Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-04-02 19:28 -0400 (Wed, 02 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4764
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4495
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4522
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4449
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4426
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-31 13:00 -0400 (Mon, 31 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-03-31 20:24:39 -0400 (Mon, 31 Mar 2025)
EndedAt: 2025-03-31 20:25:02 -0400 (Mon, 31 Mar 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c init_package.c -o init_package.o
gcc -shared -L/home/biocbuild/bbs-3.20-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.20-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.20-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.233   0.045   0.267 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471272 25.2    1024775 54.8   643431 34.4
Vcells 871539  6.7    8388608 64.0  2046620 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Mar 31 20:24:53 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Mar 31 20:24:53 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5d5ec3208130>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Mar 31 20:24:53 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Mar 31 20:24:54 2025"
> 
> ColMode(tmp2)
<pointer: 0x5d5ec3208130>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]        [,3]       [,4]
[1,] 101.2358143  0.7492067  0.05124771 0.43762469
[2,]   0.9530473 -1.9890511 -1.83049927 0.57716413
[3,]   0.9587295  0.1858494  0.96658070 0.08701684
[4,]  -2.0327385  1.3977215 -0.57364237 0.32204399
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]       [,3]       [,4]
[1,] 101.2358143 0.7492067 0.05124771 0.43762469
[2,]   0.9530473 1.9890511 1.83049927 0.57716413
[3,]   0.9587295 0.1858494 0.96658070 0.08701684
[4,]   2.0327385 1.3977215 0.57364237 0.32204399
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0616010 0.8655673 0.2263796 0.6615321
[2,]  0.9762414 1.4103372 1.3529594 0.7597132
[3,]  0.9791473 0.4311026 0.9831484 0.2949862
[4,]  1.4257414 1.1822527 0.7573918 0.5674892
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 226.85182 34.40488 27.31504 32.05295
[2,]  35.71546 41.09242 40.36009 33.17430
[3,]  35.75020 29.49688 35.79806 28.03688
[4,]  41.29015 38.22025 33.14756 30.99694
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5d5ec0c964a0>
> exp(tmp5)
<pointer: 0x5d5ec0c964a0>
> log(tmp5,2)
<pointer: 0x5d5ec0c964a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 472.1624
> Min(tmp5)
[1] 53.96317
> mean(tmp5)
[1] 72.58862
> Sum(tmp5)
[1] 14517.72
> Var(tmp5)
[1] 875.1146
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 88.22743 72.53346 69.80205 74.09749 71.05041 69.32748 68.68928 67.50056
 [9] 70.19013 74.46791
> rowSums(tmp5)
 [1] 1764.549 1450.669 1396.041 1481.950 1421.008 1386.550 1373.786 1350.011
 [9] 1403.803 1489.358
> rowVars(tmp5)
 [1] 8231.61340  108.63191   51.51562   53.33970   42.69210   57.79352
 [7]   59.44458   70.95394   61.56807   93.38814
> rowSd(tmp5)
 [1] 90.728239 10.422663  7.177438  7.303403  6.533919  7.602205  7.710031
 [8]  8.423416  7.846532  9.663754
> rowMax(tmp5)
 [1] 472.16235  89.37829  85.45749  85.94004  82.22408  82.26711  82.23638
 [8]  81.69189  84.68703  90.23048
> rowMin(tmp5)
 [1] 55.01584 53.96317 58.35509 63.38664 56.76340 57.48577 56.06595 54.67777
 [9] 55.34151 55.73016
> 
> colMeans(tmp5)
 [1] 113.19557  74.71445  69.77174  69.93321  64.18226  65.90696  65.77985
 [8]  69.03403  69.13687  67.85739  74.62250  74.90525  75.01845  69.30038
[15]  67.63454  78.04259  66.65160  73.90442  69.39065  72.78972
> colSums(tmp5)
 [1] 1131.9557  747.1445  697.7174  699.3321  641.8226  659.0696  657.7985
 [8]  690.3403  691.3687  678.5739  746.2250  749.0525  750.1845  693.0038
[15]  676.3454  780.4259  666.5160  739.0442  693.9065  727.8972
> colVars(tmp5)
 [1] 15955.17264    67.88567    87.59498    63.60680    46.45682    88.46364
 [7]    40.92990    59.45016    65.44835    69.98044    52.26102    31.04477
[13]    28.26843    69.92934    89.80440    71.50791    75.08700    55.56526
[19]    40.25391    63.49867
> colSd(tmp5)
 [1] 126.313786   8.239276   9.359219   7.975387   6.815924   9.405511
 [7]   6.397648   7.710393   8.090016   8.365431   7.229179   5.571784
[13]   5.316807   8.362377   9.476519   8.456235   8.665276   7.454211
[19]   6.344597   7.968605
> colMax(tmp5)
 [1] 472.16235  85.52849  84.00425  83.72386  72.24746  80.48867  77.73975
 [8]  82.22408  83.77722  80.58957  90.23048  83.19081  81.38901  80.24618
[15]  89.30326  88.97444  81.45629  89.37829  77.18357  82.41044
> colMin(tmp5)
 [1] 63.41306 61.39388 56.85268 58.35509 53.96317 55.24090 58.95915 57.48577
 [9] 56.06595 54.67777 65.00753 65.35850 65.88429 58.71329 55.22158 65.78140
[17] 55.34151 65.06926 55.73016 61.67367
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 88.22743 72.53346       NA 74.09749 71.05041 69.32748 68.68928 67.50056
 [9] 70.19013 74.46791
> rowSums(tmp5)
 [1] 1764.549 1450.669       NA 1481.950 1421.008 1386.550 1373.786 1350.011
 [9] 1403.803 1489.358
> rowVars(tmp5)
 [1] 8231.61340  108.63191   53.99507   53.33970   42.69210   57.79352
 [7]   59.44458   70.95394   61.56807   93.38814
> rowSd(tmp5)
 [1] 90.728239 10.422663  7.348134  7.303403  6.533919  7.602205  7.710031
 [8]  8.423416  7.846532  9.663754
> rowMax(tmp5)
 [1] 472.16235  89.37829        NA  85.94004  82.22408  82.26711  82.23638
 [8]  81.69189  84.68703  90.23048
> rowMin(tmp5)
 [1] 55.01584 53.96317       NA 63.38664 56.76340 57.48577 56.06595 54.67777
 [9] 55.34151 55.73016
> 
> colMeans(tmp5)
 [1] 113.19557  74.71445  69.77174  69.93321  64.18226  65.90696  65.77985
 [8]  69.03403  69.13687  67.85739  74.62250  74.90525        NA  69.30038
[15]  67.63454  78.04259  66.65160  73.90442  69.39065  72.78972
> colSums(tmp5)
 [1] 1131.9557  747.1445  697.7174  699.3321  641.8226  659.0696  657.7985
 [8]  690.3403  691.3687  678.5739  746.2250  749.0525        NA  693.0038
[15]  676.3454  780.4259  666.5160  739.0442  693.9065  727.8972
> colVars(tmp5)
 [1] 15955.17264    67.88567    87.59498    63.60680    46.45682    88.46364
 [7]    40.92990    59.45016    65.44835    69.98044    52.26102    31.04477
[13]          NA    69.92934    89.80440    71.50791    75.08700    55.56526
[19]    40.25391    63.49867
> colSd(tmp5)
 [1] 126.313786   8.239276   9.359219   7.975387   6.815924   9.405511
 [7]   6.397648   7.710393   8.090016   8.365431   7.229179   5.571784
[13]         NA   8.362377   9.476519   8.456235   8.665276   7.454211
[19]   6.344597   7.968605
> colMax(tmp5)
 [1] 472.16235  85.52849  84.00425  83.72386  72.24746  80.48867  77.73975
 [8]  82.22408  83.77722  80.58957  90.23048  83.19081        NA  80.24618
[15]  89.30326  88.97444  81.45629  89.37829  77.18357  82.41044
> colMin(tmp5)
 [1] 63.41306 61.39388 56.85268 58.35509 53.96317 55.24090 58.95915 57.48577
 [9] 56.06595 54.67777 65.00753 65.35850       NA 58.71329 55.22158 65.78140
[17] 55.34151 65.06926 55.73016 61.67367
> 
> Max(tmp5,na.rm=TRUE)
[1] 472.1624
> Min(tmp5,na.rm=TRUE)
[1] 53.96317
> mean(tmp5,na.rm=TRUE)
[1] 72.61548
> Sum(tmp5,na.rm=TRUE)
[1] 14450.48
> Var(tmp5,na.rm=TRUE)
[1] 879.3894
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.22743 72.53346 69.93666 74.09749 71.05041 69.32748 68.68928 67.50056
 [9] 70.19013 74.46791
> rowSums(tmp5,na.rm=TRUE)
 [1] 1764.549 1450.669 1328.797 1481.950 1421.008 1386.550 1373.786 1350.011
 [9] 1403.803 1489.358
> rowVars(tmp5,na.rm=TRUE)
 [1] 8231.61340  108.63191   53.99507   53.33970   42.69210   57.79352
 [7]   59.44458   70.95394   61.56807   93.38814
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.728239 10.422663  7.348134  7.303403  6.533919  7.602205  7.710031
 [8]  8.423416  7.846532  9.663754
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.16235  89.37829  85.45749  85.94004  82.22408  82.26711  82.23638
 [8]  81.69189  84.68703  90.23048
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.01584 53.96317 58.35509 63.38664 56.76340 57.48577 56.06595 54.67777
 [9] 55.34151 55.73016
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.19557  74.71445  69.77174  69.93321  64.18226  65.90696  65.77985
 [8]  69.03403  69.13687  67.85739  74.62250  74.90525  75.88223  69.30038
[15]  67.63454  78.04259  66.65160  73.90442  69.39065  72.78972
> colSums(tmp5,na.rm=TRUE)
 [1] 1131.9557  747.1445  697.7174  699.3321  641.8226  659.0696  657.7985
 [8]  690.3403  691.3687  678.5739  746.2250  749.0525  682.9400  693.0038
[15]  676.3454  780.4259  666.5160  739.0442  693.9065  727.8972
> colVars(tmp5,na.rm=TRUE)
 [1] 15955.17264    67.88567    87.59498    63.60680    46.45682    88.46364
 [7]    40.92990    59.45016    65.44835    69.98044    52.26102    31.04477
[13]    23.40832    69.92934    89.80440    71.50791    75.08700    55.56526
[19]    40.25391    63.49867
> colSd(tmp5,na.rm=TRUE)
 [1] 126.313786   8.239276   9.359219   7.975387   6.815924   9.405511
 [7]   6.397648   7.710393   8.090016   8.365431   7.229179   5.571784
[13]   4.838215   8.362377   9.476519   8.456235   8.665276   7.454211
[19]   6.344597   7.968605
> colMax(tmp5,na.rm=TRUE)
 [1] 472.16235  85.52849  84.00425  83.72386  72.24746  80.48867  77.73975
 [8]  82.22408  83.77722  80.58957  90.23048  83.19081  81.38901  80.24618
[15]  89.30326  88.97444  81.45629  89.37829  77.18357  82.41044
> colMin(tmp5,na.rm=TRUE)
 [1] 63.41306 61.39388 56.85268 58.35509 53.96317 55.24090 58.95915 57.48577
 [9] 56.06595 54.67777 65.00753 65.35850 65.88429 58.71329 55.22158 65.78140
[17] 55.34151 65.06926 55.73016 61.67367
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.22743 72.53346      NaN 74.09749 71.05041 69.32748 68.68928 67.50056
 [9] 70.19013 74.46791
> rowSums(tmp5,na.rm=TRUE)
 [1] 1764.549 1450.669    0.000 1481.950 1421.008 1386.550 1373.786 1350.011
 [9] 1403.803 1489.358
> rowVars(tmp5,na.rm=TRUE)
 [1] 8231.61340  108.63191         NA   53.33970   42.69210   57.79352
 [7]   59.44458   70.95394   61.56807   93.38814
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.728239 10.422663        NA  7.303403  6.533919  7.602205  7.710031
 [8]  8.423416  7.846532  9.663754
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.16235  89.37829        NA  85.94004  82.22408  82.26711  82.23638
 [8]  81.69189  84.68703  90.23048
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.01584 53.96317       NA 63.38664 56.76340 57.48577 56.06595 54.67777
 [9] 55.34151 55.73016
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 117.50515  76.19451  69.24538  71.21967  63.78873  64.71889  66.53771
 [8]  69.00118  69.83842  66.44270  75.26440  75.96600       NaN  68.74313
[15]  67.60871  77.21871  67.05619  74.18580  68.52477  73.02252
> colSums(tmp5,na.rm=TRUE)
 [1] 1057.5464  685.7506  623.2084  640.9770  574.0986  582.4700  598.8394
 [8]  621.0106  628.5458  597.9843  677.3796  683.6940    0.0000  618.6881
[15]  608.4784  694.9684  603.5057  667.6722  616.7230  657.2027
> colVars(tmp5,na.rm=TRUE)
 [1] 17740.62892    51.72729    95.42748    52.93919    50.52170    83.64186
 [7]    39.58474    66.86929    68.09242    56.21294    54.15830    22.26696
[13]          NA    75.17709   101.02245    72.81017    82.63129    61.62015
[19]    36.85100    70.82627
> colSd(tmp5,na.rm=TRUE)
 [1] 133.193952   7.192168   9.768699   7.275932   7.107862   9.145592
 [7]   6.291641   8.177365   8.251813   7.497529   7.359232   4.718788
[13]         NA   8.670472  10.050992   8.532888   9.090176   7.849850
[19]   6.070502   8.415835
> colMax(tmp5,na.rm=TRUE)
 [1] 472.16235  85.52849  84.00425  83.72386  72.24746  80.48867  77.73975
 [8]  82.22408  83.77722  75.50320  90.23048  83.19081      -Inf  80.24618
[15]  89.30326  88.97444  81.45629  89.37829  75.47900  82.41044
> colMin(tmp5,na.rm=TRUE)
 [1] 63.41306 64.41167 56.85268 64.18112 53.96317 55.24090 60.32759 57.48577
 [9] 56.06595 54.67777 65.00753 69.97376      Inf 58.71329 55.22158 65.78140
[17] 55.34151 65.06926 55.73016 61.67367
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 199.7702 173.5811 361.1231 278.1518 253.6545 252.8704 280.0903 210.3315
 [9] 253.5152 286.1991
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 199.7702 173.5811 361.1231 278.1518 253.6545 252.8704 280.0903 210.3315
 [9] 253.5152 286.1991
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -7.105427e-15  8.526513e-14  1.705303e-13  8.526513e-14  0.000000e+00
 [6]  1.989520e-13 -1.989520e-13 -5.684342e-14  5.684342e-14 -5.684342e-14
[11]  8.526513e-14  5.684342e-14  1.421085e-13  1.136868e-13 -1.421085e-14
[16]  8.526513e-14  2.842171e-14 -2.842171e-14  8.526513e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   17 
9   5 
2   14 
4   14 
6   15 
5   16 
2   9 
6   20 
6   8 
1   6 
8   18 
2   2 
7   18 
1   14 
4   3 
10   5 
7   13 
7   19 
5   8 
10   11 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.02321
> Min(tmp)
[1] -2.499934
> mean(tmp)
[1] -0.02312869
> Sum(tmp)
[1] -2.312869
> Var(tmp)
[1] 0.8279875
> 
> rowMeans(tmp)
[1] -0.02312869
> rowSums(tmp)
[1] -2.312869
> rowVars(tmp)
[1] 0.8279875
> rowSd(tmp)
[1] 0.9099382
> rowMax(tmp)
[1] 2.02321
> rowMin(tmp)
[1] -2.499934
> 
> colMeans(tmp)
  [1] -0.708336246  0.394752729  1.597452830  0.008937740  0.011790457
  [6]  0.161703796  0.223108059 -0.223645774 -1.093287088  1.184849728
 [11] -0.123915557 -0.807568073 -0.550876463 -0.010499616 -2.499933523
 [16] -1.245188885 -1.549622325  0.472002839  1.139726550 -0.404545008
 [21]  1.125606420 -0.599233422 -0.270591863  0.688073049 -1.394934482
 [26] -0.592973384 -0.452555106 -0.802712596 -0.501429684  0.571090437
 [31]  0.127926349 -0.328170215  0.499910379  0.287112234  0.846103983
 [36] -0.893195586  0.467093198  0.820240149 -0.091873053  0.055921355
 [41] -0.954955629 -1.768632798  0.726356734 -0.670506504 -1.035554408
 [46] -1.304448576  0.828127295  1.699161308 -0.478184031  0.086335522
 [51] -1.089136763 -0.351484853 -1.041614577 -1.082375519  0.017761168
 [56]  0.405428690 -1.806846847  1.404586513 -1.519536805 -0.237212191
 [61]  1.285088210  0.786598760  0.207026495 -0.145793819 -0.219073388
 [66] -0.467007032  0.527874673  0.807658065  0.953622400  0.090213018
 [71] -1.250317436  0.769264236  1.066772416  1.019112583 -1.362000872
 [76]  0.006075855  0.872269325  1.413025721  0.664747450  2.023209899
 [81]  0.897790758  0.435283226  0.938551658  0.001340159 -0.571717210
 [86]  0.058809841  0.142872948 -1.569764088  0.817458698 -0.710357460
 [91] -0.956678716  0.113583700 -0.317170637  1.000196445  0.704052282
 [96]  0.771063071 -0.599460939 -0.753256491 -0.851259143  1.721844621
> colSums(tmp)
  [1] -0.708336246  0.394752729  1.597452830  0.008937740  0.011790457
  [6]  0.161703796  0.223108059 -0.223645774 -1.093287088  1.184849728
 [11] -0.123915557 -0.807568073 -0.550876463 -0.010499616 -2.499933523
 [16] -1.245188885 -1.549622325  0.472002839  1.139726550 -0.404545008
 [21]  1.125606420 -0.599233422 -0.270591863  0.688073049 -1.394934482
 [26] -0.592973384 -0.452555106 -0.802712596 -0.501429684  0.571090437
 [31]  0.127926349 -0.328170215  0.499910379  0.287112234  0.846103983
 [36] -0.893195586  0.467093198  0.820240149 -0.091873053  0.055921355
 [41] -0.954955629 -1.768632798  0.726356734 -0.670506504 -1.035554408
 [46] -1.304448576  0.828127295  1.699161308 -0.478184031  0.086335522
 [51] -1.089136763 -0.351484853 -1.041614577 -1.082375519  0.017761168
 [56]  0.405428690 -1.806846847  1.404586513 -1.519536805 -0.237212191
 [61]  1.285088210  0.786598760  0.207026495 -0.145793819 -0.219073388
 [66] -0.467007032  0.527874673  0.807658065  0.953622400  0.090213018
 [71] -1.250317436  0.769264236  1.066772416  1.019112583 -1.362000872
 [76]  0.006075855  0.872269325  1.413025721  0.664747450  2.023209899
 [81]  0.897790758  0.435283226  0.938551658  0.001340159 -0.571717210
 [86]  0.058809841  0.142872948 -1.569764088  0.817458698 -0.710357460
 [91] -0.956678716  0.113583700 -0.317170637  1.000196445  0.704052282
 [96]  0.771063071 -0.599460939 -0.753256491 -0.851259143  1.721844621
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.708336246  0.394752729  1.597452830  0.008937740  0.011790457
  [6]  0.161703796  0.223108059 -0.223645774 -1.093287088  1.184849728
 [11] -0.123915557 -0.807568073 -0.550876463 -0.010499616 -2.499933523
 [16] -1.245188885 -1.549622325  0.472002839  1.139726550 -0.404545008
 [21]  1.125606420 -0.599233422 -0.270591863  0.688073049 -1.394934482
 [26] -0.592973384 -0.452555106 -0.802712596 -0.501429684  0.571090437
 [31]  0.127926349 -0.328170215  0.499910379  0.287112234  0.846103983
 [36] -0.893195586  0.467093198  0.820240149 -0.091873053  0.055921355
 [41] -0.954955629 -1.768632798  0.726356734 -0.670506504 -1.035554408
 [46] -1.304448576  0.828127295  1.699161308 -0.478184031  0.086335522
 [51] -1.089136763 -0.351484853 -1.041614577 -1.082375519  0.017761168
 [56]  0.405428690 -1.806846847  1.404586513 -1.519536805 -0.237212191
 [61]  1.285088210  0.786598760  0.207026495 -0.145793819 -0.219073388
 [66] -0.467007032  0.527874673  0.807658065  0.953622400  0.090213018
 [71] -1.250317436  0.769264236  1.066772416  1.019112583 -1.362000872
 [76]  0.006075855  0.872269325  1.413025721  0.664747450  2.023209899
 [81]  0.897790758  0.435283226  0.938551658  0.001340159 -0.571717210
 [86]  0.058809841  0.142872948 -1.569764088  0.817458698 -0.710357460
 [91] -0.956678716  0.113583700 -0.317170637  1.000196445  0.704052282
 [96]  0.771063071 -0.599460939 -0.753256491 -0.851259143  1.721844621
> colMin(tmp)
  [1] -0.708336246  0.394752729  1.597452830  0.008937740  0.011790457
  [6]  0.161703796  0.223108059 -0.223645774 -1.093287088  1.184849728
 [11] -0.123915557 -0.807568073 -0.550876463 -0.010499616 -2.499933523
 [16] -1.245188885 -1.549622325  0.472002839  1.139726550 -0.404545008
 [21]  1.125606420 -0.599233422 -0.270591863  0.688073049 -1.394934482
 [26] -0.592973384 -0.452555106 -0.802712596 -0.501429684  0.571090437
 [31]  0.127926349 -0.328170215  0.499910379  0.287112234  0.846103983
 [36] -0.893195586  0.467093198  0.820240149 -0.091873053  0.055921355
 [41] -0.954955629 -1.768632798  0.726356734 -0.670506504 -1.035554408
 [46] -1.304448576  0.828127295  1.699161308 -0.478184031  0.086335522
 [51] -1.089136763 -0.351484853 -1.041614577 -1.082375519  0.017761168
 [56]  0.405428690 -1.806846847  1.404586513 -1.519536805 -0.237212191
 [61]  1.285088210  0.786598760  0.207026495 -0.145793819 -0.219073388
 [66] -0.467007032  0.527874673  0.807658065  0.953622400  0.090213018
 [71] -1.250317436  0.769264236  1.066772416  1.019112583 -1.362000872
 [76]  0.006075855  0.872269325  1.413025721  0.664747450  2.023209899
 [81]  0.897790758  0.435283226  0.938551658  0.001340159 -0.571717210
 [86]  0.058809841  0.142872948 -1.569764088  0.817458698 -0.710357460
 [91] -0.956678716  0.113583700 -0.317170637  1.000196445  0.704052282
 [96]  0.771063071 -0.599460939 -0.753256491 -0.851259143  1.721844621
> colMedians(tmp)
  [1] -0.708336246  0.394752729  1.597452830  0.008937740  0.011790457
  [6]  0.161703796  0.223108059 -0.223645774 -1.093287088  1.184849728
 [11] -0.123915557 -0.807568073 -0.550876463 -0.010499616 -2.499933523
 [16] -1.245188885 -1.549622325  0.472002839  1.139726550 -0.404545008
 [21]  1.125606420 -0.599233422 -0.270591863  0.688073049 -1.394934482
 [26] -0.592973384 -0.452555106 -0.802712596 -0.501429684  0.571090437
 [31]  0.127926349 -0.328170215  0.499910379  0.287112234  0.846103983
 [36] -0.893195586  0.467093198  0.820240149 -0.091873053  0.055921355
 [41] -0.954955629 -1.768632798  0.726356734 -0.670506504 -1.035554408
 [46] -1.304448576  0.828127295  1.699161308 -0.478184031  0.086335522
 [51] -1.089136763 -0.351484853 -1.041614577 -1.082375519  0.017761168
 [56]  0.405428690 -1.806846847  1.404586513 -1.519536805 -0.237212191
 [61]  1.285088210  0.786598760  0.207026495 -0.145793819 -0.219073388
 [66] -0.467007032  0.527874673  0.807658065  0.953622400  0.090213018
 [71] -1.250317436  0.769264236  1.066772416  1.019112583 -1.362000872
 [76]  0.006075855  0.872269325  1.413025721  0.664747450  2.023209899
 [81]  0.897790758  0.435283226  0.938551658  0.001340159 -0.571717210
 [86]  0.058809841  0.142872948 -1.569764088  0.817458698 -0.710357460
 [91] -0.956678716  0.113583700 -0.317170637  1.000196445  0.704052282
 [96]  0.771063071 -0.599460939 -0.753256491 -0.851259143  1.721844621
> colRanges(tmp)
           [,1]      [,2]     [,3]       [,4]       [,5]      [,6]      [,7]
[1,] -0.7083362 0.3947527 1.597453 0.00893774 0.01179046 0.1617038 0.2231081
[2,] -0.7083362 0.3947527 1.597453 0.00893774 0.01179046 0.1617038 0.2231081
           [,8]      [,9]   [,10]      [,11]      [,12]      [,13]       [,14]
[1,] -0.2236458 -1.093287 1.18485 -0.1239156 -0.8075681 -0.5508765 -0.01049962
[2,] -0.2236458 -1.093287 1.18485 -0.1239156 -0.8075681 -0.5508765 -0.01049962
         [,15]     [,16]     [,17]     [,18]    [,19]     [,20]    [,21]
[1,] -2.499934 -1.245189 -1.549622 0.4720028 1.139727 -0.404545 1.125606
[2,] -2.499934 -1.245189 -1.549622 0.4720028 1.139727 -0.404545 1.125606
          [,22]      [,23]    [,24]     [,25]      [,26]      [,27]      [,28]
[1,] -0.5992334 -0.2705919 0.688073 -1.394934 -0.5929734 -0.4525551 -0.8027126
[2,] -0.5992334 -0.2705919 0.688073 -1.394934 -0.5929734 -0.4525551 -0.8027126
          [,29]     [,30]     [,31]      [,32]     [,33]     [,34]    [,35]
[1,] -0.5014297 0.5710904 0.1279263 -0.3281702 0.4999104 0.2871122 0.846104
[2,] -0.5014297 0.5710904 0.1279263 -0.3281702 0.4999104 0.2871122 0.846104
          [,36]     [,37]     [,38]       [,39]      [,40]      [,41]     [,42]
[1,] -0.8931956 0.4670932 0.8202401 -0.09187305 0.05592135 -0.9549556 -1.768633
[2,] -0.8931956 0.4670932 0.8202401 -0.09187305 0.05592135 -0.9549556 -1.768633
         [,43]      [,44]     [,45]     [,46]     [,47]    [,48]     [,49]
[1,] 0.7263567 -0.6705065 -1.035554 -1.304449 0.8281273 1.699161 -0.478184
[2,] 0.7263567 -0.6705065 -1.035554 -1.304449 0.8281273 1.699161 -0.478184
          [,50]     [,51]      [,52]     [,53]     [,54]      [,55]     [,56]
[1,] 0.08633552 -1.089137 -0.3514849 -1.041615 -1.082376 0.01776117 0.4054287
[2,] 0.08633552 -1.089137 -0.3514849 -1.041615 -1.082376 0.01776117 0.4054287
         [,57]    [,58]     [,59]      [,60]    [,61]     [,62]     [,63]
[1,] -1.806847 1.404587 -1.519537 -0.2372122 1.285088 0.7865988 0.2070265
[2,] -1.806847 1.404587 -1.519537 -0.2372122 1.285088 0.7865988 0.2070265
          [,64]      [,65]     [,66]     [,67]     [,68]     [,69]      [,70]
[1,] -0.1457938 -0.2190734 -0.467007 0.5278747 0.8076581 0.9536224 0.09021302
[2,] -0.1457938 -0.2190734 -0.467007 0.5278747 0.8076581 0.9536224 0.09021302
         [,71]     [,72]    [,73]    [,74]     [,75]       [,76]     [,77]
[1,] -1.250317 0.7692642 1.066772 1.019113 -1.362001 0.006075855 0.8722693
[2,] -1.250317 0.7692642 1.066772 1.019113 -1.362001 0.006075855 0.8722693
        [,78]     [,79]   [,80]     [,81]     [,82]     [,83]       [,84]
[1,] 1.413026 0.6647474 2.02321 0.8977908 0.4352832 0.9385517 0.001340159
[2,] 1.413026 0.6647474 2.02321 0.8977908 0.4352832 0.9385517 0.001340159
          [,85]      [,86]     [,87]     [,88]     [,89]      [,90]      [,91]
[1,] -0.5717172 0.05880984 0.1428729 -1.569764 0.8174587 -0.7103575 -0.9566787
[2,] -0.5717172 0.05880984 0.1428729 -1.569764 0.8174587 -0.7103575 -0.9566787
         [,92]      [,93]    [,94]     [,95]     [,96]      [,97]      [,98]
[1,] 0.1135837 -0.3171706 1.000196 0.7040523 0.7710631 -0.5994609 -0.7532565
[2,] 0.1135837 -0.3171706 1.000196 0.7040523 0.7710631 -0.5994609 -0.7532565
          [,99]   [,100]
[1,] -0.8512591 1.721845
[2,] -0.8512591 1.721845
> 
> 
> Max(tmp2)
[1] 3.107481
> Min(tmp2)
[1] -2.415011
> mean(tmp2)
[1] 0.06141178
> Sum(tmp2)
[1] 6.141178
> Var(tmp2)
[1] 1.203214
> 
> rowMeans(tmp2)
  [1] -0.36224897  0.51378523  0.34030414 -1.51786241 -0.05043710 -1.50609153
  [7]  0.56483084 -1.10343077  0.98211396  2.29611752  0.62298786 -0.58251153
 [13] -1.84664517  0.94399142  0.28443690  0.10960212 -0.95103811  0.04570680
 [19] -0.42921455 -2.40498624 -0.22453736 -0.82021620  0.39369638  0.83350734
 [25] -1.06470581  0.15386756 -0.29913841 -0.49910991  0.83757000 -0.28851851
 [31]  1.14056962  0.62030836 -0.71568657  0.73802441  1.24572752  1.79078841
 [37]  0.55255366  0.47141716  0.93208105  3.10748060  0.56194437  0.26669030
 [43] -0.31860153  1.71688401 -0.84683996 -0.36613776 -0.21740878  0.34547821
 [49]  0.40184873  1.09355230 -1.73052010 -0.86149877  2.14790372  0.04624134
 [55] -0.56619761  2.05097438  0.50095182 -2.41501060  1.20144797 -0.76840709
 [61]  0.31487021  0.03181357  1.64540698 -2.24272432  0.77476212 -0.21402492
 [67]  0.98396914 -0.50360071 -0.81756524 -0.97980211  0.01279042 -0.50969051
 [73]  1.62503859 -0.09700657 -0.16401785  0.62172458 -0.21609092  0.22538289
 [79] -1.62549752 -0.85779365  0.07172406 -1.33738294  0.98066540  1.06942055
 [85] -0.65625534  2.19491775 -1.46261713 -2.03451126  1.21582973 -1.29836094
 [91] -0.16597325  0.35419172 -1.29321562  0.19900292  0.30390183  0.22635143
 [97]  0.02727852 -0.82234212  1.83745125  1.62477281
> rowSums(tmp2)
  [1] -0.36224897  0.51378523  0.34030414 -1.51786241 -0.05043710 -1.50609153
  [7]  0.56483084 -1.10343077  0.98211396  2.29611752  0.62298786 -0.58251153
 [13] -1.84664517  0.94399142  0.28443690  0.10960212 -0.95103811  0.04570680
 [19] -0.42921455 -2.40498624 -0.22453736 -0.82021620  0.39369638  0.83350734
 [25] -1.06470581  0.15386756 -0.29913841 -0.49910991  0.83757000 -0.28851851
 [31]  1.14056962  0.62030836 -0.71568657  0.73802441  1.24572752  1.79078841
 [37]  0.55255366  0.47141716  0.93208105  3.10748060  0.56194437  0.26669030
 [43] -0.31860153  1.71688401 -0.84683996 -0.36613776 -0.21740878  0.34547821
 [49]  0.40184873  1.09355230 -1.73052010 -0.86149877  2.14790372  0.04624134
 [55] -0.56619761  2.05097438  0.50095182 -2.41501060  1.20144797 -0.76840709
 [61]  0.31487021  0.03181357  1.64540698 -2.24272432  0.77476212 -0.21402492
 [67]  0.98396914 -0.50360071 -0.81756524 -0.97980211  0.01279042 -0.50969051
 [73]  1.62503859 -0.09700657 -0.16401785  0.62172458 -0.21609092  0.22538289
 [79] -1.62549752 -0.85779365  0.07172406 -1.33738294  0.98066540  1.06942055
 [85] -0.65625534  2.19491775 -1.46261713 -2.03451126  1.21582973 -1.29836094
 [91] -0.16597325  0.35419172 -1.29321562  0.19900292  0.30390183  0.22635143
 [97]  0.02727852 -0.82234212  1.83745125  1.62477281
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.36224897  0.51378523  0.34030414 -1.51786241 -0.05043710 -1.50609153
  [7]  0.56483084 -1.10343077  0.98211396  2.29611752  0.62298786 -0.58251153
 [13] -1.84664517  0.94399142  0.28443690  0.10960212 -0.95103811  0.04570680
 [19] -0.42921455 -2.40498624 -0.22453736 -0.82021620  0.39369638  0.83350734
 [25] -1.06470581  0.15386756 -0.29913841 -0.49910991  0.83757000 -0.28851851
 [31]  1.14056962  0.62030836 -0.71568657  0.73802441  1.24572752  1.79078841
 [37]  0.55255366  0.47141716  0.93208105  3.10748060  0.56194437  0.26669030
 [43] -0.31860153  1.71688401 -0.84683996 -0.36613776 -0.21740878  0.34547821
 [49]  0.40184873  1.09355230 -1.73052010 -0.86149877  2.14790372  0.04624134
 [55] -0.56619761  2.05097438  0.50095182 -2.41501060  1.20144797 -0.76840709
 [61]  0.31487021  0.03181357  1.64540698 -2.24272432  0.77476212 -0.21402492
 [67]  0.98396914 -0.50360071 -0.81756524 -0.97980211  0.01279042 -0.50969051
 [73]  1.62503859 -0.09700657 -0.16401785  0.62172458 -0.21609092  0.22538289
 [79] -1.62549752 -0.85779365  0.07172406 -1.33738294  0.98066540  1.06942055
 [85] -0.65625534  2.19491775 -1.46261713 -2.03451126  1.21582973 -1.29836094
 [91] -0.16597325  0.35419172 -1.29321562  0.19900292  0.30390183  0.22635143
 [97]  0.02727852 -0.82234212  1.83745125  1.62477281
> rowMin(tmp2)
  [1] -0.36224897  0.51378523  0.34030414 -1.51786241 -0.05043710 -1.50609153
  [7]  0.56483084 -1.10343077  0.98211396  2.29611752  0.62298786 -0.58251153
 [13] -1.84664517  0.94399142  0.28443690  0.10960212 -0.95103811  0.04570680
 [19] -0.42921455 -2.40498624 -0.22453736 -0.82021620  0.39369638  0.83350734
 [25] -1.06470581  0.15386756 -0.29913841 -0.49910991  0.83757000 -0.28851851
 [31]  1.14056962  0.62030836 -0.71568657  0.73802441  1.24572752  1.79078841
 [37]  0.55255366  0.47141716  0.93208105  3.10748060  0.56194437  0.26669030
 [43] -0.31860153  1.71688401 -0.84683996 -0.36613776 -0.21740878  0.34547821
 [49]  0.40184873  1.09355230 -1.73052010 -0.86149877  2.14790372  0.04624134
 [55] -0.56619761  2.05097438  0.50095182 -2.41501060  1.20144797 -0.76840709
 [61]  0.31487021  0.03181357  1.64540698 -2.24272432  0.77476212 -0.21402492
 [67]  0.98396914 -0.50360071 -0.81756524 -0.97980211  0.01279042 -0.50969051
 [73]  1.62503859 -0.09700657 -0.16401785  0.62172458 -0.21609092  0.22538289
 [79] -1.62549752 -0.85779365  0.07172406 -1.33738294  0.98066540  1.06942055
 [85] -0.65625534  2.19491775 -1.46261713 -2.03451126  1.21582973 -1.29836094
 [91] -0.16597325  0.35419172 -1.29321562  0.19900292  0.30390183  0.22635143
 [97]  0.02727852 -0.82234212  1.83745125  1.62477281
> 
> colMeans(tmp2)
[1] 0.06141178
> colSums(tmp2)
[1] 6.141178
> colVars(tmp2)
[1] 1.203214
> colSd(tmp2)
[1] 1.096911
> colMax(tmp2)
[1] 3.107481
> colMin(tmp2)
[1] -2.415011
> colMedians(tmp2)
[1] 0.0589827
> colRanges(tmp2)
          [,1]
[1,] -2.415011
[2,]  3.107481
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -3.02339071  2.52612052  0.48384241  3.84410378 -4.12147498  2.51955483
 [7]  0.36625860  3.51581575  2.85386628  0.07391468
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.4003272
[2,] -1.0289191
[3,] -0.1300170
[4,]  0.1371913
[5,]  1.1265231
> 
> rowApply(tmp,sum)
 [1]  1.5629562  5.1370871  4.3925205 -2.7999580 -5.2412228  3.0130592
 [7]  3.7255532  1.9890649 -0.9468868 -1.7935623
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4    6    1    4    7    5    9    5    1     2
 [2,]    2    1   10   10    1    4   10    7    4     5
 [3,]   10    8    5    3   10   10    1    1    8     1
 [4,]    6   10    9    9    4    2    2    3   10     9
 [5,]    5    7    2    2    3    3    8    2    6     3
 [6,]    7    2    7    1    9    8    7    8    7     6
 [7,]    9    5    3    6    8    6    4    4    3     4
 [8,]    8    4    8    7    6    9    6    9    5     7
 [9,]    1    3    4    5    5    7    3   10    9     8
[10,]    3    9    6    8    2    1    5    6    2    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.04918928 -2.48957645  2.31470620  0.04378726 -0.03404640 -3.02856134
 [7]  1.87984646  1.35348129 -0.16893324 -1.37253392 -1.24436352  2.45093626
[13]  0.92672496 -1.47707871  0.56682633 -1.70305681 -3.04084357  4.13506521
[19] -1.38451588  0.54181923
> colApply(tmp,quantile)[,1]
          [,1]
[1,] 0.3191131
[2,] 0.4166736
[3,] 0.6001565
[4,] 0.6339384
[5,] 1.0793077
> 
> rowApply(tmp,sum)
[1] -5.5947748  0.2601861 -1.5558882  6.5576699  1.6516797
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   16   17   15   12   16
[2,]    9    6    6   13    2
[3,]    1   18   19   14   18
[4,]    4    3   13   16   14
[5,]   12   16    4   15   10
> 
> 
> as.matrix(tmp)
          [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,] 0.3191131 -0.3590507 -1.9992236 -1.1048607 -0.22761430 -0.5642831
[2,] 0.6001565 -0.4003945  0.6809639 -0.9203606  0.40259452 -0.6250996
[3,] 0.4166736 -0.6813511  1.5023581  0.3142980 -1.03814046 -1.6199179
[4,] 0.6339384  0.6397820  0.6499784  0.9519672  0.82546726  0.3477626
[5,] 1.0793077 -1.6885622  1.4806294  0.8027433  0.00364657 -0.5670234
           [,7]        [,8]       [,9]      [,10]      [,11]       [,12]
[1,]  1.1444734 -0.61613804 -0.3926672 -1.8535216 -0.4865987  0.04757932
[2,]  0.3706164  0.28237773 -0.3613289 -1.0658457 -0.3717784 -0.27783075
[3,]  1.3229788  0.41471426 -0.8260935  0.1427160  0.6589193  1.69709409
[4,] -0.4462589  1.32878710 -0.2739782  1.2912155  0.3660150  0.11855450
[5,] -0.5119632 -0.05625976  1.6851344  0.1129018 -1.4109207  0.86553910
          [,13]       [,14]       [,15]      [,16]       [,17]       [,18]
[1,]  0.8112505 -0.29775037  0.09353876 -0.2352686 -1.95802957  1.48283918
[2,]  0.2235993  0.18790654  2.34022050  0.9216582 -0.94893048 -0.07990842
[3,] -1.5502874 -1.81281244  0.44261178  0.1511692  0.16151662 -0.11724373
[4,]  1.0631810  0.40604270 -0.13109441 -1.2652889 -0.09448154  0.95587944
[5,]  0.3789817  0.03953485 -2.17845030 -1.2753268 -0.20091859  1.89349875
          [,19]      [,20]
[1,]  0.2742278  0.3272095
[2,] -0.5810918 -0.1173384
[3,] -0.5342772 -0.6008143
[4,] -0.3051092 -0.5046902
[5,] -0.2382655  1.4374527
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  652  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2     col3     col4      col5       col6      col7
row1 -0.8756045 0.7530689 1.004273 0.955766 0.7949254 -0.5561189 -1.388445
          col8      col9     col10      col11     col12     col13      col14
row1 0.4009625 0.3209922 0.1988664 -0.5114388 0.2705597 0.7119961 -0.2210819
         col15     col16     col17       col18      col19      col20
row1 0.2200104 0.6127659 0.0176746 -0.02533031 -0.8338459 -0.5588344
> tmp[,"col10"]
          col10
row1  0.1988664
row2 -0.7982170
row3  0.3375803
row4 -0.6672908
row5  0.3878439
> tmp[c("row1","row5"),]
           col1       col2      col3     col4        col5       col6       col7
row1 -0.8756045  0.7530689 1.0042735 0.955766  0.79492544 -0.5561189 -1.3884445
row5  1.1160476 -1.1259480 0.6584017 1.278245 -0.04193009 -1.5837428  0.4941203
          col8       col9     col10      col11      col12        col13
row1 0.4009625  0.3209922 0.1988664 -0.5114388  0.2705597  0.711996102
row5 0.1135958 -1.1517924 0.3878439 -2.8174987 -0.3584463 -0.006046278
          col14      col15     col16      col17       col18      col19
row1 -0.2210819  0.2200104 0.6127659  0.0176746 -0.02533031 -0.8338459
row5 -1.6783968 -0.3594893 0.7716740 -1.2153680  2.66729965  0.1776801
           col20
row1 -0.55883444
row5 -0.01618682
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.5561189 -0.55883444
row2 -0.1639550  1.36301698
row3  0.3490667  1.66860041
row4  0.3924656 -0.97888950
row5 -1.5837428 -0.01618682
> tmp[c("row1","row5"),c("col6","col20")]
           col6       col20
row1 -0.5561189 -0.55883444
row5 -1.5837428 -0.01618682
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6   col7     col8
row1 50.78911 50.44492 50.69014 49.48236 50.57722 103.5683 50.992 51.17415
        col9   col10    col11    col12    col13    col14    col15    col16
row1 51.0757 48.4772 49.52317 49.04378 51.24734 49.57205 48.96454 48.40298
        col17    col18    col19    col20
row1 49.32744 48.35496 50.01789 104.7076
> tmp[,"col10"]
        col10
row1 48.47720
row2 30.22221
row3 27.91739
row4 30.47765
row5 52.26086
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.78911 50.44492 50.69014 49.48236 50.57722 103.5683 50.99200 51.17415
row5 51.48872 49.96583 50.27883 49.60530 50.95243 103.3005 51.31731 49.75935
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.07570 48.47720 49.52317 49.04378 51.24734 49.57205 48.96454 48.40298
row5 49.78323 52.26086 50.12495 48.29657 50.59907 50.53762 50.18277 48.73088
        col17    col18    col19    col20
row1 49.32744 48.35496 50.01789 104.7076
row5 50.36430 50.57093 50.18296 106.1461
> tmp[,c("col6","col20")]
          col6     col20
row1 103.56832 104.70757
row2  75.48257  76.36265
row3  77.14861  74.54892
row4  74.63881  73.95790
row5 103.30049 106.14615
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.5683 104.7076
row5 103.3005 106.1461
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.5683 104.7076
row5 103.3005 106.1461
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -0.89176053
[2,]  0.02223051
[3,] -0.99300891
[4,] -0.40895089
[5,]  0.05478379
> tmp[,c("col17","col7")]
          col17       col7
[1,] -0.5163000 -0.6617101
[2,] -0.3379845  0.8208798
[3,]  1.4228371 -2.2691854
[4,]  1.8128832 -0.5392365
[5,] -1.0027623 -0.1019240
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.04538169 -0.2219007
[2,]  0.91887868  0.7045047
[3,] -0.26087353 -0.2930676
[4,] -1.00738708 -0.1637065
[5,] -0.15198536  1.4730527
> subBufferedMatrix(tmp,1,c("col6"))[,1]
            col1
[1,] -0.04538169
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] -0.04538169
[2,]  0.91887868
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
row3 -0.43571068 1.23534473  0.2833858 -1.2272624  0.5494649  0.6587792
row1  0.07506221 0.03835171 -0.3677845  0.8434385 -1.6160020 -0.6164605
          [,7]       [,8]       [,9]        [,10]      [,11]      [,12]
row3  1.880744 0.03170318 -0.6045435 -0.009878405  0.3164664  0.1585600
row1 -1.071669 1.28600206  0.9365374  0.670768806 -0.6490300 -0.4469924
         [,13]      [,14]      [,15]    [,16]     [,17]     [,18]      [,19]
row3 1.1390579 -0.3745752  1.3534945 1.559918 0.4895284 0.8147939  1.3214732
row1 0.7316416 -1.7847743 -0.3649464 1.445804 0.5820335 0.4732817 -0.2468821
         [,20]
row3  0.948231
row1 -2.463888
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
         [,1]     [,2]      [,3]    [,4]       [,5]     [,6]    [,7]      [,8]
row2 1.997645 1.224278 -1.119938 0.88007 -0.9667798 1.743131 -0.5369 0.8230322
           [,9]     [,10]
row2 0.08262818 0.6335058
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]       [,3]      [,4]     [,5]     [,6]       [,7]
row5 0.08124687 -1.002381 -0.5410322 0.4722769 1.067682 2.115163 0.02608441
           [,8]      [,9]     [,10]      [,11]      [,12]       [,13]    [,14]
row5 -0.8402338 0.1458937 -1.435353 -0.5899406 -0.2532765 -0.02511653 1.046487
         [,15]    [,16]     [,17]     [,18]      [,19]    [,20]
row5 0.2343986 1.076928 -1.078721 -0.592244 -0.1569466 -0.51247
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5d5ec0a31ab0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM207317580933bb"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073174c7bcc2f"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM207317390d730d"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM207317d42e4c1" 
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM207317331a30a6"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073176f5ea194"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073177353fa13"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM20731741a019f9"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM20731722abb170"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM20731736511062"
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073171504ec9" 
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073176207d026"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073171f7b5351"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM207317fec73a3" 
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM2073176dc52cb3"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5d5ec2aa6b00>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5d5ec2aa6b00>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5d5ec2aa6b00>
> rowMedians(tmp)
  [1]  0.5050560243 -0.1149095217 -0.3306637565 -0.1099351846  0.1727226195
  [6]  0.0892449827 -0.2534144519 -0.1767127107  0.2280980625  0.2322263392
 [11] -0.2195923120  0.4588244254 -0.0114824385 -0.9542716629  0.2071987703
 [16] -0.6225125296  0.1555808335  0.3503300953  0.1280548781  0.0051254529
 [21]  0.0969783868 -0.2243026945 -0.0248780880 -0.2585351610 -0.2669284488
 [26]  0.0897615964  0.2576129072 -0.3485673155  0.2201822880  0.4583883179
 [31]  0.5942039670 -0.1729015519  0.1730925013 -0.4389348136 -0.0617757765
 [36] -0.0183534439 -0.6379079535  0.1717587599 -0.9821681622  0.1151405701
 [41]  0.1535075770  0.0717543414 -0.0802657380  0.3861235575 -0.0823524079
 [46] -0.2895797481 -0.0515673221 -0.1967090431 -0.0971328335 -0.2841350481
 [51] -0.0993056477  0.1067916988 -0.1085977679  0.1467486303  0.0852034974
 [56] -0.2382603691  0.1097276338 -0.8493401707 -0.5080911867  0.2916128697
 [61] -0.4049761771  0.0623694817 -0.0994621956  0.2344516205 -0.0591918398
 [66] -0.2407579055 -0.0658244429 -0.0213627691 -0.1321235731  0.1004934443
 [71]  0.0462473752 -0.0545719092  0.9263785882 -0.7079399733  0.0653255880
 [76] -0.2703272981 -0.2128513921  0.1005797142 -0.2443148473  0.0397769376
 [81] -0.4192906725  0.0403865738  0.1386233917  0.1914819314 -0.3058612664
 [86]  0.4172316158  0.1121750067 -0.2691651381  0.1882377889 -0.1027299175
 [91]  0.0419608788  0.0139214345  0.2326137118 -0.0001199198  0.2817794810
 [96]  0.0229457274  0.6678010804  0.3266011480  0.1041553831 -0.3414110767
[101]  0.2678100078  0.7179173722 -0.1956602436 -0.0915348318 -0.4361706282
[106]  0.2541675080 -0.1564577724  0.4337191740 -0.2281208003 -0.6111937017
[111]  0.0532458748  0.2990800102  0.3317692235  0.2553152038 -0.2494065980
[116] -0.0132065292  0.0789266116  0.2934503772 -0.2610435063  0.3751043946
[121] -0.3770205796 -0.0512175931  0.1440775020 -0.2466493028  0.6214905011
[126]  0.5532046270  0.2473148735  0.2940019743  0.3640115515 -0.2253743801
[131]  0.1828621240  1.0871216958  0.5328784370 -0.3322278152 -0.2484014999
[136]  0.1139770146 -0.4319798988 -0.6543210818 -0.2094255254  0.0354413066
[141]  0.4213686334  0.0141247783 -0.2404306765 -0.4124426487  0.3104533233
[146]  0.3255757414  0.3933105176 -0.2283312485 -0.1029755487  0.1659685249
[151]  0.1079488812  0.0639965724  0.3848286192  0.3680622001 -0.2487560603
[156]  0.1952351751  0.4121561477  0.8823591780 -0.1734282176 -0.1230750844
[161]  0.2893405715  0.1009248520 -0.1500305295 -0.3825744960 -0.1417918623
[166]  0.1013532543  0.6318008289 -0.3097990526  0.3013010000 -0.1033320759
[171]  0.2927754537  0.0456961429  0.2146753629 -0.3792425649  0.1241532361
[176] -0.3059125734 -0.5964682805  0.3034568388 -0.5444558856 -0.1646205288
[181]  0.7775459007 -0.4303992100 -0.3505480242  0.6727938559  0.1971840266
[186]  0.0025551399 -0.1412188327  0.2895044279 -0.2431194119 -0.1569987052
[191] -0.2211983164  0.3232200232 -0.0923584142  0.1898609516  0.3944117078
[196]  0.3048387681  0.1319438287 -0.0502659733  0.1238681419 -0.2035241478
[201] -0.1404638395  0.0202733109  0.2243906874 -0.2181727694 -0.5985898897
[206] -0.0287636693  0.4280562678 -0.3024749454  0.2229096591 -0.5633897115
[211] -0.2661576127 -0.7879199690  0.2694544451  0.1848565819 -0.3484806460
[216] -0.0375796646 -0.2735925681 -0.1840508011  0.1917171920  0.3035105779
[221]  0.6744741629  0.3707925167 -0.1430310076  0.0138609726  0.1863957683
[226] -0.0582106297  0.2768149483  0.5824074492 -0.0515790478  0.4281705015
> 
> proc.time()
   user  system elapsed 
  1.223   0.674   1.886 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5ef1a742d130>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5ef1a742d130>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5ef1a742d130>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5ef1a742d130>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5ef1a74784e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a74784e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5ef1a74784e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a74784e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5ef1a74784e0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a57effd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a57effd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5ef1a57effd0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5ef1a57effd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5ef1a57effd0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5ef1a57effd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5ef1a57effd0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5ef1a57effd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5ef1a57effd0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a6e2ec20>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5ef1a6e2ec20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a6e2ec20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a6e2ec20>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2074c914c52f0f" "BufferedMatrixFile2074c9a041213" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2074c914c52f0f" "BufferedMatrixFile2074c9a041213" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5ef1a4c10d60>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a5cd46e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5ef1a5cd46e0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5ef1a5cd46e0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5ef1a5cd46e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5ef1a5d8d160>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5ef1a5d8d160>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.218   0.052   0.258 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.258   0.039   0.284 

Example timings