Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-10 12:08 -0400 (Mon, 10 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4670
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4355
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4446
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4439
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4306
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-06 13:00 -0500 (Thu, 06 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on merida1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-03-07 00:49:01 -0500 (Fri, 07 Mar 2025)
EndedAt: 2025-03-07 00:50:13 -0500 (Fri, 07 Mar 2025)
EllapsedTime: 71.4 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.565   0.204   0.738 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 473668 25.3    1034025 55.3         NA   638622 34.2
Vcells 877290  6.7    8388608 64.0      65536  2072022 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Mar  7 00:49:35 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Mar  7 00:49:35 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x60000102c0c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Mar  7 00:49:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Mar  7 00:49:44 2025"
> 
> ColMode(tmp2)
<pointer: 0x60000102c0c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]       [,3]       [,4]
[1,] 97.4388558 -0.77467443  1.2664615 -0.6021355
[2,] -0.8047801  0.42012236 -1.7324266 -0.2646728
[3,] -0.1706764 -0.07325552 -1.5805428 -1.5617666
[4,] -0.8850083  0.33027993 -0.8162203  1.4419546
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]      [,4]
[1,] 97.4388558 0.77467443 1.2664615 0.6021355
[2,]  0.8047801 0.42012236 1.7324266 0.2646728
[3,]  0.1706764 0.07325552 1.5805428 1.5617666
[4,]  0.8850083 0.33027993 0.8162203 1.4419546
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.8711122 0.8801559 1.1253717 0.7759739
[2,] 0.8970953 0.6481685 1.3162168 0.5144636
[3,] 0.4131300 0.2706576 1.2571964 1.2497066
[4,] 0.9407488 0.5746999 0.9034491 1.2008142
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 221.14998 34.57623 37.52018 33.36187
[2,]  34.77573 31.90181 39.89459 30.40931
[3,]  29.30198 27.77983 39.15251 39.05883
[4,]  35.29250 31.07728 34.85071 38.45010
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600001004240>
> exp(tmp5)
<pointer: 0x600001004240>
> log(tmp5,2)
<pointer: 0x600001004240>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 460.2947
> Min(tmp5)
[1] 54.97839
> mean(tmp5)
[1] 72.73597
> Sum(tmp5)
[1] 14547.19
> Var(tmp5)
[1] 831.3516
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.33256 69.88314 69.46820 69.23616 68.88636 70.64145 69.70550 75.03739
 [9] 70.88150 71.28740
> rowSums(tmp5)
 [1] 1846.651 1397.663 1389.364 1384.723 1377.727 1412.829 1394.110 1500.748
 [9] 1417.630 1425.748
> rowVars(tmp5)
 [1] 7544.56285   41.75105   77.17041   79.35967   47.58794  136.99299
 [7]   97.16557   96.32538   56.64932   51.52111
> rowSd(tmp5)
 [1] 86.859443  6.461506  8.784669  8.908405  6.898402 11.704401  9.857260
 [8]  9.814549  7.526574  7.177820
> rowMax(tmp5)
 [1] 460.29470  83.03537  83.29501  88.71077  78.59686  95.40615  84.68456
 [8]  94.09357  81.41195  87.52274
> rowMin(tmp5)
 [1] 61.96697 60.17677 57.82008 56.86517 55.80415 54.97839 56.01236 56.35677
 [9] 58.24059 60.25682
> 
> colMeans(tmp5)
 [1] 107.42559  65.70334  74.76081  70.72168  71.43195  72.49416  74.19023
 [8]  70.18874  74.66286  72.65503  69.06325  71.39429  69.89233  73.43948
[15]  68.03027  72.81315  66.14357  67.23434  69.56127  72.91295
> colSums(tmp5)
 [1] 1074.2559  657.0334  747.6081  707.2168  714.3195  724.9416  741.9023
 [8]  701.8874  746.6286  726.5503  690.6325  713.9429  698.9233  734.3948
[15]  680.3027  728.1315  661.4357  672.3434  695.6127  729.1295
> colVars(tmp5)
 [1] 15405.01433    61.26900   135.25726    36.71492    67.64056    68.85514
 [7]    67.14170    53.43266   120.83654    66.72758   110.38926    96.51854
[13]    48.31697   111.96315    74.81796    42.74003    33.16816    40.62783
[19]    68.46665   111.18228
> colSd(tmp5)
 [1] 124.116938   7.827451  11.630015   6.059284   8.224388   8.297900
 [7]   8.194004   7.309765  10.992567   8.168695  10.506629   9.824385
[13]   6.951041  10.581264   8.649737   6.537586   5.759181   6.373996
[19]   8.274457  10.544301
> colMax(tmp5)
 [1] 460.29470  80.52918  95.40615  81.29584  83.23260  83.67441  89.62536
 [8]  79.71270  94.09357  82.94095  85.79500  87.52274  82.13372  89.19781
[15]  81.72724  84.68456  71.96123  77.10241  80.29839  88.71077
> colMin(tmp5)
 [1] 60.98823 56.58773 56.35677 62.78356 58.28366 56.01236 58.94072 59.48718
 [9] 54.97839 61.28388 56.86517 59.84855 61.96697 59.50993 58.24059 64.07498
[17] 55.80415 56.08653 58.85611 56.99034
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.33256 69.88314       NA 69.23616 68.88636 70.64145 69.70550 75.03739
 [9] 70.88150 71.28740
> rowSums(tmp5)
 [1] 1846.651 1397.663       NA 1384.723 1377.727 1412.829 1394.110 1500.748
 [9] 1417.630 1425.748
> rowVars(tmp5)
 [1] 7544.56285   41.75105   81.44597   79.35967   47.58794  136.99299
 [7]   97.16557   96.32538   56.64932   51.52111
> rowSd(tmp5)
 [1] 86.859443  6.461506  9.024742  8.908405  6.898402 11.704401  9.857260
 [8]  9.814549  7.526574  7.177820
> rowMax(tmp5)
 [1] 460.29470  83.03537        NA  88.71077  78.59686  95.40615  84.68456
 [8]  94.09357  81.41195  87.52274
> rowMin(tmp5)
 [1] 61.96697 60.17677       NA 56.86517 55.80415 54.97839 56.01236 56.35677
 [9] 58.24059 60.25682
> 
> colMeans(tmp5)
 [1] 107.42559  65.70334  74.76081  70.72168  71.43195  72.49416  74.19023
 [8]  70.18874  74.66286  72.65503  69.06325  71.39429  69.89233  73.43948
[15]  68.03027  72.81315  66.14357        NA  69.56127  72.91295
> colSums(tmp5)
 [1] 1074.2559  657.0334  747.6081  707.2168  714.3195  724.9416  741.9023
 [8]  701.8874  746.6286  726.5503  690.6325  713.9429  698.9233  734.3948
[15]  680.3027  728.1315  661.4357        NA  695.6127  729.1295
> colVars(tmp5)
 [1] 15405.01433    61.26900   135.25726    36.71492    67.64056    68.85514
 [7]    67.14170    53.43266   120.83654    66.72758   110.38926    96.51854
[13]    48.31697   111.96315    74.81796    42.74003    33.16816          NA
[19]    68.46665   111.18228
> colSd(tmp5)
 [1] 124.116938   7.827451  11.630015   6.059284   8.224388   8.297900
 [7]   8.194004   7.309765  10.992567   8.168695  10.506629   9.824385
[13]   6.951041  10.581264   8.649737   6.537586   5.759181         NA
[19]   8.274457  10.544301
> colMax(tmp5)
 [1] 460.29470  80.52918  95.40615  81.29584  83.23260  83.67441  89.62536
 [8]  79.71270  94.09357  82.94095  85.79500  87.52274  82.13372  89.19781
[15]  81.72724  84.68456  71.96123        NA  80.29839  88.71077
> colMin(tmp5)
 [1] 60.98823 56.58773 56.35677 62.78356 58.28366 56.01236 58.94072 59.48718
 [9] 54.97839 61.28388 56.86517 59.84855 61.96697 59.50993 58.24059 64.07498
[17] 55.80415       NA 58.85611 56.99034
> 
> Max(tmp5,na.rm=TRUE)
[1] 460.2947
> Min(tmp5,na.rm=TRUE)
[1] 54.97839
> mean(tmp5,na.rm=TRUE)
[1] 72.75463
> Sum(tmp5,na.rm=TRUE)
[1] 14478.17
> Var(tmp5,na.rm=TRUE)
[1] 835.4803
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.33256 69.88314 69.49173 69.23616 68.88636 70.64145 69.70550 75.03739
 [9] 70.88150 71.28740
> rowSums(tmp5,na.rm=TRUE)
 [1] 1846.651 1397.663 1320.343 1384.723 1377.727 1412.829 1394.110 1500.748
 [9] 1417.630 1425.748
> rowVars(tmp5,na.rm=TRUE)
 [1] 7544.56285   41.75105   81.44597   79.35967   47.58794  136.99299
 [7]   97.16557   96.32538   56.64932   51.52111
> rowSd(tmp5,na.rm=TRUE)
 [1] 86.859443  6.461506  9.024742  8.908405  6.898402 11.704401  9.857260
 [8]  9.814549  7.526574  7.177820
> rowMax(tmp5,na.rm=TRUE)
 [1] 460.29470  83.03537  83.29501  88.71077  78.59686  95.40615  84.68456
 [8]  94.09357  81.41195  87.52274
> rowMin(tmp5,na.rm=TRUE)
 [1] 61.96697 60.17677 57.82008 56.86517 55.80415 54.97839 56.01236 56.35677
 [9] 58.24059 60.25682
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 107.42559  65.70334  74.76081  70.72168  71.43195  72.49416  74.19023
 [8]  70.18874  74.66286  72.65503  69.06325  71.39429  69.89233  73.43948
[15]  68.03027  72.81315  66.14357  67.03582  69.56127  72.91295
> colSums(tmp5,na.rm=TRUE)
 [1] 1074.2559  657.0334  747.6081  707.2168  714.3195  724.9416  741.9023
 [8]  701.8874  746.6286  726.5503  690.6325  713.9429  698.9233  734.3948
[15]  680.3027  728.1315  661.4357  603.3224  695.6127  729.1295
> colVars(tmp5,na.rm=TRUE)
 [1] 15405.01433    61.26900   135.25726    36.71492    67.64056    68.85514
 [7]    67.14170    53.43266   120.83654    66.72758   110.38926    96.51854
[13]    48.31697   111.96315    74.81796    42.74003    33.16816    45.26292
[19]    68.46665   111.18228
> colSd(tmp5,na.rm=TRUE)
 [1] 124.116938   7.827451  11.630015   6.059284   8.224388   8.297900
 [7]   8.194004   7.309765  10.992567   8.168695  10.506629   9.824385
[13]   6.951041  10.581264   8.649737   6.537586   5.759181   6.727772
[19]   8.274457  10.544301
> colMax(tmp5,na.rm=TRUE)
 [1] 460.29470  80.52918  95.40615  81.29584  83.23260  83.67441  89.62536
 [8]  79.71270  94.09357  82.94095  85.79500  87.52274  82.13372  89.19781
[15]  81.72724  84.68456  71.96123  77.10241  80.29839  88.71077
> colMin(tmp5,na.rm=TRUE)
 [1] 60.98823 56.58773 56.35677 62.78356 58.28366 56.01236 58.94072 59.48718
 [9] 54.97839 61.28388 56.86517 59.84855 61.96697 59.50993 58.24059 64.07498
[17] 55.80415 56.08653 58.85611 56.99034
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.33256 69.88314      NaN 69.23616 68.88636 70.64145 69.70550 75.03739
 [9] 70.88150 71.28740
> rowSums(tmp5,na.rm=TRUE)
 [1] 1846.651 1397.663    0.000 1384.723 1377.727 1412.829 1394.110 1500.748
 [9] 1417.630 1425.748
> rowVars(tmp5,na.rm=TRUE)
 [1] 7544.56285   41.75105         NA   79.35967   47.58794  136.99299
 [7]   97.16557   96.32538   56.64932   51.52111
> rowSd(tmp5,na.rm=TRUE)
 [1] 86.859443  6.461506        NA  8.908405  6.898402 11.704401  9.857260
 [8]  9.814549  7.526574  7.177820
> rowMax(tmp5,na.rm=TRUE)
 [1] 460.29470  83.03537        NA  88.71077  78.59686  95.40615  84.68456
 [8]  94.09357  81.41195  87.52274
> rowMin(tmp5,na.rm=TRUE)
 [1] 61.96697 60.17677       NA 56.86517 55.80415 54.97839 56.01236 56.35677
 [9] 58.24059 60.25682
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.58529  66.57926  74.01303  69.54677  72.89287  72.41806  74.66785
 [8]  71.37780  73.70373  71.56504  68.18843  71.40802  69.79880  74.81749
[15]  67.70939  72.39466  66.51239       NaN  70.45646  74.30985
> colSums(tmp5,na.rm=TRUE)
 [1] 1013.2677  599.2133  666.1173  625.9209  656.0359  651.7625  672.0107
 [8]  642.4002  663.3336  644.0854  613.6959  642.6721  628.1892  673.3574
[15]  609.3845  651.5519  598.6115    0.0000  634.1081  668.7887
> colVars(tmp5,na.rm=TRUE)
 [1] 17031.13714    60.29626   145.87373    25.77471    52.08485    77.39688
 [7]    72.96801    44.20572   125.59195    61.70280   115.57808   108.58124
[13]    54.25817   104.59594    83.01183    46.11220    35.78387          NA
[19]    68.00972   103.12751
> colSd(tmp5,na.rm=TRUE)
 [1] 130.503399   7.765067  12.077820   5.076880   7.216983   8.797550
 [7]   8.542131   6.648738  11.206781   7.855113  10.750725  10.420232
[13]   7.366015  10.227216   9.111083   6.790596   5.981962         NA
[19]   8.246801  10.155172
> colMax(tmp5,na.rm=TRUE)
 [1] 460.29470  80.52918  95.40615  80.02884  83.23260  83.67441  89.62536
 [8]  79.71270  94.09357  82.94095  85.79500  87.52274  82.13372  89.19781
[15]  81.72724  84.68456  71.96123      -Inf  80.29839  88.71077
> colMin(tmp5,na.rm=TRUE)
 [1] 62.20532 56.58773 56.35677 62.78356 63.38014 56.01236 58.94072 60.09149
 [9] 54.97839 61.28388 56.86517 59.84855 61.96697 59.50993 58.24059 64.07498
[17] 55.80415      Inf 58.85611 56.99034
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 194.8962 124.0193 111.4950 159.4003 277.6835 267.9167 425.4801 143.6383
 [9] 213.3794 221.0630
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 194.8962 124.0193 111.4950 159.4003 277.6835 267.9167 425.4801 143.6383
 [9] 213.3794 221.0630
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00  1.136868e-13 -3.979039e-13 -2.842171e-14 -2.273737e-13
 [6]  0.000000e+00 -1.136868e-13  1.421085e-13  5.684342e-14 -5.684342e-14
[11] -2.273737e-13 -5.684342e-14  2.842171e-14  2.842171e-14 -1.705303e-13
[16] -1.421085e-14 -1.136868e-13 -1.136868e-13  1.421085e-14  1.136868e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   1 
8   11 
5   14 
10   17 
9   19 
6   15 
6   4 
6   2 
9   18 
7   2 
8   17 
7   11 
9   1 
3   13 
3   15 
8   17 
6   8 
4   3 
2   11 
7   1 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.645865
> Min(tmp)
[1] -2.532271
> mean(tmp)
[1] -0.0009510444
> Sum(tmp)
[1] -0.09510444
> Var(tmp)
[1] 1.196717
> 
> rowMeans(tmp)
[1] -0.0009510444
> rowSums(tmp)
[1] -0.09510444
> rowVars(tmp)
[1] 1.196717
> rowSd(tmp)
[1] 1.093945
> rowMax(tmp)
[1] 2.645865
> rowMin(tmp)
[1] -2.532271
> 
> colMeans(tmp)
  [1]  1.51828066  1.48521745 -0.22322694 -0.77581862  0.38762454  1.55534112
  [7]  0.13677347 -0.28982558 -1.33574044  2.08358215 -0.87114091  0.11894878
 [13] -1.72458537  1.69607910 -0.10303304  0.20156258  0.40755657 -1.27335565
 [19] -1.28160726 -1.48204829  0.73578346 -0.53774296 -0.31602469 -1.00855381
 [25]  2.64586538 -1.12724739 -0.35672006  1.75625516  1.44217360  0.04931476
 [31] -0.34186388 -0.04697666  2.01334976  1.01421014  0.62281850 -1.44116786
 [37]  0.03363688 -0.04703176 -1.58869509 -1.63883299  0.90319579  1.27198730
 [43] -0.86423106 -1.60589459 -0.19835455 -0.48514726 -0.75435564  0.82481012
 [49]  0.71860404  0.53176187 -0.13797285 -0.50769089 -1.21795559 -1.58195113
 [55]  1.68230468  0.25469689 -0.60299633  0.54405443 -0.75486128  0.50725782
 [61] -0.91730171 -2.12828740  0.23746268 -0.82954683  0.90847917  0.87123795
 [67] -0.65903105 -2.53227131 -0.50041031  0.79989957 -0.84525749  0.07815628
 [73]  0.67563174 -0.52475259  0.20972425  0.58149897  0.15204539 -0.68720593
 [79]  1.46639807  0.45507292 -1.38601937  0.63054412 -1.95938733  1.01632694
 [85]  0.82395169 -0.04671029  0.84994210 -0.73207083 -1.92584121  0.65061254
 [91] -0.15279124  1.07222466 -0.22872572  1.14774161 -1.28967522  2.26148850
 [97] -0.20053142 -0.77558080  1.19620316  1.52125472
> colSums(tmp)
  [1]  1.51828066  1.48521745 -0.22322694 -0.77581862  0.38762454  1.55534112
  [7]  0.13677347 -0.28982558 -1.33574044  2.08358215 -0.87114091  0.11894878
 [13] -1.72458537  1.69607910 -0.10303304  0.20156258  0.40755657 -1.27335565
 [19] -1.28160726 -1.48204829  0.73578346 -0.53774296 -0.31602469 -1.00855381
 [25]  2.64586538 -1.12724739 -0.35672006  1.75625516  1.44217360  0.04931476
 [31] -0.34186388 -0.04697666  2.01334976  1.01421014  0.62281850 -1.44116786
 [37]  0.03363688 -0.04703176 -1.58869509 -1.63883299  0.90319579  1.27198730
 [43] -0.86423106 -1.60589459 -0.19835455 -0.48514726 -0.75435564  0.82481012
 [49]  0.71860404  0.53176187 -0.13797285 -0.50769089 -1.21795559 -1.58195113
 [55]  1.68230468  0.25469689 -0.60299633  0.54405443 -0.75486128  0.50725782
 [61] -0.91730171 -2.12828740  0.23746268 -0.82954683  0.90847917  0.87123795
 [67] -0.65903105 -2.53227131 -0.50041031  0.79989957 -0.84525749  0.07815628
 [73]  0.67563174 -0.52475259  0.20972425  0.58149897  0.15204539 -0.68720593
 [79]  1.46639807  0.45507292 -1.38601937  0.63054412 -1.95938733  1.01632694
 [85]  0.82395169 -0.04671029  0.84994210 -0.73207083 -1.92584121  0.65061254
 [91] -0.15279124  1.07222466 -0.22872572  1.14774161 -1.28967522  2.26148850
 [97] -0.20053142 -0.77558080  1.19620316  1.52125472
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.51828066  1.48521745 -0.22322694 -0.77581862  0.38762454  1.55534112
  [7]  0.13677347 -0.28982558 -1.33574044  2.08358215 -0.87114091  0.11894878
 [13] -1.72458537  1.69607910 -0.10303304  0.20156258  0.40755657 -1.27335565
 [19] -1.28160726 -1.48204829  0.73578346 -0.53774296 -0.31602469 -1.00855381
 [25]  2.64586538 -1.12724739 -0.35672006  1.75625516  1.44217360  0.04931476
 [31] -0.34186388 -0.04697666  2.01334976  1.01421014  0.62281850 -1.44116786
 [37]  0.03363688 -0.04703176 -1.58869509 -1.63883299  0.90319579  1.27198730
 [43] -0.86423106 -1.60589459 -0.19835455 -0.48514726 -0.75435564  0.82481012
 [49]  0.71860404  0.53176187 -0.13797285 -0.50769089 -1.21795559 -1.58195113
 [55]  1.68230468  0.25469689 -0.60299633  0.54405443 -0.75486128  0.50725782
 [61] -0.91730171 -2.12828740  0.23746268 -0.82954683  0.90847917  0.87123795
 [67] -0.65903105 -2.53227131 -0.50041031  0.79989957 -0.84525749  0.07815628
 [73]  0.67563174 -0.52475259  0.20972425  0.58149897  0.15204539 -0.68720593
 [79]  1.46639807  0.45507292 -1.38601937  0.63054412 -1.95938733  1.01632694
 [85]  0.82395169 -0.04671029  0.84994210 -0.73207083 -1.92584121  0.65061254
 [91] -0.15279124  1.07222466 -0.22872572  1.14774161 -1.28967522  2.26148850
 [97] -0.20053142 -0.77558080  1.19620316  1.52125472
> colMin(tmp)
  [1]  1.51828066  1.48521745 -0.22322694 -0.77581862  0.38762454  1.55534112
  [7]  0.13677347 -0.28982558 -1.33574044  2.08358215 -0.87114091  0.11894878
 [13] -1.72458537  1.69607910 -0.10303304  0.20156258  0.40755657 -1.27335565
 [19] -1.28160726 -1.48204829  0.73578346 -0.53774296 -0.31602469 -1.00855381
 [25]  2.64586538 -1.12724739 -0.35672006  1.75625516  1.44217360  0.04931476
 [31] -0.34186388 -0.04697666  2.01334976  1.01421014  0.62281850 -1.44116786
 [37]  0.03363688 -0.04703176 -1.58869509 -1.63883299  0.90319579  1.27198730
 [43] -0.86423106 -1.60589459 -0.19835455 -0.48514726 -0.75435564  0.82481012
 [49]  0.71860404  0.53176187 -0.13797285 -0.50769089 -1.21795559 -1.58195113
 [55]  1.68230468  0.25469689 -0.60299633  0.54405443 -0.75486128  0.50725782
 [61] -0.91730171 -2.12828740  0.23746268 -0.82954683  0.90847917  0.87123795
 [67] -0.65903105 -2.53227131 -0.50041031  0.79989957 -0.84525749  0.07815628
 [73]  0.67563174 -0.52475259  0.20972425  0.58149897  0.15204539 -0.68720593
 [79]  1.46639807  0.45507292 -1.38601937  0.63054412 -1.95938733  1.01632694
 [85]  0.82395169 -0.04671029  0.84994210 -0.73207083 -1.92584121  0.65061254
 [91] -0.15279124  1.07222466 -0.22872572  1.14774161 -1.28967522  2.26148850
 [97] -0.20053142 -0.77558080  1.19620316  1.52125472
> colMedians(tmp)
  [1]  1.51828066  1.48521745 -0.22322694 -0.77581862  0.38762454  1.55534112
  [7]  0.13677347 -0.28982558 -1.33574044  2.08358215 -0.87114091  0.11894878
 [13] -1.72458537  1.69607910 -0.10303304  0.20156258  0.40755657 -1.27335565
 [19] -1.28160726 -1.48204829  0.73578346 -0.53774296 -0.31602469 -1.00855381
 [25]  2.64586538 -1.12724739 -0.35672006  1.75625516  1.44217360  0.04931476
 [31] -0.34186388 -0.04697666  2.01334976  1.01421014  0.62281850 -1.44116786
 [37]  0.03363688 -0.04703176 -1.58869509 -1.63883299  0.90319579  1.27198730
 [43] -0.86423106 -1.60589459 -0.19835455 -0.48514726 -0.75435564  0.82481012
 [49]  0.71860404  0.53176187 -0.13797285 -0.50769089 -1.21795559 -1.58195113
 [55]  1.68230468  0.25469689 -0.60299633  0.54405443 -0.75486128  0.50725782
 [61] -0.91730171 -2.12828740  0.23746268 -0.82954683  0.90847917  0.87123795
 [67] -0.65903105 -2.53227131 -0.50041031  0.79989957 -0.84525749  0.07815628
 [73]  0.67563174 -0.52475259  0.20972425  0.58149897  0.15204539 -0.68720593
 [79]  1.46639807  0.45507292 -1.38601937  0.63054412 -1.95938733  1.01632694
 [85]  0.82395169 -0.04671029  0.84994210 -0.73207083 -1.92584121  0.65061254
 [91] -0.15279124  1.07222466 -0.22872572  1.14774161 -1.28967522  2.26148850
 [97] -0.20053142 -0.77558080  1.19620316  1.52125472
> colRanges(tmp)
         [,1]     [,2]       [,3]       [,4]      [,5]     [,6]      [,7]
[1,] 1.518281 1.485217 -0.2232269 -0.7758186 0.3876245 1.555341 0.1367735
[2,] 1.518281 1.485217 -0.2232269 -0.7758186 0.3876245 1.555341 0.1367735
           [,8]     [,9]    [,10]      [,11]     [,12]     [,13]    [,14]
[1,] -0.2898256 -1.33574 2.083582 -0.8711409 0.1189488 -1.724585 1.696079
[2,] -0.2898256 -1.33574 2.083582 -0.8711409 0.1189488 -1.724585 1.696079
         [,15]     [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
[1,] -0.103033 0.2015626 0.4075566 -1.273356 -1.281607 -1.482048 0.7357835
[2,] -0.103033 0.2015626 0.4075566 -1.273356 -1.281607 -1.482048 0.7357835
         [,22]      [,23]     [,24]    [,25]     [,26]      [,27]    [,28]
[1,] -0.537743 -0.3160247 -1.008554 2.645865 -1.127247 -0.3567201 1.756255
[2,] -0.537743 -0.3160247 -1.008554 2.645865 -1.127247 -0.3567201 1.756255
        [,29]      [,30]      [,31]       [,32]   [,33]   [,34]     [,35]
[1,] 1.442174 0.04931476 -0.3418639 -0.04697666 2.01335 1.01421 0.6228185
[2,] 1.442174 0.04931476 -0.3418639 -0.04697666 2.01335 1.01421 0.6228185
         [,36]      [,37]       [,38]     [,39]     [,40]     [,41]    [,42]
[1,] -1.441168 0.03363688 -0.04703176 -1.588695 -1.638833 0.9031958 1.271987
[2,] -1.441168 0.03363688 -0.04703176 -1.588695 -1.638833 0.9031958 1.271987
          [,43]     [,44]      [,45]      [,46]      [,47]     [,48]    [,49]
[1,] -0.8642311 -1.605895 -0.1983546 -0.4851473 -0.7543556 0.8248101 0.718604
[2,] -0.8642311 -1.605895 -0.1983546 -0.4851473 -0.7543556 0.8248101 0.718604
         [,50]      [,51]      [,52]     [,53]     [,54]    [,55]     [,56]
[1,] 0.5317619 -0.1379729 -0.5076909 -1.217956 -1.581951 1.682305 0.2546969
[2,] 0.5317619 -0.1379729 -0.5076909 -1.217956 -1.581951 1.682305 0.2546969
          [,57]     [,58]      [,59]     [,60]      [,61]     [,62]     [,63]
[1,] -0.6029963 0.5440544 -0.7548613 0.5072578 -0.9173017 -2.128287 0.2374627
[2,] -0.6029963 0.5440544 -0.7548613 0.5072578 -0.9173017 -2.128287 0.2374627
          [,64]     [,65]     [,66]      [,67]     [,68]      [,69]     [,70]
[1,] -0.8295468 0.9084792 0.8712379 -0.6590311 -2.532271 -0.5004103 0.7998996
[2,] -0.8295468 0.9084792 0.8712379 -0.6590311 -2.532271 -0.5004103 0.7998996
          [,71]      [,72]     [,73]      [,74]     [,75]    [,76]     [,77]
[1,] -0.8452575 0.07815628 0.6756317 -0.5247526 0.2097243 0.581499 0.1520454
[2,] -0.8452575 0.07815628 0.6756317 -0.5247526 0.2097243 0.581499 0.1520454
          [,78]    [,79]     [,80]     [,81]     [,82]     [,83]    [,84]
[1,] -0.6872059 1.466398 0.4550729 -1.386019 0.6305441 -1.959387 1.016327
[2,] -0.6872059 1.466398 0.4550729 -1.386019 0.6305441 -1.959387 1.016327
         [,85]       [,86]     [,87]      [,88]     [,89]     [,90]      [,91]
[1,] 0.8239517 -0.04671029 0.8499421 -0.7320708 -1.925841 0.6506125 -0.1527912
[2,] 0.8239517 -0.04671029 0.8499421 -0.7320708 -1.925841 0.6506125 -0.1527912
        [,92]      [,93]    [,94]     [,95]    [,96]      [,97]      [,98]
[1,] 1.072225 -0.2287257 1.147742 -1.289675 2.261489 -0.2005314 -0.7755808
[2,] 1.072225 -0.2287257 1.147742 -1.289675 2.261489 -0.2005314 -0.7755808
        [,99]   [,100]
[1,] 1.196203 1.521255
[2,] 1.196203 1.521255
> 
> 
> Max(tmp2)
[1] 2.03729
> Min(tmp2)
[1] -3.164874
> mean(tmp2)
[1] -0.2421573
> Sum(tmp2)
[1] -24.21573
> Var(tmp2)
[1] 0.9859068
> 
> rowMeans(tmp2)
  [1] -1.005133884 -1.348803501 -0.797577827 -0.502505689 -0.418332543
  [6] -0.093111206  0.408976103  0.643875496 -0.717509086  1.129830298
 [11]  0.537536849  0.633171278 -0.714925001  0.093277084  0.386864701
 [16]  0.026401661 -0.025215252 -1.494081486  0.705764506 -1.777967275
 [21]  0.833022371 -1.015428839 -0.734671931  0.874542073 -0.501626583
 [26] -0.109079327 -1.173238433 -1.036119240 -1.821461845 -0.723086588
 [31] -0.810370971  1.311700844 -1.374955997  1.947475231 -0.918173684
 [36] -1.731990143 -0.421880570  0.777037806  0.197993370 -0.082767491
 [41] -0.871843636 -0.753060340 -0.918497345 -2.111382209  1.591474995
 [46]  1.128843346 -0.617021480  0.796075174 -1.417666057  1.192182129
 [51] -0.329377736 -2.339813921  2.037289772 -0.096759487 -0.203824360
 [56]  0.147979371  1.638957286 -0.495124819  0.351567239 -0.091611820
 [61] -0.329704681 -1.929233845  0.051533095  0.037454812 -0.477863919
 [66] -0.836022353 -0.419012918 -1.958850353  0.755243499 -1.110235350
 [71] -0.819126830  0.274986094  1.311093123  0.209968163  0.537717537
 [76] -0.746730693 -3.164874265  0.164559165 -0.451622934 -0.307799777
 [81] -1.277487746 -0.338390196  0.474794909  1.173682110 -0.042481618
 [86]  0.549989606 -0.008400437 -0.390258206 -1.992265353  0.016006423
 [91] -0.739685961 -0.326404127 -0.606635461  0.270618463  0.872492502
 [96]  0.420181101  0.762384845 -1.589847447 -1.173606419  1.142262930
> rowSums(tmp2)
  [1] -1.005133884 -1.348803501 -0.797577827 -0.502505689 -0.418332543
  [6] -0.093111206  0.408976103  0.643875496 -0.717509086  1.129830298
 [11]  0.537536849  0.633171278 -0.714925001  0.093277084  0.386864701
 [16]  0.026401661 -0.025215252 -1.494081486  0.705764506 -1.777967275
 [21]  0.833022371 -1.015428839 -0.734671931  0.874542073 -0.501626583
 [26] -0.109079327 -1.173238433 -1.036119240 -1.821461845 -0.723086588
 [31] -0.810370971  1.311700844 -1.374955997  1.947475231 -0.918173684
 [36] -1.731990143 -0.421880570  0.777037806  0.197993370 -0.082767491
 [41] -0.871843636 -0.753060340 -0.918497345 -2.111382209  1.591474995
 [46]  1.128843346 -0.617021480  0.796075174 -1.417666057  1.192182129
 [51] -0.329377736 -2.339813921  2.037289772 -0.096759487 -0.203824360
 [56]  0.147979371  1.638957286 -0.495124819  0.351567239 -0.091611820
 [61] -0.329704681 -1.929233845  0.051533095  0.037454812 -0.477863919
 [66] -0.836022353 -0.419012918 -1.958850353  0.755243499 -1.110235350
 [71] -0.819126830  0.274986094  1.311093123  0.209968163  0.537717537
 [76] -0.746730693 -3.164874265  0.164559165 -0.451622934 -0.307799777
 [81] -1.277487746 -0.338390196  0.474794909  1.173682110 -0.042481618
 [86]  0.549989606 -0.008400437 -0.390258206 -1.992265353  0.016006423
 [91] -0.739685961 -0.326404127 -0.606635461  0.270618463  0.872492502
 [96]  0.420181101  0.762384845 -1.589847447 -1.173606419  1.142262930
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -1.005133884 -1.348803501 -0.797577827 -0.502505689 -0.418332543
  [6] -0.093111206  0.408976103  0.643875496 -0.717509086  1.129830298
 [11]  0.537536849  0.633171278 -0.714925001  0.093277084  0.386864701
 [16]  0.026401661 -0.025215252 -1.494081486  0.705764506 -1.777967275
 [21]  0.833022371 -1.015428839 -0.734671931  0.874542073 -0.501626583
 [26] -0.109079327 -1.173238433 -1.036119240 -1.821461845 -0.723086588
 [31] -0.810370971  1.311700844 -1.374955997  1.947475231 -0.918173684
 [36] -1.731990143 -0.421880570  0.777037806  0.197993370 -0.082767491
 [41] -0.871843636 -0.753060340 -0.918497345 -2.111382209  1.591474995
 [46]  1.128843346 -0.617021480  0.796075174 -1.417666057  1.192182129
 [51] -0.329377736 -2.339813921  2.037289772 -0.096759487 -0.203824360
 [56]  0.147979371  1.638957286 -0.495124819  0.351567239 -0.091611820
 [61] -0.329704681 -1.929233845  0.051533095  0.037454812 -0.477863919
 [66] -0.836022353 -0.419012918 -1.958850353  0.755243499 -1.110235350
 [71] -0.819126830  0.274986094  1.311093123  0.209968163  0.537717537
 [76] -0.746730693 -3.164874265  0.164559165 -0.451622934 -0.307799777
 [81] -1.277487746 -0.338390196  0.474794909  1.173682110 -0.042481618
 [86]  0.549989606 -0.008400437 -0.390258206 -1.992265353  0.016006423
 [91] -0.739685961 -0.326404127 -0.606635461  0.270618463  0.872492502
 [96]  0.420181101  0.762384845 -1.589847447 -1.173606419  1.142262930
> rowMin(tmp2)
  [1] -1.005133884 -1.348803501 -0.797577827 -0.502505689 -0.418332543
  [6] -0.093111206  0.408976103  0.643875496 -0.717509086  1.129830298
 [11]  0.537536849  0.633171278 -0.714925001  0.093277084  0.386864701
 [16]  0.026401661 -0.025215252 -1.494081486  0.705764506 -1.777967275
 [21]  0.833022371 -1.015428839 -0.734671931  0.874542073 -0.501626583
 [26] -0.109079327 -1.173238433 -1.036119240 -1.821461845 -0.723086588
 [31] -0.810370971  1.311700844 -1.374955997  1.947475231 -0.918173684
 [36] -1.731990143 -0.421880570  0.777037806  0.197993370 -0.082767491
 [41] -0.871843636 -0.753060340 -0.918497345 -2.111382209  1.591474995
 [46]  1.128843346 -0.617021480  0.796075174 -1.417666057  1.192182129
 [51] -0.329377736 -2.339813921  2.037289772 -0.096759487 -0.203824360
 [56]  0.147979371  1.638957286 -0.495124819  0.351567239 -0.091611820
 [61] -0.329704681 -1.929233845  0.051533095  0.037454812 -0.477863919
 [66] -0.836022353 -0.419012918 -1.958850353  0.755243499 -1.110235350
 [71] -0.819126830  0.274986094  1.311093123  0.209968163  0.537717537
 [76] -0.746730693 -3.164874265  0.164559165 -0.451622934 -0.307799777
 [81] -1.277487746 -0.338390196  0.474794909  1.173682110 -0.042481618
 [86]  0.549989606 -0.008400437 -0.390258206 -1.992265353  0.016006423
 [91] -0.739685961 -0.326404127 -0.606635461  0.270618463  0.872492502
 [96]  0.420181101  0.762384845 -1.589847447 -1.173606419  1.142262930
> 
> colMeans(tmp2)
[1] -0.2421573
> colSums(tmp2)
[1] -24.21573
> colVars(tmp2)
[1] 0.9859068
> colSd(tmp2)
[1] 0.9929284
> colMax(tmp2)
[1] 2.03729
> colMin(tmp2)
[1] -3.164874
> colMedians(tmp2)
[1] -0.317102
> colRanges(tmp2)
          [,1]
[1,] -3.164874
[2,]  2.037290
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.1650599 -2.0516222 -3.0877165 -2.5403330  4.7058823 -1.0852472
 [7]  7.0566766 -0.7413669 -1.1138769  0.2417266
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.8191899
[2,] -0.4562777
[3,] -0.0429190
[4,]  0.5833595
[5,]  1.2066449
> 
> rowApply(tmp,sum)
 [1] -0.06346162  0.45724017 -0.81481043 -2.25920897 -3.05115562  0.44243235
 [7]  0.40778878  0.10352051  3.89969716  2.09702054
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    4    5    7    6    9    8    5    2     9
 [2,]    2    9    1    1    3    8    4    6    9     8
 [3,]    5    3    9    8    1    6   10    1    1     4
 [4,]    4    2    4    3   10    2    5    2    5     6
 [5,]    8    6   10   10    4    1    6   10    7     5
 [6,]    7    8    6    4    2    5    7    3    6     7
 [7,]   10    7    7    9    7   10    9    9    3     3
 [8,]    6   10    2    6    5    4    1    8    4     2
 [9,]    9    5    3    5    8    3    2    4   10     1
[10,]    3    1    8    2    9    7    3    7    8    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.29934471 -1.56725752  2.25271477  0.30113407 -0.02134849 -0.56792977
 [7]  1.17360058  1.91008873 -0.52278136 -3.77783735  1.64553594 -1.41103453
[13] -2.38541550 -1.21376765 -2.35716872 -2.10686793  4.64204826 -0.88646792
[19] -1.69431931  6.72394024
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.65336395
[2,] -0.59607922
[3,] -0.12168413
[4,]  0.09862321
[5,]  0.97315940
> 
> rowApply(tmp,sum)
[1]  2.807852  2.294054 -8.822927  2.154166  1.404377
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    7    7   19    5   11
[2,]    9    3   10    7    9
[3,]    6   19   12   14   17
[4,]   11   17    5   12   15
[5,]   17    4   17    4    4
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
[1,] -0.59607922 -0.1965555 -0.7098293  0.09897481  1.4799936 -0.5928251
[2,] -0.12168413 -0.7340628  1.4503654  0.69095285 -0.7274723 -0.0613301
[3,]  0.97315940 -0.3060086 -0.1353858 -1.39189693  0.6049981  0.1796821
[4,] -0.65336395 -0.1315685  0.4472720  0.36019578 -0.7186780  0.4391178
[5,]  0.09862321 -0.1990621  1.2002925  0.54290756 -0.6601900 -0.5325745
             [,7]        [,8]       [,9]      [,10]      [,11]      [,12]
[1,] -0.087604887  1.93019768 -1.3886710  1.8059128  0.3637613 -1.6406607
[2,]  1.081172995  0.06797604  0.1855954 -0.9630097  0.4596472 -0.3806050
[3,] -0.206275938  0.18163368  0.1356869 -1.7752778  0.1121616 -0.8877043
[4,]  0.008321881  0.33782817  0.8868067 -1.1419859 -0.3131711  1.0345477
[5,]  0.377986533 -0.60754683 -0.3421993 -1.7034768  1.0231369  0.4633878
          [,13]      [,14]      [,15]       [,16]     [,17]      [,18]
[1,]  0.4349816 -1.2812674  0.1699147 -0.73856860 1.1185518  0.6750732
[2,] -0.1800662  0.5242334 -0.0231393  0.44305805 1.8010256 -1.6934794
[3,] -1.5756533 -1.4298989 -1.8837681 -0.87410339 0.7639120 -1.3311949
[4,] -0.7358153  1.1066287  0.6824556  0.02333107 0.6646465  0.1168451
[5,] -0.3288623 -0.1334634 -1.3026317 -0.96058506 0.2939124  1.3462881
          [,19]     [,20]
[1,] -0.8305848 2.7931366
[2,]  0.2398461 0.2350304
[3,] -1.1645313 1.1875389
[4,] -1.1566524 0.8974036
[5,]  1.2176031 1.6108308
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  655  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  567  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2      col3      col4      col5      col6     col7
row1 -0.9245402 -1.616581 0.1688395 0.3126752 0.9950846 0.9378148 1.418733
           col8      col9     col10      col11      col12    col13   col14
row1 -0.4895485 -2.455889 0.7225626 0.07730532 -0.3498831 0.952001 1.99422
          col15      col16      col17    col18     col19     col20
row1 -0.8400681 0.09379071 0.03324298 -1.00889 0.8367823 0.0446042
> tmp[,"col10"]
          col10
row1  0.7225626
row2 -0.5999263
row3  1.1016643
row4  0.1218069
row5  0.4666566
> tmp[c("row1","row5"),]
           col1       col2       col3      col4      col5       col6     col7
row1 -0.9245402 -1.6165806  0.1688395 0.3126752 0.9950846  0.9378148 1.418733
row5 -1.7691493 -0.2678134 -1.0170940 1.1542146 1.7613922 -0.4642274 1.146730
            col8       col9     col10      col11      col12      col13    col14
row1 -0.48954846 -2.4558893 0.7225626 0.07730532 -0.3498831  0.9520010 1.994220
row5 -0.03018132  0.5265105 0.4666566 1.17700632  0.1786116 -0.4189373 0.634155
          col15      col16      col17      col18       col19     col20
row1 -0.8400681 0.09379071 0.03324298 -1.0088896  0.83678233 0.0446042
row5  0.1686802 0.66527253 0.19399701  0.2725139 -0.02148932 1.2896257
> tmp[,c("col6","col20")]
           col6      col20
row1  0.9378148  0.0446042
row2 -2.1306485 -1.1681913
row3 -0.1839034  0.4800871
row4  0.2850236  2.3529262
row5 -0.4642274  1.2896257
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1  0.9378148 0.0446042
row5 -0.4642274 1.2896257
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5    col6     col7     col8
row1 49.67422 47.84846 49.81443 49.41083 48.90165 105.011 52.26934 50.67421
         col9    col10    col11   col12   col13    col14    col15    col16
row1 53.26929 51.24744 50.08115 50.3943 50.1745 51.21428 49.88377 50.47611
        col17   col18    col19    col20
row1 50.34011 50.6864 51.15071 105.5494
> tmp[,"col10"]
        col10
row1 51.24744
row2 30.30942
row3 30.55091
row4 30.71476
row5 49.99508
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.67422 47.84846 49.81443 49.41083 48.90165 105.0110 52.26934 50.67421
row5 49.22774 49.30596 49.26435 50.13192 49.07983 103.8927 49.83744 50.62532
         col9    col10    col11   col12    col13    col14    col15    col16
row1 53.26929 51.24744 50.08115 50.3943 50.17450 51.21428 49.88377 50.47611
row5 52.36295 49.99508 49.80942 48.3272 48.78796 50.18298 51.85799 48.85504
        col17    col18    col19    col20
row1 50.34011 50.68640 51.15071 105.5494
row5 50.11862 51.12882 51.01618 103.6509
> tmp[,c("col6","col20")]
          col6     col20
row1 105.01105 105.54937
row2  75.70479  74.71997
row3  75.37720  75.71297
row4  74.57536  73.96386
row5 103.89267 103.65093
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.0110 105.5494
row5 103.8927 103.6509
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.0110 105.5494
row5 103.8927 103.6509
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  1.03054717
[2,]  0.87541961
[3,]  0.68481590
[4,] -0.09863248
[5,] -0.12089834
> tmp[,c("col17","col7")]
          col17      col7
[1,]  2.3064328 -1.402599
[2,] -0.3427150 -1.359821
[3,]  0.1980103 -1.745451
[4,]  1.6690220  1.839102
[5,] -0.4986679 -0.857938
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,]  0.08432927  0.9799611
[2,]  0.57933322 -0.4836555
[3,] -0.45866660 -0.9223278
[4,]  0.70696900 -1.0780345
[5,] -1.02131468  0.4148471
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] 0.08432927
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] 0.08432927
[2,] 0.57933322
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]      [,5]       [,6]
row3 -0.6929251 -0.7117874  1.7084749 -0.7037267 -1.541930 -0.2620118
row1  0.3536584 -1.6064131 -0.7976848 -0.2614431 -1.508799  0.9526627
           [,7]       [,8]       [,9]     [,10]      [,11]       [,12]
row3 -0.4318349 -0.3146192 -0.1295172  1.936382  0.1496203  1.00479839
row1  0.3593320 -0.6594527  1.1858092 -0.279936 -0.6610982 -0.03674867
           [,13]      [,14]      [,15]      [,16]     [,17]      [,18]
row3  0.94095516  0.9265504  0.4933933  0.9705576 0.8571135 -1.2229376
row1 -0.09377871 -1.6293601 -0.8724512 -0.3219963 1.6902164 -0.6619866
         [,19]      [,20]
row3  1.184275  1.5428174
row1 -1.107181 -0.2650378
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]       [,3]       [,4]      [,5]       [,6]       [,7]
row2 0.3396806 -1.635183 -0.3274216 0.01082833 -1.174919 0.02831431 -0.2115179
          [,8]      [,9]     [,10]
row2 0.9816511 0.7958783 -1.526498
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]      [,3]      [,4]       [,5]     [,6]      [,7]
row5 -0.9507986 -0.7307125 0.4448222 0.3720649 -0.7991619 1.852786 0.9587114
          [,8]      [,9]      [,10]      [,11]      [,12]     [,13]      [,14]
row5 -1.364288 0.9808939 -0.6523906 -0.1067577 -0.5229334 -1.863432 -0.7544658
          [,15]     [,16]     [,17]        [,18]      [,19]     [,20]
row5 -0.1085043 -1.499103 0.2171863 -0.004950007 -0.1832488 0.9599869
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600001040000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe3619a21c"
 [2] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe4ce1f803"
 [3] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe761b464" 
 [4] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe1f8a1505"
 [5] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe226a0b70"
 [6] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe6014f7b6"
 [7] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe92ff02"  
 [8] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe32a3dc99"
 [9] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe23e7dac8"
[10] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe4acc92e2"
[11] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe3cbf59cb"
[12] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe36a03d95"
[13] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe522b1d37"
[14] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbec8b3006" 
[15] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM10bbe5fde059" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000010083c0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000010083c0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000010083c0>
> rowMedians(tmp)
  [1] -2.104717e-01 -7.369835e-02  3.986732e-01  6.074984e-02 -6.300651e-02
  [6] -9.279229e-02 -1.038382e+00  1.085598e-01  4.460952e-01 -1.997042e-01
 [11]  2.342729e-01 -2.073642e-01 -4.300635e-02  1.842776e-01  2.188458e-01
 [16]  8.332903e-02  4.856228e-01  8.286782e-01  5.173094e-01 -2.556006e-02
 [21]  5.978500e-02 -2.338714e-01  5.511046e-01  1.395493e-01  5.698821e-01
 [26]  2.965952e-01  4.533116e-02  3.955730e-01 -5.804592e-01  2.204945e-01
 [31] -2.308805e-01 -8.974452e-02 -3.582051e-01  1.142326e-01 -1.040233e-01
 [36]  9.772839e-02  6.581555e-02  2.521124e-01 -2.707056e-01  4.546589e-01
 [41] -1.218019e-01 -2.698592e-01  9.529675e-02  2.366367e-01  5.379369e-05
 [46]  4.782873e-03  6.568317e-01  1.238103e-01  1.627156e-01  8.151142e-02
 [51] -6.044424e-01 -1.158726e-01 -2.014055e-01  3.919278e-01  4.437552e-01
 [56]  4.286292e-02  2.939878e-02 -1.304640e-01 -1.409742e-02  3.047676e-01
 [61]  1.002090e-01  2.977424e-01 -7.738222e-01 -6.973750e-02 -2.396970e-01
 [66] -5.205687e-01 -4.337739e-01 -3.179973e-01 -5.262758e-01 -2.775385e-01
 [71] -3.866573e-01 -4.951342e-01  3.105996e-01  2.233822e-01  4.411582e-01
 [76]  1.677700e-01  2.270480e-02  2.625383e-01 -3.139158e-02  5.606499e-01
 [81] -2.704845e-01  7.495220e-02 -2.113569e-01  1.073835e-01 -3.988859e-01
 [86]  6.033420e-02 -1.173769e-01  6.280371e-02  3.280089e-01  1.283955e-01
 [91] -3.202861e-03  3.003576e-01 -3.644171e-01  2.529955e-01  1.806013e-01
 [96] -2.935395e-01  9.260962e-04  4.655653e-01  2.822371e-01 -1.749664e-01
[101]  1.959369e-01  2.780151e-01  2.781239e-02 -2.966240e-02 -1.922135e-01
[106] -2.261041e-01 -7.054772e-02 -3.709610e-01 -9.635617e-01 -5.633230e-01
[111]  3.206424e-01 -9.960127e-02  3.689584e-03  1.676202e-01 -7.210132e-02
[116]  6.286450e-01  5.081515e-01 -1.717976e-01 -2.809891e-01  2.789616e-01
[121] -1.383613e-01  1.179460e-01  1.113221e-01  4.456462e-01  3.010921e-01
[126]  4.668906e-02  8.122028e-01  1.826924e-01 -3.464780e-01 -3.313051e-01
[131]  4.011378e-01  4.459742e-01  8.055925e-02 -3.686667e-02 -2.865440e-01
[136]  9.428875e-02  2.170860e-01 -1.620917e-01  2.118310e-01 -3.939714e-01
[141] -2.667945e-01  9.060541e-03 -1.391633e-01 -4.158656e-01 -1.081271e-01
[146]  2.259391e-01 -6.516393e-02  1.542860e-01 -8.044623e-03 -6.062543e-03
[151] -3.189436e-01  5.957834e-01 -2.797421e-01  9.618401e-02  3.855182e-01
[156]  2.758509e-01  8.416574e-01  2.298645e-01 -1.575879e-01  3.779598e-01
[161] -1.103801e-01  2.192961e-01  4.151029e-01  9.750916e-02 -9.454548e-02
[166]  2.830689e-01 -3.251917e-01  1.411926e-01 -6.666841e-01  1.694539e-01
[171] -4.012824e-01 -1.906613e-01  3.046964e-01 -5.984331e-01  5.461188e-02
[176]  1.600829e-01 -2.514365e-01 -3.700901e-01  5.465558e-01  8.912431e-02
[181] -1.825099e-01 -1.112489e-01 -4.187294e-01  3.940058e-01 -2.028515e-01
[186] -2.290699e-01  4.170982e-02 -2.899644e-01  9.616330e-02  1.103575e-01
[191] -7.369777e-02  3.838836e-02 -8.966326e-01 -1.671131e-01 -1.039765e-01
[196] -4.804995e-01  8.049896e-02 -7.252047e-01  9.669517e-02 -3.466381e-01
[201]  5.430306e-01  3.699603e-01 -5.992936e-01 -1.041328e-01 -2.679517e-01
[206] -1.190249e-01 -2.014585e-01 -5.468470e-01  1.755962e-01  5.284532e-01
[211] -5.320673e-01 -7.253434e-03  3.034486e-01  3.218493e-01 -4.562425e-02
[216]  1.567943e-01  1.980446e-01 -3.246743e-02  1.702715e-01 -1.534776e-01
[221]  3.924366e-03 -4.360006e-02  1.148134e-01  3.998251e-01 -1.428122e-01
[226] -2.587466e-01 -2.453264e-01  7.557215e-02 -3.362079e-01  5.968180e-01
> 
> proc.time()
   user  system elapsed 
  5.027  18.918  26.284 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000031ac2a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000031ac2a0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000031ac2a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000031ac2a0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600003190120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003190120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600003190120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003190120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003190120>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031ec000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031ec000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000031ec000>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000031ec000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000031ec000>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000031ec000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000031ec000>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000031ec000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000031ec000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031e8000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000031e8000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031e8000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031e8000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile111a02c9b0c5" "BufferedMatrixFile111a077456f1"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile111a02c9b0c5" "BufferedMatrixFile111a077456f1"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003180120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003180120>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003180120>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003180120>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600003180120>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600003180120>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031802a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000031802a0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000031802a0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000031802a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003180480>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003180480>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.565   0.211   0.750 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.555   0.134   0.655 

Example timings