397555 iter 10 value 94.267461 iter 20 value 88.400257 iter 30 value 85.728590 iter 40 value 84.113788 iter 50 value 83.341943 iter 60 value 80.681732 iter 70 value 80.072151 iter 80 value 79.955804 iter 90 value 79.765667 iter 100 value 79.736898 final value 79.736898 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.346391 iter 10 value 87.057737 iter 20 value 86.325366 iter 30 value 85.519949 iter 40 value 85.260624 iter 50 value 84.111562 iter 60 value 83.158895 iter 70 value 82.143351 iter 80 value 81.357561 iter 90 value 81.144320 iter 100 value 80.831314 final value 80.831314 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.139979 iter 10 value 95.230579 iter 20 value 86.405766 iter 30 value 82.689728 iter 40 value 81.295488 iter 50 value 80.475304 iter 60 value 80.302756 iter 70 value 80.233269 iter 80 value 80.079495 iter 90 value 79.795055 iter 100 value 79.589677 final value 79.589677 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.449205 iter 10 value 95.159507 iter 20 value 94.589719 iter 30 value 87.739622 iter 40 value 86.440274 iter 50 value 84.728960 iter 60 value 84.602002 iter 70 value 84.238997 iter 80 value 82.036405 iter 90 value 81.284223 iter 100 value 81.215552 final value 81.215552 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.598936 iter 10 value 94.135315 iter 20 value 86.751325 iter 30 value 85.813221 iter 40 value 82.781719 iter 50 value 82.538819 iter 60 value 81.931471 iter 70 value 81.656396 iter 80 value 81.503742 iter 90 value 80.898172 iter 100 value 80.459794 final value 80.459794 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.598896 iter 10 value 94.474702 iter 20 value 93.902608 iter 30 value 85.318488 iter 40 value 84.006905 iter 50 value 83.746950 iter 60 value 83.478854 iter 70 value 83.310956 iter 80 value 81.254092 iter 90 value 81.038681 iter 100 value 80.473938 final value 80.473938 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.403920 final value 94.485666 converged Fitting Repeat 2 # weights: 103 initial value 98.750944 iter 10 value 94.449789 iter 20 value 94.449113 final value 94.448076 converged Fitting Repeat 3 # weights: 103 initial value 97.576146 final value 94.468835 converged Fitting Repeat 4 # weights: 103 initial value 98.812339 final value 94.485844 converged Fitting Repeat 5 # weights: 103 initial value 94.635642 final value 94.485839 converged Fitting Repeat 1 # weights: 305 initial value 97.474967 iter 10 value 94.472274 iter 20 value 94.468086 final value 94.467662 converged Fitting Repeat 2 # weights: 305 initial value 102.915519 iter 10 value 94.487948 iter 20 value 94.482687 iter 30 value 94.448290 final value 94.448221 converged Fitting Repeat 3 # weights: 305 initial value 112.982550 iter 10 value 94.471927 iter 20 value 94.467599 final value 94.467590 converged Fitting Repeat 4 # weights: 305 initial value 95.992177 iter 10 value 94.438097 iter 20 value 94.427709 iter 30 value 94.424757 final value 94.424307 converged Fitting Repeat 5 # weights: 305 initial value 95.785475 iter 10 value 88.340974 iter 20 value 87.774907 iter 30 value 87.770843 iter 40 value 87.039032 iter 50 value 86.457335 iter 60 value 86.435989 final value 86.435986 converged Fitting Repeat 1 # weights: 507 initial value 97.418701 iter 10 value 94.488510 iter 20 value 94.135100 iter 30 value 86.477322 iter 40 value 84.406889 iter 50 value 84.264860 iter 60 value 81.648820 iter 70 value 79.090187 iter 80 value 78.906319 iter 90 value 78.904979 final value 78.904967 converged Fitting Repeat 2 # weights: 507 initial value 117.012466 iter 10 value 94.475483 iter 20 value 94.473610 iter 30 value 94.468624 iter 40 value 93.306378 iter 50 value 83.118091 final value 83.097236 converged Fitting Repeat 3 # weights: 507 initial value 96.044427 iter 10 value 94.475902 iter 20 value 94.442224 iter 30 value 94.438649 iter 40 value 94.434098 iter 50 value 90.501180 iter 60 value 86.721714 iter 70 value 86.714235 final value 86.714155 converged Fitting Repeat 4 # weights: 507 initial value 97.116150 iter 10 value 94.475782 iter 20 value 94.307865 iter 30 value 86.992271 iter 40 value 82.303582 iter 50 value 81.627134 iter 60 value 81.505167 iter 70 value 81.192213 iter 80 value 79.352361 iter 90 value 78.751723 iter 100 value 78.586445 final value 78.586445 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.780926 iter 10 value 94.485054 iter 20 value 94.478233 iter 30 value 92.549545 iter 40 value 85.648184 iter 50 value 84.418819 iter 60 value 82.708242 iter 70 value 82.418444 iter 80 value 82.416355 iter 90 value 82.414420 iter 100 value 82.055081 final value 82.055081 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.711810 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 98.445259 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.883779 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 103.782308 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.831133 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.840707 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.788104 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 98.528669 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.565597 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 111.463091 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 105.979023 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.296367 iter 10 value 93.519193 iter 20 value 93.478616 iter 30 value 93.478228 iter 30 value 93.478228 iter 30 value 93.478228 final value 93.478228 converged Fitting Repeat 3 # weights: 507 initial value 104.300329 iter 10 value 93.756214 iter 20 value 93.676377 final value 93.676191 converged Fitting Repeat 4 # weights: 507 initial value 98.332485 final value 93.671508 converged Fitting Repeat 5 # weights: 507 initial value 95.865978 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.151731 iter 10 value 93.855237 iter 20 value 89.132015 iter 30 value 87.481520 iter 40 value 86.759632 iter 50 value 83.140600 iter 60 value 81.973183 iter 70 value 81.851300 iter 80 value 81.737457 iter 90 value 81.613902 iter 100 value 81.526332 final value 81.526332 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.459907 iter 10 value 90.568987 iter 20 value 84.754345 iter 30 value 84.211284 iter 40 value 84.043009 iter 50 value 83.959676 iter 60 value 83.004404 iter 70 value 81.880410 iter 80 value 81.666135 iter 90 value 81.665466 iter 90 value 81.665466 iter 90 value 81.665466 final value 81.665466 converged Fitting Repeat 3 # weights: 103 initial value 97.826702 iter 10 value 94.109907 iter 20 value 94.054640 iter 30 value 93.713305 iter 40 value 90.983516 iter 50 value 89.648629 iter 60 value 88.079575 iter 70 value 86.555858 iter 80 value 85.455437 iter 90 value 85.188089 iter 100 value 85.010420 final value 85.010420 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.033527 iter 10 value 93.989074 iter 20 value 87.320917 iter 30 value 85.544097 iter 40 value 85.477947 iter 50 value 85.460041 iter 60 value 85.387959 iter 70 value 85.238160 iter 80 value 85.099714 iter 90 value 84.977066 iter 100 value 84.894209 final value 84.894209 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.815111 iter 10 value 94.055402 iter 20 value 90.174703 iter 30 value 87.457043 iter 40 value 86.683168 iter 50 value 86.139065 iter 60 value 84.863633 iter 70 value 84.613089 iter 80 value 84.558216 final value 84.558033 converged Fitting Repeat 1 # weights: 305 initial value 99.922213 iter 10 value 94.552826 iter 20 value 94.139475 iter 30 value 92.705749 iter 40 value 87.156628 iter 50 value 85.644775 iter 60 value 83.540965 iter 70 value 81.426216 iter 80 value 80.787749 iter 90 value 80.440880 iter 100 value 80.384139 final value 80.384139 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.571458 iter 10 value 94.051949 iter 20 value 89.428263 iter 30 value 85.248128 iter 40 value 83.926137 iter 50 value 82.180088 iter 60 value 81.856471 iter 70 value 81.501933 iter 80 value 80.304432 iter 90 value 80.194056 iter 100 value 80.138321 final value 80.138321 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.230916 iter 10 value 93.656072 iter 20 value 90.417888 iter 30 value 87.607564 iter 40 value 85.931689 iter 50 value 85.686520 iter 60 value 83.160747 iter 70 value 81.149974 iter 80 value 80.568087 iter 90 value 80.472290 iter 100 value 80.262253 final value 80.262253 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.464222 iter 10 value 90.903834 iter 20 value 85.802918 iter 30 value 85.597253 iter 40 value 85.131453 iter 50 value 83.325193 iter 60 value 81.362472 iter 70 value 81.033326 iter 80 value 80.470625 iter 90 value 80.391920 iter 100 value 80.365225 final value 80.365225 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.164781 iter 10 value 93.899628 iter 20 value 87.023311 iter 30 value 85.824934 iter 40 value 85.764390 iter 50 value 84.504023 iter 60 value 83.441012 iter 70 value 81.822886 iter 80 value 80.901257 iter 90 value 80.700004 iter 100 value 80.490560 final value 80.490560 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.416538 iter 10 value 94.122250 iter 20 value 88.676841 iter 30 value 87.599731 iter 40 value 86.470600 iter 50 value 83.826707 iter 60 value 82.378010 iter 70 value 81.963591 iter 80 value 81.696144 iter 90 value 81.412699 iter 100 value 80.868232 final value 80.868232 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.586446 iter 10 value 93.483679 iter 20 value 88.912479 iter 30 value 86.378946 iter 40 value 83.290948 iter 50 value 81.411130 iter 60 value 80.780425 iter 70 value 80.644674 iter 80 value 80.546303 iter 90 value 80.180096 iter 100 value 80.028337 final value 80.028337 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.398178 iter 10 value 93.835331 iter 20 value 86.435267 iter 30 value 85.880871 iter 40 value 83.537610 iter 50 value 82.300528 iter 60 value 81.516514 iter 70 value 80.626082 iter 80 value 80.323915 iter 90 value 80.184000 iter 100 value 80.141374 final value 80.141374 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.095986 iter 10 value 95.107604 iter 20 value 90.195459 iter 30 value 87.272438 iter 40 value 85.373444 iter 50 value 84.095940 iter 60 value 82.863213 iter 70 value 82.757749 iter 80 value 82.323947 iter 90 value 81.129550 iter 100 value 80.710446 final value 80.710446 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.780743 iter 10 value 93.988604 iter 20 value 91.568743 iter 30 value 87.213658 iter 40 value 84.024019 iter 50 value 83.341488 iter 60 value 82.478986 iter 70 value 82.359761 iter 80 value 82.243597 iter 90 value 80.849265 iter 100 value 80.676198 final value 80.676198 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.945755 final value 94.054488 converged Fitting Repeat 2 # weights: 103 initial value 100.243990 final value 94.054455 converged Fitting Repeat 3 # weights: 103 initial value 97.731350 final value 94.054456 converged Fitting Repeat 4 # weights: 103 initial value 99.588096 iter 10 value 94.054559 iter 20 value 94.015855 iter 30 value 93.838606 final value 93.838033 converged Fitting Repeat 5 # weights: 103 initial value 113.070378 final value 94.054754 converged Fitting Repeat 1 # weights: 305 initial value 116.938879 iter 10 value 94.058124 iter 20 value 94.052927 iter 30 value 86.760675 iter 40 value 84.540799 iter 50 value 80.524732 iter 60 value 79.505823 iter 70 value 79.440637 iter 80 value 78.913774 iter 90 value 78.516245 iter 100 value 78.183907 final value 78.183907 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.092735 iter 10 value 94.055466 iter 20 value 91.274103 iter 30 value 86.038653 iter 40 value 85.826817 iter 50 value 85.824489 iter 60 value 85.775817 final value 85.762432 converged Fitting Repeat 3 # weights: 305 initial value 104.305289 iter 10 value 93.769138 iter 20 value 93.486251 iter 30 value 93.484477 iter 40 value 93.465917 iter 50 value 90.038344 iter 60 value 85.807849 iter 70 value 84.746301 iter 80 value 84.562707 iter 90 value 84.427738 final value 84.427378 converged Fitting Repeat 4 # weights: 305 initial value 101.608841 iter 10 value 94.057982 iter 20 value 93.205776 iter 30 value 83.796991 iter 40 value 83.708722 iter 50 value 83.707015 iter 50 value 83.707015 iter 50 value 83.707015 final value 83.707015 converged Fitting Repeat 5 # weights: 305 initial value 96.332858 iter 10 value 90.624750 iter 20 value 90.561718 iter 30 value 90.408386 iter 40 value 90.343929 iter 50 value 90.343430 final value 90.341564 converged Fitting Repeat 1 # weights: 507 initial value 94.476888 iter 10 value 94.054319 iter 20 value 93.182354 iter 30 value 84.784684 iter 40 value 84.643052 iter 50 value 82.970718 iter 60 value 82.868630 iter 70 value 82.867264 iter 80 value 82.700435 iter 90 value 82.613617 iter 100 value 82.422480 final value 82.422480 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.444800 iter 10 value 94.061468 iter 20 value 94.009501 iter 30 value 93.733090 iter 40 value 87.019859 iter 50 value 86.927531 iter 60 value 86.926152 iter 70 value 86.926025 iter 80 value 86.198474 iter 90 value 86.155708 final value 86.155698 converged Fitting Repeat 3 # weights: 507 initial value 101.408742 iter 10 value 94.059340 iter 20 value 94.020767 iter 30 value 93.500326 iter 40 value 93.439020 final value 93.422450 converged Fitting Repeat 4 # weights: 507 initial value 95.532068 iter 10 value 94.059046 iter 20 value 94.052934 final value 94.052912 converged Fitting Repeat 5 # weights: 507 initial value 120.319398 iter 10 value 94.041949 iter 20 value 92.405189 final value 92.359476 converged Fitting Repeat 1 # weights: 103 initial value 98.869949 final value 94.466823 converged Fitting Repeat 2 # weights: 103 initial value 101.807671 final value 94.484210 converged Fitting Repeat 3 # weights: 103 initial value 109.445170 final value 94.466823 converged Fitting Repeat 4 # weights: 103 initial value 95.437668 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.780249 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.426489 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.244545 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 127.682617 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.371533 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.963331 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 130.780304 iter 10 value 94.484671 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 111.840213 final value 94.484209 converged Fitting Repeat 3 # weights: 507 initial value 99.057627 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 105.547151 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.144603 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.900211 iter 10 value 94.451289 iter 20 value 88.637531 iter 30 value 86.201006 iter 40 value 85.740101 iter 50 value 85.623794 iter 60 value 85.575430 iter 70 value 82.824315 iter 80 value 82.691243 iter 90 value 82.660745 final value 82.658100 converged Fitting Repeat 2 # weights: 103 initial value 100.936560 iter 10 value 94.455615 iter 20 value 87.334334 iter 30 value 86.494978 iter 40 value 85.769952 iter 50 value 85.615900 iter 60 value 83.429741 iter 70 value 82.773726 iter 80 value 82.678501 iter 90 value 82.658105 final value 82.658100 converged Fitting Repeat 3 # weights: 103 initial value 97.125936 iter 10 value 94.223537 iter 20 value 85.480976 iter 30 value 83.976979 iter 40 value 83.867134 iter 50 value 83.608772 iter 60 value 83.389191 iter 70 value 81.587807 iter 80 value 80.993443 iter 90 value 80.864583 iter 100 value 80.651001 final value 80.651001 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.985469 iter 10 value 94.487434 iter 20 value 94.140498 iter 30 value 86.828536 iter 40 value 85.951040 iter 50 value 84.713940 iter 60 value 83.157494 iter 70 value 82.801293 iter 80 value 82.658113 final value 82.658100 converged Fitting Repeat 5 # weights: 103 initial value 96.697669 iter 10 value 94.447796 iter 20 value 89.265906 iter 30 value 87.087740 iter 40 value 86.479341 iter 50 value 85.262799 iter 60 value 84.392019 iter 70 value 83.847352 iter 80 value 83.651967 iter 90 value 82.028436 iter 100 value 81.066497 final value 81.066497 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.226698 iter 10 value 94.533817 iter 20 value 94.248697 iter 30 value 92.170209 iter 40 value 88.778787 iter 50 value 84.542201 iter 60 value 84.270419 iter 70 value 83.657571 iter 80 value 82.617841 iter 90 value 80.995470 iter 100 value 80.343882 final value 80.343882 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.219284 iter 10 value 94.493271 iter 20 value 86.060624 iter 30 value 85.442719 iter 40 value 85.226915 iter 50 value 84.964740 iter 60 value 84.884935 iter 70 value 84.776167 iter 80 value 81.765142 iter 90 value 80.959756 iter 100 value 80.197090 final value 80.197090 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.079013 iter 10 value 94.491950 iter 20 value 93.962443 iter 30 value 85.701519 iter 40 value 83.741859 iter 50 value 83.477156 iter 60 value 82.944511 iter 70 value 81.831546 iter 80 value 79.370908 iter 90 value 79.186043 iter 100 value 79.056540 final value 79.056540 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.970709 iter 10 value 94.438293 iter 20 value 93.457749 iter 30 value 89.129318 iter 40 value 87.663493 iter 50 value 87.127712 iter 60 value 83.968129 iter 70 value 80.635277 iter 80 value 79.442237 iter 90 value 79.023535 iter 100 value 78.722830 final value 78.722830 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.985962 iter 10 value 94.558729 iter 20 value 94.325919 iter 30 value 91.340126 iter 40 value 84.322332 iter 50 value 83.257750 iter 60 value 82.968483 iter 70 value 82.874577 iter 80 value 82.280444 iter 90 value 82.123531 iter 100 value 81.702763 final value 81.702763 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.625697 iter 10 value 96.653421 iter 20 value 87.218019 iter 30 value 85.417740 iter 40 value 84.757194 iter 50 value 83.316108 iter 60 value 80.302217 iter 70 value 79.689857 iter 80 value 79.175387 iter 90 value 78.828250 iter 100 value 78.685570 final value 78.685570 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.367818 iter 10 value 99.385596 iter 20 value 94.832926 iter 30 value 86.493115 iter 40 value 85.801275 iter 50 value 83.539926 iter 60 value 83.031199 iter 70 value 82.183551 iter 80 value 81.005592 iter 90 value 79.767923 iter 100 value 79.551040 final value 79.551040 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.199243 iter 10 value 96.327552 iter 20 value 90.294553 iter 30 value 84.237944 iter 40 value 83.509306 iter 50 value 83.174671 iter 60 value 82.525741 iter 70 value 81.653864 iter 80 value 81.526571 iter 90 value 81.448769 iter 100 value 80.599056 final value 80.599056 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.938281 iter 10 value 95.813168 iter 20 value 94.256429 iter 30 value 87.472747 iter 40 value 83.522066 iter 50 value 83.167143 iter 60 value 81.217986 iter 70 value 80.456360 iter 80 value 80.397806 iter 90 value 79.659669 iter 100 value 79.361366 final value 79.361366 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.779108 iter 10 value 94.144456 iter 20 value 85.719454 iter 30 value 83.531838 iter 40 value 83.349238 iter 50 value 82.914745 iter 60 value 81.807893 iter 70 value 81.355338 iter 80 value 81.273916 iter 90 value 81.193543 iter 100 value 80.149657 final value 80.149657 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.435277 final value 94.485653 converged Fitting Repeat 2 # weights: 103 initial value 104.475228 final value 94.485797 converged Fitting Repeat 3 # weights: 103 initial value 101.049145 final value 94.485915 converged Fitting Repeat 4 # weights: 103 initial value 98.106964 iter 10 value 94.485643 final value 94.484660 converged Fitting Repeat 5 # weights: 103 initial value 112.013883 iter 10 value 94.468588 iter 20 value 94.467906 final value 94.467597 converged Fitting Repeat 1 # weights: 305 initial value 95.161652 iter 10 value 94.482754 iter 20 value 94.439085 iter 30 value 94.433115 iter 40 value 92.382153 iter 50 value 84.330918 iter 60 value 84.297289 iter 70 value 83.855534 iter 80 value 81.506520 iter 90 value 80.719016 iter 100 value 79.606877 final value 79.606877 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.458578 iter 10 value 94.489150 final value 94.484388 converged Fitting Repeat 3 # weights: 305 initial value 104.617229 iter 10 value 94.471394 iter 20 value 94.467043 iter 30 value 88.698081 iter 40 value 86.710729 iter 50 value 86.709395 iter 60 value 85.678826 iter 70 value 82.975802 iter 80 value 82.630890 iter 90 value 82.615871 iter 100 value 82.595707 final value 82.595707 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.384129 iter 10 value 94.471838 iter 20 value 94.276843 iter 30 value 87.641401 iter 40 value 82.505198 iter 50 value 82.484159 iter 60 value 82.097707 iter 70 value 82.094205 iter 80 value 82.092124 iter 90 value 82.088989 iter 90 value 82.088989 final value 82.088989 converged Fitting Repeat 5 # weights: 305 initial value 116.932358 iter 10 value 94.488647 iter 20 value 94.484568 iter 30 value 94.178306 iter 40 value 85.089466 iter 50 value 85.066869 iter 60 value 85.066179 iter 70 value 82.720755 iter 80 value 82.627600 iter 90 value 82.546726 iter 100 value 82.503573 final value 82.503573 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.920776 iter 10 value 94.318821 iter 20 value 94.068985 iter 30 value 92.112368 iter 40 value 85.412115 iter 50 value 85.170405 iter 60 value 84.784386 iter 70 value 84.771425 final value 84.771076 converged Fitting Repeat 2 # weights: 507 initial value 112.933024 iter 10 value 94.474576 iter 20 value 94.468572 iter 30 value 91.819766 iter 40 value 91.782296 iter 50 value 91.772774 iter 60 value 91.738858 iter 70 value 91.411208 iter 80 value 91.377230 iter 90 value 84.372840 iter 100 value 83.475693 final value 83.475693 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.812906 iter 10 value 94.492219 iter 20 value 94.418231 iter 30 value 91.815294 final value 91.808963 converged Fitting Repeat 4 # weights: 507 initial value 105.787145 iter 10 value 92.836611 iter 20 value 86.385559 iter 30 value 81.068003 iter 40 value 79.463650 iter 50 value 79.246718 iter 60 value 79.243729 iter 70 value 79.242416 final value 79.239718 converged Fitting Repeat 5 # weights: 507 initial value 97.655966 iter 10 value 94.475167 iter 20 value 94.256005 iter 30 value 94.207064 iter 40 value 94.206148 final value 94.206143 converged Fitting Repeat 1 # weights: 103 initial value 101.023231 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.650237 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.587411 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.697199 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.789466 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.321465 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 95.090612 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.643623 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.710557 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 111.319325 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 111.280304 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 100.450568 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 101.834201 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 110.942896 iter 10 value 91.975111 final value 91.967755 converged Fitting Repeat 5 # weights: 507 initial value 113.907231 iter 10 value 93.493107 final value 93.482424 converged Fitting Repeat 1 # weights: 103 initial value 102.727163 iter 10 value 94.485752 iter 20 value 94.110044 iter 30 value 94.088651 iter 40 value 89.748350 iter 50 value 89.315912 iter 60 value 89.312751 iter 70 value 89.312140 iter 80 value 86.766037 iter 90 value 86.519321 iter 100 value 86.356025 final value 86.356025 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 104.295808 iter 10 value 94.480449 iter 20 value 94.309413 iter 30 value 92.356058 iter 40 value 90.234092 iter 50 value 86.787170 iter 60 value 86.488554 iter 70 value 86.480387 iter 80 value 86.477956 iter 80 value 86.477955 iter 80 value 86.477955 final value 86.477955 converged Fitting Repeat 3 # weights: 103 initial value 105.874924 iter 10 value 94.488849 iter 20 value 94.315510 iter 30 value 92.999707 iter 40 value 92.187389 iter 50 value 92.051004 iter 60 value 90.824178 iter 70 value 88.843421 iter 80 value 88.194257 iter 90 value 87.391488 iter 100 value 86.438033 final value 86.438033 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 110.371948 iter 10 value 94.486876 iter 20 value 93.833836 iter 30 value 90.698867 iter 40 value 88.849905 iter 50 value 87.516002 iter 60 value 86.975399 iter 70 value 86.904522 iter 80 value 86.731598 iter 90 value 86.705407 final value 86.705380 converged Fitting Repeat 5 # weights: 103 initial value 97.513152 iter 10 value 94.370447 iter 20 value 94.119504 iter 30 value 88.799256 iter 40 value 87.159545 iter 50 value 86.883752 iter 60 value 86.729877 iter 70 value 86.705385 final value 86.705380 converged Fitting Repeat 1 # weights: 305 initial value 107.545373 iter 10 value 94.676937 iter 20 value 86.990062 iter 30 value 84.748151 iter 40 value 83.446179 iter 50 value 82.623475 iter 60 value 82.387811 iter 70 value 82.286462 iter 80 value 82.282772 iter 90 value 82.242664 iter 100 value 81.986872 final value 81.986872 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 118.876205 iter 10 value 94.641702 iter 20 value 87.242716 iter 30 value 86.319072 iter 40 value 85.773749 iter 50 value 85.281140 iter 60 value 84.230286 iter 70 value 82.583556 iter 80 value 82.225434 iter 90 value 82.099847 iter 100 value 81.932310 final value 81.932310 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.101334 iter 10 value 94.340717 iter 20 value 89.319666 iter 30 value 86.652745 iter 40 value 85.868479 iter 50 value 84.916260 iter 60 value 83.995555 iter 70 value 83.477760 iter 80 value 82.759150 iter 90 value 82.735922 iter 100 value 82.709573 final value 82.709573 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.685070 iter 10 value 94.437874 iter 20 value 93.753346 iter 30 value 89.613296 iter 40 value 85.708547 iter 50 value 83.649183 iter 60 value 82.749159 iter 70 value 82.406409 iter 80 value 82.226429 iter 90 value 82.202256 iter 100 value 82.154242 final value 82.154242 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.728066 iter 10 value 92.997156 iter 20 value 87.615444 iter 30 value 86.679520 iter 40 value 86.093657 iter 50 value 85.973255 iter 60 value 85.924270 iter 70 value 85.149974 iter 80 value 84.161797 iter 90 value 83.913657 iter 100 value 83.679221 final value 83.679221 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.231125 iter 10 value 95.118840 iter 20 value 94.261254 iter 30 value 87.276261 iter 40 value 85.011369 iter 50 value 84.028554 iter 60 value 83.468794 iter 70 value 82.425020 iter 80 value 82.032117 iter 90 value 81.745536 iter 100 value 81.531448 final value 81.531448 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.828555 iter 10 value 94.494438 iter 20 value 94.190442 iter 30 value 92.431965 iter 40 value 91.162468 iter 50 value 85.833651 iter 60 value 84.155495 iter 70 value 83.340450 iter 80 value 82.615621 iter 90 value 82.443932 iter 100 value 82.171158 final value 82.171158 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.926943 iter 10 value 94.478964 iter 20 value 87.665747 iter 30 value 86.898595 iter 40 value 86.592064 iter 50 value 85.085076 iter 60 value 83.665268 iter 70 value 83.034785 iter 80 value 82.444435 iter 90 value 82.351750 iter 100 value 82.091797 final value 82.091797 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.210302 iter 10 value 94.442497 iter 20 value 89.154200 iter 30 value 86.815233 iter 40 value 85.738341 iter 50 value 84.688682 iter 60 value 84.345742 iter 70 value 83.954493 iter 80 value 83.242293 iter 90 value 83.078154 iter 100 value 82.968315 final value 82.968315 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.254681 iter 10 value 94.229295 iter 20 value 90.338847 iter 30 value 86.897478 iter 40 value 86.178228 iter 50 value 85.716435 iter 60 value 85.024707 iter 70 value 84.883547 iter 80 value 83.440715 iter 90 value 83.135025 iter 100 value 82.705556 final value 82.705556 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.758968 final value 94.485988 converged Fitting Repeat 2 # weights: 103 initial value 96.211427 final value 94.485928 converged Fitting Repeat 3 # weights: 103 initial value 105.703969 final value 94.486013 converged Fitting Repeat 4 # weights: 103 initial value 94.814889 final value 94.485825 converged Fitting Repeat 5 # weights: 103 initial value 99.480813 final value 94.485876 converged Fitting Repeat 1 # weights: 305 initial value 118.607938 iter 10 value 94.486106 iter 20 value 94.384005 iter 30 value 94.368812 iter 40 value 94.224884 iter 50 value 94.097802 iter 60 value 94.094132 iter 70 value 92.713842 iter 80 value 92.632546 iter 90 value 92.632458 iter 100 value 92.632307 final value 92.632307 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.648716 iter 10 value 94.489141 iter 20 value 94.321335 final value 94.052738 converged Fitting Repeat 3 # weights: 305 initial value 109.527181 iter 10 value 93.813965 iter 20 value 90.082517 iter 30 value 88.857792 iter 40 value 88.829721 final value 88.828913 converged Fitting Repeat 4 # weights: 305 initial value 100.078085 iter 10 value 94.359607 iter 20 value 94.354870 iter 30 value 94.277358 iter 40 value 92.634032 iter 50 value 92.632009 final value 92.631970 converged Fitting Repeat 5 # weights: 305 initial value 96.065021 iter 10 value 94.489185 iter 20 value 94.484578 iter 30 value 94.053088 iter 30 value 94.053088 iter 30 value 94.053088 final value 94.053088 converged Fitting Repeat 1 # weights: 507 initial value 98.830072 iter 10 value 94.471963 iter 20 value 93.740723 iter 30 value 88.572598 iter 40 value 88.184908 iter 50 value 88.107232 iter 60 value 87.259446 iter 70 value 84.150201 iter 80 value 83.910789 iter 90 value 83.867038 iter 100 value 83.779337 final value 83.779337 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.509852 iter 10 value 93.708588 iter 20 value 93.707227 iter 30 value 92.516758 iter 40 value 87.749418 iter 50 value 84.600620 iter 60 value 83.923414 iter 70 value 83.243957 iter 80 value 82.720989 iter 90 value 82.309863 iter 100 value 81.904451 final value 81.904451 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.921692 iter 10 value 94.491906 iter 20 value 94.313528 iter 30 value 93.347560 iter 40 value 93.284134 iter 50 value 89.740233 iter 60 value 87.732011 iter 70 value 87.728231 final value 87.728098 converged Fitting Repeat 4 # weights: 507 initial value 96.043621 iter 10 value 94.489742 iter 20 value 94.453554 iter 30 value 94.215068 iter 40 value 94.214875 iter 50 value 94.147654 iter 60 value 88.593372 iter 70 value 87.808738 iter 80 value 86.083652 iter 90 value 84.848709 iter 100 value 81.530488 final value 81.530488 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.779500 iter 10 value 88.705877 iter 20 value 87.972489 final value 87.967828 converged Fitting Repeat 1 # weights: 103 initial value 95.923633 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.416674 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.632309 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.917827 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.045193 iter 10 value 89.575624 iter 20 value 83.178839 iter 30 value 83.152925 final value 83.152920 converged Fitting Repeat 1 # weights: 305 initial value 97.112849 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.501042 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 3 # weights: 305 initial value 102.982784 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 117.101285 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.126309 iter 10 value 93.226524 final value 93.215984 converged Fitting Repeat 1 # weights: 507 initial value 113.937351 iter 10 value 93.482435 final value 93.328261 converged Fitting Repeat 2 # weights: 507 initial value 96.972114 iter 10 value 92.775065 iter 20 value 83.168945 iter 30 value 82.694059 iter 40 value 82.643365 final value 82.643363 converged Fitting Repeat 3 # weights: 507 initial value 95.566817 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 132.211738 iter 10 value 93.907743 final value 93.903448 converged Fitting Repeat 5 # weights: 507 initial value 99.963553 iter 10 value 93.183825 final value 93.183802 converged Fitting Repeat 1 # weights: 103 initial value 99.076550 iter 10 value 93.970079 iter 20 value 93.331540 iter 30 value 93.298076 iter 40 value 92.922552 iter 50 value 86.840665 iter 60 value 85.721349 iter 70 value 85.463547 iter 80 value 85.037624 iter 90 value 83.578380 iter 100 value 83.170137 final value 83.170137 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.999884 iter 10 value 92.529667 iter 20 value 85.702126 iter 30 value 85.352197 iter 40 value 84.935006 iter 50 value 83.372133 iter 60 value 83.089825 iter 70 value 83.010305 final value 83.009674 converged Fitting Repeat 3 # weights: 103 initial value 95.886918 iter 10 value 94.061027 iter 20 value 89.645676 iter 30 value 88.375775 iter 40 value 85.312663 iter 50 value 83.450716 iter 60 value 82.969743 iter 70 value 82.873882 iter 80 value 82.706419 iter 90 value 82.662588 iter 90 value 82.662588 iter 90 value 82.662588 final value 82.662588 converged Fitting Repeat 4 # weights: 103 initial value 103.355196 iter 10 value 94.061573 iter 20 value 93.360713 iter 30 value 83.698151 iter 40 value 82.923859 iter 50 value 82.205494 iter 60 value 82.038358 final value 82.037613 converged Fitting Repeat 5 # weights: 103 initial value 102.706595 iter 10 value 93.941563 iter 20 value 88.286109 iter 30 value 87.466671 iter 40 value 86.975042 iter 50 value 86.652907 iter 60 value 83.646884 iter 70 value 83.258845 iter 80 value 83.011167 final value 83.009673 converged Fitting Repeat 1 # weights: 305 initial value 116.750026 iter 10 value 94.047831 iter 20 value 91.950410 iter 30 value 91.582116 iter 40 value 91.043045 iter 50 value 84.470486 iter 60 value 82.716847 iter 70 value 80.305315 iter 80 value 79.994890 iter 90 value 79.757158 iter 100 value 79.553637 final value 79.553637 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.001062 iter 10 value 94.055911 iter 20 value 87.952791 iter 30 value 85.464240 iter 40 value 83.873419 iter 50 value 83.262568 iter 60 value 82.875151 iter 70 value 81.290040 iter 80 value 80.071852 iter 90 value 79.956246 iter 100 value 79.795227 final value 79.795227 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 138.772658 iter 10 value 93.807372 iter 20 value 92.677843 iter 30 value 87.051346 iter 40 value 84.431627 iter 50 value 83.394437 iter 60 value 80.665404 iter 70 value 80.162922 iter 80 value 80.065988 iter 90 value 79.866641 iter 100 value 79.379659 final value 79.379659 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.887805 iter 10 value 91.185346 iter 20 value 84.586109 iter 30 value 83.920411 iter 40 value 83.376766 iter 50 value 81.641421 iter 60 value 81.169107 iter 70 value 80.050471 iter 80 value 79.610860 iter 90 value 79.360415 iter 100 value 79.310846 final value 79.310846 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.307645 iter 10 value 93.454334 iter 20 value 90.782627 iter 30 value 83.694221 iter 40 value 82.799399 iter 50 value 81.665776 iter 60 value 80.284518 iter 70 value 80.074972 iter 80 value 79.667385 iter 90 value 79.574348 iter 100 value 79.532538 final value 79.532538 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.062381 iter 10 value 94.090913 iter 20 value 85.424064 iter 30 value 83.405800 iter 40 value 83.147631 iter 50 value 80.896386 iter 60 value 80.505443 iter 70 value 79.852524 iter 80 value 79.621967 iter 90 value 79.391655 iter 100 value 79.353291 final value 79.353291 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.819973 iter 10 value 94.587727 iter 20 value 91.687240 iter 30 value 84.800027 iter 40 value 83.598436 iter 50 value 81.840350 iter 60 value 80.131715 iter 70 value 79.562580 iter 80 value 79.418300 iter 90 value 79.056969 iter 100 value 78.756922 final value 78.756922 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.178286 iter 10 value 94.971444 iter 20 value 93.441778 iter 30 value 85.352123 iter 40 value 84.236889 iter 50 value 82.591764 iter 60 value 81.952816 iter 70 value 81.821540 iter 80 value 81.300829 iter 90 value 79.764837 iter 100 value 79.243904 final value 79.243904 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.821157 iter 10 value 94.663468 iter 20 value 87.242099 iter 30 value 86.713811 iter 40 value 84.853599 iter 50 value 81.038444 iter 60 value 80.239727 iter 70 value 80.082263 iter 80 value 79.963630 iter 90 value 79.725693 iter 100 value 79.672590 final value 79.672590 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 147.752895 iter 10 value 88.634981 iter 20 value 87.493136 iter 30 value 86.985957 iter 40 value 85.149864 iter 50 value 84.361311 iter 60 value 82.911846 iter 70 value 82.002414 iter 80 value 80.351896 iter 90 value 79.842547 iter 100 value 79.339246 final value 79.339246 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.873614 final value 94.054507 converged Fitting Repeat 2 # weights: 103 initial value 96.615572 iter 10 value 94.054663 iter 20 value 94.052952 iter 30 value 93.184858 final value 93.184364 converged Fitting Repeat 3 # weights: 103 initial value 109.599797 final value 94.054429 converged Fitting Repeat 4 # weights: 103 initial value 105.388062 final value 94.054486 converged Fitting Repeat 5 # weights: 103 initial value 98.084678 final value 94.054639 converged Fitting Repeat 1 # weights: 305 initial value 97.610896 iter 10 value 93.908292 iter 20 value 93.438869 iter 30 value 89.502158 iter 40 value 89.400192 iter 50 value 89.394641 iter 60 value 89.394459 iter 70 value 89.085860 iter 80 value 85.753242 iter 90 value 85.423361 iter 100 value 83.588173 final value 83.588173 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.689009 iter 10 value 94.058284 iter 20 value 94.036761 iter 30 value 88.906142 iter 40 value 88.651276 iter 50 value 88.155879 iter 60 value 87.300388 iter 70 value 83.961730 iter 80 value 83.899906 iter 90 value 83.765995 iter 100 value 83.105404 final value 83.105404 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.166748 iter 10 value 94.058060 iter 20 value 94.032024 iter 30 value 93.328746 iter 30 value 93.328746 iter 30 value 93.328746 final value 93.328746 converged Fitting Repeat 4 # weights: 305 initial value 93.416016 iter 10 value 87.203307 iter 20 value 86.938424 iter 30 value 86.879925 iter 40 value 86.876702 iter 50 value 86.740677 iter 60 value 86.536932 final value 86.536919 converged Fitting Repeat 5 # weights: 305 initial value 100.100091 iter 10 value 94.058314 iter 20 value 93.904118 iter 30 value 93.184090 iter 30 value 93.184090 iter 30 value 93.184090 final value 93.184090 converged Fitting Repeat 1 # weights: 507 initial value 96.714438 iter 10 value 88.490133 iter 20 value 88.151146 iter 30 value 87.791916 iter 40 value 87.785830 iter 50 value 86.463552 iter 60 value 86.453348 final value 86.452334 converged Fitting Repeat 2 # weights: 507 initial value 100.646345 iter 10 value 94.060334 iter 20 value 93.361899 iter 30 value 93.087385 final value 93.087323 converged Fitting Repeat 3 # weights: 507 initial value 107.006610 iter 10 value 93.336855 iter 20 value 93.332092 iter 30 value 93.090933 iter 40 value 83.375363 iter 50 value 79.488579 iter 60 value 78.338052 iter 70 value 78.206401 iter 80 value 78.079314 iter 90 value 78.035836 iter 100 value 78.029564 final value 78.029564 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.319266 iter 10 value 93.336644 iter 20 value 93.331898 iter 30 value 93.248850 iter 40 value 91.826448 iter 50 value 88.148223 iter 60 value 87.983516 iter 70 value 87.982962 final value 87.982499 converged Fitting Repeat 5 # weights: 507 initial value 106.033836 iter 10 value 94.061185 iter 20 value 94.038736 iter 30 value 93.193045 iter 40 value 87.878148 iter 50 value 87.783709 iter 60 value 84.390196 iter 70 value 84.341328 final value 84.340903 converged Fitting Repeat 1 # weights: 305 initial value 122.674036 iter 10 value 117.834865 iter 20 value 111.916261 iter 30 value 107.548582 iter 40 value 105.708835 iter 50 value 105.194673 iter 60 value 104.857185 iter 70 value 103.201547 iter 80 value 102.338660 iter 90 value 102.038004 iter 100 value 101.632651 final value 101.632651 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 130.420829 iter 10 value 120.465538 iter 20 value 115.288842 iter 30 value 113.758935 iter 40 value 112.349445 iter 50 value 111.021457 iter 60 value 107.412015 iter 70 value 104.689075 iter 80 value 104.464792 iter 90 value 104.240945 iter 100 value 103.195561 final value 103.195561 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 140.454843 iter 10 value 121.554085 iter 20 value 118.005472 iter 30 value 113.701424 iter 40 value 109.152729 iter 50 value 108.812090 iter 60 value 106.294588 iter 70 value 104.759448 iter 80 value 102.285798 iter 90 value 101.731993 iter 100 value 101.516502 final value 101.516502 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 129.933375 iter 10 value 117.147690 iter 20 value 111.439503 iter 30 value 107.587433 iter 40 value 105.486171 iter 50 value 104.683577 iter 60 value 103.517948 iter 70 value 102.308340 iter 80 value 101.213741 iter 90 value 101.026741 iter 100 value 100.900292 final value 100.900292 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 127.140761 iter 10 value 117.629192 iter 20 value 108.894492 iter 30 value 104.989324 iter 40 value 104.253563 iter 50 value 103.694868 iter 60 value 101.952145 iter 70 value 101.095993 iter 80 value 100.904478 iter 90 value 100.811541 iter 100 value 100.800040 final value 100.800040 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 1 22:04:48 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 50.150 1.708 67.905
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 52.080 | 2.029 | 54.169 | |
FreqInteractors | 0.244 | 0.012 | 0.268 | |
calculateAAC | 0.044 | 0.008 | 0.057 | |
calculateAutocor | 0.431 | 0.091 | 0.524 | |
calculateCTDC | 0.081 | 0.008 | 0.087 | |
calculateCTDD | 0.562 | 0.028 | 0.590 | |
calculateCTDT | 0.254 | 0.013 | 0.268 | |
calculateCTriad | 0.450 | 0.040 | 0.489 | |
calculateDC | 0.095 | 0.009 | 0.103 | |
calculateF | 0.345 | 0.021 | 0.365 | |
calculateKSAAP | 0.098 | 0.010 | 0.109 | |
calculateQD_Sm | 1.491 | 0.113 | 1.610 | |
calculateTC | 1.648 | 0.130 | 1.780 | |
calculateTC_Sm | 0.320 | 0.034 | 0.358 | |
corr_plot | 51.831 | 2.299 | 54.351 | |
enrichfindP | 0.509 | 0.077 | 7.184 | |
enrichfind_hp | 0.069 | 0.016 | 0.736 | |
enrichplot | 0.379 | 0.007 | 0.386 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.087 | 0.016 | 1.077 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.001 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.074 | 0.003 | 0.077 | |
pred_ensembel | 16.321 | 0.551 | 14.810 | |
var_imp | 51.395 | 2.298 | 53.922 | |