Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-10 12:12 -0400 (Mon, 10 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4670
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4355
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4446
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4439
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4306
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-06 13:00 -0500 (Thu, 06 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on taishan

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-03-07 05:56:23 -0000 (Fri, 07 Mar 2025)
EndedAt: 2025-03-07 05:56:46 -0000 (Fri, 07 Mar 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.4.3/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R-4.4.3/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R-4.4.3/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R-4.4.3/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R-4.4.3/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -shared -L/home/biocbuild/R/R-4.4.3/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R-4.4.3/lib -lR
installing to /home/biocbuild/R/R-4.4.3/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.302   0.052   0.340 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471272 25.2    1024767 54.8   643448 34.4
Vcells 871507  6.7    8388608 64.0  2046282 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Mar  7 05:56:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Mar  7 05:56:41 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x294e32e0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Mar  7 05:56:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Mar  7 05:56:41 2025"
> 
> ColMode(tmp2)
<pointer: 0x294e32e0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]        [,2]       [,3]       [,4]
[1,] 100.04958395 -0.78044361  0.5508599 -0.2036448
[2,]   0.07275247 -1.14759022 -0.7940953 -0.5423214
[3,]  -0.99202809  1.41718019  1.8993822  0.4435012
[4,]  -2.35888410 -0.09340828 -1.2858479  0.2342896
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]       [,2]      [,3]      [,4]
[1,] 100.04958395 0.78044361 0.5508599 0.2036448
[2,]   0.07275247 1.14759022 0.7940953 0.5423214
[3,]   0.99202809 1.41718019 1.8993822 0.4435012
[4,]   2.35888410 0.09340828 1.2858479 0.2342896
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0024789 0.8834272 0.7421994 0.4512702
[2,]  0.2697267 1.0712564 0.8911202 0.7364248
[3,]  0.9960061 1.1904538 1.3781808 0.6659589
[4,]  1.5358659 0.3056277 1.1339523 0.4840348
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.07437 34.61472 32.97285 29.71635
[2,]  27.77002 36.86015 34.70530 32.90657
[3,]  35.95209 38.32172 40.68119 32.10309
[4,]  42.71754 28.14969 37.62537 30.07464
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x2afb8060>
> exp(tmp5)
<pointer: 0x2afb8060>
> log(tmp5,2)
<pointer: 0x2afb8060>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 468.4628
> Min(tmp5)
[1] 53.64659
> mean(tmp5)
[1] 72.95409
> Sum(tmp5)
[1] 14590.82
> Var(tmp5)
[1] 864.1668
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.32231 68.81933 73.88359 68.82717 73.00436 71.91753 68.94158 68.54536
 [9] 70.57339 74.70629
> rowSums(tmp5)
 [1] 1806.446 1376.387 1477.672 1376.543 1460.087 1438.351 1378.832 1370.907
 [9] 1411.468 1494.126
> rowVars(tmp5)
 [1] 8007.22519   53.94074   43.61648  100.64544   69.67366   65.65865
 [7]   84.03693   49.79901   81.82847   92.48196
> rowSd(tmp5)
 [1] 89.483100  7.344436  6.604277 10.032220  8.347075  8.103003  9.167166
 [8]  7.056841  9.045909  9.616754
> rowMax(tmp5)
 [1] 468.46282  80.84437  88.30770  88.91097  87.82733  87.22074  87.39175
 [8]  81.76880  87.48348  89.45871
> rowMin(tmp5)
 [1] 56.02255 57.79966 61.16906 56.21288 59.39758 60.88213 56.42213 53.86265
 [9] 53.64659 58.18221
> 
> colMeans(tmp5)
 [1] 108.48897  71.44351  73.06724  71.26451  78.39432  67.04629  74.87303
 [8]  70.19532  68.59964  71.55872  71.16205  66.06408  67.43416  69.32511
[15]  71.38013  74.16514  74.34807  69.05685  69.87033  71.34437
> colSums(tmp5)
 [1] 1084.8897  714.4351  730.6724  712.6451  783.9432  670.4629  748.7303
 [8]  701.9532  685.9964  715.5872  711.6205  660.6408  674.3416  693.2511
[15]  713.8013  741.6514  743.4807  690.5685  698.7033  713.4437
> colVars(tmp5)
 [1] 16100.29139    83.46986    91.55047    37.94515    66.52861   116.91968
 [7]    22.80760    87.38084    83.16928    99.42075    34.92727    38.05798
[13]    52.79251   121.90156    82.39113    33.14430   120.64233    68.39231
[19]    47.48175    60.61199
> colSd(tmp5)
 [1] 126.886924   9.136184   9.568201   6.159964   8.156507  10.812940
 [7]   4.775730   9.347772   9.119719   9.970995   5.909930   6.169115
[13]   7.265845  11.040904   9.076956   5.757109  10.983730   8.269964
[19]   6.890700   7.785370
> colMax(tmp5)
 [1] 468.46282  87.48348  89.45871  80.47340  87.43412  87.22074  83.49786
 [8]  85.92943  88.30770  85.81617  82.08555  74.18947  80.30961  84.54430
[15]  87.48225  81.76880  87.82733  86.16281  80.20936  83.88383
> colMin(tmp5)
 [1] 56.82518 58.58988 60.57104 61.85068 67.53969 56.21288 70.05864 59.26282
 [9] 59.46171 53.86265 60.45223 57.08727 53.64659 56.02255 60.16472 63.58237
[17] 57.68112 56.42213 57.39851 59.74622
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.32231       NA 73.88359 68.82717 73.00436 71.91753 68.94158 68.54536
 [9] 70.57339 74.70629
> rowSums(tmp5)
 [1] 1806.446       NA 1477.672 1376.543 1460.087 1438.351 1378.832 1370.907
 [9] 1411.468 1494.126
> rowVars(tmp5)
 [1] 8007.22519   49.95863   43.61648  100.64544   69.67366   65.65865
 [7]   84.03693   49.79901   81.82847   92.48196
> rowSd(tmp5)
 [1] 89.483100  7.068142  6.604277 10.032220  8.347075  8.103003  9.167166
 [8]  7.056841  9.045909  9.616754
> rowMax(tmp5)
 [1] 468.46282        NA  88.30770  88.91097  87.82733  87.22074  87.39175
 [8]  81.76880  87.48348  89.45871
> rowMin(tmp5)
 [1] 56.02255       NA 61.16906 56.21288 59.39758 60.88213 56.42213 53.86265
 [9] 53.64659 58.18221
> 
> colMeans(tmp5)
 [1] 108.48897  71.44351  73.06724  71.26451  78.39432        NA  74.87303
 [8]  70.19532  68.59964  71.55872  71.16205  66.06408  67.43416  69.32511
[15]  71.38013  74.16514  74.34807  69.05685  69.87033  71.34437
> colSums(tmp5)
 [1] 1084.8897  714.4351  730.6724  712.6451  783.9432        NA  748.7303
 [8]  701.9532  685.9964  715.5872  711.6205  660.6408  674.3416  693.2511
[15]  713.8013  741.6514  743.4807  690.5685  698.7033  713.4437
> colVars(tmp5)
 [1] 16100.29139    83.46986    91.55047    37.94515    66.52861          NA
 [7]    22.80760    87.38084    83.16928    99.42075    34.92727    38.05798
[13]    52.79251   121.90156    82.39113    33.14430   120.64233    68.39231
[19]    47.48175    60.61199
> colSd(tmp5)
 [1] 126.886924   9.136184   9.568201   6.159964   8.156507         NA
 [7]   4.775730   9.347772   9.119719   9.970995   5.909930   6.169115
[13]   7.265845  11.040904   9.076956   5.757109  10.983730   8.269964
[19]   6.890700   7.785370
> colMax(tmp5)
 [1] 468.46282  87.48348  89.45871  80.47340  87.43412        NA  83.49786
 [8]  85.92943  88.30770  85.81617  82.08555  74.18947  80.30961  84.54430
[15]  87.48225  81.76880  87.82733  86.16281  80.20936  83.88383
> colMin(tmp5)
 [1] 56.82518 58.58988 60.57104 61.85068 67.53969       NA 70.05864 59.26282
 [9] 59.46171 53.86265 60.45223 57.08727 53.64659 56.02255 60.16472 63.58237
[17] 57.68112 56.42213 57.39851 59.74622
> 
> Max(tmp5,na.rm=TRUE)
[1] 468.4628
> Min(tmp5,na.rm=TRUE)
[1] 53.64659
> mean(tmp5,na.rm=TRUE)
[1] 73.02976
> Sum(tmp5,na.rm=TRUE)
[1] 14532.92
> Var(tmp5,na.rm=TRUE)
[1] 867.3803
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.32231 69.39429 73.88359 68.82717 73.00436 71.91753 68.94158 68.54536
 [9] 70.57339 74.70629
> rowSums(tmp5,na.rm=TRUE)
 [1] 1806.446 1318.492 1477.672 1376.543 1460.087 1438.351 1378.832 1370.907
 [9] 1411.468 1494.126
> rowVars(tmp5,na.rm=TRUE)
 [1] 8007.22519   49.95863   43.61648  100.64544   69.67366   65.65865
 [7]   84.03693   49.79901   81.82847   92.48196
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.483100  7.068142  6.604277 10.032220  8.347075  8.103003  9.167166
 [8]  7.056841  9.045909  9.616754
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.46282  80.84437  88.30770  88.91097  87.82733  87.22074  87.39175
 [8]  81.76880  87.48348  89.45871
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.02255 57.79966 61.16906 56.21288 59.39758 60.88213 56.42213 53.86265
 [9] 53.64659 58.18221
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.48897  71.44351  73.06724  71.26451  78.39432  68.06309  74.87303
 [8]  70.19532  68.59964  71.55872  71.16205  66.06408  67.43416  69.32511
[15]  71.38013  74.16514  74.34807  69.05685  69.87033  71.34437
> colSums(tmp5,na.rm=TRUE)
 [1] 1084.8897  714.4351  730.6724  712.6451  783.9432  612.5678  748.7303
 [8]  701.9532  685.9964  715.5872  711.6205  660.6408  674.3416  693.2511
[15]  713.8013  741.6514  743.4807  690.5685  698.7033  713.4437
> colVars(tmp5,na.rm=TRUE)
 [1] 16100.29139    83.46986    91.55047    37.94515    66.52861   119.90361
 [7]    22.80760    87.38084    83.16928    99.42075    34.92727    38.05798
[13]    52.79251   121.90156    82.39113    33.14430   120.64233    68.39231
[19]    47.48175    60.61199
> colSd(tmp5,na.rm=TRUE)
 [1] 126.886924   9.136184   9.568201   6.159964   8.156507  10.950051
 [7]   4.775730   9.347772   9.119719   9.970995   5.909930   6.169115
[13]   7.265845  11.040904   9.076956   5.757109  10.983730   8.269964
[19]   6.890700   7.785370
> colMax(tmp5,na.rm=TRUE)
 [1] 468.46282  87.48348  89.45871  80.47340  87.43412  87.22074  83.49786
 [8]  85.92943  88.30770  85.81617  82.08555  74.18947  80.30961  84.54430
[15]  87.48225  81.76880  87.82733  86.16281  80.20936  83.88383
> colMin(tmp5,na.rm=TRUE)
 [1] 56.82518 58.58988 60.57104 61.85068 67.53969 56.21288 70.05864 59.26282
 [9] 59.46171 53.86265 60.45223 57.08727 53.64659 56.02255 60.16472 63.58237
[17] 57.68112 56.42213 57.39851 59.74622
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.32231      NaN 73.88359 68.82717 73.00436 71.91753 68.94158 68.54536
 [9] 70.57339 74.70629
> rowSums(tmp5,na.rm=TRUE)
 [1] 1806.446    0.000 1477.672 1376.543 1460.087 1438.351 1378.832 1370.907
 [9] 1411.468 1494.126
> rowVars(tmp5,na.rm=TRUE)
 [1] 8007.22519         NA   43.61648  100.64544   69.67366   65.65865
 [7]   84.03693   49.79901   81.82847   92.48196
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.483100        NA  6.604277 10.032220  8.347075  8.103003  9.167166
 [8]  7.056841  9.045909  9.616754
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.46282        NA  88.30770  88.91097  87.82733  87.22074  87.39175
 [8]  81.76880  87.48348  89.45871
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.02255       NA 61.16906 56.21288 59.39758 60.88213 56.42213 53.86265
 [9] 53.64659 58.18221
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.12112  70.85728  73.15977  71.57271  79.11333       NaN  75.22434
 [8]  70.81868  69.61497  72.48441  71.02864  66.64388  67.24659  68.07680
[15]  71.93131  73.42300  73.93855  68.64537  69.67331  72.63305
> colSums(tmp5,na.rm=TRUE)
 [1] 1027.0901  637.7155  658.4379  644.1544  712.0200    0.0000  677.0191
 [8]  637.3681  626.5347  652.3596  639.2578  599.7949  605.2193  612.6912
[15]  647.3818  660.8070  665.4469  617.8084  627.0598  653.6975
> colVars(tmp5,na.rm=TRUE)
 [1] 17755.96574    90.03734   102.89797    41.61969    69.02860          NA
 [7]    24.27010    93.93197    81.96796   102.20828    39.09295    39.03331
[13]    58.99577   119.60846    89.27228    31.09121   133.83594    75.03661
[19]    52.98029    49.50557
> colSd(tmp5,na.rm=TRUE)
 [1] 133.251513   9.488801  10.143864   6.451333   8.308345         NA
 [7]   4.926469   9.691851   9.053616  10.109811   6.252436   6.247665
[13]   7.680870  10.936565   9.448401   5.575949  11.568748   8.662367
[19]   7.278756   7.036019
> colMax(tmp5,na.rm=TRUE)
 [1] 468.46282  87.48348  89.45871  80.47340  87.43412      -Inf  83.49786
 [8]  85.92943  88.30770  85.81617  82.08555  74.18947  80.30961  84.54430
[15]  87.48225  81.76880  87.82733  86.16281  80.20936  83.88383
> colMin(tmp5,na.rm=TRUE)
 [1] 56.82518 58.58988 60.57104 61.85068 67.53969      Inf 70.05864 59.26282
 [9] 62.11598 53.86265 60.45223 57.08727 53.64659 56.02255 60.16472 63.58237
[17] 57.68112 56.42213 57.39851 62.36652
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 356.30950 228.42120 119.38967 128.00636 378.65410 318.62608 380.90879
 [8] 339.34782 274.20099  90.01644
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 356.30950 228.42120 119.38967 128.00636 378.65410 318.62608 380.90879
 [8] 339.34782 274.20099  90.01644
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.136868e-13  1.421085e-13  5.684342e-14  1.421085e-14 -5.684342e-14
 [6]  0.000000e+00  2.842171e-14  2.842171e-13 -5.684342e-14  0.000000e+00
[11]  1.705303e-13 -2.842171e-14  1.278977e-13 -1.350031e-13 -7.105427e-15
[16]  1.705303e-13  2.842171e-14  2.842171e-14  0.000000e+00  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   17 
9   15 
8   4 
7   19 
8   11 
5   15 
4   4 
8   18 
5   2 
3   14 
9   4 
5   8 
2   8 
10   7 
3   11 
6   16 
3   8 
6   20 
4   16 
2   17 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 3.074035
> Min(tmp)
[1] -2.611405
> mean(tmp)
[1] -0.0225493
> Sum(tmp)
[1] -2.25493
> Var(tmp)
[1] 1.087833
> 
> rowMeans(tmp)
[1] -0.0225493
> rowSums(tmp)
[1] -2.25493
> rowVars(tmp)
[1] 1.087833
> rowSd(tmp)
[1] 1.042992
> rowMax(tmp)
[1] 3.074035
> rowMin(tmp)
[1] -2.611405
> 
> colMeans(tmp)
  [1]  0.31985092  2.16205635  1.20804847  0.92235040  1.45120560  1.36542806
  [7] -0.66570899  0.87533363 -0.24725137  0.22213542  1.28532613  1.68327470
 [13] -0.52505434 -1.51610200 -0.75751990  0.56028970 -0.22642010 -0.27526902
 [19] -0.85428994  1.51751392  0.12206232 -1.54892049  0.39547513  1.46670318
 [25]  0.46959094 -0.45488965 -1.20492351 -1.16252263 -1.19632448  0.94640881
 [31]  0.58664073  0.03086065  1.29199868  0.63333031  1.77610578  0.05557407
 [37]  0.60913963  0.69380658  1.71757927 -0.60218431 -0.35678441 -1.40942780
 [43] -1.16632445  0.02408831 -1.08983545  3.07403543  0.47783486 -1.20755899
 [49] -1.27905000 -0.30431034 -1.36483932  0.26452530  0.20363526  1.31101955
 [55]  1.19469802  0.24264266 -1.65157054 -0.90529933 -1.11734905  0.36289678
 [61] -0.56200459  0.61432272 -0.67179247  0.73979909 -0.18708125  0.14084599
 [67] -0.40570632  0.90632814  0.09321032  0.31388889 -0.51360034 -0.73805837
 [73] -1.43522689 -0.22626884  0.36589354  0.94600400  0.82159375 -1.31811316
 [79]  0.24381234 -1.02934055 -1.18558141 -1.33922582 -1.08496577  0.76735391
 [85] -1.66504666 -0.11327141  1.22384806  0.80344145 -1.16674590  1.56428230
 [91] -0.92530361 -1.45664946 -1.07568738 -0.39489377  0.75678884 -0.03962772
 [97] -0.91888158  0.20609261 -2.61140496 -0.13169277
> colSums(tmp)
  [1]  0.31985092  2.16205635  1.20804847  0.92235040  1.45120560  1.36542806
  [7] -0.66570899  0.87533363 -0.24725137  0.22213542  1.28532613  1.68327470
 [13] -0.52505434 -1.51610200 -0.75751990  0.56028970 -0.22642010 -0.27526902
 [19] -0.85428994  1.51751392  0.12206232 -1.54892049  0.39547513  1.46670318
 [25]  0.46959094 -0.45488965 -1.20492351 -1.16252263 -1.19632448  0.94640881
 [31]  0.58664073  0.03086065  1.29199868  0.63333031  1.77610578  0.05557407
 [37]  0.60913963  0.69380658  1.71757927 -0.60218431 -0.35678441 -1.40942780
 [43] -1.16632445  0.02408831 -1.08983545  3.07403543  0.47783486 -1.20755899
 [49] -1.27905000 -0.30431034 -1.36483932  0.26452530  0.20363526  1.31101955
 [55]  1.19469802  0.24264266 -1.65157054 -0.90529933 -1.11734905  0.36289678
 [61] -0.56200459  0.61432272 -0.67179247  0.73979909 -0.18708125  0.14084599
 [67] -0.40570632  0.90632814  0.09321032  0.31388889 -0.51360034 -0.73805837
 [73] -1.43522689 -0.22626884  0.36589354  0.94600400  0.82159375 -1.31811316
 [79]  0.24381234 -1.02934055 -1.18558141 -1.33922582 -1.08496577  0.76735391
 [85] -1.66504666 -0.11327141  1.22384806  0.80344145 -1.16674590  1.56428230
 [91] -0.92530361 -1.45664946 -1.07568738 -0.39489377  0.75678884 -0.03962772
 [97] -0.91888158  0.20609261 -2.61140496 -0.13169277
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.31985092  2.16205635  1.20804847  0.92235040  1.45120560  1.36542806
  [7] -0.66570899  0.87533363 -0.24725137  0.22213542  1.28532613  1.68327470
 [13] -0.52505434 -1.51610200 -0.75751990  0.56028970 -0.22642010 -0.27526902
 [19] -0.85428994  1.51751392  0.12206232 -1.54892049  0.39547513  1.46670318
 [25]  0.46959094 -0.45488965 -1.20492351 -1.16252263 -1.19632448  0.94640881
 [31]  0.58664073  0.03086065  1.29199868  0.63333031  1.77610578  0.05557407
 [37]  0.60913963  0.69380658  1.71757927 -0.60218431 -0.35678441 -1.40942780
 [43] -1.16632445  0.02408831 -1.08983545  3.07403543  0.47783486 -1.20755899
 [49] -1.27905000 -0.30431034 -1.36483932  0.26452530  0.20363526  1.31101955
 [55]  1.19469802  0.24264266 -1.65157054 -0.90529933 -1.11734905  0.36289678
 [61] -0.56200459  0.61432272 -0.67179247  0.73979909 -0.18708125  0.14084599
 [67] -0.40570632  0.90632814  0.09321032  0.31388889 -0.51360034 -0.73805837
 [73] -1.43522689 -0.22626884  0.36589354  0.94600400  0.82159375 -1.31811316
 [79]  0.24381234 -1.02934055 -1.18558141 -1.33922582 -1.08496577  0.76735391
 [85] -1.66504666 -0.11327141  1.22384806  0.80344145 -1.16674590  1.56428230
 [91] -0.92530361 -1.45664946 -1.07568738 -0.39489377  0.75678884 -0.03962772
 [97] -0.91888158  0.20609261 -2.61140496 -0.13169277
> colMin(tmp)
  [1]  0.31985092  2.16205635  1.20804847  0.92235040  1.45120560  1.36542806
  [7] -0.66570899  0.87533363 -0.24725137  0.22213542  1.28532613  1.68327470
 [13] -0.52505434 -1.51610200 -0.75751990  0.56028970 -0.22642010 -0.27526902
 [19] -0.85428994  1.51751392  0.12206232 -1.54892049  0.39547513  1.46670318
 [25]  0.46959094 -0.45488965 -1.20492351 -1.16252263 -1.19632448  0.94640881
 [31]  0.58664073  0.03086065  1.29199868  0.63333031  1.77610578  0.05557407
 [37]  0.60913963  0.69380658  1.71757927 -0.60218431 -0.35678441 -1.40942780
 [43] -1.16632445  0.02408831 -1.08983545  3.07403543  0.47783486 -1.20755899
 [49] -1.27905000 -0.30431034 -1.36483932  0.26452530  0.20363526  1.31101955
 [55]  1.19469802  0.24264266 -1.65157054 -0.90529933 -1.11734905  0.36289678
 [61] -0.56200459  0.61432272 -0.67179247  0.73979909 -0.18708125  0.14084599
 [67] -0.40570632  0.90632814  0.09321032  0.31388889 -0.51360034 -0.73805837
 [73] -1.43522689 -0.22626884  0.36589354  0.94600400  0.82159375 -1.31811316
 [79]  0.24381234 -1.02934055 -1.18558141 -1.33922582 -1.08496577  0.76735391
 [85] -1.66504666 -0.11327141  1.22384806  0.80344145 -1.16674590  1.56428230
 [91] -0.92530361 -1.45664946 -1.07568738 -0.39489377  0.75678884 -0.03962772
 [97] -0.91888158  0.20609261 -2.61140496 -0.13169277
> colMedians(tmp)
  [1]  0.31985092  2.16205635  1.20804847  0.92235040  1.45120560  1.36542806
  [7] -0.66570899  0.87533363 -0.24725137  0.22213542  1.28532613  1.68327470
 [13] -0.52505434 -1.51610200 -0.75751990  0.56028970 -0.22642010 -0.27526902
 [19] -0.85428994  1.51751392  0.12206232 -1.54892049  0.39547513  1.46670318
 [25]  0.46959094 -0.45488965 -1.20492351 -1.16252263 -1.19632448  0.94640881
 [31]  0.58664073  0.03086065  1.29199868  0.63333031  1.77610578  0.05557407
 [37]  0.60913963  0.69380658  1.71757927 -0.60218431 -0.35678441 -1.40942780
 [43] -1.16632445  0.02408831 -1.08983545  3.07403543  0.47783486 -1.20755899
 [49] -1.27905000 -0.30431034 -1.36483932  0.26452530  0.20363526  1.31101955
 [55]  1.19469802  0.24264266 -1.65157054 -0.90529933 -1.11734905  0.36289678
 [61] -0.56200459  0.61432272 -0.67179247  0.73979909 -0.18708125  0.14084599
 [67] -0.40570632  0.90632814  0.09321032  0.31388889 -0.51360034 -0.73805837
 [73] -1.43522689 -0.22626884  0.36589354  0.94600400  0.82159375 -1.31811316
 [79]  0.24381234 -1.02934055 -1.18558141 -1.33922582 -1.08496577  0.76735391
 [85] -1.66504666 -0.11327141  1.22384806  0.80344145 -1.16674590  1.56428230
 [91] -0.92530361 -1.45664946 -1.07568738 -0.39489377  0.75678884 -0.03962772
 [97] -0.91888158  0.20609261 -2.61140496 -0.13169277
> colRanges(tmp)
          [,1]     [,2]     [,3]      [,4]     [,5]     [,6]      [,7]
[1,] 0.3198509 2.162056 1.208048 0.9223504 1.451206 1.365428 -0.665709
[2,] 0.3198509 2.162056 1.208048 0.9223504 1.451206 1.365428 -0.665709
          [,8]       [,9]     [,10]    [,11]    [,12]      [,13]     [,14]
[1,] 0.8753336 -0.2472514 0.2221354 1.285326 1.683275 -0.5250543 -1.516102
[2,] 0.8753336 -0.2472514 0.2221354 1.285326 1.683275 -0.5250543 -1.516102
          [,15]     [,16]      [,17]     [,18]      [,19]    [,20]     [,21]
[1,] -0.7575199 0.5602897 -0.2264201 -0.275269 -0.8542899 1.517514 0.1220623
[2,] -0.7575199 0.5602897 -0.2264201 -0.275269 -0.8542899 1.517514 0.1220623
        [,22]     [,23]    [,24]     [,25]      [,26]     [,27]     [,28]
[1,] -1.54892 0.3954751 1.466703 0.4695909 -0.4548897 -1.204924 -1.162523
[2,] -1.54892 0.3954751 1.466703 0.4695909 -0.4548897 -1.204924 -1.162523
         [,29]     [,30]     [,31]      [,32]    [,33]     [,34]    [,35]
[1,] -1.196324 0.9464088 0.5866407 0.03086065 1.291999 0.6333303 1.776106
[2,] -1.196324 0.9464088 0.5866407 0.03086065 1.291999 0.6333303 1.776106
          [,36]     [,37]     [,38]    [,39]      [,40]      [,41]     [,42]
[1,] 0.05557407 0.6091396 0.6938066 1.717579 -0.6021843 -0.3567844 -1.409428
[2,] 0.05557407 0.6091396 0.6938066 1.717579 -0.6021843 -0.3567844 -1.409428
         [,43]      [,44]     [,45]    [,46]     [,47]     [,48]    [,49]
[1,] -1.166324 0.02408831 -1.089835 3.074035 0.4778349 -1.207559 -1.27905
[2,] -1.166324 0.02408831 -1.089835 3.074035 0.4778349 -1.207559 -1.27905
          [,50]     [,51]     [,52]     [,53]   [,54]    [,55]     [,56]
[1,] -0.3043103 -1.364839 0.2645253 0.2036353 1.31102 1.194698 0.2426427
[2,] -0.3043103 -1.364839 0.2645253 0.2036353 1.31102 1.194698 0.2426427
         [,57]      [,58]     [,59]     [,60]      [,61]     [,62]      [,63]
[1,] -1.651571 -0.9052993 -1.117349 0.3628968 -0.5620046 0.6143227 -0.6717925
[2,] -1.651571 -0.9052993 -1.117349 0.3628968 -0.5620046 0.6143227 -0.6717925
         [,64]      [,65]    [,66]      [,67]     [,68]      [,69]     [,70]
[1,] 0.7397991 -0.1870812 0.140846 -0.4057063 0.9063281 0.09321032 0.3138889
[2,] 0.7397991 -0.1870812 0.140846 -0.4057063 0.9063281 0.09321032 0.3138889
          [,71]      [,72]     [,73]      [,74]     [,75]    [,76]     [,77]
[1,] -0.5136003 -0.7380584 -1.435227 -0.2262688 0.3658935 0.946004 0.8215937
[2,] -0.5136003 -0.7380584 -1.435227 -0.2262688 0.3658935 0.946004 0.8215937
         [,78]     [,79]     [,80]     [,81]     [,82]     [,83]     [,84]
[1,] -1.318113 0.2438123 -1.029341 -1.185581 -1.339226 -1.084966 0.7673539
[2,] -1.318113 0.2438123 -1.029341 -1.185581 -1.339226 -1.084966 0.7673539
         [,85]      [,86]    [,87]     [,88]     [,89]    [,90]      [,91]
[1,] -1.665047 -0.1132714 1.223848 0.8034414 -1.166746 1.564282 -0.9253036
[2,] -1.665047 -0.1132714 1.223848 0.8034414 -1.166746 1.564282 -0.9253036
         [,92]     [,93]      [,94]     [,95]       [,96]      [,97]     [,98]
[1,] -1.456649 -1.075687 -0.3948938 0.7567888 -0.03962772 -0.9188816 0.2060926
[2,] -1.456649 -1.075687 -0.3948938 0.7567888 -0.03962772 -0.9188816 0.2060926
         [,99]     [,100]
[1,] -2.611405 -0.1316928
[2,] -2.611405 -0.1316928
> 
> 
> Max(tmp2)
[1] 1.754796
> Min(tmp2)
[1] -2.446545
> mean(tmp2)
[1] 0.04859267
> Sum(tmp2)
[1] 4.859267
> Var(tmp2)
[1] 0.8229828
> 
> rowMeans(tmp2)
  [1]  0.023431997  0.469311650  0.586561871 -0.232595480 -1.309153740
  [6]  1.316556825 -0.215698940 -1.904108481  0.319666688  1.001247091
 [11] -0.751326082 -0.196099572 -1.011746748 -0.845851294  0.331902180
 [16] -0.348386923  0.446213181 -0.341147539  0.662851133 -0.844275999
 [21] -0.905277081  0.480434081 -0.128450675 -0.658716320 -0.912141766
 [26]  1.622832994  1.636330918  1.342697784  1.149580240  0.896513017
 [31]  0.452266390 -0.310211415 -2.040961746  0.453927838  1.303172657
 [36]  0.591040500  1.418876908 -1.190243226  0.255994414 -0.830661940
 [41] -0.014126442  0.968312202 -0.560459268  1.080949979 -1.606943657
 [46]  0.480239115  0.800129152  0.953372810 -2.446545227  1.700076325
 [51]  0.477132867  0.212745841 -0.332688303  0.628131105  0.650396199
 [56] -0.889210657 -0.769373733  0.551146074  0.453960559 -0.740576612
 [61]  0.845507181  0.623695929  1.313143410  0.894634865 -0.554096190
 [66] -1.193817749 -1.187709690  0.693476303 -0.080377681 -0.270220600
 [71] -1.083022897  0.504070370  0.222261834  0.664860178  0.457911589
 [76]  0.909055120 -0.430922420  0.129367171  0.004805704 -0.695995494
 [81] -2.040049041  0.480874557  1.047198415  0.172043320  0.917407656
 [86]  0.375614350  0.479226546 -0.505903166  0.140348005 -0.698220117
 [91] -1.505284093  0.412021896  1.754795713 -0.005284014  0.624819755
 [96] -0.350283397  0.139538115  0.086851253 -0.243412387 -1.570687339
> rowSums(tmp2)
  [1]  0.023431997  0.469311650  0.586561871 -0.232595480 -1.309153740
  [6]  1.316556825 -0.215698940 -1.904108481  0.319666688  1.001247091
 [11] -0.751326082 -0.196099572 -1.011746748 -0.845851294  0.331902180
 [16] -0.348386923  0.446213181 -0.341147539  0.662851133 -0.844275999
 [21] -0.905277081  0.480434081 -0.128450675 -0.658716320 -0.912141766
 [26]  1.622832994  1.636330918  1.342697784  1.149580240  0.896513017
 [31]  0.452266390 -0.310211415 -2.040961746  0.453927838  1.303172657
 [36]  0.591040500  1.418876908 -1.190243226  0.255994414 -0.830661940
 [41] -0.014126442  0.968312202 -0.560459268  1.080949979 -1.606943657
 [46]  0.480239115  0.800129152  0.953372810 -2.446545227  1.700076325
 [51]  0.477132867  0.212745841 -0.332688303  0.628131105  0.650396199
 [56] -0.889210657 -0.769373733  0.551146074  0.453960559 -0.740576612
 [61]  0.845507181  0.623695929  1.313143410  0.894634865 -0.554096190
 [66] -1.193817749 -1.187709690  0.693476303 -0.080377681 -0.270220600
 [71] -1.083022897  0.504070370  0.222261834  0.664860178  0.457911589
 [76]  0.909055120 -0.430922420  0.129367171  0.004805704 -0.695995494
 [81] -2.040049041  0.480874557  1.047198415  0.172043320  0.917407656
 [86]  0.375614350  0.479226546 -0.505903166  0.140348005 -0.698220117
 [91] -1.505284093  0.412021896  1.754795713 -0.005284014  0.624819755
 [96] -0.350283397  0.139538115  0.086851253 -0.243412387 -1.570687339
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.023431997  0.469311650  0.586561871 -0.232595480 -1.309153740
  [6]  1.316556825 -0.215698940 -1.904108481  0.319666688  1.001247091
 [11] -0.751326082 -0.196099572 -1.011746748 -0.845851294  0.331902180
 [16] -0.348386923  0.446213181 -0.341147539  0.662851133 -0.844275999
 [21] -0.905277081  0.480434081 -0.128450675 -0.658716320 -0.912141766
 [26]  1.622832994  1.636330918  1.342697784  1.149580240  0.896513017
 [31]  0.452266390 -0.310211415 -2.040961746  0.453927838  1.303172657
 [36]  0.591040500  1.418876908 -1.190243226  0.255994414 -0.830661940
 [41] -0.014126442  0.968312202 -0.560459268  1.080949979 -1.606943657
 [46]  0.480239115  0.800129152  0.953372810 -2.446545227  1.700076325
 [51]  0.477132867  0.212745841 -0.332688303  0.628131105  0.650396199
 [56] -0.889210657 -0.769373733  0.551146074  0.453960559 -0.740576612
 [61]  0.845507181  0.623695929  1.313143410  0.894634865 -0.554096190
 [66] -1.193817749 -1.187709690  0.693476303 -0.080377681 -0.270220600
 [71] -1.083022897  0.504070370  0.222261834  0.664860178  0.457911589
 [76]  0.909055120 -0.430922420  0.129367171  0.004805704 -0.695995494
 [81] -2.040049041  0.480874557  1.047198415  0.172043320  0.917407656
 [86]  0.375614350  0.479226546 -0.505903166  0.140348005 -0.698220117
 [91] -1.505284093  0.412021896  1.754795713 -0.005284014  0.624819755
 [96] -0.350283397  0.139538115  0.086851253 -0.243412387 -1.570687339
> rowMin(tmp2)
  [1]  0.023431997  0.469311650  0.586561871 -0.232595480 -1.309153740
  [6]  1.316556825 -0.215698940 -1.904108481  0.319666688  1.001247091
 [11] -0.751326082 -0.196099572 -1.011746748 -0.845851294  0.331902180
 [16] -0.348386923  0.446213181 -0.341147539  0.662851133 -0.844275999
 [21] -0.905277081  0.480434081 -0.128450675 -0.658716320 -0.912141766
 [26]  1.622832994  1.636330918  1.342697784  1.149580240  0.896513017
 [31]  0.452266390 -0.310211415 -2.040961746  0.453927838  1.303172657
 [36]  0.591040500  1.418876908 -1.190243226  0.255994414 -0.830661940
 [41] -0.014126442  0.968312202 -0.560459268  1.080949979 -1.606943657
 [46]  0.480239115  0.800129152  0.953372810 -2.446545227  1.700076325
 [51]  0.477132867  0.212745841 -0.332688303  0.628131105  0.650396199
 [56] -0.889210657 -0.769373733  0.551146074  0.453960559 -0.740576612
 [61]  0.845507181  0.623695929  1.313143410  0.894634865 -0.554096190
 [66] -1.193817749 -1.187709690  0.693476303 -0.080377681 -0.270220600
 [71] -1.083022897  0.504070370  0.222261834  0.664860178  0.457911589
 [76]  0.909055120 -0.430922420  0.129367171  0.004805704 -0.695995494
 [81] -2.040049041  0.480874557  1.047198415  0.172043320  0.917407656
 [86]  0.375614350  0.479226546 -0.505903166  0.140348005 -0.698220117
 [91] -1.505284093  0.412021896  1.754795713 -0.005284014  0.624819755
 [96] -0.350283397  0.139538115  0.086851253 -0.243412387 -1.570687339
> 
> colMeans(tmp2)
[1] 0.04859267
> colSums(tmp2)
[1] 4.859267
> colVars(tmp2)
[1] 0.8229828
> colSd(tmp2)
[1] 0.907184
> colMax(tmp2)
[1] 1.754796
> colMin(tmp2)
[1] -2.446545
> colMedians(tmp2)
[1] 0.1923946
> colRanges(tmp2)
          [,1]
[1,] -2.446545
[2,]  1.754796
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.977252 -2.068071  1.052290 -1.862232  3.593524 -3.246734 -2.557307
 [8]  1.604058 -1.818511  4.501408
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -3.5981730
[2,] -1.1181695
[3,] -0.2957826
[4,]  1.1065785
[5,]  1.2946834
> 
> rowApply(tmp,sum)
 [1]  0.8727184  1.0776338 -2.6297955  0.3087124  3.0655643 -0.3032001
 [7] -3.0458067  5.8646908 -3.9430593 -5.0462860
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    8    1    4    8    3    9    3    9     2
 [2,]    1    3   10    8    5    1   10    2    8     6
 [3,]    9    7    2    7    2    2    6    5   10     8
 [4,]    8    2    7    1    7    5    4    8    2    10
 [5,]   10    4    3    9    6   10    7    7    1     7
 [6,]    5    1    6    5    9    8    2    4    3     1
 [7,]    2    9    9    2    1    6    5    6    4     3
 [8,]    4    6    4   10   10    7    3    1    6     5
 [9,]    7    5    5    3    4    4    1    9    7     9
[10,]    6   10    8    6    3    9    8   10    5     4
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.1788768  4.4059270 -1.2618305 -0.9600456 -1.9013870  0.7432005
 [7] -7.4957085  2.3470794  2.8745746 -1.1310058  0.8927122 -2.1214429
[13]  1.8522352  1.2670746  4.7974438  3.9382981  1.3902774  1.5569531
[19]  3.3898323 -2.1511739
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1749692
[2,] -0.4628139
[3,] -0.3207831
[4,]  0.2077640
[5,]  1.5719254
> 
> rowApply(tmp,sum)
[1]  7.9077749  0.7993888  3.9563671  4.2133477 -4.6227415
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    8    7    4    3   19
[2,]   16   13   13   17   16
[3,]    4    4   19    5   13
[4,]    5    9    6   15    7
[5,]    9    2    7    6   11
> 
> 
> as.matrix(tmp)
           [,1]      [,2]        [,3]       [,4]       [,5]       [,6]
[1,]  0.2077640 1.0244068 -0.64777341 -0.5669298  0.3456119 -1.4178271
[2,] -0.3207831 0.5201077 -1.15701682 -0.1428709 -1.2600333  1.0152395
[3,] -0.4628139 0.5561154  1.22804553 -0.4322502 -0.3430172  0.7308821
[4,] -1.1749692 1.1356549 -0.71159795  0.9979337 -0.2568232 -0.7854177
[5,]  1.5719254 1.1696422  0.02651213 -0.8159284 -0.3871253  1.2003237
          [,7]       [,8]       [,9]       [,10]       [,11]      [,12]
[1,] -1.761889  0.4122071  0.5592598  0.15326890  0.54706796 -1.0236388
[2,] -1.213122 -1.9960433  0.8404162 -0.04468638 -0.09410123 -0.8021486
[3,] -1.820926  0.9272692 -0.3351296 -1.69895208  0.23497687  0.8689246
[4,] -1.593155  1.3762292  0.9036120  0.33754992  0.51732099  0.1974242
[5,] -1.106617  1.6274171  0.9064161  0.12181387 -0.31255234 -1.3620043
          [,13]      [,14]      [,15]      [,16]      [,17]       [,18]
[1,]  1.4821247  1.9620618  0.7701790  3.4673352  1.2739592  0.47518861
[2,]  1.7304405  0.5903583  1.9915380 -0.1888058 -0.1344206  1.10770621
[3,] -0.5295351  0.5550249 -0.4556608  1.1151558  0.2176400  0.97859335
[4,] -0.1578556 -1.2637868  1.0794762  1.2505447  1.8171879  0.08943052
[5,] -0.6729393 -0.5765836  1.4119113 -1.7059318 -1.7840891 -1.09396556
          [,19]       [,20]
[1,]  0.1761015  0.46929636
[2,]  0.8324063 -0.47479204
[3,]  2.6791461 -0.05712237
[4,]  0.3351238  0.11946531
[5,] -0.6329454 -2.20802112
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  564  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2      col3      col4     col5       col6     col7
row1 -0.388404 0.2763686 -1.278123 0.1287667 1.217624 -0.4321261 0.910368
           col8        col9     col10      col11     col12      col13     col14
row1 0.08135961 0.004375409 0.2036532 -0.7321349 0.2825104 -0.3527626 -1.784664
        col15    col16     col17     col18     col19    col20
row1 1.283165 1.128499 0.2603322 -1.180394 -1.038742 1.781276
> tmp[,"col10"]
          col10
row1  0.2036532
row2  0.6077220
row3  0.3068620
row4 -1.9435150
row5 -0.4461250
> tmp[c("row1","row5"),]
          col1      col2       col3        col4      col5       col6      col7
row1 -0.388404 0.2763686 -1.2781226  0.12876673  1.217624 -0.4321261  0.910368
row5 -1.249005 1.7607734 -0.1865432 -0.05670666 -0.643881  1.0208669 -1.426843
            col8        col9      col10      col11     col12      col13
row1  0.08135961 0.004375409  0.2036532 -0.7321349 0.2825104 -0.3527626
row5 -0.81747740 1.772719974 -0.4461250 -0.2195536 1.7525949 -0.9670679
         col14      col15     col16      col17     col18     col19     col20
row1 -1.784664  1.2831652 1.1284987  0.2603322 -1.180394 -1.038742 1.7812759
row5 -1.084905 -0.8661024 0.3688208 -0.4721242  1.871891  1.937942 0.5023783
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.4321261  1.78127585
row2  1.1079100 -0.02729598
row3  0.8457424  0.91502087
row4 -0.6457624  1.43778924
row5  1.0208669  0.50237832
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.4321261 1.7812759
row5  1.0208669 0.5023783
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.08691 50.50877 48.98862 50.62208 48.25138 104.7142 47.91869 49.29067
         col9    col10   col11    col12    col13   col14    col15    col16
row1 49.83367 49.83599 51.0895 50.94434 49.78575 50.6222 48.48731 49.61552
        col17    col18    col19    col20
row1 48.82497 49.51269 50.34616 104.7387
> tmp[,"col10"]
        col10
row1 49.83599
row2 30.85044
row3 29.89376
row4 28.39330
row5 47.74019
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.08691 50.50877 48.98862 50.62208 48.25138 104.7142 47.91869 49.29067
row5 51.30614 49.74859 49.34946 50.49902 49.10676 106.3405 49.90199 48.97493
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.83367 49.83599 51.08950 50.94434 49.78575 50.62220 48.48731 49.61552
row5 51.57485 47.74019 50.70413 49.97258 50.31972 50.24833 50.18461 49.73942
        col17    col18    col19    col20
row1 48.82497 49.51269 50.34616 104.7387
row5 49.44197 50.04563 49.13219 105.3623
> tmp[,c("col6","col20")]
          col6     col20
row1 104.71421 104.73875
row2  75.43753  74.13651
row3  74.75513  75.68115
row4  74.08829  74.98927
row5 106.34052 105.36233
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.7142 104.7387
row5 106.3405 105.3623
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.7142 104.7387
row5 106.3405 105.3623
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.3559829
[2,] -0.2105255
[3,] -1.1842620
[4,] -0.6878517
[5,]  1.0584365
> tmp[,c("col17","col7")]
          col17       col7
[1,]  1.5144747 -0.3572982
[2,] -0.4027928 -0.3922814
[3,]  0.6462130  0.5348674
[4,] -0.4347805  2.1950799
[5,]  2.3798951 -0.7232884
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,] -1.1148002  2.81436111
[2,]  1.4846986 -1.27954619
[3,]  1.4300630 -0.01657014
[4,]  0.5751171  0.48900545
[5,]  0.5957811 -2.22732579
> subBufferedMatrix(tmp,1,c("col6"))[,1]
        col1
[1,] -1.1148
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -1.114800
[2,]  1.484699
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row3 0.7105055 -0.7407201 -1.156271  0.9320333  0.9714378  0.450581 0.14203206
row1 1.0765675 -0.7433616 -1.157299 -0.5962134 -0.3138192 -1.022392 0.07724698
           [,8]       [,9]     [,10]     [,11]      [,12]        [,13]
row3 -0.2816581  0.1643019 0.2887525 0.4793590 -0.1875278 -0.003177991
row1  0.9279722 -0.5952803 1.1027899 0.2809305 -1.7134539 -0.048535466
          [,14]      [,15]      [,16]     [,17]     [,18]      [,19]     [,20]
row3 -1.5949792 -0.1182517 0.02523529 1.6157356 0.6558531 -0.7235517 1.6923240
row1  0.4656267  0.6113939 0.91628731 0.8922558 1.3254446 -0.7658252 0.9428104
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
        [,1]      [,2]      [,3]        [,4]      [,5]      [,6]        [,7]
row2 1.45607 -0.392412 0.8948298 -0.01213743 0.4726196 0.5071052 -0.06157858
          [,8]       [,9]     [,10]
row2 -1.191681 -0.1317292 -2.417661
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]      [,4]     [,5]     [,6]       [,7]
row5 -0.1391963 0.7708621 0.9382006 -1.021585 1.147595 0.627992 -0.3490162
           [,8]      [,9]       [,10]      [,11]    [,12]     [,13]   [,14]
row5 -0.8027836 0.7119887 -0.05761635 -0.6374494 1.271112 0.9104676 0.19382
          [,15]     [,16]      [,17]      [,18]      [,19]      [,20]
row5 0.01493296 -1.174938 -0.1949544 -0.6757222 -0.6549378 -0.3733915
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x29d6e970>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673645cb3a89c"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM267364473749a3"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673641e8a4551"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673646a708033"
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673645334bc11"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673646579dd40"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673647dc34edd"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736420922d24"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736446978f2" 
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673642f35e06" 
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2673644b15d827"
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736446720bc4"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736418e78e6c"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736443583fad"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM26736431827daf"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x2bc728b0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x2bc728b0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x2bc728b0>
> rowMedians(tmp)
  [1] -0.152775595 -0.344066427  0.061268845  0.337488122  0.126611676
  [6]  0.062441782 -0.222576296  0.216456682 -0.288749377 -0.349598500
 [11]  0.701452722  0.059305603 -0.914931171  0.528769860 -0.041720084
 [16]  0.281068353  0.079557284 -0.080791133 -0.013676783  0.195822242
 [21] -0.005986501 -0.554751936 -0.079181232 -0.071659094  0.180832682
 [26]  0.333773496 -0.390650489 -0.482225990  0.033660362  0.147027748
 [31] -0.227550744 -0.335683704  0.066982446 -0.382601395  0.852054825
 [36]  0.332798663  0.246474420 -0.733279233  0.034466842 -0.299233327
 [41] -0.052598578  0.090873685  0.202711929 -0.110290886 -0.027177146
 [46] -0.626174957  0.104446656  0.677653358 -0.258130323 -0.671238157
 [51]  0.080026940  0.143429336 -0.327143994  0.121309948 -0.506175738
 [56]  0.035474167 -0.063228652 -0.139793446 -0.027505271 -0.666321837
 [61]  0.117197432  0.446471331  0.022986471  0.147075790 -0.074948527
 [66] -0.107504609 -0.076864598 -0.461441639  0.422199445 -0.185029090
 [71] -0.341659262  0.451930247  0.061149357  0.016008471 -0.343390076
 [76] -0.258536372 -0.458236015 -0.090923290  0.417710006 -0.491602751
 [81] -0.049930464 -0.408998455 -0.433255686  0.335290122 -0.476359394
 [86]  0.161356275 -0.351329564  0.280013612 -0.420894295  0.793684575
 [91]  0.100834299  0.207852978 -0.129906844 -0.097065311 -0.129178864
 [96] -0.112220160 -0.254848018  0.108031470 -0.310843444 -0.518603271
[101]  0.377647447  0.051580706  0.195540993  0.132757805  0.385576951
[106] -0.117324975 -0.654241458  0.440495168 -0.156517871 -0.269559874
[111] -0.086137813 -0.205108199 -0.623413123  0.151286538  0.461942560
[116]  0.310166498  0.311555087  0.352018137 -0.497730523  0.366331199
[121] -0.465926159  0.263590319  0.609760181  0.163264283 -0.250725126
[126] -0.192325246  0.745819128 -0.032284173  0.277213368 -0.076308616
[131]  0.343955320  0.042032760  0.188329180  0.195137599  0.638838012
[136] -0.060998862  0.005481243 -0.548921066  0.129533313 -0.161068913
[141]  0.241958657  0.158923995 -0.448754660 -0.209967612  0.131685402
[146]  0.322942821 -0.038298533  0.118049601  0.390896424  0.313804724
[151] -0.165897910  0.177933041  0.282321656  0.221062507 -0.111665845
[156] -0.142509750  0.126814331  0.011502011 -0.238816395 -0.048336996
[161] -0.356738706  0.159555670 -0.233327312 -0.552809253 -0.119963039
[166] -0.211715332  0.812463033 -0.025813434 -0.085631455  0.511905288
[171]  0.098433791 -0.323051673  0.790508859  0.086121101  0.533875192
[176] -0.032950296  0.644167786  0.192052686 -0.145666348 -0.490984092
[181] -0.631955086  0.624177615 -0.332122977 -0.121573842  0.260367824
[186] -0.505874552 -0.326926763 -0.437289141  0.054264529  0.518245142
[191] -0.302694063  0.273893912 -0.097056849  0.359443209 -0.220456419
[196]  0.387928380  0.233362183  0.634375145 -0.113569747  0.608463408
[201] -0.032865287  0.543735610 -0.030099987 -0.002240240  0.352737582
[206]  0.183269228 -0.206711198 -0.244270843  0.029933851  0.159446097
[211]  0.230456031  0.021336828  0.227236810  0.527936729  0.023480423
[216] -0.255381123 -0.046392589 -0.103932077  0.198077410  0.476924587
[221] -0.023247100 -0.459060069  0.139348696  0.143223372  0.276516548
[226]  0.212168047 -0.069897872  0.556313094 -0.535934258  0.253217992
> 
> proc.time()
   user  system elapsed 
  1.814   0.840   2.675 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x288632e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x288632e0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x288632e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x288632e0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x291dded0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x291dded0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x291dded0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x291dded0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x291dded0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x28abdb40>
> .Call("R_bm_AddColumn",P)
<pointer: 0x28abdb40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x28abdb40>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x28abdb40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x28abdb40>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x28abdb40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x28abdb40>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x28abdb40>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x28abdb40>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x294fbd90>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x294fbd90>
> .Call("R_bm_AddColumn",P)
<pointer: 0x294fbd90>
> .Call("R_bm_AddColumn",P)
<pointer: 0x294fbd90>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2673e6416095e8" "BufferedMatrixFile2673e666f829e6"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2673e6416095e8" "BufferedMatrixFile2673e666f829e6"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x2ad119a0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ad13fb0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ad13fb0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2ad13fb0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x2ad13fb0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2afc1670>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2afc1670>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.305   0.045   0.336 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.309   0.035   0.331 

Example timings