Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-06-11 15:40 -0400 (Tue, 11 Jun 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 RC (2024-04-16 r86468) -- "Puppy Cup" | 4679 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup" | 4414 |
merida1 | macOS 12.7.4 Monterey | x86_64 | 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" | 4441 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" | 4394 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 961/2239 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.11.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.4 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.11.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz |
StartedAt: 2024-06-10 03:58:07 -0400 (Mon, 10 Jun 2024) |
EndedAt: 2024-06-10 04:05:26 -0400 (Mon, 10 Jun 2024) |
EllapsedTime: 439.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.11.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.0 RC (2024-04-16 r86468 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.2.0 GNU Fortran (GCC) 13.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.11.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 31.56 1.30 32.86 FSmethod 29.85 1.80 31.76 corr_plot 29.39 1.44 30.83 pred_ensembel 14.76 0.78 11.25 enrichfindP 0.50 0.45 14.62 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 103.451587 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.824002 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 105.563348 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.765732 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.756100 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.001496 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 115.884081 iter 10 value 94.143812 iter 20 value 94.139388 final value 94.139368 converged Fitting Repeat 3 # weights: 305 initial value 95.340135 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 125.244610 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 105.100652 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.314181 iter 10 value 94.467447 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 107.828073 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.126908 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 106.814767 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 98.727057 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.911164 iter 10 value 94.498203 iter 20 value 94.176663 iter 30 value 94.134171 iter 40 value 89.959858 iter 50 value 88.552581 iter 60 value 86.091065 iter 70 value 85.630487 iter 80 value 85.508223 iter 90 value 85.257140 iter 100 value 84.771020 final value 84.771020 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.845412 iter 10 value 94.485771 iter 20 value 89.582994 iter 30 value 86.768394 iter 40 value 84.805360 iter 50 value 84.743150 iter 60 value 84.611406 iter 70 value 84.135436 iter 80 value 83.602868 iter 90 value 83.458001 final value 83.457836 converged Fitting Repeat 3 # weights: 103 initial value 112.995741 iter 10 value 94.005866 iter 20 value 88.342020 iter 30 value 87.138890 iter 40 value 86.419704 iter 50 value 85.910587 iter 60 value 85.867739 iter 70 value 85.497879 final value 85.495439 converged Fitting Repeat 4 # weights: 103 initial value 100.055138 iter 10 value 94.487248 iter 20 value 89.559663 iter 30 value 86.864399 iter 40 value 86.236986 iter 50 value 85.804188 iter 60 value 85.775488 iter 70 value 85.662826 iter 80 value 85.516561 final value 85.495440 converged Fitting Repeat 5 # weights: 103 initial value 101.524922 iter 10 value 94.570722 iter 20 value 93.810169 iter 30 value 88.200470 iter 40 value 87.473516 iter 50 value 87.435878 iter 60 value 87.335752 iter 70 value 86.630168 final value 86.626961 converged Fitting Repeat 1 # weights: 305 initial value 103.964587 iter 10 value 94.308639 iter 20 value 91.617645 iter 30 value 89.605363 iter 40 value 88.148057 iter 50 value 85.968055 iter 60 value 84.879007 iter 70 value 84.735466 iter 80 value 84.689710 iter 90 value 84.682275 iter 100 value 84.418038 final value 84.418038 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.651787 iter 10 value 94.318792 iter 20 value 89.408496 iter 30 value 87.414821 iter 40 value 86.430273 iter 50 value 83.764601 iter 60 value 83.382542 iter 70 value 82.857145 iter 80 value 82.531207 iter 90 value 82.314764 iter 100 value 82.209582 final value 82.209582 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.483772 iter 10 value 94.813012 iter 20 value 94.403481 iter 30 value 92.231735 iter 40 value 90.897544 iter 50 value 87.989601 iter 60 value 87.514634 iter 70 value 87.331845 iter 80 value 85.562181 iter 90 value 85.012014 iter 100 value 83.956961 final value 83.956961 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.129935 iter 10 value 94.531157 iter 20 value 89.727679 iter 30 value 88.341641 iter 40 value 87.555853 iter 50 value 85.123878 iter 60 value 84.486520 iter 70 value 84.154062 iter 80 value 83.393470 iter 90 value 83.118969 iter 100 value 82.331209 final value 82.331209 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.647826 iter 10 value 94.517094 iter 20 value 94.456693 iter 30 value 91.229770 iter 40 value 88.122585 iter 50 value 87.117791 iter 60 value 86.554243 iter 70 value 86.334109 iter 80 value 85.649635 iter 90 value 84.868730 iter 100 value 84.166523 final value 84.166523 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.572962 iter 10 value 91.439208 iter 20 value 87.709139 iter 30 value 85.651760 iter 40 value 85.214908 iter 50 value 84.775633 iter 60 value 83.702988 iter 70 value 83.157816 iter 80 value 82.541326 iter 90 value 82.328524 iter 100 value 82.030062 final value 82.030062 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.945437 iter 10 value 94.440346 iter 20 value 88.702187 iter 30 value 87.141927 iter 40 value 85.138715 iter 50 value 84.403706 iter 60 value 84.181167 iter 70 value 83.653428 iter 80 value 83.068682 iter 90 value 82.323643 iter 100 value 82.245034 final value 82.245034 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.027511 iter 10 value 94.516554 iter 20 value 89.795833 iter 30 value 85.085887 iter 40 value 84.750138 iter 50 value 84.077758 iter 60 value 83.360559 iter 70 value 83.111656 iter 80 value 82.898204 iter 90 value 82.723140 iter 100 value 82.615025 final value 82.615025 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.044408 iter 10 value 95.940368 iter 20 value 94.845974 iter 30 value 94.268959 iter 40 value 93.131329 iter 50 value 87.698249 iter 60 value 85.870877 iter 70 value 85.364294 iter 80 value 85.166231 iter 90 value 85.039982 iter 100 value 84.581636 final value 84.581636 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.930089 iter 10 value 93.889693 iter 20 value 89.414552 iter 30 value 86.794488 iter 40 value 85.857290 iter 50 value 84.762868 iter 60 value 84.050824 iter 70 value 83.573172 iter 80 value 82.490336 iter 90 value 82.406583 iter 100 value 82.026784 final value 82.026784 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.677121 final value 94.485839 converged Fitting Repeat 2 # weights: 103 initial value 95.035584 iter 10 value 94.485887 iter 20 value 94.482265 iter 30 value 94.454560 iter 40 value 87.645412 iter 50 value 87.291899 iter 60 value 87.286908 final value 87.286880 converged Fitting Repeat 3 # weights: 103 initial value 97.555693 final value 94.486143 converged Fitting Repeat 4 # weights: 103 initial value 98.785489 iter 10 value 94.485880 final value 94.484432 converged Fitting Repeat 5 # weights: 103 initial value 102.175622 final value 94.485664 converged Fitting Repeat 1 # weights: 305 initial value 98.327776 iter 10 value 94.488938 iter 20 value 94.484227 iter 30 value 88.731919 iter 40 value 88.178483 iter 50 value 86.349294 iter 60 value 86.121089 iter 70 value 86.064954 iter 80 value 86.058813 final value 86.058739 converged Fitting Repeat 2 # weights: 305 initial value 94.977078 iter 10 value 94.489538 iter 20 value 94.393480 iter 30 value 85.757546 iter 40 value 85.217793 iter 50 value 85.200712 final value 85.200327 converged Fitting Repeat 3 # weights: 305 initial value 99.791136 iter 10 value 94.472139 iter 20 value 94.467860 iter 30 value 87.505136 iter 40 value 85.933267 iter 50 value 83.558276 iter 60 value 83.311687 iter 70 value 82.950678 iter 80 value 82.806901 iter 90 value 82.461146 iter 100 value 81.886547 final value 81.886547 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.767096 iter 10 value 94.192527 iter 20 value 94.107519 iter 30 value 94.097439 iter 40 value 94.096265 iter 50 value 89.873236 iter 60 value 89.756775 iter 70 value 89.756326 iter 80 value 89.753834 iter 90 value 89.742399 final value 89.742333 converged Fitting Repeat 5 # weights: 305 initial value 96.134427 iter 10 value 94.489428 iter 20 value 94.480380 iter 30 value 88.478164 iter 40 value 86.880284 final value 86.879402 converged Fitting Repeat 1 # weights: 507 initial value 97.098856 iter 10 value 94.270376 iter 20 value 94.262869 iter 30 value 94.224863 iter 40 value 91.446460 iter 50 value 86.347319 iter 60 value 85.368243 iter 70 value 83.994438 iter 80 value 83.935794 iter 90 value 83.935237 final value 83.935202 converged Fitting Repeat 2 # weights: 507 initial value 102.274620 iter 10 value 94.492246 iter 20 value 93.625683 iter 30 value 87.383300 iter 40 value 87.215148 iter 50 value 87.034038 iter 60 value 86.971368 final value 86.970489 converged Fitting Repeat 3 # weights: 507 initial value 100.404726 iter 10 value 94.492689 iter 20 value 91.699401 iter 30 value 89.216878 iter 40 value 88.806717 iter 50 value 88.051621 iter 60 value 84.727793 iter 70 value 83.239367 iter 80 value 82.911190 iter 90 value 82.820530 iter 100 value 82.738696 final value 82.738696 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.070602 iter 10 value 94.475491 iter 20 value 94.467517 iter 30 value 94.463608 iter 40 value 87.651742 iter 50 value 85.541705 iter 60 value 84.637739 iter 70 value 84.637046 iter 80 value 84.414320 iter 90 value 83.426015 iter 100 value 82.044534 final value 82.044534 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.696620 iter 10 value 94.366958 iter 20 value 94.283124 iter 30 value 93.781344 iter 40 value 90.512689 iter 50 value 88.699104 iter 60 value 88.637009 iter 70 value 88.636346 iter 80 value 88.576849 iter 90 value 85.600212 iter 100 value 85.557271 final value 85.557271 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.250538 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.046491 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.387134 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.671486 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.574637 iter 10 value 87.839048 iter 20 value 87.794740 iter 30 value 87.781739 final value 87.781417 converged Fitting Repeat 1 # weights: 305 initial value 105.731891 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.982134 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 114.010531 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.991171 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 110.234267 iter 10 value 93.540711 final value 93.540410 converged Fitting Repeat 1 # weights: 507 initial value 103.551140 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 109.376596 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 99.440281 iter 10 value 90.920786 final value 90.913016 converged Fitting Repeat 4 # weights: 507 initial value 105.320064 iter 10 value 89.610970 iter 20 value 87.424164 iter 30 value 87.057384 iter 40 value 87.047998 final value 87.047931 converged Fitting Repeat 5 # weights: 507 initial value 94.688707 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 99.105987 iter 10 value 94.486034 iter 20 value 93.936335 iter 30 value 93.901601 iter 40 value 93.892832 iter 50 value 93.878200 iter 60 value 92.426644 iter 70 value 87.253678 iter 80 value 84.701899 iter 90 value 83.676351 iter 100 value 83.119079 final value 83.119079 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.187265 iter 10 value 94.369402 iter 20 value 94.334940 iter 30 value 94.328914 iter 40 value 93.528892 iter 50 value 89.034540 iter 60 value 86.405211 iter 70 value 85.626012 iter 80 value 85.564232 iter 90 value 84.952589 iter 100 value 84.666995 final value 84.666995 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.914714 iter 10 value 94.489383 iter 20 value 94.430862 iter 30 value 93.772598 iter 40 value 91.640303 iter 50 value 87.719887 iter 60 value 86.592290 iter 70 value 86.536481 iter 80 value 86.256699 iter 90 value 85.745878 iter 100 value 85.255013 final value 85.255013 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.533623 iter 10 value 94.488866 iter 20 value 94.356065 iter 30 value 94.220969 iter 40 value 88.056199 iter 50 value 87.784654 iter 60 value 87.590791 iter 70 value 86.894340 iter 80 value 85.118385 iter 90 value 84.699386 iter 100 value 84.648409 final value 84.648409 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.683473 iter 10 value 94.398808 iter 20 value 91.822724 iter 30 value 86.949582 iter 40 value 85.495608 iter 50 value 85.229852 iter 60 value 84.880964 iter 70 value 83.401329 iter 80 value 82.839653 iter 90 value 82.762541 final value 82.762004 converged Fitting Repeat 1 # weights: 305 initial value 110.151754 iter 10 value 94.247631 iter 20 value 93.599921 iter 30 value 89.442327 iter 40 value 86.624350 iter 50 value 85.861118 iter 60 value 85.621893 iter 70 value 84.006100 iter 80 value 83.288114 iter 90 value 82.997983 iter 100 value 82.661678 final value 82.661678 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.141494 iter 10 value 93.687495 iter 20 value 85.546640 iter 30 value 84.497369 iter 40 value 84.254843 iter 50 value 83.419732 iter 60 value 83.040037 iter 70 value 82.709705 iter 80 value 82.469488 iter 90 value 82.043958 iter 100 value 81.858494 final value 81.858494 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.365486 iter 10 value 93.742725 iter 20 value 89.710114 iter 30 value 87.191453 iter 40 value 87.067626 iter 50 value 85.735547 iter 60 value 83.094945 iter 70 value 82.361372 iter 80 value 81.877367 iter 90 value 81.723855 iter 100 value 81.646442 final value 81.646442 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.271320 iter 10 value 94.550446 iter 20 value 93.165841 iter 30 value 88.487273 iter 40 value 85.912852 iter 50 value 85.093686 iter 60 value 83.108761 iter 70 value 82.490783 iter 80 value 81.758171 iter 90 value 81.627882 iter 100 value 81.603100 final value 81.603100 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.026016 iter 10 value 94.615318 iter 20 value 86.377634 iter 30 value 83.099747 iter 40 value 82.171948 iter 50 value 81.881637 iter 60 value 81.796633 iter 70 value 81.723897 iter 80 value 81.641189 iter 90 value 81.376980 iter 100 value 81.216393 final value 81.216393 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.897971 iter 10 value 94.465833 iter 20 value 86.217627 iter 30 value 85.599897 iter 40 value 83.707999 iter 50 value 83.402312 iter 60 value 82.846351 iter 70 value 82.119266 iter 80 value 81.710266 iter 90 value 81.314489 iter 100 value 81.123232 final value 81.123232 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.391608 iter 10 value 98.333411 iter 20 value 89.653016 iter 30 value 86.171371 iter 40 value 85.862204 iter 50 value 84.962490 iter 60 value 84.366414 iter 70 value 83.540097 iter 80 value 83.177451 iter 90 value 82.127232 iter 100 value 81.528601 final value 81.528601 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.493954 iter 10 value 95.004534 iter 20 value 86.181178 iter 30 value 83.999617 iter 40 value 82.630106 iter 50 value 82.471269 iter 60 value 82.161647 iter 70 value 81.748730 iter 80 value 81.174688 iter 90 value 81.071962 iter 100 value 81.031214 final value 81.031214 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.256744 iter 10 value 94.220550 iter 20 value 88.113000 iter 30 value 85.440496 iter 40 value 84.735822 iter 50 value 84.576592 iter 60 value 84.417293 iter 70 value 84.369468 iter 80 value 84.341888 iter 90 value 84.233989 iter 100 value 83.889988 final value 83.889988 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.417850 iter 10 value 94.522109 iter 20 value 90.047621 iter 30 value 89.385042 iter 40 value 86.476440 iter 50 value 85.186821 iter 60 value 84.469842 iter 70 value 83.624171 iter 80 value 83.542480 iter 90 value 82.148294 iter 100 value 81.650306 final value 81.650306 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.759373 final value 94.485963 converged Fitting Repeat 2 # weights: 103 initial value 95.500768 final value 94.486105 converged Fitting Repeat 3 # weights: 103 initial value 107.906556 iter 10 value 94.485823 iter 20 value 94.475579 iter 30 value 90.976435 final value 90.974165 converged Fitting Repeat 4 # weights: 103 initial value 116.703132 final value 94.485612 converged Fitting Repeat 5 # weights: 103 initial value 95.153029 final value 94.485943 converged Fitting Repeat 1 # weights: 305 initial value 96.054320 iter 10 value 94.489261 iter 20 value 94.484218 iter 30 value 93.638098 final value 93.637674 converged Fitting Repeat 2 # weights: 305 initial value 95.310129 iter 10 value 94.484763 iter 20 value 93.913431 iter 30 value 86.555176 iter 40 value 86.463630 iter 50 value 84.711983 iter 60 value 84.153806 final value 84.153538 converged Fitting Repeat 3 # weights: 305 initial value 98.869957 iter 10 value 94.414344 iter 20 value 94.306359 iter 30 value 94.275865 iter 40 value 94.268766 iter 50 value 93.744140 iter 60 value 93.683330 iter 70 value 93.683251 final value 93.683216 converged Fitting Repeat 4 # weights: 305 initial value 101.950360 iter 10 value 94.280587 iter 20 value 94.053081 iter 30 value 94.029878 iter 30 value 94.029878 iter 30 value 94.029878 final value 94.029878 converged Fitting Repeat 5 # weights: 305 initial value 102.998997 iter 10 value 94.489472 iter 20 value 94.473700 iter 30 value 93.639558 final value 93.639541 converged Fitting Repeat 1 # weights: 507 initial value 97.109936 iter 10 value 93.845878 iter 20 value 93.838643 iter 30 value 93.835514 iter 40 value 93.834630 iter 50 value 93.833208 iter 60 value 93.832487 iter 70 value 91.935101 iter 80 value 90.025835 iter 90 value 85.479530 iter 100 value 84.183618 final value 84.183618 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.031770 iter 10 value 94.493386 iter 20 value 94.455363 iter 30 value 91.092154 iter 40 value 91.091149 iter 50 value 86.945982 iter 60 value 86.945673 iter 70 value 86.475730 iter 80 value 86.324615 iter 90 value 84.420870 iter 100 value 83.132055 final value 83.132055 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.196105 iter 10 value 94.282848 iter 20 value 94.276411 iter 30 value 86.783889 iter 40 value 86.636507 iter 50 value 86.541835 iter 60 value 85.298671 iter 70 value 84.451388 iter 80 value 83.938579 iter 90 value 83.899980 iter 100 value 83.846754 final value 83.846754 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.980615 iter 10 value 94.284116 iter 20 value 94.277475 iter 30 value 90.685062 iter 40 value 88.364076 iter 50 value 88.342590 final value 88.342585 converged Fitting Repeat 5 # weights: 507 initial value 107.822939 iter 10 value 94.282868 iter 20 value 93.895238 iter 30 value 86.126589 iter 40 value 83.656849 iter 50 value 83.645125 iter 60 value 83.640514 iter 70 value 83.638943 iter 80 value 83.504654 iter 90 value 81.623660 iter 100 value 80.762031 final value 80.762031 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.883187 iter 10 value 93.996832 final value 93.991528 converged Fitting Repeat 2 # weights: 103 initial value 96.002238 final value 94.032967 converged Fitting Repeat 3 # weights: 103 initial value 107.494260 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.069921 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.990640 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.496250 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 100.770850 final value 94.052911 converged Fitting Repeat 3 # weights: 305 initial value 104.849465 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 114.183109 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 113.416069 final value 94.052911 converged Fitting Repeat 1 # weights: 507 initial value 98.188849 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 109.979724 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 111.417916 iter 10 value 93.567297 iter 20 value 93.451378 final value 93.451356 converged Fitting Repeat 4 # weights: 507 initial value 108.134769 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 104.734454 iter 10 value 92.211098 iter 20 value 92.184108 final value 92.182540 converged Fitting Repeat 1 # weights: 103 initial value 100.037124 iter 10 value 94.052570 iter 20 value 93.935924 iter 30 value 93.848602 iter 40 value 93.839602 iter 50 value 91.000133 iter 60 value 82.428069 iter 70 value 81.986700 iter 80 value 81.783157 iter 90 value 80.906303 iter 100 value 79.998036 final value 79.998036 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.818392 iter 10 value 88.382704 iter 20 value 83.741541 iter 30 value 83.123359 iter 40 value 81.915718 iter 50 value 81.673871 iter 60 value 81.459733 iter 70 value 81.384820 iter 80 value 81.379857 iter 90 value 81.376913 final value 81.376897 converged Fitting Repeat 3 # weights: 103 initial value 104.857606 iter 10 value 94.057131 iter 20 value 93.956565 iter 30 value 93.822840 iter 40 value 93.792845 iter 50 value 90.973865 iter 60 value 87.278651 iter 70 value 85.747425 iter 80 value 83.601148 iter 90 value 83.324194 iter 100 value 83.110941 final value 83.110941 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.354118 iter 10 value 93.904702 iter 20 value 83.758064 iter 30 value 82.638416 iter 40 value 82.418017 iter 50 value 82.060845 iter 60 value 81.920265 final value 81.920163 converged Fitting Repeat 5 # weights: 103 initial value 97.718448 iter 10 value 94.054858 iter 20 value 93.176914 iter 30 value 88.668299 iter 40 value 83.778243 iter 50 value 82.250533 iter 60 value 82.228948 iter 70 value 82.142952 iter 80 value 82.087353 iter 90 value 81.927126 final value 81.920163 converged Fitting Repeat 1 # weights: 305 initial value 112.358391 iter 10 value 93.755454 iter 20 value 88.602166 iter 30 value 84.463261 iter 40 value 83.212301 iter 50 value 82.604861 iter 60 value 81.890756 iter 70 value 81.093237 iter 80 value 79.885692 iter 90 value 78.407890 iter 100 value 77.699117 final value 77.699117 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.073096 iter 10 value 94.081941 iter 20 value 93.936377 iter 30 value 92.313448 iter 40 value 88.361509 iter 50 value 85.004650 iter 60 value 83.429324 iter 70 value 80.568756 iter 80 value 79.088196 iter 90 value 78.957352 iter 100 value 78.301555 final value 78.301555 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.464717 iter 10 value 94.284775 iter 20 value 92.242085 iter 30 value 91.633218 iter 40 value 90.388988 iter 50 value 83.847590 iter 60 value 82.287186 iter 70 value 82.104147 iter 80 value 81.669711 iter 90 value 81.266488 iter 100 value 80.963495 final value 80.963495 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.728074 iter 10 value 87.212595 iter 20 value 84.510943 iter 30 value 82.338050 iter 40 value 82.096675 iter 50 value 81.606795 iter 60 value 81.059634 iter 70 value 80.515093 iter 80 value 80.484032 iter 90 value 80.445145 iter 100 value 80.389150 final value 80.389150 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.188776 iter 10 value 94.022146 iter 20 value 92.251494 iter 30 value 91.675639 iter 40 value 91.478274 iter 50 value 91.446752 iter 60 value 82.906969 iter 70 value 81.701181 iter 80 value 81.289754 iter 90 value 80.891826 iter 100 value 80.317360 final value 80.317360 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.327199 iter 10 value 92.058687 iter 20 value 86.074656 iter 30 value 84.401846 iter 40 value 81.800889 iter 50 value 80.088101 iter 60 value 79.654675 iter 70 value 79.467174 iter 80 value 79.058949 iter 90 value 78.606581 iter 100 value 78.208640 final value 78.208640 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.238240 iter 10 value 94.094285 iter 20 value 91.066894 iter 30 value 86.935110 iter 40 value 83.785896 iter 50 value 80.022833 iter 60 value 79.048558 iter 70 value 77.943254 iter 80 value 77.815598 iter 90 value 77.652893 iter 100 value 77.541801 final value 77.541801 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.433439 iter 10 value 93.642044 iter 20 value 86.644714 iter 30 value 83.735811 iter 40 value 81.780714 iter 50 value 81.441189 iter 60 value 81.238935 iter 70 value 80.821388 iter 80 value 79.915132 iter 90 value 78.959442 iter 100 value 78.012899 final value 78.012899 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.986894 iter 10 value 90.609165 iter 20 value 81.796755 iter 30 value 80.450171 iter 40 value 79.034722 iter 50 value 78.281014 iter 60 value 78.152306 iter 70 value 78.014607 iter 80 value 77.880091 iter 90 value 77.855638 iter 100 value 77.847684 final value 77.847684 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.341074 iter 10 value 94.067991 iter 20 value 88.431463 iter 30 value 85.549626 iter 40 value 83.024829 iter 50 value 80.551656 iter 60 value 79.909465 iter 70 value 79.497764 iter 80 value 79.169144 iter 90 value 78.114796 iter 100 value 77.985766 final value 77.985766 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.423608 iter 10 value 94.054463 iter 20 value 94.028769 iter 30 value 93.805740 iter 40 value 93.798625 final value 93.792198 converged Fitting Repeat 2 # weights: 103 initial value 97.920837 final value 94.054350 converged Fitting Repeat 3 # weights: 103 initial value 98.733752 final value 93.992859 converged Fitting Repeat 4 # weights: 103 initial value 94.343506 final value 94.054523 converged Fitting Repeat 5 # weights: 103 initial value 94.685378 final value 94.054668 converged Fitting Repeat 1 # weights: 305 initial value 103.756364 iter 10 value 94.056630 iter 20 value 93.942233 iter 30 value 93.793444 iter 40 value 93.754784 iter 50 value 87.060596 iter 60 value 87.059726 iter 70 value 87.045455 iter 80 value 87.043810 iter 90 value 87.032029 iter 100 value 84.768692 final value 84.768692 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.672013 iter 10 value 94.060253 iter 20 value 93.959753 iter 30 value 87.115250 iter 40 value 87.049501 iter 50 value 86.654982 iter 60 value 86.644231 final value 86.644060 converged Fitting Repeat 3 # weights: 305 initial value 105.188891 iter 10 value 94.057437 iter 20 value 93.971097 iter 30 value 93.805518 final value 93.805451 converged Fitting Repeat 4 # weights: 305 initial value 102.110923 iter 10 value 93.994033 iter 20 value 93.972827 iter 30 value 93.967937 iter 40 value 85.751155 iter 50 value 83.419281 iter 60 value 81.722407 iter 70 value 81.559381 iter 80 value 81.557943 iter 90 value 81.557500 final value 81.557452 converged Fitting Repeat 5 # weights: 305 initial value 104.443414 iter 10 value 94.037954 iter 20 value 93.886168 iter 30 value 93.870369 iter 40 value 93.870192 iter 50 value 85.886138 iter 60 value 85.618120 iter 70 value 85.613447 iter 80 value 85.609659 iter 90 value 84.524469 iter 100 value 84.491887 final value 84.491887 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.947525 iter 10 value 94.041726 iter 20 value 94.035183 iter 30 value 93.865849 iter 40 value 91.015119 iter 50 value 81.769277 iter 60 value 81.678688 iter 70 value 81.665206 iter 80 value 81.344304 iter 90 value 81.274103 iter 100 value 81.268663 final value 81.268663 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.366852 iter 10 value 94.041799 iter 20 value 94.018482 iter 30 value 85.733317 final value 85.731091 converged Fitting Repeat 3 # weights: 507 initial value 124.545325 iter 10 value 94.060490 iter 20 value 94.053261 iter 30 value 87.204633 iter 40 value 84.431403 iter 50 value 84.061986 final value 84.060812 converged Fitting Repeat 4 # weights: 507 initial value 114.858560 iter 10 value 94.041001 iter 20 value 94.030775 iter 30 value 85.777353 iter 40 value 82.924847 iter 50 value 81.589071 iter 60 value 80.820575 iter 70 value 80.669397 iter 80 value 80.658615 final value 80.657782 converged Fitting Repeat 5 # weights: 507 initial value 103.214592 iter 10 value 94.061399 iter 20 value 93.887858 iter 30 value 85.732330 final value 85.732329 converged Fitting Repeat 1 # weights: 103 initial value 102.017110 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.535386 final value 93.582418 converged Fitting Repeat 3 # weights: 103 initial value 101.660500 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.503894 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.549544 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.274564 iter 10 value 93.615412 iter 20 value 93.554565 final value 93.554286 converged Fitting Repeat 2 # weights: 305 initial value 95.396020 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.608425 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 108.349769 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 117.387907 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 116.128902 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 115.777088 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 106.204408 iter 10 value 90.167155 iter 20 value 89.905020 iter 30 value 89.900603 final value 89.896825 converged Fitting Repeat 4 # weights: 507 initial value 98.626524 iter 10 value 87.594655 iter 20 value 86.663486 final value 86.663453 converged Fitting Repeat 5 # weights: 507 initial value 99.197376 final value 93.471096 converged Fitting Repeat 1 # weights: 103 initial value 99.486262 iter 10 value 94.055325 iter 20 value 93.696301 iter 30 value 93.683808 iter 40 value 93.582849 iter 50 value 88.077311 iter 60 value 86.760705 iter 70 value 84.071115 iter 80 value 82.972259 iter 90 value 82.454426 iter 100 value 82.373394 final value 82.373394 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 95.995594 iter 10 value 87.462726 iter 20 value 85.093619 iter 30 value 84.845077 iter 40 value 82.483856 iter 50 value 82.062153 iter 60 value 81.967882 iter 70 value 81.919346 iter 80 value 81.906747 iter 90 value 81.817000 iter 100 value 81.793114 final value 81.793114 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.669965 iter 10 value 94.056520 iter 20 value 93.769651 iter 30 value 93.696825 iter 40 value 93.689089 iter 50 value 93.688489 iter 60 value 92.581296 iter 70 value 84.741295 iter 80 value 83.512721 iter 90 value 80.969149 iter 100 value 79.674744 final value 79.674744 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.511254 iter 10 value 94.046937 iter 20 value 93.773004 iter 30 value 92.848197 iter 40 value 85.712858 iter 50 value 81.568062 iter 60 value 79.399384 iter 70 value 79.143366 iter 80 value 78.854029 iter 90 value 78.670273 iter 100 value 78.651566 final value 78.651566 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 111.626611 iter 10 value 94.053758 iter 20 value 93.694227 iter 30 value 93.633526 iter 40 value 87.052907 iter 50 value 85.635088 iter 60 value 85.497935 iter 70 value 85.459248 iter 80 value 85.259739 iter 90 value 82.627036 iter 100 value 82.430698 final value 82.430698 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 107.359815 iter 10 value 94.129976 iter 20 value 93.755915 iter 30 value 85.956045 iter 40 value 84.229769 iter 50 value 83.909378 iter 60 value 82.160638 iter 70 value 82.101693 iter 80 value 82.060461 iter 90 value 82.005592 iter 100 value 81.777623 final value 81.777623 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.298852 iter 10 value 94.105942 iter 20 value 93.732833 iter 30 value 93.537296 iter 40 value 90.652385 iter 50 value 89.677359 iter 60 value 82.182280 iter 70 value 80.529873 iter 80 value 80.464474 iter 90 value 80.096983 iter 100 value 79.494662 final value 79.494662 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.623814 iter 10 value 93.620959 iter 20 value 93.351028 iter 30 value 89.445613 iter 40 value 84.924510 iter 50 value 78.311819 iter 60 value 77.434145 iter 70 value 76.866290 iter 80 value 76.540305 iter 90 value 76.421805 iter 100 value 76.269665 final value 76.269665 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.193346 iter 10 value 94.076644 iter 20 value 83.123310 iter 30 value 80.818614 iter 40 value 79.958119 iter 50 value 79.585371 iter 60 value 79.526420 iter 70 value 79.381188 iter 80 value 77.389328 iter 90 value 76.772587 iter 100 value 76.712216 final value 76.712216 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.850369 iter 10 value 93.624509 iter 20 value 85.834438 iter 30 value 82.517485 iter 40 value 81.815839 iter 50 value 79.026650 iter 60 value 78.493738 iter 70 value 78.077883 iter 80 value 78.056649 iter 90 value 78.000500 iter 100 value 77.938434 final value 77.938434 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.761843 iter 10 value 94.556435 iter 20 value 91.160363 iter 30 value 86.063643 iter 40 value 81.705607 iter 50 value 80.573419 iter 60 value 77.842445 iter 70 value 77.104138 iter 80 value 76.881464 iter 90 value 76.671665 iter 100 value 76.621743 final value 76.621743 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.368521 iter 10 value 91.152071 iter 20 value 84.538318 iter 30 value 83.347167 iter 40 value 81.815922 iter 50 value 79.238714 iter 60 value 78.320598 iter 70 value 77.973871 iter 80 value 77.894438 iter 90 value 77.575033 iter 100 value 77.290553 final value 77.290553 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.323108 iter 10 value 94.055661 iter 20 value 84.488789 iter 30 value 82.940487 iter 40 value 81.834089 iter 50 value 81.182522 iter 60 value 78.333411 iter 70 value 77.517468 iter 80 value 77.183430 iter 90 value 77.165539 iter 100 value 77.040265 final value 77.040265 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.410908 iter 10 value 94.132478 iter 20 value 92.861987 iter 30 value 89.738940 iter 40 value 89.299417 iter 50 value 88.323878 iter 60 value 85.397258 iter 70 value 82.598533 iter 80 value 81.814062 iter 90 value 81.356505 iter 100 value 79.968688 final value 79.968688 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.221135 iter 10 value 93.743976 iter 20 value 92.921474 iter 30 value 87.488941 iter 40 value 82.972490 iter 50 value 82.037167 iter 60 value 81.261754 iter 70 value 80.403021 iter 80 value 80.038939 iter 90 value 79.462008 iter 100 value 79.336720 final value 79.336720 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.060376 final value 94.054621 converged Fitting Repeat 2 # weights: 103 initial value 96.521696 final value 94.054649 converged Fitting Repeat 3 # weights: 103 initial value 101.954512 final value 94.054412 converged Fitting Repeat 4 # weights: 103 initial value 103.495838 iter 10 value 93.580684 final value 93.580222 converged Fitting Repeat 5 # weights: 103 initial value 96.851887 iter 10 value 94.054659 iter 20 value 94.052971 final value 94.052918 converged Fitting Repeat 1 # weights: 305 initial value 101.589817 iter 10 value 94.056452 iter 20 value 93.913859 iter 30 value 86.812082 iter 40 value 78.276718 iter 50 value 77.818633 iter 60 value 77.816220 iter 70 value 77.815601 final value 77.815251 converged Fitting Repeat 2 # weights: 305 initial value 99.457748 iter 10 value 87.195129 iter 20 value 86.416933 iter 30 value 86.395671 iter 40 value 86.348966 iter 50 value 85.761009 iter 60 value 85.759292 iter 70 value 81.960871 iter 80 value 78.703563 iter 90 value 78.566465 final value 78.564689 converged Fitting Repeat 3 # weights: 305 initial value 126.261915 iter 10 value 94.057819 iter 20 value 94.052964 final value 94.052918 converged Fitting Repeat 4 # weights: 305 initial value 97.038632 iter 10 value 93.967050 iter 20 value 93.965230 iter 30 value 93.962055 iter 40 value 93.577562 iter 50 value 93.471390 final value 93.471325 converged Fitting Repeat 5 # weights: 305 initial value 100.632330 iter 10 value 93.730091 iter 20 value 93.705531 iter 30 value 93.474103 iter 40 value 93.472495 final value 93.471834 converged Fitting Repeat 1 # weights: 507 initial value 102.606055 iter 10 value 91.560019 iter 20 value 91.179455 iter 30 value 90.583801 iter 40 value 90.246635 iter 50 value 90.234344 iter 60 value 90.233044 iter 70 value 89.465063 iter 80 value 89.438116 iter 90 value 89.437557 iter 100 value 89.433293 final value 89.433293 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.170544 iter 10 value 93.813063 iter 20 value 91.551249 iter 30 value 84.098139 iter 40 value 83.403381 iter 50 value 82.782711 iter 60 value 82.782022 iter 70 value 82.779477 iter 80 value 82.600983 iter 90 value 82.221558 iter 100 value 82.217832 final value 82.217832 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.237882 iter 10 value 94.040539 iter 20 value 94.036190 iter 30 value 94.034942 iter 40 value 93.747172 iter 50 value 88.114127 iter 60 value 79.164004 iter 70 value 79.022952 iter 80 value 79.013714 iter 90 value 78.988590 iter 100 value 78.983542 final value 78.983542 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.454020 iter 10 value 93.585949 iter 20 value 93.552435 iter 30 value 92.501539 iter 40 value 87.572235 iter 50 value 87.320619 iter 60 value 83.696278 iter 70 value 82.720498 iter 80 value 82.661538 iter 90 value 82.660901 iter 90 value 82.660901 final value 82.660901 converged Fitting Repeat 5 # weights: 507 initial value 108.563418 iter 10 value 94.061684 iter 20 value 89.643266 iter 30 value 88.606534 iter 40 value 88.594786 final value 88.594456 converged Fitting Repeat 1 # weights: 103 initial value 96.461351 iter 10 value 91.979920 iter 20 value 88.328704 final value 88.328109 converged Fitting Repeat 2 # weights: 103 initial value 95.499157 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.281166 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.159195 iter 10 value 92.339219 final value 92.227947 converged Fitting Repeat 5 # weights: 103 initial value 102.989854 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 120.613832 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.101795 final value 94.448052 converged Fitting Repeat 3 # weights: 305 initial value 98.360990 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.571351 iter 10 value 91.018227 iter 20 value 83.346095 iter 30 value 82.376230 iter 40 value 81.882282 iter 50 value 81.771729 final value 81.771726 converged Fitting Repeat 5 # weights: 305 initial value 127.168227 final value 94.275363 converged Fitting Repeat 1 # weights: 507 initial value 96.522183 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 109.016070 final value 94.275362 converged Fitting Repeat 3 # weights: 507 initial value 99.837994 iter 10 value 94.242146 iter 10 value 94.242146 iter 10 value 94.242146 final value 94.242146 converged Fitting Repeat 4 # weights: 507 initial value 95.963507 iter 10 value 89.994460 iter 20 value 87.815996 iter 30 value 87.810964 iter 40 value 87.810093 iter 40 value 87.810093 iter 40 value 87.810093 final value 87.810093 converged Fitting Repeat 5 # weights: 507 initial value 103.485850 iter 10 value 93.464316 iter 20 value 92.298564 iter 30 value 92.065592 final value 92.064568 converged Fitting Repeat 1 # weights: 103 initial value 108.822179 iter 10 value 94.420918 iter 20 value 90.389368 iter 30 value 86.214018 iter 40 value 86.107789 iter 50 value 85.992452 iter 60 value 85.593712 iter 70 value 84.122767 iter 80 value 83.018781 iter 90 value 82.599641 iter 100 value 81.679746 final value 81.679746 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.039985 iter 10 value 90.065760 iter 20 value 84.748264 iter 30 value 81.845642 iter 40 value 81.416865 iter 50 value 81.403065 final value 81.402977 converged Fitting Repeat 3 # weights: 103 initial value 96.998600 iter 10 value 94.494101 iter 20 value 94.035120 iter 30 value 93.715538 iter 40 value 93.606219 iter 50 value 93.310805 iter 60 value 86.686219 iter 70 value 85.779720 iter 80 value 85.150533 iter 90 value 84.971002 iter 100 value 84.957830 final value 84.957830 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.328611 iter 10 value 94.362545 iter 20 value 94.339379 iter 30 value 94.298526 iter 40 value 91.402476 iter 50 value 90.163421 iter 60 value 89.137859 iter 70 value 89.123968 iter 80 value 89.121081 final value 89.121006 converged Fitting Repeat 5 # weights: 103 initial value 111.645626 iter 10 value 94.489532 iter 20 value 94.365998 iter 30 value 87.678810 iter 40 value 85.196130 iter 50 value 85.083835 iter 60 value 84.311903 iter 70 value 84.148462 final value 84.148232 converged Fitting Repeat 1 # weights: 305 initial value 103.148949 iter 10 value 94.444741 iter 20 value 86.414458 iter 30 value 85.105882 iter 40 value 84.938153 iter 50 value 84.333140 iter 60 value 83.736127 iter 70 value 82.317371 iter 80 value 81.403416 iter 90 value 80.846793 iter 100 value 80.668510 final value 80.668510 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.518247 iter 10 value 94.691870 iter 20 value 87.292011 iter 30 value 86.336468 iter 40 value 84.682769 iter 50 value 82.707537 iter 60 value 81.525349 iter 70 value 81.041414 iter 80 value 80.869029 iter 90 value 80.668422 iter 100 value 80.602199 final value 80.602199 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.498054 iter 10 value 94.539786 iter 20 value 94.487376 iter 30 value 94.009883 iter 40 value 86.279510 iter 50 value 83.539991 iter 60 value 83.111337 iter 70 value 82.096761 iter 80 value 81.360454 iter 90 value 81.160532 iter 100 value 80.407850 final value 80.407850 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.281015 iter 10 value 94.515348 iter 20 value 93.692958 iter 30 value 87.110139 iter 40 value 83.819153 iter 50 value 82.920803 iter 60 value 81.819367 iter 70 value 80.952580 iter 80 value 80.592648 iter 90 value 80.483656 iter 100 value 80.331164 final value 80.331164 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.398354 iter 10 value 94.605085 iter 20 value 94.387755 iter 30 value 89.800724 iter 40 value 84.056646 iter 50 value 82.870099 iter 60 value 82.076844 iter 70 value 81.326303 iter 80 value 81.167894 iter 90 value 80.785025 iter 100 value 80.605937 final value 80.605937 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.928047 iter 10 value 94.395755 iter 20 value 92.361870 iter 30 value 85.509098 iter 40 value 84.220357 iter 50 value 81.787063 iter 60 value 81.335576 iter 70 value 80.596086 iter 80 value 80.273010 iter 90 value 80.138399 iter 100 value 80.034232 final value 80.034232 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.880144 iter 10 value 94.639786 iter 20 value 94.468778 iter 30 value 94.191427 iter 40 value 91.516981 iter 50 value 86.408755 iter 60 value 85.551407 iter 70 value 84.811964 iter 80 value 83.796277 iter 90 value 81.627501 iter 100 value 80.902619 final value 80.902619 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.256566 iter 10 value 94.855975 iter 20 value 93.245383 iter 30 value 88.042266 iter 40 value 87.194005 iter 50 value 84.213748 iter 60 value 82.492313 iter 70 value 82.293314 iter 80 value 82.139270 iter 90 value 81.636615 iter 100 value 81.209670 final value 81.209670 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.326796 iter 10 value 94.915613 iter 20 value 89.874720 iter 30 value 84.925967 iter 40 value 82.955928 iter 50 value 82.632638 iter 60 value 81.907159 iter 70 value 81.073659 iter 80 value 80.695515 iter 90 value 80.665346 iter 100 value 80.596908 final value 80.596908 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.993712 iter 10 value 95.021642 iter 20 value 93.600147 iter 30 value 90.105268 iter 40 value 83.612806 iter 50 value 81.380113 iter 60 value 80.986007 iter 70 value 80.894831 iter 80 value 80.744540 iter 90 value 80.282922 iter 100 value 80.071876 final value 80.071876 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.292159 final value 94.485897 converged Fitting Repeat 2 # weights: 103 initial value 101.433657 iter 10 value 94.276902 iter 20 value 94.246971 iter 30 value 92.231458 iter 40 value 92.231146 iter 50 value 92.230722 iter 60 value 92.230635 iter 70 value 92.229999 iter 80 value 85.178988 iter 90 value 83.553999 iter 100 value 83.543862 final value 83.543862 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.752853 final value 94.486610 converged Fitting Repeat 4 # weights: 103 initial value 114.014798 final value 94.485919 converged Fitting Repeat 5 # weights: 103 initial value 104.152685 iter 10 value 94.485906 iter 20 value 94.096555 iter 30 value 90.682659 final value 90.682307 converged Fitting Repeat 1 # weights: 305 initial value 103.324140 iter 10 value 92.234092 iter 20 value 92.231743 iter 30 value 84.298392 iter 40 value 84.055880 iter 50 value 84.017785 final value 84.017629 converged Fitting Repeat 2 # weights: 305 initial value 98.918728 iter 10 value 94.280219 iter 20 value 94.261636 iter 30 value 93.541401 iter 40 value 89.245510 iter 50 value 88.713149 iter 60 value 88.650988 iter 70 value 86.412465 iter 80 value 82.834065 iter 90 value 82.534660 iter 100 value 82.312441 final value 82.312441 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.358771 iter 10 value 94.280339 iter 20 value 94.278990 iter 30 value 94.275253 iter 40 value 94.160394 iter 50 value 94.159572 final value 94.159570 converged Fitting Repeat 4 # weights: 305 initial value 98.693823 iter 10 value 94.168175 iter 20 value 87.711031 iter 30 value 83.699862 iter 40 value 82.237303 iter 50 value 82.182247 iter 60 value 82.181365 iter 70 value 82.179709 final value 82.179346 converged Fitting Repeat 5 # weights: 305 initial value 108.901797 iter 10 value 94.488959 iter 20 value 94.428097 iter 30 value 85.089513 iter 40 value 85.044359 final value 85.043802 converged Fitting Repeat 1 # weights: 507 initial value 112.813018 iter 10 value 94.491802 iter 20 value 94.347405 iter 30 value 88.514104 iter 40 value 88.476639 iter 50 value 88.476324 iter 60 value 88.475927 final value 88.475651 converged Fitting Repeat 2 # weights: 507 initial value 102.987306 iter 10 value 94.238204 iter 20 value 94.232917 iter 30 value 85.448718 iter 40 value 84.720375 iter 50 value 84.331613 iter 60 value 84.240385 iter 70 value 84.010667 iter 80 value 83.941954 iter 90 value 83.445605 iter 100 value 83.442456 final value 83.442456 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.567847 iter 10 value 94.487655 iter 20 value 94.484969 final value 94.484642 converged Fitting Repeat 4 # weights: 507 initial value 96.746741 iter 10 value 88.139128 iter 20 value 84.299226 iter 30 value 83.813036 iter 40 value 83.755215 iter 50 value 83.748969 iter 60 value 83.746403 iter 70 value 83.741043 iter 80 value 83.571894 iter 90 value 83.488464 final value 83.488279 converged Fitting Repeat 5 # weights: 507 initial value 109.370524 iter 10 value 94.314246 iter 20 value 94.289982 iter 30 value 89.781490 iter 40 value 89.513666 iter 50 value 89.512975 final value 89.512967 converged Fitting Repeat 1 # weights: 507 initial value 153.080866 iter 10 value 118.544926 iter 20 value 110.170941 iter 30 value 105.719847 iter 40 value 104.966145 iter 50 value 104.203884 iter 60 value 103.755868 iter 70 value 103.355072 iter 80 value 103.143792 iter 90 value 102.761919 iter 100 value 102.087249 final value 102.087249 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.156335 iter 10 value 117.977567 iter 20 value 109.073813 iter 30 value 107.881457 iter 40 value 105.275970 iter 50 value 102.846052 iter 60 value 102.151660 iter 70 value 101.368453 iter 80 value 101.036610 iter 90 value 100.844045 iter 100 value 100.712548 final value 100.712548 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.562204 iter 10 value 118.632839 iter 20 value 117.567758 iter 30 value 116.112140 iter 40 value 109.904318 iter 50 value 104.894427 iter 60 value 102.741853 iter 70 value 101.978147 iter 80 value 101.551227 iter 90 value 101.272813 iter 100 value 100.990599 final value 100.990599 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.167185 iter 10 value 117.922598 iter 20 value 108.260195 iter 30 value 105.405321 iter 40 value 104.484158 iter 50 value 102.958283 iter 60 value 101.708325 iter 70 value 101.351823 iter 80 value 101.120144 iter 90 value 100.936515 iter 100 value 100.707143 final value 100.707143 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 131.784016 iter 10 value 124.145985 iter 20 value 110.242432 iter 30 value 108.758857 iter 40 value 106.665642 iter 50 value 104.971782 iter 60 value 104.234968 iter 70 value 102.770836 iter 80 value 101.515311 iter 90 value 100.971549 iter 100 value 100.807918 final value 100.807918 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Jun 10 04:05:10 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 47.06 7.62 56.15
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 29.85 | 1.80 | 31.76 | |
FreqInteractors | 0.28 | 0.00 | 0.31 | |
calculateAAC | 0.04 | 0.00 | 0.05 | |
calculateAutocor | 0.43 | 0.09 | 0.51 | |
calculateCTDC | 0.07 | 0.00 | 0.08 | |
calculateCTDD | 0.61 | 0.03 | 0.64 | |
calculateCTDT | 0.28 | 0.02 | 0.30 | |
calculateCTriad | 0.36 | 0.03 | 0.39 | |
calculateDC | 0.10 | 0.01 | 0.11 | |
calculateF | 0.29 | 0.02 | 0.31 | |
calculateKSAAP | 0.08 | 0.03 | 0.11 | |
calculateQD_Sm | 1.97 | 0.14 | 2.11 | |
calculateTC | 1.38 | 0.11 | 1.48 | |
calculateTC_Sm | 0.26 | 0.03 | 0.30 | |
corr_plot | 29.39 | 1.44 | 30.83 | |
enrichfindP | 0.50 | 0.45 | 14.62 | |
enrichfind_hp | 0.10 | 0.00 | 1.24 | |
enrichplot | 0.45 | 0.02 | 0.47 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.05 | 0.00 | 2.40 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.11 | 0.00 | 0.14 | |
pred_ensembel | 14.76 | 0.78 | 11.25 | |
var_imp | 31.56 | 1.30 | 32.86 | |