Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-04-02 19:33 -0400 (Wed, 02 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4764
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4495
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4522
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4449
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4426
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-31 13:00 -0400 (Mon, 31 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kjohnson1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-04-01 12:50:13 -0400 (Tue, 01 Apr 2025)
EndedAt: 2025-04-01 12:50:53 -0400 (Tue, 01 Apr 2025)
EllapsedTime: 40.5 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.328   0.119   0.442 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 473648 25.3    1033988 55.3         NA   638582 34.2
Vcells 877222  6.7    8388608 64.0      65536  2072452 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Apr  1 12:50:32 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Apr  1 12:50:33 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600002f8c000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Apr  1 12:50:36 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Apr  1 12:50:37 2025"
> 
> ColMode(tmp2)
<pointer: 0x600002f8c000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.8124431 -0.6364316  1.5287245 -0.6421785
[2,]   0.4391479  0.9220498 -0.2667682  0.8251169
[3,]   2.1971869 -0.8622237 -0.7998255  1.3482293
[4,]  -0.5680249  0.4010513 -0.7281828 -0.6679995
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.8124431 0.6364316 1.5287245 0.6421785
[2,]   0.4391479 0.9220498 0.2667682 0.8251169
[3,]   2.1971869 0.8622237 0.7998255 1.3482293
[4,]   0.5680249 0.4010513 0.7281828 0.6679995
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0405400 0.7977666 1.2364160 0.8013604
[2,]  0.6626823 0.9602343 0.5164961 0.9083594
[3,]  1.4822911 0.9285600 0.8943296 1.1611328
[4,]  0.7536742 0.6332861 0.8533363 0.8173124
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 226.21784 33.61410 38.89288 33.65578
[2,]  32.06597 35.52439 30.43173 34.90871
[3,]  42.02010 35.14782 34.74312 37.95956
[4,]  33.10477 31.73391 34.26155 33.84112
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600002fa4120>
> exp(tmp5)
<pointer: 0x600002fa4120>
> log(tmp5,2)
<pointer: 0x600002fa4120>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 470.8428
> Min(tmp5)
[1] 52.82791
> mean(tmp5)
[1] 73.41102
> Sum(tmp5)
[1] 14682.2
> Var(tmp5)
[1] 869.1602
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.43276 70.47315 70.95547 70.28058 72.12700 71.06521 71.52070 68.63740
 [9] 70.99997 75.61797
> rowSums(tmp5)
 [1] 1848.655 1409.463 1419.109 1405.612 1442.540 1421.304 1430.414 1372.748
 [9] 1419.999 1512.359
> rowVars(tmp5)
 [1] 7984.44314   70.40691   95.82315   68.98689   89.23556   66.75397
 [7]   66.50348   50.68596   70.44569   86.88413
> rowSd(tmp5)
 [1] 89.355711  8.390882  9.788930  8.305834  9.446457  8.170310  8.154966
 [8]  7.119407  8.393193  9.321166
> rowMax(tmp5)
 [1] 470.84280  93.84552  87.45933  87.11475  87.40765  84.39930  86.35248
 [8]  88.56014  83.79096  92.42896
> rowMin(tmp5)
 [1] 59.09120 59.28940 52.82791 56.47643 56.04561 55.80803 57.93023 57.50790
 [9] 58.59299 59.46420
> 
> colMeans(tmp5)
 [1] 115.01124  74.90892  68.50426  73.14382  74.07463  67.47867  71.29101
 [8]  69.28136  72.43575  72.92796  71.52117  68.66796  69.58572  74.33699
[15]  68.74271  71.65926  70.28940  72.14109  74.73964  67.47887
> colSums(tmp5)
 [1] 1150.1124  749.0892  685.0426  731.4382  740.7463  674.7867  712.9101
 [8]  692.8136  724.3575  729.2796  715.2117  686.6796  695.8572  743.3699
[15]  687.4271  716.5926  702.8940  721.4109  747.3964  674.7887
> colVars(tmp5)
 [1] 15689.71460    69.78569    55.52081    69.31184    60.42197    25.45689
 [7]   156.15172    41.83670    96.13998    80.60325   128.40153    81.93362
[13]    53.51102    70.93343    66.72102    45.93730    80.23174   123.94342
[19]    32.32811    44.69120
> colSd(tmp5)
 [1] 125.258591   8.353783   7.451229   8.325373   7.773157   5.045483
 [7]  12.496068   6.468129   9.805099   8.977931  11.331440   9.051719
[13]   7.315123   8.422199   8.168293   6.777706   8.957217  11.132988
[19]   5.685781   6.685148
> colMax(tmp5)
 [1] 470.84280  92.42896  80.95044  83.46759  88.55512  76.75659  93.84552
 [8]  80.41657  87.13028  85.02212  87.40765  81.61589  86.54467  85.49710
[15]  87.11475  83.79096  82.66718  88.56014  80.02800  76.62704
> colMin(tmp5)
 [1] 65.32280 65.76648 59.06489 55.80803 61.07236 58.62342 54.04729 59.39672
 [9] 61.26523 59.36554 52.82791 56.04561 61.59091 57.93023 59.28940 57.79884
[17] 59.09120 58.59299 65.83548 56.47643
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1]       NA 70.47315 70.95547 70.28058 72.12700 71.06521 71.52070 68.63740
 [9] 70.99997 75.61797
> rowSums(tmp5)
 [1]       NA 1409.463 1419.109 1405.612 1442.540 1421.304 1430.414 1372.748
 [9] 1419.999 1512.359
> rowVars(tmp5)
 [1] 8390.23248   70.40691   95.82315   68.98689   89.23556   66.75397
 [7]   66.50348   50.68596   70.44569   86.88413
> rowSd(tmp5)
 [1] 91.598212  8.390882  9.788930  8.305834  9.446457  8.170310  8.154966
 [8]  7.119407  8.393193  9.321166
> rowMax(tmp5)
 [1]       NA 93.84552 87.45933 87.11475 87.40765 84.39930 86.35248 88.56014
 [9] 83.79096 92.42896
> rowMin(tmp5)
 [1]       NA 59.28940 52.82791 56.47643 56.04561 55.80803 57.93023 57.50790
 [9] 58.59299 59.46420
> 
> colMeans(tmp5)
 [1] 115.01124  74.90892  68.50426  73.14382  74.07463  67.47867  71.29101
 [8]  69.28136  72.43575  72.92796  71.52117  68.66796  69.58572  74.33699
[15]  68.74271  71.65926  70.28940  72.14109        NA  67.47887
> colSums(tmp5)
 [1] 1150.1124  749.0892  685.0426  731.4382  740.7463  674.7867  712.9101
 [8]  692.8136  724.3575  729.2796  715.2117  686.6796  695.8572  743.3699
[15]  687.4271  716.5926  702.8940  721.4109        NA  674.7887
> colVars(tmp5)
 [1] 15689.71460    69.78569    55.52081    69.31184    60.42197    25.45689
 [7]   156.15172    41.83670    96.13998    80.60325   128.40153    81.93362
[13]    53.51102    70.93343    66.72102    45.93730    80.23174   123.94342
[19]          NA    44.69120
> colSd(tmp5)
 [1] 125.258591   8.353783   7.451229   8.325373   7.773157   5.045483
 [7]  12.496068   6.468129   9.805099   8.977931  11.331440   9.051719
[13]   7.315123   8.422199   8.168293   6.777706   8.957217  11.132988
[19]         NA   6.685148
> colMax(tmp5)
 [1] 470.84280  92.42896  80.95044  83.46759  88.55512  76.75659  93.84552
 [8]  80.41657  87.13028  85.02212  87.40765  81.61589  86.54467  85.49710
[15]  87.11475  83.79096  82.66718  88.56014        NA  76.62704
> colMin(tmp5)
 [1] 65.32280 65.76648 59.06489 55.80803 61.07236 58.62342 54.04729 59.39672
 [9] 61.26523 59.36554 52.82791 56.04561 61.59091 57.93023 59.28940 57.79884
[17] 59.09120 58.59299       NA 56.47643
> 
> Max(tmp5,na.rm=TRUE)
[1] 470.8428
> Min(tmp5,na.rm=TRUE)
[1] 52.82791
> mean(tmp5,na.rm=TRUE)
[1] 73.44318
> Sum(tmp5,na.rm=TRUE)
[1] 14615.19
> Var(tmp5,na.rm=TRUE)
[1] 873.342
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.77071 70.47315 70.95547 70.28058 72.12700 71.06521 71.52070 68.63740
 [9] 70.99997 75.61797
> rowSums(tmp5,na.rm=TRUE)
 [1] 1781.643 1409.463 1419.109 1405.612 1442.540 1421.304 1430.414 1372.748
 [9] 1419.999 1512.359
> rowVars(tmp5,na.rm=TRUE)
 [1] 8390.23248   70.40691   95.82315   68.98689   89.23556   66.75397
 [7]   66.50348   50.68596   70.44569   86.88413
> rowSd(tmp5,na.rm=TRUE)
 [1] 91.598212  8.390882  9.788930  8.305834  9.446457  8.170310  8.154966
 [8]  7.119407  8.393193  9.321166
> rowMax(tmp5,na.rm=TRUE)
 [1] 470.84280  93.84552  87.45933  87.11475  87.40765  84.39930  86.35248
 [8]  88.56014  83.79096  92.42896
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.09120 59.28940 52.82791 56.47643 56.04561 55.80803 57.93023 57.50790
 [9] 58.59299 59.46420
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.01124  74.90892  68.50426  73.14382  74.07463  67.47867  71.29101
 [8]  69.28136  72.43575  72.92796  71.52117  68.66796  69.58572  74.33699
[15]  68.74271  71.65926  70.28940  72.14109  75.59828  67.47887
> colSums(tmp5,na.rm=TRUE)
 [1] 1150.1124  749.0892  685.0426  731.4382  740.7463  674.7867  712.9101
 [8]  692.8136  724.3575  729.2796  715.2117  686.6796  695.8572  743.3699
[15]  687.4271  716.5926  702.8940  721.4109  680.3846  674.7887
> colVars(tmp5,na.rm=TRUE)
 [1] 15689.71460    69.78569    55.52081    69.31184    60.42197    25.45689
 [7]   156.15172    41.83670    96.13998    80.60325   128.40153    81.93362
[13]    53.51102    70.93343    66.72102    45.93730    80.23174   123.94342
[19]    28.07483    44.69120
> colSd(tmp5,na.rm=TRUE)
 [1] 125.258591   8.353783   7.451229   8.325373   7.773157   5.045483
 [7]  12.496068   6.468129   9.805099   8.977931  11.331440   9.051719
[13]   7.315123   8.422199   8.168293   6.777706   8.957217  11.132988
[19]   5.298569   6.685148
> colMax(tmp5,na.rm=TRUE)
 [1] 470.84280  92.42896  80.95044  83.46759  88.55512  76.75659  93.84552
 [8]  80.41657  87.13028  85.02212  87.40765  81.61589  86.54467  85.49710
[15]  87.11475  83.79096  82.66718  88.56014  80.02800  76.62704
> colMin(tmp5,na.rm=TRUE)
 [1] 65.32280 65.76648 59.06489 55.80803 61.07236 58.62342 54.04729 59.39672
 [9] 61.26523 59.36554 52.82791 56.04561 61.59091 57.93023 59.28940 57.79884
[17] 59.09120 58.59299 65.83548 56.47643
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1]      NaN 70.47315 70.95547 70.28058 72.12700 71.06521 71.52070 68.63740
 [9] 70.99997 75.61797
> rowSums(tmp5,na.rm=TRUE)
 [1]    0.000 1409.463 1419.109 1405.612 1442.540 1421.304 1430.414 1372.748
 [9] 1419.999 1512.359
> rowVars(tmp5,na.rm=TRUE)
 [1]       NA 70.40691 95.82315 68.98689 89.23556 66.75397 66.50348 50.68596
 [9] 70.44569 86.88413
> rowSd(tmp5,na.rm=TRUE)
 [1]       NA 8.390882 9.788930 8.305834 9.446457 8.170310 8.154966 7.119407
 [9] 8.393193 9.321166
> rowMax(tmp5,na.rm=TRUE)
 [1]       NA 93.84552 87.45933 87.11475 87.40765 84.39930 86.35248 88.56014
 [9] 83.79096 92.42896
> rowMin(tmp5,na.rm=TRUE)
 [1]       NA 59.28940 52.82791 56.47643 56.04561 55.80803 57.93023 57.50790
 [9] 58.59299 59.46420
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 75.47440 75.45843 67.12135 73.48756 74.05789 66.96496 72.34999 68.92217
 [9] 73.29040 72.32499 71.58637 67.53819 69.43289 73.21886 68.98430 71.71378
[17] 71.53365 70.42903      NaN 66.46241
> colSums(tmp5,na.rm=TRUE)
 [1] 679.2696 679.1259 604.0921 661.3881 666.5210 602.6846 651.1499 620.2995
 [9] 659.6136 650.9249 644.2773 607.8437 624.8960 658.9697 620.8587 645.4240
[17] 643.8028 633.8612   0.0000 598.1617
> colVars(tmp5,na.rm=TRUE)
 [1]  65.35956  75.11185  40.94598  76.64650  67.97156  25.67013 163.05434
 [8]  45.61478  99.94018  86.58851 144.40390  77.81615  59.93713  65.73521
[15]  74.40454  51.64603  72.84409 106.46069        NA  38.65413
> colSd(tmp5,na.rm=TRUE)
 [1]  8.084526  8.666709  6.398905  8.754799  8.244487  5.066569 12.769273
 [8]  6.753872  9.997008  9.305295 12.016817  8.821346  7.741907  8.107726
[15]  8.625806  7.186517  8.534875 10.317979        NA  6.217245
> colMax(tmp5,na.rm=TRUE)
 [1] 87.45933 92.42896 75.00107 83.46759 88.55512 76.75659 93.84552 80.41657
 [9] 87.13028 85.02212 87.40765 81.61589 86.54467 85.49710 87.11475 83.79096
[17] 82.66718 88.56014     -Inf 72.35256
> colMin(tmp5,na.rm=TRUE)
 [1] 65.32280 65.76648 59.06489 55.80803 61.07236 58.62342 54.04729 59.39672
 [9] 61.26523 59.36554 52.82791 56.04561 61.59091 57.93023 59.28940 57.79884
[17] 60.82123 58.59299      Inf 56.47643
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 337.1969 263.4476 213.4114 257.5988 255.4679 220.1315 137.8325 322.0766
 [9] 153.9165 275.5309
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 337.1969 263.4476 213.4114 257.5988 255.4679 220.1315 137.8325 322.0766
 [9] 153.9165 275.5309
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14  0.000000e+00  0.000000e+00  2.273737e-13  5.684342e-14
 [6]  8.526513e-14  1.136868e-13  0.000000e+00  4.263256e-14  7.105427e-14
[11] -1.421085e-13  1.136868e-13 -4.263256e-14  5.684342e-14 -5.684342e-14
[16] -2.842171e-14 -5.684342e-14  1.136868e-13 -1.136868e-13  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   14 
10   14 
2   3 
10   1 
5   16 
9   2 
10   11 
1   14 
9   17 
10   13 
3   15 
8   4 
1   2 
9   6 
4   20 
9   16 
10   18 
1   14 
5   15 
6   18 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.422242
> Min(tmp)
[1] -2.136664
> mean(tmp)
[1] -0.02095926
> Sum(tmp)
[1] -2.095926
> Var(tmp)
[1] 0.9839843
> 
> rowMeans(tmp)
[1] -0.02095926
> rowSums(tmp)
[1] -2.095926
> rowVars(tmp)
[1] 0.9839843
> rowSd(tmp)
[1] 0.9919598
> rowMax(tmp)
[1] 2.422242
> rowMin(tmp)
[1] -2.136664
> 
> colMeans(tmp)
  [1] -1.909822599 -0.451698788 -0.207722769 -1.430753075 -1.127020944
  [6]  0.932988486 -1.608565238 -0.816313999 -0.123080605  0.754303801
 [11]  2.171179672 -0.351258859  1.893992310  0.512771191 -0.217814697
 [16]  0.500715813 -0.766935954  0.460580994 -0.208876740 -0.776879517
 [21] -0.395704056 -1.354567266  0.542260761 -1.041647569  0.145026163
 [26]  0.388232135 -0.761779430 -1.473147686 -0.068857548  0.389264774
 [31] -1.171251687 -2.136664458 -0.916970782 -0.447820424 -1.010318803
 [36]  0.644024425  0.181561173  2.049026402  0.583816932 -0.826361892
 [41] -1.109296272  0.280309210 -1.141305294 -0.884055863 -1.255804064
 [46]  0.141215560  0.357568209  0.041396033 -0.844434221  0.831074313
 [51] -0.007813674 -0.065567563  2.422241775  0.320715026  1.837716748
 [56]  0.394451125 -0.162572313  1.911754659 -1.308572856 -0.361854460
 [61] -1.136464974  1.730453320 -0.599365380 -0.533363357  0.334472136
 [66]  0.802731534  1.362610868  0.570008864 -1.125014748  1.494724839
 [71] -0.500988144  0.809653304  0.901504939  0.422891406 -0.673059129
 [76] -0.250127352  0.988710254  0.869989015 -0.615529437 -0.753257224
 [81]  0.674978796  0.508511662 -1.184211238 -0.828630811 -1.220739137
 [86]  1.992617692  1.601171975  0.631639528 -0.025962288  0.235819597
 [91] -0.832824038 -0.773151750  0.839126498 -0.290388159 -1.258420125
 [96] -0.009372509  0.364433192  0.343866322 -0.222483985  1.312436625
> colSums(tmp)
  [1] -1.909822599 -0.451698788 -0.207722769 -1.430753075 -1.127020944
  [6]  0.932988486 -1.608565238 -0.816313999 -0.123080605  0.754303801
 [11]  2.171179672 -0.351258859  1.893992310  0.512771191 -0.217814697
 [16]  0.500715813 -0.766935954  0.460580994 -0.208876740 -0.776879517
 [21] -0.395704056 -1.354567266  0.542260761 -1.041647569  0.145026163
 [26]  0.388232135 -0.761779430 -1.473147686 -0.068857548  0.389264774
 [31] -1.171251687 -2.136664458 -0.916970782 -0.447820424 -1.010318803
 [36]  0.644024425  0.181561173  2.049026402  0.583816932 -0.826361892
 [41] -1.109296272  0.280309210 -1.141305294 -0.884055863 -1.255804064
 [46]  0.141215560  0.357568209  0.041396033 -0.844434221  0.831074313
 [51] -0.007813674 -0.065567563  2.422241775  0.320715026  1.837716748
 [56]  0.394451125 -0.162572313  1.911754659 -1.308572856 -0.361854460
 [61] -1.136464974  1.730453320 -0.599365380 -0.533363357  0.334472136
 [66]  0.802731534  1.362610868  0.570008864 -1.125014748  1.494724839
 [71] -0.500988144  0.809653304  0.901504939  0.422891406 -0.673059129
 [76] -0.250127352  0.988710254  0.869989015 -0.615529437 -0.753257224
 [81]  0.674978796  0.508511662 -1.184211238 -0.828630811 -1.220739137
 [86]  1.992617692  1.601171975  0.631639528 -0.025962288  0.235819597
 [91] -0.832824038 -0.773151750  0.839126498 -0.290388159 -1.258420125
 [96] -0.009372509  0.364433192  0.343866322 -0.222483985  1.312436625
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.909822599 -0.451698788 -0.207722769 -1.430753075 -1.127020944
  [6]  0.932988486 -1.608565238 -0.816313999 -0.123080605  0.754303801
 [11]  2.171179672 -0.351258859  1.893992310  0.512771191 -0.217814697
 [16]  0.500715813 -0.766935954  0.460580994 -0.208876740 -0.776879517
 [21] -0.395704056 -1.354567266  0.542260761 -1.041647569  0.145026163
 [26]  0.388232135 -0.761779430 -1.473147686 -0.068857548  0.389264774
 [31] -1.171251687 -2.136664458 -0.916970782 -0.447820424 -1.010318803
 [36]  0.644024425  0.181561173  2.049026402  0.583816932 -0.826361892
 [41] -1.109296272  0.280309210 -1.141305294 -0.884055863 -1.255804064
 [46]  0.141215560  0.357568209  0.041396033 -0.844434221  0.831074313
 [51] -0.007813674 -0.065567563  2.422241775  0.320715026  1.837716748
 [56]  0.394451125 -0.162572313  1.911754659 -1.308572856 -0.361854460
 [61] -1.136464974  1.730453320 -0.599365380 -0.533363357  0.334472136
 [66]  0.802731534  1.362610868  0.570008864 -1.125014748  1.494724839
 [71] -0.500988144  0.809653304  0.901504939  0.422891406 -0.673059129
 [76] -0.250127352  0.988710254  0.869989015 -0.615529437 -0.753257224
 [81]  0.674978796  0.508511662 -1.184211238 -0.828630811 -1.220739137
 [86]  1.992617692  1.601171975  0.631639528 -0.025962288  0.235819597
 [91] -0.832824038 -0.773151750  0.839126498 -0.290388159 -1.258420125
 [96] -0.009372509  0.364433192  0.343866322 -0.222483985  1.312436625
> colMin(tmp)
  [1] -1.909822599 -0.451698788 -0.207722769 -1.430753075 -1.127020944
  [6]  0.932988486 -1.608565238 -0.816313999 -0.123080605  0.754303801
 [11]  2.171179672 -0.351258859  1.893992310  0.512771191 -0.217814697
 [16]  0.500715813 -0.766935954  0.460580994 -0.208876740 -0.776879517
 [21] -0.395704056 -1.354567266  0.542260761 -1.041647569  0.145026163
 [26]  0.388232135 -0.761779430 -1.473147686 -0.068857548  0.389264774
 [31] -1.171251687 -2.136664458 -0.916970782 -0.447820424 -1.010318803
 [36]  0.644024425  0.181561173  2.049026402  0.583816932 -0.826361892
 [41] -1.109296272  0.280309210 -1.141305294 -0.884055863 -1.255804064
 [46]  0.141215560  0.357568209  0.041396033 -0.844434221  0.831074313
 [51] -0.007813674 -0.065567563  2.422241775  0.320715026  1.837716748
 [56]  0.394451125 -0.162572313  1.911754659 -1.308572856 -0.361854460
 [61] -1.136464974  1.730453320 -0.599365380 -0.533363357  0.334472136
 [66]  0.802731534  1.362610868  0.570008864 -1.125014748  1.494724839
 [71] -0.500988144  0.809653304  0.901504939  0.422891406 -0.673059129
 [76] -0.250127352  0.988710254  0.869989015 -0.615529437 -0.753257224
 [81]  0.674978796  0.508511662 -1.184211238 -0.828630811 -1.220739137
 [86]  1.992617692  1.601171975  0.631639528 -0.025962288  0.235819597
 [91] -0.832824038 -0.773151750  0.839126498 -0.290388159 -1.258420125
 [96] -0.009372509  0.364433192  0.343866322 -0.222483985  1.312436625
> colMedians(tmp)
  [1] -1.909822599 -0.451698788 -0.207722769 -1.430753075 -1.127020944
  [6]  0.932988486 -1.608565238 -0.816313999 -0.123080605  0.754303801
 [11]  2.171179672 -0.351258859  1.893992310  0.512771191 -0.217814697
 [16]  0.500715813 -0.766935954  0.460580994 -0.208876740 -0.776879517
 [21] -0.395704056 -1.354567266  0.542260761 -1.041647569  0.145026163
 [26]  0.388232135 -0.761779430 -1.473147686 -0.068857548  0.389264774
 [31] -1.171251687 -2.136664458 -0.916970782 -0.447820424 -1.010318803
 [36]  0.644024425  0.181561173  2.049026402  0.583816932 -0.826361892
 [41] -1.109296272  0.280309210 -1.141305294 -0.884055863 -1.255804064
 [46]  0.141215560  0.357568209  0.041396033 -0.844434221  0.831074313
 [51] -0.007813674 -0.065567563  2.422241775  0.320715026  1.837716748
 [56]  0.394451125 -0.162572313  1.911754659 -1.308572856 -0.361854460
 [61] -1.136464974  1.730453320 -0.599365380 -0.533363357  0.334472136
 [66]  0.802731534  1.362610868  0.570008864 -1.125014748  1.494724839
 [71] -0.500988144  0.809653304  0.901504939  0.422891406 -0.673059129
 [76] -0.250127352  0.988710254  0.869989015 -0.615529437 -0.753257224
 [81]  0.674978796  0.508511662 -1.184211238 -0.828630811 -1.220739137
 [86]  1.992617692  1.601171975  0.631639528 -0.025962288  0.235819597
 [91] -0.832824038 -0.773151750  0.839126498 -0.290388159 -1.258420125
 [96] -0.009372509  0.364433192  0.343866322 -0.222483985  1.312436625
> colRanges(tmp)
          [,1]       [,2]       [,3]      [,4]      [,5]      [,6]      [,7]
[1,] -1.909823 -0.4516988 -0.2077228 -1.430753 -1.127021 0.9329885 -1.608565
[2,] -1.909823 -0.4516988 -0.2077228 -1.430753 -1.127021 0.9329885 -1.608565
          [,8]       [,9]     [,10]   [,11]      [,12]    [,13]     [,14]
[1,] -0.816314 -0.1230806 0.7543038 2.17118 -0.3512589 1.893992 0.5127712
[2,] -0.816314 -0.1230806 0.7543038 2.17118 -0.3512589 1.893992 0.5127712
          [,15]     [,16]     [,17]    [,18]      [,19]      [,20]      [,21]
[1,] -0.2178147 0.5007158 -0.766936 0.460581 -0.2088767 -0.7768795 -0.3957041
[2,] -0.2178147 0.5007158 -0.766936 0.460581 -0.2088767 -0.7768795 -0.3957041
         [,22]     [,23]     [,24]     [,25]     [,26]      [,27]     [,28]
[1,] -1.354567 0.5422608 -1.041648 0.1450262 0.3882321 -0.7617794 -1.473148
[2,] -1.354567 0.5422608 -1.041648 0.1450262 0.3882321 -0.7617794 -1.473148
           [,29]     [,30]     [,31]     [,32]      [,33]      [,34]     [,35]
[1,] -0.06885755 0.3892648 -1.171252 -2.136664 -0.9169708 -0.4478204 -1.010319
[2,] -0.06885755 0.3892648 -1.171252 -2.136664 -0.9169708 -0.4478204 -1.010319
         [,36]     [,37]    [,38]     [,39]      [,40]     [,41]     [,42]
[1,] 0.6440244 0.1815612 2.049026 0.5838169 -0.8263619 -1.109296 0.2803092
[2,] 0.6440244 0.1815612 2.049026 0.5838169 -0.8263619 -1.109296 0.2803092
         [,43]      [,44]     [,45]     [,46]     [,47]      [,48]      [,49]
[1,] -1.141305 -0.8840559 -1.255804 0.1412156 0.3575682 0.04139603 -0.8444342
[2,] -1.141305 -0.8840559 -1.255804 0.1412156 0.3575682 0.04139603 -0.8444342
         [,50]        [,51]       [,52]    [,53]    [,54]    [,55]     [,56]
[1,] 0.8310743 -0.007813674 -0.06556756 2.422242 0.320715 1.837717 0.3944511
[2,] 0.8310743 -0.007813674 -0.06556756 2.422242 0.320715 1.837717 0.3944511
          [,57]    [,58]     [,59]      [,60]     [,61]    [,62]      [,63]
[1,] -0.1625723 1.911755 -1.308573 -0.3618545 -1.136465 1.730453 -0.5993654
[2,] -0.1625723 1.911755 -1.308573 -0.3618545 -1.136465 1.730453 -0.5993654
          [,64]     [,65]     [,66]    [,67]     [,68]     [,69]    [,70]
[1,] -0.5333634 0.3344721 0.8027315 1.362611 0.5700089 -1.125015 1.494725
[2,] -0.5333634 0.3344721 0.8027315 1.362611 0.5700089 -1.125015 1.494725
          [,71]     [,72]     [,73]     [,74]      [,75]      [,76]     [,77]
[1,] -0.5009881 0.8096533 0.9015049 0.4228914 -0.6730591 -0.2501274 0.9887103
[2,] -0.5009881 0.8096533 0.9015049 0.4228914 -0.6730591 -0.2501274 0.9887103
        [,78]      [,79]      [,80]     [,81]     [,82]     [,83]      [,84]
[1,] 0.869989 -0.6155294 -0.7532572 0.6749788 0.5085117 -1.184211 -0.8286308
[2,] 0.869989 -0.6155294 -0.7532572 0.6749788 0.5085117 -1.184211 -0.8286308
         [,85]    [,86]    [,87]     [,88]       [,89]     [,90]     [,91]
[1,] -1.220739 1.992618 1.601172 0.6316395 -0.02596229 0.2358196 -0.832824
[2,] -1.220739 1.992618 1.601172 0.6316395 -0.02596229 0.2358196 -0.832824
          [,92]     [,93]      [,94]    [,95]        [,96]     [,97]     [,98]
[1,] -0.7731517 0.8391265 -0.2903882 -1.25842 -0.009372509 0.3644332 0.3438663
[2,] -0.7731517 0.8391265 -0.2903882 -1.25842 -0.009372509 0.3644332 0.3438663
         [,99]   [,100]
[1,] -0.222484 1.312437
[2,] -0.222484 1.312437
> 
> 
> Max(tmp2)
[1] 2.538595
> Min(tmp2)
[1] -1.978792
> mean(tmp2)
[1] 0.01879486
> Sum(tmp2)
[1] 1.879486
> Var(tmp2)
[1] 1.008783
> 
> rowMeans(tmp2)
  [1] -0.47675362  0.06840191 -0.95167553  0.80378523  0.83900349  1.25619545
  [7]  1.98537080  0.07732226 -0.41357204  1.07169772  0.90132022 -1.31403718
 [13] -1.32895512 -0.41274442 -0.69356410 -1.03615625 -1.21656458  0.59616322
 [19] -0.54129593  0.09217631 -0.98076769 -1.97879221  0.61292471  1.10276406
 [25] -0.44270684  2.23912493  1.08684847  2.53859507 -1.29619781 -0.61674022
 [31]  0.01440766 -1.68396910 -1.51392348  1.62892644 -0.60426206 -0.09366675
 [37]  0.19477247  0.66912114  0.30583607  0.69430695 -0.08457350  0.87270873
 [43]  0.53809181 -0.65338244 -0.69264052  0.09569295 -0.52565108 -0.20537655
 [49]  0.83821069 -0.65899635  0.71414001  1.44547459  1.70110178  1.04048238
 [55]  0.94879676 -0.40020336  0.16294316  0.46789046 -0.91665779 -1.86168834
 [61]  1.88121730  0.78036287  0.64231099  0.61600422 -1.11653101  0.08217524
 [67]  0.63875399  0.01940558 -1.66347955 -1.26433134 -1.93917294 -0.26735151
 [73]  0.52659282  1.34024025  0.35988862 -0.52294604 -1.47281729  0.53915216
 [79] -0.02558449  0.93189026 -0.97085762 -1.25092527  0.32871888  0.51074185
 [85]  0.49090553 -0.19844965  0.97401930 -0.44255874  0.45490167 -1.18584809
 [91] -0.18452959 -0.40465017 -0.55155720 -0.98853392  1.61686400  0.59786631
 [97]  1.55028518 -0.92372664 -0.25443887 -1.38360428
> rowSums(tmp2)
  [1] -0.47675362  0.06840191 -0.95167553  0.80378523  0.83900349  1.25619545
  [7]  1.98537080  0.07732226 -0.41357204  1.07169772  0.90132022 -1.31403718
 [13] -1.32895512 -0.41274442 -0.69356410 -1.03615625 -1.21656458  0.59616322
 [19] -0.54129593  0.09217631 -0.98076769 -1.97879221  0.61292471  1.10276406
 [25] -0.44270684  2.23912493  1.08684847  2.53859507 -1.29619781 -0.61674022
 [31]  0.01440766 -1.68396910 -1.51392348  1.62892644 -0.60426206 -0.09366675
 [37]  0.19477247  0.66912114  0.30583607  0.69430695 -0.08457350  0.87270873
 [43]  0.53809181 -0.65338244 -0.69264052  0.09569295 -0.52565108 -0.20537655
 [49]  0.83821069 -0.65899635  0.71414001  1.44547459  1.70110178  1.04048238
 [55]  0.94879676 -0.40020336  0.16294316  0.46789046 -0.91665779 -1.86168834
 [61]  1.88121730  0.78036287  0.64231099  0.61600422 -1.11653101  0.08217524
 [67]  0.63875399  0.01940558 -1.66347955 -1.26433134 -1.93917294 -0.26735151
 [73]  0.52659282  1.34024025  0.35988862 -0.52294604 -1.47281729  0.53915216
 [79] -0.02558449  0.93189026 -0.97085762 -1.25092527  0.32871888  0.51074185
 [85]  0.49090553 -0.19844965  0.97401930 -0.44255874  0.45490167 -1.18584809
 [91] -0.18452959 -0.40465017 -0.55155720 -0.98853392  1.61686400  0.59786631
 [97]  1.55028518 -0.92372664 -0.25443887 -1.38360428
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.47675362  0.06840191 -0.95167553  0.80378523  0.83900349  1.25619545
  [7]  1.98537080  0.07732226 -0.41357204  1.07169772  0.90132022 -1.31403718
 [13] -1.32895512 -0.41274442 -0.69356410 -1.03615625 -1.21656458  0.59616322
 [19] -0.54129593  0.09217631 -0.98076769 -1.97879221  0.61292471  1.10276406
 [25] -0.44270684  2.23912493  1.08684847  2.53859507 -1.29619781 -0.61674022
 [31]  0.01440766 -1.68396910 -1.51392348  1.62892644 -0.60426206 -0.09366675
 [37]  0.19477247  0.66912114  0.30583607  0.69430695 -0.08457350  0.87270873
 [43]  0.53809181 -0.65338244 -0.69264052  0.09569295 -0.52565108 -0.20537655
 [49]  0.83821069 -0.65899635  0.71414001  1.44547459  1.70110178  1.04048238
 [55]  0.94879676 -0.40020336  0.16294316  0.46789046 -0.91665779 -1.86168834
 [61]  1.88121730  0.78036287  0.64231099  0.61600422 -1.11653101  0.08217524
 [67]  0.63875399  0.01940558 -1.66347955 -1.26433134 -1.93917294 -0.26735151
 [73]  0.52659282  1.34024025  0.35988862 -0.52294604 -1.47281729  0.53915216
 [79] -0.02558449  0.93189026 -0.97085762 -1.25092527  0.32871888  0.51074185
 [85]  0.49090553 -0.19844965  0.97401930 -0.44255874  0.45490167 -1.18584809
 [91] -0.18452959 -0.40465017 -0.55155720 -0.98853392  1.61686400  0.59786631
 [97]  1.55028518 -0.92372664 -0.25443887 -1.38360428
> rowMin(tmp2)
  [1] -0.47675362  0.06840191 -0.95167553  0.80378523  0.83900349  1.25619545
  [7]  1.98537080  0.07732226 -0.41357204  1.07169772  0.90132022 -1.31403718
 [13] -1.32895512 -0.41274442 -0.69356410 -1.03615625 -1.21656458  0.59616322
 [19] -0.54129593  0.09217631 -0.98076769 -1.97879221  0.61292471  1.10276406
 [25] -0.44270684  2.23912493  1.08684847  2.53859507 -1.29619781 -0.61674022
 [31]  0.01440766 -1.68396910 -1.51392348  1.62892644 -0.60426206 -0.09366675
 [37]  0.19477247  0.66912114  0.30583607  0.69430695 -0.08457350  0.87270873
 [43]  0.53809181 -0.65338244 -0.69264052  0.09569295 -0.52565108 -0.20537655
 [49]  0.83821069 -0.65899635  0.71414001  1.44547459  1.70110178  1.04048238
 [55]  0.94879676 -0.40020336  0.16294316  0.46789046 -0.91665779 -1.86168834
 [61]  1.88121730  0.78036287  0.64231099  0.61600422 -1.11653101  0.08217524
 [67]  0.63875399  0.01940558 -1.66347955 -1.26433134 -1.93917294 -0.26735151
 [73]  0.52659282  1.34024025  0.35988862 -0.52294604 -1.47281729  0.53915216
 [79] -0.02558449  0.93189026 -0.97085762 -1.25092527  0.32871888  0.51074185
 [85]  0.49090553 -0.19844965  0.97401930 -0.44255874  0.45490167 -1.18584809
 [91] -0.18452959 -0.40465017 -0.55155720 -0.98853392  1.61686400  0.59786631
 [97]  1.55028518 -0.92372664 -0.25443887 -1.38360428
> 
> colMeans(tmp2)
[1] 0.01879486
> colSums(tmp2)
[1] 1.879486
> colVars(tmp2)
[1] 1.008783
> colSd(tmp2)
[1] 1.004382
> colMax(tmp2)
[1] 2.538595
> colMin(tmp2)
[1] -1.978792
> colMedians(tmp2)
[1] 0.04390374
> colRanges(tmp2)
          [,1]
[1,] -1.978792
[2,]  2.538595
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.6417327  2.4498732 -1.7478656 -1.0708124  1.3165336  3.5367543
 [7] -3.2871232 -5.1001065 -0.3888985 -4.3510037
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.0038029
[2,] -0.3242631
[3,]  0.4761786
[4,]  1.0083149
[5,]  1.4125984
> 
> rowApply(tmp,sum)
 [1] -1.7996510  4.9765734 -5.1415127  0.1429660 -4.3471153  1.9764798
 [7]  2.3707383 -0.7273327 -5.2429998  1.7909382
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    7    9    7    8    1    9    9    7    6     8
 [2,]   10    7    8    9    2    3    4    6    2    10
 [3,]    2    6    4    4    8    1    6    4   10     7
 [4,]    4   10    2    2    7   10    5    2    5     6
 [5,]    6    4    3    6    6    7   10   10    7     1
 [6,]    1    8    9    5    9    6    3    9    9     9
 [7,]    8    3    5    1    5    8    1    8    8     3
 [8,]    3    5    1    7    4    2    7    3    4     5
 [9,]    5    2    6   10   10    4    8    1    3     4
[10,]    9    1   10    3    3    5    2    5    1     2
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.60195756 -0.06503467  0.22620780  1.88149158  1.55427685  0.93424886
 [7] -3.16335806 -3.64171895  2.31927180  0.38661612  0.35374299 -0.97589127
[13]  0.86352639  1.27162040  1.04815806  5.94616606 -1.07491541 -1.92584823
[19] -0.45124388 -0.47220218
> colApply(tmp,quantile)[,1]
          [,1]
[1,] 0.2790186
[2,] 0.4567265
[3,] 0.5551182
[4,] 0.8150987
[5,] 1.4959956
> 
> rowApply(tmp,sum)
[1] -2.106565  3.581313  2.857010  6.462971 -2.177658
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   15   20   15   14   13
[2,]    8   11    9    7   14
[3,]    4    1   20   12    9
[4,]   14   14   13    2   19
[5,]   19   17    7    8   10
> 
> 
> as.matrix(tmp)
          [,1]       [,2]        [,3]       [,4]        [,5]        [,6]
[1,] 0.4567265 -0.4327691 -1.24509379  0.4566007  1.33651422  0.95811650
[2,] 1.4959956  0.2201071 -1.20036347  0.6665135  1.09638787 -0.07874198
[3,] 0.8150987  0.1305247  2.49240616  0.6762061 -0.61605070 -0.78929125
[4,] 0.5551182 -0.2643893  0.24661886 -0.7597711 -0.25634038  0.03781168
[5,] 0.2790186  0.2814919 -0.06735996  0.8419423 -0.00623416  0.80635391
           [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,]  0.3531839  0.7839068  1.7212344 -0.5517220 -0.3903905  0.3384378
[2,] -0.3783824 -0.8679718 -0.3768227 -0.6241434  0.4815644 -0.9367683
[3,] -1.7980020 -1.3489535  1.1615893  0.7958887  0.4669743 -1.7735680
[4,]  0.5817455 -0.7095565  0.4937238  1.3788027 -1.3053159  1.7583953
[5,] -1.9219031 -1.4991440 -0.6804530 -0.6122099  1.1009107 -0.3623882
           [,13]      [,14]      [,15]     [,16]       [,17]      [,18]
[1,] -1.46463437 -0.4593543 -0.9815801 0.7662945 -1.99782146 -1.4740123
[2,]  0.31381416 -0.3332093  0.6707075 1.2785691 -0.04862235  0.8358500
[3,]  1.47171049  1.6799702  0.6462147 0.3635055 -0.62640494  0.9473222
[4,]  0.06403385  0.9936913  0.1595184 3.2906783  1.74740911 -0.5391137
[5,]  0.47860225 -0.6094775  0.5532977 0.2471187 -0.14947577 -1.6958945
           [,19]       [,20]
[1,] -0.19417118 -0.08603116
[2,]  0.01026822  1.35656163
[3,] -0.44986064 -1.38827007
[4,] -0.49746131 -0.51262807
[5,]  0.67998103  0.15816549
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  655  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  567  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2    col3     col4      col5      col6      col7
row1 0.4312729 2.644896 1.29778 1.097027 -2.076493 0.6812915 0.6144016
          col8       col9     col10      col11    col12      col13       col14
row1 0.3003657 -0.5939944 0.4874476 -0.7566704 1.322484 -0.8734515 0.002813468
           col15      col16     col17  col18      col19     col20
row1 -0.03027667 -0.8328589 0.8285247 1.3955 -0.9160292 0.6202088
> tmp[,"col10"]
          col10
row1  0.4874476
row2  0.3579541
row3 -0.4120689
row4 -0.4251029
row5 -0.4558770
> tmp[c("row1","row5"),]
            col1       col2       col3      col4       col5      col6
row1  0.43127293  2.6448956  1.2977802 1.0970268 -2.0764927 0.6812915
row5 -0.05465634 -0.5487533 -0.8520518 0.4560567  0.9547079 0.3425737
           col7      col8       col9      col10       col11     col12
row1  0.6144016 0.3003657 -0.5939944  0.4874476 -0.75667043 1.3224841
row5 -2.0418663 1.1317806  0.9514007 -0.4558770 -0.06140725 0.2581085
          col13       col14       col15      col16     col17    col18
row1 -0.8734515 0.002813468 -0.03027667 -0.8328589 0.8285247 1.395500
row5 -0.8902967 0.251532413 -0.28079820 -0.9039995 0.1600728 2.380905
          col19      col20
row1 -0.9160292  0.6202088
row5 -2.2156580 -1.2783998
> tmp[,c("col6","col20")]
           col6       col20
row1  0.6812915  0.62020881
row2 -1.3318266  0.53628550
row3  1.0035285  0.95712492
row4 -1.3188278 -0.02165601
row5  0.3425737 -1.27839983
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.6812915  0.6202088
row5 0.3425737 -1.2783998
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
        col1     col2     col3     col4     col5     col6    col7    col8
row1 49.1637 51.95121 49.75557 48.87067 49.52281 105.0963 51.1775 50.2498
         col9    col10    col11    col12   col13    col14    col15    col16
row1 49.55396 50.22975 49.94359 50.61875 49.0017 50.04187 50.67107 49.73857
       col17    col18    col19    col20
row1 48.9089 49.52666 50.24483 105.2936
> tmp[,"col10"]
        col10
row1 50.22975
row2 28.94581
row3 30.72273
row4 29.79684
row5 50.44772
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.16370 51.95121 49.75557 48.87067 49.52281 105.0963 51.17750 50.24980
row5 50.90056 49.79273 49.98138 49.32000 49.10870 105.9735 49.24128 50.21246
         col9    col10    col11    col12   col13    col14    col15    col16
row1 49.55396 50.22975 49.94359 50.61875 49.0017 50.04187 50.67107 49.73857
row5 50.32788 50.44772 49.77211 49.26450 50.3666 52.44299 50.19046 48.91327
       col17    col18    col19    col20
row1 48.9089 49.52666 50.24483 105.2936
row5 50.1469 50.79594 47.98350 105.7466
> tmp[,c("col6","col20")]
          col6     col20
row1 105.09627 105.29361
row2  78.17571  73.84834
row3  75.74729  74.37226
row4  74.43744  75.01026
row5 105.97354 105.74664
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.0963 105.2936
row5 105.9735 105.7466
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.0963 105.2936
row5 105.9735 105.7466
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.1636694
[2,] -0.9951622
[3,]  1.1629313
[4,] -1.5664902
[5,]  1.7322553
> tmp[,c("col17","col7")]
          col17      col7
[1,] -0.5588655 1.1640464
[2,] -0.7347490 1.8754309
[3,]  0.1618431 1.2351334
[4,]  0.1540561 0.6190668
[5,]  1.2076010 0.1375351
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.4407654 -0.3696244
[2,]  0.3485777 -0.5590799
[3,] -0.5214457 -0.6687986
[4,] -0.4972123 -0.6999254
[5,] -1.4402513 -0.1691466
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.440765
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.4407654
[2,]  0.3485777
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]      [,3]       [,4]      [,5]        [,6]        [,7]
row3  1.806394 -1.458154 0.2138098 -2.1908266 0.1792917 -0.06319458 -0.50611742
row1 -1.468394 -1.388104 0.4357540 -0.8360655 0.7435369 -1.21268089 -0.01795165
           [,8]      [,9]      [,10]      [,11]       [,12]     [,13]
row3 -1.0924581 1.1138629  1.1125999 -0.3673594 -1.09924110 -1.860554
row1 -0.2573871 0.6361249 -0.9040849 -1.3254471 -0.07170349  1.668596
          [,14]      [,15]       [,16]     [,17]      [,18]      [,19]
row3 -0.4632826  0.9488777 -0.06122396 0.7233568 -0.9024001 -0.4096390
row1  0.4432862 -0.7833460 -1.30673603 0.2359055  0.5857168  0.1751206
         [,20]
row3 0.5349105
row1 0.8547047
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]     [,2]      [,3]       [,4]      [,5]        [,6]     [,7]
row2 -0.3105778 1.622282 0.4578423 -0.3876919 0.2933164 0.002800742 1.865194
        [,8]       [,9]     [,10]
row2 1.10717 -0.1000301 -1.066348
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]     [,3]      [,4]      [,5]       [,6]     [,7]
row5 0.05932505 -0.6612003 0.795606 0.4160692 0.9763552 -0.1931411 1.323425
          [,8]      [,9]     [,10]      [,11]     [,12]     [,13]    [,14]
row5 0.1019898 0.8543774 0.8834923 -0.1821187 0.2664412 0.2905767 -0.45957
          [,15]      [,16]    [,17]     [,18]      [,19]     [,20]
row5 0.04410121 -0.4570788 1.967814 -0.418018 -0.5821944 0.3057191
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600002f880c0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030848418d3b"
 [2] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10308479f418c"
 [3] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030828887310"
 [4] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10308163a343a"
 [5] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10308473ad73c"
 [6] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103086808c8ac"
 [7] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030818aec990"
 [8] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103087b331998"
 [9] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030857d58958"
[10] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030842c1d75" 
[11] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103086c41ee76"
[12] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103085c8ebc80"
[13] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103081ef9a6f9"
[14] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1030818413552"
[15] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM103086113a6ee"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600002f884e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600002f884e0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600002f884e0>
> rowMedians(tmp)
  [1] -5.677368e-01  1.200652e-01  3.351578e-01 -5.089151e-01  2.154921e-02
  [6]  5.701292e-01  1.148173e-01 -2.047339e-01 -7.262374e-02  2.527170e-01
 [11] -2.356606e-01 -1.576407e-01 -2.102436e-01  4.941654e-01 -2.068814e-01
 [16] -4.687534e-02  2.983805e-01 -3.089776e-01 -1.145673e-01  2.952713e-01
 [21] -2.391262e-01 -3.295864e-01  6.885189e-01 -5.706188e-02  2.404166e-01
 [26]  1.802869e-01 -2.532987e-02 -6.876412e-01 -4.388727e-03 -4.072541e-01
 [31] -8.286501e-02 -2.230990e-01  1.578964e-01  1.386154e-02  4.526941e-01
 [36] -4.285830e-01 -6.488249e-02 -2.120055e-01  5.507099e-01  2.462712e-01
 [41] -2.002987e-01 -1.452515e-01 -1.132706e-01 -5.569478e-04 -2.665664e-01
 [46]  1.401209e-02  3.282987e-01  3.807935e-02 -6.991457e-01  2.665693e-01
 [51]  1.592988e-01  2.955593e-01  6.389199e-02  2.185194e-01  4.444625e-01
 [56]  9.708804e-02  1.700361e-01  2.242337e-01  2.224928e-01 -4.505386e-02
 [61] -5.459626e-01  4.624290e-03  1.418376e-01 -5.964934e-01  4.136739e-02
 [66] -1.723311e-01 -4.606875e-02 -1.918208e-01 -7.120062e-02  4.343680e-01
 [71]  3.510306e-01 -2.588633e-01  1.808141e-01 -2.474630e-02  3.002996e-01
 [76]  4.457648e-01  9.028855e-02  5.681069e-01  2.498273e-01  3.441552e-01
 [81] -1.828824e-01  1.849147e-01  6.307243e-03 -1.354282e-03 -1.001160e-01
 [86]  4.715269e-01  3.525038e-01 -3.312352e-02 -8.185790e-01  2.739169e-01
 [91]  2.535443e-01 -5.369558e-01 -6.423389e-01 -3.026441e-01  3.451123e-01
 [96]  3.419626e-01  1.101813e-01 -4.152819e-01 -1.264554e-01  2.993906e-01
[101]  3.241875e-01 -4.061625e-05  4.397798e-01  2.955196e-01  5.651650e-02
[106]  2.672584e-01  2.097764e-01  1.018369e-01  8.612002e-02  7.933829e-02
[111] -3.798593e-04 -5.091234e-01 -2.364553e-01 -2.699656e-01 -5.480797e-01
[116]  1.409425e-02  3.617496e-01  7.113427e-02 -2.428277e-01 -6.715803e-02
[121]  3.734858e-03 -3.439276e-01  2.815517e-01 -2.459144e-01  4.452814e-01
[126]  2.275671e-01  1.443339e-01 -2.900341e-01  3.923651e-01  2.479507e-01
[131] -3.129984e-02  1.049828e-01 -2.298567e-01 -3.819507e-01 -6.284965e-02
[136]  8.374432e-03 -3.936524e-02  4.132440e-01  2.705996e-01 -1.091564e-01
[141]  1.298336e-01 -8.500252e-02  1.105330e-01 -1.110016e-01 -9.185222e-01
[146] -1.883237e-01  1.155960e-01 -7.270194e-02  4.121730e-02  4.023081e-02
[151]  6.350135e-02 -8.926224e-03 -1.939743e-01  8.812487e-02 -1.157328e-01
[156]  3.608527e-01  1.541802e-01 -6.003950e-01  3.253329e-01  2.054500e-01
[161] -4.770414e-01  4.393145e-01 -6.528635e-02  5.334187e-01  8.039292e-02
[166] -1.144558e-01  5.355920e-01  1.410653e-01 -3.414060e-01 -1.390760e-02
[171] -3.139358e-01  1.869448e-01 -1.161816e-01  2.603825e-01  3.029362e-01
[176] -3.389663e-01 -3.351495e-01  1.634069e-01  5.895167e-01  9.650815e-02
[181] -7.669039e-03  6.024851e-01 -1.412349e-01  2.375522e-01 -1.390637e-01
[186]  7.209146e-02  3.628070e-01  1.622609e-01  1.766547e-01 -3.914920e-01
[191]  2.946708e-01  3.521960e-01  1.273665e-01 -7.734854e-03 -3.385912e-01
[196] -4.398560e-01 -3.825366e-01  3.469902e-01 -1.496483e-01 -4.873930e-01
[201] -5.048098e-01  2.445813e-01 -4.142532e-01  2.778431e-01  1.665429e-01
[206]  4.023964e-02 -7.243205e-01 -1.846713e-01 -6.746372e-01  4.403831e-02
[211] -1.672768e-01 -4.133771e-01  2.760969e-01  3.144072e-01 -3.610827e-02
[216] -1.044441e-03 -4.358489e-01 -4.707990e-01 -3.511597e-01  4.370851e-01
[221] -6.505212e-01  2.493782e-01  6.108882e-01 -5.016879e-02  3.861832e-01
[226]  3.333488e-01  1.157376e-01 -3.281865e-01 -3.790502e-01 -4.224244e-01
> 
> proc.time()
   user  system elapsed 
  1.990   8.482  11.026 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002cac000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002cac000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002cac000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600002cac000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600002cb01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002cb01e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600002cb01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002cb01e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002cb01e0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002cbc0c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002cbc0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002cbc0c0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002cbc0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002cbc0c0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600002cbc0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002cbc0c0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600002cbc0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002cbc0c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0660>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600002ca0660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0660>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile103c353ca1ad7" "BufferedMatrixFile103c379a8443a"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile103c353ca1ad7" "BufferedMatrixFile103c379a8443a"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600002ca0900>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0ae0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002ca0ae0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002ca0ae0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600002ca0ae0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002ca81e0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002ca81e0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.344   0.115   0.448 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.328   0.087   0.414 

Example timings