Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2023-10-25 11:41:34 -0400 (Wed, 25 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4727 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4465 |
lconway | macOS 12.6.5 Monterey | x86_64 | 4.3.1 Patched (2023-06-17 r84564) -- "Beagle Scouts" | 4476 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4464 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.6.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.3.1 Ventura / arm64 | see weekly results here | ||||||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.8.0 |
Command: /home/biocbuild/R/R-4.3.1/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.1/site-library --timings HPiP_1.8.0.tar.gz |
StartedAt: 2023-10-25 12:07:32 -0000 (Wed, 25 Oct 2023) |
EndedAt: 2023-10-25 12:25:18 -0000 (Wed, 25 Oct 2023) |
EllapsedTime: 1066.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R-4.3.1/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.1/site-library --timings HPiP_1.8.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: aarch64-unknown-linux-gnu (64-bit) * R was compiled by gcc (GCC) 10.3.1 GNU Fortran (GCC) 10.3.1 * running under: openEuler 22.03 (LTS-SP1) * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.8.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.021 0.794 39.900 FSmethod 38.488 0.794 39.358 corr_plot 38.452 0.551 39.080 pred_ensembel 18.403 0.716 16.769 enrichfindP 0.530 0.071 32.462 getFASTA 0.096 0.032 16.044 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK NONE * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R-4.3.1/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.3.1/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.716191 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.424071 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.387350 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.439783 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.203871 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.501206 final value 94.043243 converged Fitting Repeat 2 # weights: 305 initial value 108.245925 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.767966 iter 10 value 91.739769 iter 20 value 91.608244 final value 91.607805 converged Fitting Repeat 4 # weights: 305 initial value 96.571068 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 109.087968 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.548916 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 121.378526 iter 10 value 93.838019 iter 20 value 91.018650 iter 30 value 83.917498 iter 40 value 83.424378 iter 50 value 83.416938 iter 60 value 83.415581 final value 83.415553 converged Fitting Repeat 3 # weights: 507 initial value 106.169150 iter 10 value 91.656570 iter 20 value 91.595054 iter 30 value 91.165708 iter 40 value 91.094417 iter 50 value 91.078470 iter 60 value 91.048279 iter 60 value 91.048279 iter 60 value 91.048279 final value 91.048279 converged Fitting Repeat 4 # weights: 507 initial value 99.698575 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 105.024975 final value 93.882439 converged Fitting Repeat 1 # weights: 103 initial value 97.483517 iter 10 value 94.054096 iter 20 value 93.418550 iter 30 value 87.999440 iter 40 value 83.723295 iter 50 value 83.561840 iter 60 value 83.441341 iter 70 value 83.433773 final value 83.432890 converged Fitting Repeat 2 # weights: 103 initial value 104.684901 iter 10 value 92.308887 iter 20 value 83.554975 iter 30 value 83.449213 iter 40 value 83.409920 iter 50 value 83.292556 iter 60 value 83.285982 iter 60 value 83.285982 iter 60 value 83.285982 final value 83.285982 converged Fitting Repeat 3 # weights: 103 initial value 106.385523 iter 10 value 94.058392 iter 20 value 94.054583 iter 30 value 85.962339 iter 40 value 83.228092 iter 50 value 83.040773 iter 60 value 83.013348 iter 70 value 82.901602 iter 80 value 82.894250 final value 82.894249 converged Fitting Repeat 4 # weights: 103 initial value 109.945054 iter 10 value 94.135669 iter 20 value 91.960021 iter 30 value 86.047001 iter 40 value 84.716154 iter 50 value 83.438934 iter 60 value 83.324670 iter 70 value 83.286077 final value 83.285982 converged Fitting Repeat 5 # weights: 103 initial value 105.605243 iter 10 value 94.030060 iter 20 value 86.833886 iter 30 value 83.541825 iter 40 value 83.340642 iter 50 value 83.288239 iter 60 value 83.285986 final value 83.285982 converged Fitting Repeat 1 # weights: 305 initial value 110.849175 iter 10 value 94.068291 iter 20 value 88.718043 iter 30 value 84.760002 iter 40 value 83.611960 iter 50 value 81.239123 iter 60 value 80.312717 iter 70 value 80.141650 iter 80 value 79.905343 iter 90 value 79.580521 iter 100 value 79.538771 final value 79.538771 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.726417 iter 10 value 94.064561 iter 20 value 91.763113 iter 30 value 85.861591 iter 40 value 83.304670 iter 50 value 83.139669 iter 60 value 83.117065 iter 70 value 83.069165 iter 80 value 83.031617 iter 90 value 83.010761 iter 100 value 82.754376 final value 82.754376 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.889639 iter 10 value 94.359907 iter 20 value 90.338680 iter 30 value 83.514446 iter 40 value 83.326657 iter 50 value 82.788257 iter 60 value 81.785808 iter 70 value 80.717997 iter 80 value 80.480680 iter 90 value 80.381714 iter 100 value 80.337962 final value 80.337962 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.357057 iter 10 value 93.722692 iter 20 value 87.736023 iter 30 value 87.220857 iter 40 value 86.006535 iter 50 value 85.627688 iter 60 value 83.754956 iter 70 value 83.433111 iter 80 value 83.203850 iter 90 value 83.107497 iter 100 value 82.022012 final value 82.022012 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.358545 iter 10 value 93.919030 iter 20 value 85.908048 iter 30 value 85.401379 iter 40 value 85.070354 iter 50 value 83.862137 iter 60 value 83.306316 iter 70 value 80.655047 iter 80 value 80.069649 iter 90 value 79.973918 iter 100 value 79.890159 final value 79.890159 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.514584 iter 10 value 93.871005 iter 20 value 85.652119 iter 30 value 83.423737 iter 40 value 83.131418 iter 50 value 82.855007 iter 60 value 82.659501 iter 70 value 82.586107 iter 80 value 82.565337 iter 90 value 82.172232 iter 100 value 81.516214 final value 81.516214 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.098147 iter 10 value 94.848746 iter 20 value 86.204361 iter 30 value 84.664892 iter 40 value 84.557296 iter 50 value 84.164725 iter 60 value 83.902291 iter 70 value 83.674666 iter 80 value 83.263470 iter 90 value 81.288413 iter 100 value 80.799302 final value 80.799302 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.612871 iter 10 value 94.072097 iter 20 value 91.350629 iter 30 value 86.186307 iter 40 value 83.482355 iter 50 value 83.020432 iter 60 value 81.951084 iter 70 value 81.487827 iter 80 value 81.011872 iter 90 value 79.967126 iter 100 value 79.731696 final value 79.731696 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.060986 iter 10 value 93.759522 iter 20 value 88.076779 iter 30 value 86.336735 iter 40 value 83.682617 iter 50 value 83.139946 iter 60 value 82.304403 iter 70 value 81.927718 iter 80 value 81.393065 iter 90 value 80.914169 iter 100 value 80.539665 final value 80.539665 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.133443 iter 10 value 94.333289 iter 20 value 93.451727 iter 30 value 93.081698 iter 40 value 89.371271 iter 50 value 83.706972 iter 60 value 82.726278 iter 70 value 82.109313 iter 80 value 81.805162 iter 90 value 81.602101 iter 100 value 81.284256 final value 81.284256 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.315159 final value 94.054441 converged Fitting Repeat 2 # weights: 103 initial value 99.708604 final value 94.054473 converged Fitting Repeat 3 # weights: 103 initial value 111.126993 iter 10 value 94.054548 final value 94.052931 converged Fitting Repeat 4 # weights: 103 initial value 98.378737 final value 94.054750 converged Fitting Repeat 5 # weights: 103 initial value 100.376075 final value 94.054397 converged Fitting Repeat 1 # weights: 305 initial value 97.500490 iter 10 value 94.057785 final value 94.054880 converged Fitting Repeat 2 # weights: 305 initial value 104.422706 iter 10 value 94.057860 iter 20 value 93.041891 iter 30 value 85.254079 iter 40 value 85.218304 final value 85.218085 converged Fitting Repeat 3 # weights: 305 initial value 94.681283 iter 10 value 94.048070 iter 20 value 94.035413 iter 30 value 93.774645 iter 40 value 91.272943 iter 50 value 82.844175 iter 60 value 81.601472 iter 70 value 80.598743 iter 80 value 79.949833 iter 90 value 79.791881 final value 79.791721 converged Fitting Repeat 4 # weights: 305 initial value 97.387633 iter 10 value 94.047963 iter 20 value 93.060489 iter 30 value 85.231158 iter 40 value 84.094924 iter 50 value 84.084133 iter 60 value 83.967533 iter 70 value 83.963669 iter 80 value 82.374437 iter 90 value 82.178185 iter 100 value 82.175400 final value 82.175400 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.271661 iter 10 value 94.030194 iter 20 value 94.025936 iter 30 value 93.938915 iter 40 value 91.189245 iter 50 value 83.270013 iter 60 value 83.244634 iter 70 value 83.244410 iter 80 value 82.497290 iter 90 value 79.775421 iter 100 value 79.119841 final value 79.119841 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.065193 iter 10 value 94.051965 iter 20 value 94.051558 iter 30 value 94.019428 iter 40 value 90.615016 iter 50 value 85.462038 iter 60 value 85.461233 iter 70 value 85.461181 iter 80 value 84.790244 iter 90 value 82.179623 iter 100 value 82.148232 final value 82.148232 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.690019 iter 10 value 94.060056 iter 20 value 93.824402 iter 30 value 88.032494 iter 40 value 85.551582 iter 50 value 85.510534 iter 60 value 85.508604 iter 70 value 85.507922 iter 80 value 85.460582 final value 85.460544 converged Fitting Repeat 3 # weights: 507 initial value 105.050468 iter 10 value 86.718173 iter 20 value 84.684163 iter 30 value 84.664307 iter 40 value 82.107974 iter 50 value 82.102918 iter 60 value 82.080723 iter 70 value 82.026304 final value 82.023387 converged Fitting Repeat 4 # weights: 507 initial value 105.448307 iter 10 value 94.063228 iter 20 value 94.060495 iter 30 value 94.051155 iter 40 value 94.050531 iter 50 value 94.043584 iter 60 value 83.239077 iter 70 value 82.266871 iter 80 value 82.266163 iter 90 value 82.100202 iter 100 value 81.010287 final value 81.010287 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.183609 iter 10 value 94.060693 iter 20 value 94.046463 iter 30 value 84.812337 iter 40 value 82.970361 iter 50 value 80.214183 iter 60 value 80.113783 final value 80.113771 converged Fitting Repeat 1 # weights: 103 initial value 103.209417 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.277791 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.548834 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.637710 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 110.941350 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.030664 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 105.112277 iter 10 value 91.728958 iter 20 value 91.577732 final value 91.576614 converged Fitting Repeat 3 # weights: 305 initial value 98.731091 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.598589 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.029917 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 103.259696 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 121.229082 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 100.278792 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 116.320885 iter 10 value 94.427726 iter 10 value 94.427726 iter 10 value 94.427726 final value 94.427726 converged Fitting Repeat 5 # weights: 507 initial value 128.642663 final value 94.354396 converged Fitting Repeat 1 # weights: 103 initial value 102.089684 iter 10 value 94.259227 iter 20 value 92.087778 iter 30 value 87.481189 iter 40 value 86.677490 iter 50 value 85.788402 iter 60 value 85.328264 iter 70 value 83.387481 iter 80 value 82.002930 final value 82.002364 converged Fitting Repeat 2 # weights: 103 initial value 97.690193 iter 10 value 94.403195 iter 20 value 94.067997 iter 30 value 93.902519 iter 40 value 93.409940 iter 50 value 86.731243 iter 60 value 86.302985 iter 70 value 84.497928 iter 80 value 83.316199 iter 90 value 82.896843 iter 100 value 82.357692 final value 82.357692 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.440270 iter 10 value 94.519729 iter 20 value 94.441060 iter 30 value 91.046597 iter 40 value 86.567286 iter 50 value 86.225057 iter 60 value 85.922285 iter 70 value 85.331100 iter 80 value 84.484482 iter 90 value 82.734089 iter 100 value 82.007796 final value 82.007796 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.559144 iter 10 value 94.443209 iter 20 value 86.954657 iter 30 value 86.263703 iter 40 value 84.737393 iter 50 value 83.369941 iter 60 value 82.578267 iter 70 value 82.151721 iter 80 value 82.004337 final value 82.002364 converged Fitting Repeat 5 # weights: 103 initial value 102.531046 iter 10 value 94.476622 iter 20 value 87.537593 iter 30 value 86.846743 iter 40 value 86.214557 iter 50 value 85.536629 iter 60 value 84.011120 iter 70 value 83.328159 iter 80 value 83.316230 iter 80 value 83.316229 final value 83.316229 converged Fitting Repeat 1 # weights: 305 initial value 99.266312 iter 10 value 93.719719 iter 20 value 89.985365 iter 30 value 87.627390 iter 40 value 84.995946 iter 50 value 83.555624 iter 60 value 82.606498 iter 70 value 81.289486 iter 80 value 80.799751 iter 90 value 80.729465 iter 100 value 80.675998 final value 80.675998 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.209872 iter 10 value 94.346843 iter 20 value 93.232564 iter 30 value 89.936243 iter 40 value 89.375612 iter 50 value 85.165343 iter 60 value 82.979166 iter 70 value 82.038336 iter 80 value 81.938671 iter 90 value 81.370407 iter 100 value 81.227663 final value 81.227663 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.906092 iter 10 value 94.499883 iter 20 value 87.923012 iter 30 value 85.955167 iter 40 value 83.378440 iter 50 value 83.260617 iter 60 value 83.229612 iter 70 value 82.733778 iter 80 value 81.369831 iter 90 value 80.778965 iter 100 value 80.655748 final value 80.655748 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.690522 iter 10 value 94.435340 iter 20 value 94.008690 iter 30 value 93.888067 iter 40 value 92.514903 iter 50 value 86.271741 iter 60 value 85.746401 iter 70 value 85.187020 iter 80 value 84.073925 iter 90 value 83.308711 iter 100 value 81.712105 final value 81.712105 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.616393 iter 10 value 94.499189 iter 20 value 93.701278 iter 30 value 86.424650 iter 40 value 84.641570 iter 50 value 83.302937 iter 60 value 82.617560 iter 70 value 81.478337 iter 80 value 80.844475 iter 90 value 80.648514 iter 100 value 80.521565 final value 80.521565 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.851049 iter 10 value 94.536978 iter 20 value 91.107365 iter 30 value 90.655690 iter 40 value 88.159124 iter 50 value 84.780935 iter 60 value 82.856324 iter 70 value 81.158561 iter 80 value 80.626240 iter 90 value 80.541520 iter 100 value 80.386227 final value 80.386227 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.918757 iter 10 value 94.545145 iter 20 value 91.909643 iter 30 value 88.323998 iter 40 value 87.393692 iter 50 value 84.338745 iter 60 value 82.598224 iter 70 value 82.016402 iter 80 value 80.988340 iter 90 value 80.606407 iter 100 value 80.431408 final value 80.431408 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.240533 iter 10 value 93.951273 iter 20 value 88.310154 iter 30 value 87.209962 iter 40 value 86.523903 iter 50 value 85.800057 iter 60 value 85.684393 iter 70 value 83.849360 iter 80 value 82.775960 iter 90 value 81.314559 iter 100 value 81.213201 final value 81.213201 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.812223 iter 10 value 94.464491 iter 20 value 94.043260 iter 30 value 90.284232 iter 40 value 88.891603 iter 50 value 88.260833 iter 60 value 87.068322 iter 70 value 82.415292 iter 80 value 81.192977 iter 90 value 80.868025 iter 100 value 80.396692 final value 80.396692 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.797855 iter 10 value 94.788431 iter 20 value 90.390243 iter 30 value 85.683453 iter 40 value 83.160828 iter 50 value 81.276681 iter 60 value 80.751450 iter 70 value 80.652712 iter 80 value 80.597199 iter 90 value 80.543762 iter 100 value 80.424222 final value 80.424222 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.686354 final value 94.356076 converged Fitting Repeat 2 # weights: 103 initial value 97.442200 final value 94.485655 converged Fitting Repeat 3 # weights: 103 initial value 96.974980 final value 94.489020 converged Fitting Repeat 4 # weights: 103 initial value 99.382919 final value 94.485780 converged Fitting Repeat 5 # weights: 103 initial value 112.156003 final value 94.485977 converged Fitting Repeat 1 # weights: 305 initial value 110.099547 iter 10 value 94.359359 iter 20 value 94.355359 iter 30 value 88.575801 iter 40 value 85.396103 iter 50 value 84.995490 iter 60 value 82.807121 iter 70 value 82.793062 final value 82.792923 converged Fitting Repeat 2 # weights: 305 initial value 98.426463 iter 10 value 94.432633 iter 20 value 94.347798 iter 30 value 94.112762 iter 40 value 88.895753 iter 50 value 85.251265 iter 60 value 85.016454 iter 70 value 84.942151 iter 80 value 83.692212 iter 90 value 79.610526 iter 100 value 79.372611 final value 79.372611 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.604974 iter 10 value 94.489142 iter 20 value 94.403597 iter 30 value 91.432953 iter 40 value 91.251794 iter 50 value 91.251631 iter 60 value 91.250544 iter 70 value 91.207956 iter 80 value 87.472045 iter 90 value 86.016975 iter 100 value 85.983538 final value 85.983538 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.476790 iter 10 value 94.487901 iter 20 value 86.334640 iter 30 value 86.028256 iter 40 value 85.670680 iter 50 value 85.647961 iter 60 value 85.647615 final value 85.647505 converged Fitting Repeat 5 # weights: 305 initial value 99.710496 iter 10 value 94.487270 iter 20 value 94.354530 final value 94.354458 converged Fitting Repeat 1 # weights: 507 initial value 113.677558 iter 10 value 94.492425 iter 20 value 94.484330 iter 30 value 93.155470 iter 40 value 87.256458 iter 50 value 81.906869 iter 60 value 79.616133 iter 70 value 79.349215 iter 80 value 79.275442 iter 90 value 79.274238 iter 100 value 79.268816 final value 79.268816 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.550906 iter 10 value 86.890275 iter 20 value 86.170415 iter 30 value 85.394544 iter 40 value 85.389654 iter 50 value 85.303339 iter 60 value 85.169445 iter 70 value 83.922740 iter 80 value 83.224196 iter 90 value 83.017785 iter 100 value 82.660555 final value 82.660555 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.661976 iter 10 value 94.463318 iter 20 value 93.817942 final value 93.816068 converged Fitting Repeat 4 # weights: 507 initial value 107.445455 iter 10 value 94.361509 iter 20 value 94.358906 iter 20 value 94.358906 iter 20 value 94.358906 final value 94.358906 converged Fitting Repeat 5 # weights: 507 initial value 105.399701 iter 10 value 94.344734 iter 20 value 94.340415 iter 30 value 94.336811 iter 40 value 93.687554 iter 50 value 84.313034 iter 60 value 83.189312 iter 70 value 82.971257 iter 80 value 80.138723 iter 90 value 79.986395 iter 100 value 79.962591 final value 79.962591 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.991612 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.886574 final value 94.354396 converged Fitting Repeat 3 # weights: 103 initial value 97.438329 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.961487 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.826129 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 109.750795 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 103.440791 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 117.749631 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.191256 iter 10 value 89.583653 iter 20 value 87.034078 iter 30 value 87.016052 iter 40 value 86.273167 iter 50 value 85.887476 iter 60 value 84.369286 iter 70 value 84.305965 final value 84.305871 converged Fitting Repeat 5 # weights: 305 initial value 99.196265 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 94.625396 iter 10 value 87.090818 iter 20 value 86.736450 final value 86.602485 converged Fitting Repeat 2 # weights: 507 initial value 102.894485 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.636820 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 106.984536 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 101.978819 iter 10 value 94.291841 iter 20 value 94.288575 final value 94.288571 converged Fitting Repeat 1 # weights: 103 initial value 104.698457 iter 10 value 94.486769 iter 20 value 94.212198 iter 30 value 88.961942 iter 40 value 87.909298 iter 50 value 86.337841 iter 60 value 85.103704 iter 70 value 84.015232 iter 80 value 83.893342 iter 90 value 83.878846 final value 83.878706 converged Fitting Repeat 2 # weights: 103 initial value 97.111676 iter 10 value 94.657351 iter 20 value 94.426218 iter 30 value 94.097108 iter 40 value 89.046546 iter 50 value 86.238941 iter 60 value 84.717712 iter 70 value 84.490422 iter 80 value 84.151675 iter 90 value 83.967720 iter 100 value 83.883126 final value 83.883126 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.703265 iter 10 value 94.426405 iter 20 value 89.103884 iter 30 value 87.304631 iter 40 value 86.201098 iter 50 value 86.060976 iter 60 value 84.781636 iter 70 value 84.423893 iter 80 value 84.084961 iter 90 value 83.879378 final value 83.878706 converged Fitting Repeat 4 # weights: 103 initial value 100.667857 iter 10 value 94.517688 iter 20 value 94.467068 iter 30 value 93.495109 iter 40 value 88.624276 iter 50 value 88.237253 iter 60 value 87.781953 iter 70 value 85.467833 iter 80 value 84.211848 iter 90 value 83.973388 iter 100 value 83.884009 final value 83.884009 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.220758 iter 10 value 94.477238 iter 20 value 88.679791 iter 30 value 86.618083 iter 40 value 86.180082 iter 50 value 85.855726 iter 60 value 85.718107 iter 70 value 85.698057 final value 85.698055 converged Fitting Repeat 1 # weights: 305 initial value 108.888847 iter 10 value 94.462131 iter 20 value 89.148711 iter 30 value 86.722159 iter 40 value 86.141881 iter 50 value 83.917748 iter 60 value 83.739118 iter 70 value 83.429383 iter 80 value 83.144808 iter 90 value 82.874369 iter 100 value 82.854292 final value 82.854292 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.834855 iter 10 value 94.700814 iter 20 value 93.461872 iter 30 value 86.767838 iter 40 value 86.386227 iter 50 value 85.785130 iter 60 value 84.591177 iter 70 value 83.816768 iter 80 value 83.562003 iter 90 value 83.491624 iter 100 value 83.305753 final value 83.305753 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.048534 iter 10 value 95.172695 iter 20 value 88.024661 iter 30 value 87.795843 iter 40 value 84.385328 iter 50 value 83.768661 iter 60 value 83.542781 iter 70 value 83.157186 iter 80 value 82.828179 iter 90 value 82.750564 iter 100 value 82.666264 final value 82.666264 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.067243 iter 10 value 94.590184 iter 20 value 92.683484 iter 30 value 91.820252 iter 40 value 88.021186 iter 50 value 86.215278 iter 60 value 85.045491 iter 70 value 83.710242 iter 80 value 83.529850 iter 90 value 83.414463 iter 100 value 83.280421 final value 83.280421 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.170500 iter 10 value 94.615901 iter 20 value 92.286302 iter 30 value 86.491923 iter 40 value 85.925311 iter 50 value 84.435886 iter 60 value 83.660967 iter 70 value 83.499483 iter 80 value 83.288187 iter 90 value 83.141483 iter 100 value 82.998787 final value 82.998787 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.683221 iter 10 value 98.702310 iter 20 value 97.120034 iter 30 value 94.383770 iter 40 value 91.785832 iter 50 value 90.142251 iter 60 value 85.876085 iter 70 value 85.063475 iter 80 value 82.983810 iter 90 value 82.654130 iter 100 value 82.597937 final value 82.597937 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.806253 iter 10 value 95.085018 iter 20 value 88.763493 iter 30 value 86.897422 iter 40 value 86.030648 iter 50 value 85.555820 iter 60 value 84.943307 iter 70 value 83.622219 iter 80 value 83.361627 iter 90 value 83.189863 iter 100 value 82.996012 final value 82.996012 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.232355 iter 10 value 96.650662 iter 20 value 91.426931 iter 30 value 90.153546 iter 40 value 88.334831 iter 50 value 85.963486 iter 60 value 84.847288 iter 70 value 83.932790 iter 80 value 83.743017 iter 90 value 83.629397 iter 100 value 83.529091 final value 83.529091 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.247814 iter 10 value 96.031314 iter 20 value 91.674397 iter 30 value 87.811390 iter 40 value 85.564822 iter 50 value 85.209563 iter 60 value 83.779522 iter 70 value 83.327072 iter 80 value 83.172590 iter 90 value 83.124125 iter 100 value 83.048683 final value 83.048683 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.794041 iter 10 value 94.186854 iter 20 value 87.757862 iter 30 value 86.738903 iter 40 value 86.355135 iter 50 value 86.123574 iter 60 value 86.087533 iter 70 value 86.033525 iter 80 value 84.880302 iter 90 value 84.629539 iter 100 value 84.485747 final value 84.485747 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.585346 final value 94.486081 converged Fitting Repeat 2 # weights: 103 initial value 98.543426 final value 94.485674 converged Fitting Repeat 3 # weights: 103 initial value 97.707205 final value 94.486024 converged Fitting Repeat 4 # weights: 103 initial value 95.409019 final value 94.485853 converged Fitting Repeat 5 # weights: 103 initial value 95.490426 iter 10 value 94.356171 iter 20 value 94.354508 iter 30 value 86.983852 iter 40 value 86.287762 final value 86.265936 converged Fitting Repeat 1 # weights: 305 initial value 102.075762 iter 10 value 94.359240 iter 20 value 93.486887 iter 30 value 86.747518 iter 40 value 86.213586 iter 50 value 86.077903 final value 86.077897 converged Fitting Repeat 2 # weights: 305 initial value 101.889754 iter 10 value 93.652083 iter 20 value 92.868203 iter 30 value 92.863389 iter 40 value 87.625164 iter 50 value 87.443337 iter 60 value 87.376248 iter 70 value 86.263849 iter 80 value 85.513898 iter 90 value 85.443194 final value 85.442794 converged Fitting Repeat 3 # weights: 305 initial value 95.823793 iter 10 value 94.358986 iter 20 value 93.825428 iter 30 value 86.132552 iter 40 value 85.585138 iter 50 value 85.322121 iter 60 value 85.000511 iter 70 value 84.998387 iter 80 value 84.967328 iter 90 value 83.636668 iter 100 value 83.252263 final value 83.252263 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.749647 iter 10 value 94.359793 iter 20 value 94.332715 iter 30 value 94.054233 iter 40 value 90.529965 iter 50 value 87.383008 iter 60 value 85.677821 final value 85.663868 converged Fitting Repeat 5 # weights: 305 initial value 101.312948 iter 10 value 94.490073 iter 20 value 94.484925 iter 30 value 93.637845 iter 40 value 87.306719 iter 50 value 87.102977 iter 60 value 85.361139 iter 70 value 85.301847 iter 80 value 85.107682 iter 90 value 85.028360 iter 100 value 85.006335 final value 85.006335 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 99.532137 iter 10 value 94.362198 iter 20 value 94.354990 final value 94.354914 converged Fitting Repeat 2 # weights: 507 initial value 107.063286 iter 10 value 92.853078 iter 20 value 92.842111 iter 30 value 84.571138 iter 40 value 83.760539 iter 50 value 83.753558 iter 60 value 83.747389 iter 70 value 83.740141 final value 83.739723 converged Fitting Repeat 3 # weights: 507 initial value 112.535785 iter 10 value 94.362091 iter 20 value 94.048656 iter 30 value 86.194257 iter 40 value 85.747684 iter 50 value 85.601580 iter 60 value 85.411274 final value 85.411053 converged Fitting Repeat 4 # weights: 507 initial value 113.040064 iter 10 value 94.492058 iter 20 value 94.180573 iter 30 value 86.560122 iter 40 value 85.689582 iter 50 value 85.454743 iter 60 value 85.355703 iter 70 value 85.309081 final value 85.307894 converged Fitting Repeat 5 # weights: 507 initial value 96.655082 iter 10 value 94.362614 iter 20 value 92.472126 iter 30 value 86.226398 iter 40 value 85.695657 iter 50 value 85.644847 iter 60 value 85.631141 iter 70 value 85.383423 iter 80 value 84.048312 iter 90 value 83.965017 iter 100 value 83.963786 final value 83.963786 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.877456 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.346384 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.635444 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.396486 final value 94.484208 converged Fitting Repeat 5 # weights: 103 initial value 103.634151 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.527139 iter 10 value 94.484212 final value 94.484210 converged Fitting Repeat 2 # weights: 305 initial value 96.006902 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.444264 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.669186 final value 94.026542 converged Fitting Repeat 5 # weights: 305 initial value 97.963598 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.184817 iter 10 value 93.822256 final value 93.809646 converged Fitting Repeat 2 # weights: 507 initial value 106.822517 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 105.005099 final value 94.026542 converged Fitting Repeat 4 # weights: 507 initial value 118.966567 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 104.480256 iter 10 value 94.275982 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 108.484701 iter 10 value 94.386756 iter 20 value 94.065340 iter 30 value 93.854288 iter 40 value 90.065728 iter 50 value 88.869337 iter 60 value 87.881079 iter 70 value 86.883743 iter 80 value 82.119059 iter 90 value 82.035561 iter 100 value 81.748144 final value 81.748144 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.367403 iter 10 value 93.331543 iter 20 value 85.929957 iter 30 value 85.022995 iter 40 value 84.899099 iter 50 value 84.858891 final value 84.858838 converged Fitting Repeat 3 # weights: 103 initial value 104.434536 iter 10 value 94.396491 iter 20 value 88.114277 iter 30 value 86.538282 iter 40 value 85.512187 iter 50 value 83.921756 iter 60 value 83.586882 iter 70 value 83.446944 iter 80 value 83.382226 final value 83.381997 converged Fitting Repeat 4 # weights: 103 initial value 96.284271 iter 10 value 94.487258 iter 20 value 90.824111 iter 30 value 90.363803 iter 40 value 90.321579 iter 50 value 90.311267 iter 50 value 90.311266 iter 50 value 90.311266 final value 90.311266 converged Fitting Repeat 5 # weights: 103 initial value 108.522401 iter 10 value 94.471688 iter 20 value 91.552640 iter 30 value 90.384149 iter 40 value 90.343371 iter 50 value 90.313027 final value 90.311266 converged Fitting Repeat 1 # weights: 305 initial value 108.748626 iter 10 value 94.453828 iter 20 value 91.870754 iter 30 value 87.279467 iter 40 value 86.999045 iter 50 value 85.567273 iter 60 value 84.499221 iter 70 value 82.016406 iter 80 value 80.956141 iter 90 value 80.806444 iter 100 value 80.583066 final value 80.583066 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.424465 iter 10 value 94.525186 iter 20 value 94.485765 iter 30 value 93.949691 iter 40 value 93.882621 iter 50 value 86.709147 iter 60 value 84.174813 iter 70 value 82.536866 iter 80 value 81.463281 iter 90 value 81.045027 iter 100 value 80.121086 final value 80.121086 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.532617 iter 10 value 91.867167 iter 20 value 87.392801 iter 30 value 86.579021 iter 40 value 84.913467 iter 50 value 82.326177 iter 60 value 81.241859 iter 70 value 80.408819 iter 80 value 80.333829 iter 90 value 80.268667 iter 100 value 80.187758 final value 80.187758 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.622480 iter 10 value 94.654098 iter 20 value 94.230612 iter 30 value 93.929475 iter 40 value 93.817083 iter 50 value 92.917489 iter 60 value 88.436512 iter 70 value 85.491368 iter 80 value 83.642759 iter 90 value 82.977434 iter 100 value 82.842179 final value 82.842179 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.194434 iter 10 value 94.666041 iter 20 value 94.508546 iter 30 value 93.720959 iter 40 value 86.752232 iter 50 value 85.986145 iter 60 value 85.416798 iter 70 value 83.232773 iter 80 value 81.409556 iter 90 value 80.908865 iter 100 value 80.777300 final value 80.777300 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.044479 iter 10 value 99.924502 iter 20 value 96.387545 iter 30 value 89.338775 iter 40 value 87.960136 iter 50 value 86.959840 iter 60 value 86.302973 iter 70 value 82.886395 iter 80 value 81.212868 iter 90 value 80.547886 iter 100 value 80.387890 final value 80.387890 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.610882 iter 10 value 97.219877 iter 20 value 90.811816 iter 30 value 88.843739 iter 40 value 86.905669 iter 50 value 86.216990 iter 60 value 85.505490 iter 70 value 84.172864 iter 80 value 82.488969 iter 90 value 82.235120 iter 100 value 81.821650 final value 81.821650 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.143085 iter 10 value 94.426251 iter 20 value 89.421143 iter 30 value 83.214444 iter 40 value 82.184458 iter 50 value 81.791586 iter 60 value 81.720837 iter 70 value 81.702218 iter 80 value 81.155720 iter 90 value 80.530797 iter 100 value 80.183441 final value 80.183441 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.764951 iter 10 value 94.578615 iter 20 value 90.386638 iter 30 value 90.060703 iter 40 value 88.785783 iter 50 value 87.708782 iter 60 value 84.151058 iter 70 value 83.275240 iter 80 value 82.948586 iter 90 value 82.831132 iter 100 value 82.389173 final value 82.389173 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.000416 iter 10 value 94.850252 iter 20 value 92.968156 iter 30 value 89.019817 iter 40 value 86.642775 iter 50 value 83.725881 iter 60 value 83.376276 iter 70 value 82.758629 iter 80 value 82.481666 iter 90 value 82.363467 iter 100 value 82.123319 final value 82.123319 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.719367 final value 94.486119 converged Fitting Repeat 2 # weights: 103 initial value 96.728399 final value 94.485744 converged Fitting Repeat 3 # weights: 103 initial value 101.645103 iter 10 value 94.485770 iter 20 value 94.484207 iter 20 value 94.484207 final value 94.484207 converged Fitting Repeat 4 # weights: 103 initial value 96.295753 final value 94.485640 converged Fitting Repeat 5 # weights: 103 initial value 99.521274 final value 94.485937 converged Fitting Repeat 1 # weights: 305 initial value 104.469992 iter 10 value 94.488908 iter 20 value 94.484127 iter 20 value 94.484127 final value 94.026710 converged Fitting Repeat 2 # weights: 305 initial value 105.505944 iter 10 value 93.815000 iter 20 value 93.741703 iter 30 value 93.619632 iter 40 value 88.360533 iter 50 value 80.890674 iter 60 value 80.664643 iter 70 value 80.359163 iter 80 value 79.977209 iter 90 value 79.780808 iter 100 value 79.780225 final value 79.780225 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.130020 iter 10 value 92.370316 iter 20 value 89.844062 iter 30 value 88.956774 iter 40 value 87.291055 iter 50 value 87.289602 iter 60 value 87.042792 iter 70 value 86.141050 iter 80 value 85.527846 iter 90 value 82.508630 iter 100 value 80.831072 final value 80.831072 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.065311 iter 10 value 94.488972 iter 20 value 94.484302 iter 30 value 94.405810 iter 40 value 86.776136 iter 50 value 86.543590 iter 60 value 85.591036 iter 70 value 80.638607 iter 80 value 80.229874 iter 90 value 79.935805 iter 100 value 79.897908 final value 79.897908 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.514274 iter 10 value 94.489150 iter 20 value 94.484440 iter 30 value 94.431547 iter 40 value 88.099047 iter 50 value 86.223350 iter 60 value 85.084129 iter 70 value 84.985386 iter 80 value 84.630787 iter 90 value 84.495538 final value 84.494976 converged Fitting Repeat 1 # weights: 507 initial value 112.559574 iter 10 value 94.492387 iter 20 value 94.304536 iter 30 value 92.455265 iter 40 value 91.642321 iter 50 value 91.633901 iter 60 value 91.240073 iter 70 value 91.067913 iter 80 value 91.060576 final value 91.060506 converged Fitting Repeat 2 # weights: 507 initial value 108.440267 iter 10 value 94.375469 iter 20 value 94.034281 iter 30 value 94.028773 iter 40 value 88.603209 iter 50 value 87.069228 iter 60 value 86.361885 iter 70 value 83.839813 iter 80 value 83.830231 iter 90 value 83.829016 iter 100 value 83.826531 final value 83.826531 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.330736 iter 10 value 87.039565 iter 20 value 87.022404 iter 30 value 87.015430 iter 40 value 86.568345 iter 50 value 85.909222 iter 60 value 82.434681 iter 70 value 80.970332 iter 80 value 80.399261 iter 90 value 79.990515 iter 100 value 79.614067 final value 79.614067 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.807606 iter 10 value 94.035008 iter 20 value 94.027857 iter 30 value 91.580098 iter 40 value 84.078725 iter 50 value 84.077942 iter 60 value 84.070774 final value 84.070676 converged Fitting Repeat 5 # weights: 507 initial value 102.598938 iter 10 value 94.484955 iter 20 value 86.355147 iter 30 value 85.401140 iter 40 value 85.343512 iter 40 value 85.343511 iter 40 value 85.343511 final value 85.343511 converged Fitting Repeat 1 # weights: 103 initial value 96.038734 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.217756 iter 10 value 89.307402 iter 20 value 88.914846 iter 30 value 88.869395 final value 88.869060 converged Fitting Repeat 3 # weights: 103 initial value 96.222480 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.766391 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.635859 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.265336 final value 93.869755 converged Fitting Repeat 2 # weights: 305 initial value 96.636794 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 103.724697 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.691225 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.715954 final value 94.008696 converged Fitting Repeat 1 # weights: 507 initial value 97.262271 iter 10 value 93.729737 iter 20 value 93.714427 iter 30 value 93.628113 iter 40 value 93.591493 iter 50 value 93.591288 final value 93.591274 converged Fitting Repeat 2 # weights: 507 initial value 117.631776 iter 10 value 94.008698 final value 94.008696 converged Fitting Repeat 3 # weights: 507 initial value 101.374332 final value 94.052911 converged Fitting Repeat 4 # weights: 507 initial value 96.343478 final value 93.817004 converged Fitting Repeat 5 # weights: 507 initial value 127.833169 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.895966 iter 10 value 94.076028 iter 20 value 94.022540 iter 30 value 90.019995 iter 40 value 85.401669 iter 50 value 82.144935 iter 60 value 81.129492 iter 70 value 80.900941 iter 80 value 78.575369 iter 90 value 78.394597 iter 100 value 78.316659 final value 78.316659 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.070480 iter 10 value 94.133717 iter 20 value 93.977896 iter 30 value 93.874933 iter 40 value 85.301149 iter 50 value 82.505289 iter 60 value 82.382729 iter 70 value 82.298506 iter 80 value 81.625626 iter 90 value 80.374417 iter 100 value 79.512014 final value 79.512014 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.845547 iter 10 value 94.059062 iter 20 value 94.054816 iter 30 value 87.166821 iter 40 value 85.583938 iter 50 value 83.587601 iter 60 value 82.233903 iter 70 value 81.603401 iter 80 value 81.589669 final value 81.589075 converged Fitting Repeat 4 # weights: 103 initial value 112.394877 iter 10 value 93.814846 iter 20 value 86.637342 iter 30 value 85.094938 iter 40 value 83.056519 iter 50 value 82.672409 iter 60 value 82.585186 iter 70 value 82.231507 iter 80 value 82.060476 iter 90 value 82.039476 final value 82.038412 converged Fitting Repeat 5 # weights: 103 initial value 98.692852 iter 10 value 94.057001 iter 20 value 93.885801 iter 30 value 93.847696 iter 40 value 93.844197 iter 50 value 92.396560 iter 60 value 84.107362 iter 70 value 83.141015 iter 80 value 82.709905 iter 90 value 82.563423 iter 100 value 82.557717 final value 82.557717 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.765504 iter 10 value 94.055504 iter 20 value 85.163619 iter 30 value 82.797555 iter 40 value 81.957043 iter 50 value 81.874967 iter 60 value 81.697593 iter 70 value 81.197721 iter 80 value 80.935270 iter 90 value 80.920750 iter 100 value 80.690787 final value 80.690787 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.568219 iter 10 value 94.153209 iter 20 value 93.865355 iter 30 value 93.576960 iter 40 value 85.320388 iter 50 value 84.261435 iter 60 value 83.136548 iter 70 value 82.390543 iter 80 value 82.208257 iter 90 value 81.957474 iter 100 value 81.206739 final value 81.206739 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.798636 iter 10 value 94.080825 iter 20 value 91.598190 iter 30 value 86.407856 iter 40 value 82.702703 iter 50 value 81.556731 iter 60 value 79.813088 iter 70 value 77.999134 iter 80 value 76.852346 iter 90 value 76.750731 iter 100 value 76.651647 final value 76.651647 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.232043 iter 10 value 94.487406 iter 20 value 93.924321 iter 30 value 88.353670 iter 40 value 82.851425 iter 50 value 80.597950 iter 60 value 80.168320 iter 70 value 79.502641 iter 80 value 78.704344 iter 90 value 78.139501 iter 100 value 78.004205 final value 78.004205 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.996700 iter 10 value 93.956800 iter 20 value 91.608019 iter 30 value 90.623807 iter 40 value 85.195102 iter 50 value 84.612442 iter 60 value 81.704497 iter 70 value 79.390742 iter 80 value 78.537816 iter 90 value 77.812532 iter 100 value 77.497566 final value 77.497566 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.841849 iter 10 value 94.700166 iter 20 value 88.026121 iter 30 value 85.176847 iter 40 value 82.621292 iter 50 value 80.298339 iter 60 value 79.757679 iter 70 value 78.680641 iter 80 value 77.353550 iter 90 value 77.002679 iter 100 value 76.655162 final value 76.655162 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.831214 iter 10 value 94.077954 iter 20 value 93.555049 iter 30 value 87.237616 iter 40 value 86.085947 iter 50 value 81.793975 iter 60 value 78.907630 iter 70 value 77.743798 iter 80 value 77.263727 iter 90 value 76.948919 iter 100 value 76.752435 final value 76.752435 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.926406 iter 10 value 95.714817 iter 20 value 92.400619 iter 30 value 87.727968 iter 40 value 86.633174 iter 50 value 85.776621 iter 60 value 81.246511 iter 70 value 80.429789 iter 80 value 80.303616 iter 90 value 80.145335 iter 100 value 79.994846 final value 79.994846 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.474859 iter 10 value 93.410661 iter 20 value 88.016443 iter 30 value 83.679879 iter 40 value 83.324406 iter 50 value 81.787605 iter 60 value 78.995364 iter 70 value 78.184235 iter 80 value 77.980198 iter 90 value 77.582362 iter 100 value 77.388478 final value 77.388478 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.965039 iter 10 value 95.280210 iter 20 value 91.304077 iter 30 value 85.288253 iter 40 value 82.044388 iter 50 value 80.151717 iter 60 value 79.607729 iter 70 value 79.331188 iter 80 value 78.108040 iter 90 value 77.467689 iter 100 value 77.330789 final value 77.330789 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.184596 final value 94.054591 converged Fitting Repeat 2 # weights: 103 initial value 101.076302 final value 94.054393 converged Fitting Repeat 3 # weights: 103 initial value 96.580788 iter 10 value 91.579873 iter 20 value 84.654726 iter 30 value 82.826249 iter 40 value 81.694919 iter 50 value 81.660450 iter 60 value 81.659748 final value 81.659670 converged Fitting Repeat 4 # weights: 103 initial value 98.666666 final value 94.054371 converged Fitting Repeat 5 # weights: 103 initial value 96.908228 iter 10 value 88.554040 iter 20 value 85.272531 iter 30 value 85.271937 iter 40 value 84.570770 iter 50 value 84.454450 iter 60 value 84.164721 iter 70 value 83.943696 final value 83.943674 converged Fitting Repeat 1 # weights: 305 initial value 99.283349 iter 10 value 94.057317 iter 20 value 94.023828 final value 93.725233 converged Fitting Repeat 2 # weights: 305 initial value 103.976099 iter 10 value 94.057822 iter 20 value 93.921946 iter 30 value 84.218110 iter 40 value 83.853477 iter 50 value 83.851606 iter 60 value 83.850977 final value 83.850917 converged Fitting Repeat 3 # weights: 305 initial value 98.048061 iter 10 value 94.057534 iter 20 value 94.052927 final value 94.052921 converged Fitting Repeat 4 # weights: 305 initial value 98.008564 iter 10 value 92.861728 iter 20 value 90.491864 iter 30 value 82.658835 iter 40 value 79.325596 iter 50 value 76.206636 iter 60 value 75.470782 iter 70 value 75.427568 iter 80 value 75.301379 iter 90 value 75.289948 iter 100 value 75.289008 final value 75.289008 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.981207 iter 10 value 94.058057 iter 20 value 94.052450 iter 30 value 92.369004 iter 40 value 92.327140 iter 50 value 91.691405 iter 60 value 91.649603 iter 70 value 91.477250 iter 80 value 86.729346 iter 90 value 86.699921 iter 100 value 85.980994 final value 85.980994 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.080013 iter 10 value 93.997407 iter 20 value 93.985362 final value 93.984954 converged Fitting Repeat 2 # weights: 507 initial value 95.052493 iter 10 value 94.024593 iter 20 value 94.013237 iter 30 value 93.962565 iter 40 value 88.314071 iter 50 value 81.856884 iter 60 value 81.780023 iter 70 value 81.702555 iter 80 value 81.183815 iter 90 value 80.767505 iter 100 value 80.663674 final value 80.663674 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.183093 iter 10 value 93.799113 iter 20 value 93.796428 iter 30 value 85.200093 iter 40 value 84.132445 iter 50 value 84.069910 iter 60 value 83.928449 iter 70 value 83.834046 iter 80 value 83.833015 final value 83.830711 converged Fitting Repeat 4 # weights: 507 initial value 99.390454 iter 10 value 94.060806 iter 20 value 93.785668 iter 30 value 84.127298 iter 40 value 84.061573 iter 50 value 84.060576 iter 50 value 84.060575 final value 84.060575 converged Fitting Repeat 5 # weights: 507 initial value 96.048435 iter 10 value 85.077940 iter 20 value 80.781513 iter 30 value 78.505665 iter 40 value 78.250677 iter 50 value 78.221176 iter 60 value 78.220734 iter 70 value 78.216222 iter 80 value 78.214602 iter 90 value 76.377029 iter 100 value 76.290249 final value 76.290249 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 138.771694 iter 10 value 117.895243 iter 20 value 115.444518 iter 30 value 107.619779 iter 40 value 107.518124 iter 50 value 107.514769 final value 107.514725 converged Fitting Repeat 2 # weights: 305 initial value 116.202872 iter 10 value 108.940384 iter 20 value 108.534876 iter 30 value 108.522198 final value 108.520777 converged Fitting Repeat 3 # weights: 305 initial value 118.239706 iter 10 value 117.735394 iter 20 value 117.732694 iter 30 value 117.489784 iter 40 value 116.899692 iter 50 value 115.144705 iter 60 value 112.254227 iter 70 value 106.673951 iter 80 value 106.665149 iter 90 value 106.656498 iter 100 value 105.489999 final value 105.489999 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.060562 iter 10 value 117.881631 iter 20 value 117.735689 iter 30 value 117.221394 iter 40 value 115.259235 iter 50 value 114.915702 final value 114.915608 converged Fitting Repeat 5 # weights: 305 initial value 122.521004 iter 10 value 117.684518 iter 20 value 113.824166 iter 30 value 105.059555 final value 105.055037 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Oct 25 12:14:15 2023 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 54.405 1.762 87.765
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 38.488 | 0.794 | 39.358 | |
FreqInteractors | 0.292 | 0.016 | 0.310 | |
calculateAAC | 0.046 | 0.004 | 0.050 | |
calculateAutocor | 0.720 | 0.024 | 0.749 | |
calculateCTDC | 0.103 | 0.000 | 0.103 | |
calculateCTDD | 0.895 | 0.000 | 0.897 | |
calculateCTDT | 0.284 | 0.008 | 0.293 | |
calculateCTriad | 0.480 | 0.040 | 0.521 | |
calculateDC | 0.127 | 0.008 | 0.135 | |
calculateF | 0.417 | 0.008 | 0.426 | |
calculateKSAAP | 0.142 | 0.000 | 0.142 | |
calculateQD_Sm | 2.358 | 0.036 | 2.399 | |
calculateTC | 2.467 | 0.088 | 2.560 | |
calculateTC_Sm | 0.301 | 0.004 | 0.305 | |
corr_plot | 38.452 | 0.551 | 39.080 | |
enrichfindP | 0.530 | 0.071 | 32.462 | |
enrichfind_hp | 0.087 | 0.020 | 2.057 | |
enrichplot | 0.350 | 0.008 | 0.358 | |
filter_missing_values | 0.002 | 0.000 | 0.002 | |
getFASTA | 0.096 | 0.032 | 16.044 | |
getHPI | 0.000 | 0.002 | 0.001 | |
get_negativePPI | 0.002 | 0.002 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.000 | 0.002 | |
plotPPI | 0.082 | 0.016 | 0.099 | |
pred_ensembel | 18.403 | 0.716 | 16.769 | |
var_imp | 39.021 | 0.794 | 39.900 | |