Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:36:52 -0400 (Wed, 17 Apr 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.8.0 |
Command: F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.18-bioc\R\library --no-vignettes --timings HPiP_1.8.0.tar.gz |
StartedAt: 2024-04-16 01:43:12 -0400 (Tue, 16 Apr 2024) |
EndedAt: 2024-04-16 01:47:59 -0400 (Tue, 16 Apr 2024) |
EllapsedTime: 287.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.18-bioc\R\library --no-vignettes --timings HPiP_1.8.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck' * using R version 4.3.3 (2024-02-29 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * R was compiled by gcc.exe (GCC) 12.3.0 GNU Fortran (GCC) 12.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.8.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 33.15 0.67 33.84 FSmethod 32.17 1.43 33.66 corr_plot 31.09 1.01 32.14 pred_ensembel 14.38 0.50 11.02 enrichfindP 0.61 0.11 12.60 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'F:/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.18-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.011207 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.479167 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 116.776749 final value 94.466823 converged Fitting Repeat 4 # weights: 103 initial value 97.589488 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 106.123682 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.963116 iter 10 value 92.268713 iter 20 value 92.165892 iter 30 value 92.144061 iter 40 value 92.125032 final value 92.124987 converged Fitting Repeat 2 # weights: 305 initial value 99.072641 iter 10 value 94.484193 iter 20 value 94.471352 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 95.640859 iter 10 value 89.675543 iter 20 value 88.211695 iter 30 value 88.041342 iter 40 value 87.991126 final value 87.991037 converged Fitting Repeat 4 # weights: 305 initial value 95.170934 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.643152 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 95.715258 iter 10 value 93.205204 final value 93.203896 converged Fitting Repeat 2 # weights: 507 initial value 110.010126 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.951819 final value 94.165117 converged Fitting Repeat 4 # weights: 507 initial value 101.240326 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 109.998775 final value 94.464735 converged Fitting Repeat 1 # weights: 103 initial value 116.251083 iter 10 value 95.231684 iter 20 value 94.205320 iter 30 value 86.842180 iter 40 value 85.248303 iter 50 value 85.119982 iter 60 value 84.802379 iter 70 value 84.571535 iter 80 value 84.379149 final value 84.377597 converged Fitting Repeat 2 # weights: 103 initial value 99.324901 iter 10 value 94.129908 iter 20 value 93.978752 iter 30 value 90.909519 iter 40 value 89.037174 iter 50 value 88.123260 iter 60 value 83.652979 iter 70 value 83.007426 iter 80 value 82.738172 iter 90 value 82.419023 iter 100 value 82.353656 final value 82.353656 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.516292 iter 10 value 94.522885 iter 20 value 94.446229 iter 30 value 87.524007 iter 40 value 86.516738 iter 50 value 86.011731 iter 60 value 85.887514 iter 70 value 85.793653 iter 80 value 84.573522 iter 90 value 84.338002 iter 100 value 84.336154 final value 84.336154 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 121.223328 iter 10 value 94.486679 iter 20 value 90.878327 iter 30 value 89.725393 iter 40 value 87.147853 iter 50 value 86.689629 iter 60 value 86.473051 iter 70 value 86.374699 iter 80 value 85.943557 iter 90 value 85.886761 iter 100 value 85.788428 final value 85.788428 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.471123 iter 10 value 94.488553 iter 20 value 92.863941 iter 30 value 86.319213 iter 40 value 83.732041 iter 50 value 83.306084 iter 60 value 82.712281 iter 70 value 82.655263 iter 80 value 82.579437 iter 90 value 82.338910 final value 82.335594 converged Fitting Repeat 1 # weights: 305 initial value 118.647907 iter 10 value 92.921782 iter 20 value 91.509533 iter 30 value 91.265653 iter 40 value 90.440928 iter 50 value 86.967576 iter 60 value 84.230694 iter 70 value 82.984377 iter 80 value 82.767837 iter 90 value 82.460124 iter 100 value 82.073502 final value 82.073502 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 127.067107 iter 10 value 94.841302 iter 20 value 94.069762 iter 30 value 86.271453 iter 40 value 84.520701 iter 50 value 83.289217 iter 60 value 82.510710 iter 70 value 81.941410 iter 80 value 81.474509 iter 90 value 81.248410 iter 100 value 81.213236 final value 81.213236 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.065044 iter 10 value 90.399139 iter 20 value 87.100388 iter 30 value 86.129768 iter 40 value 84.685223 iter 50 value 84.476780 iter 60 value 84.027344 iter 70 value 82.856241 iter 80 value 82.066421 iter 90 value 81.433459 iter 100 value 81.054398 final value 81.054398 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.253952 iter 10 value 94.542801 iter 20 value 94.090592 iter 30 value 93.928615 iter 40 value 93.336468 iter 50 value 84.811977 iter 60 value 84.326432 iter 70 value 83.412647 iter 80 value 82.586268 iter 90 value 82.452803 iter 100 value 82.243227 final value 82.243227 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.715866 iter 10 value 94.578896 iter 20 value 94.453288 iter 30 value 91.194413 iter 40 value 88.077500 iter 50 value 86.429509 iter 60 value 84.370189 iter 70 value 83.066642 iter 80 value 81.551867 iter 90 value 81.090519 iter 100 value 80.806725 final value 80.806725 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.907867 iter 10 value 95.276641 iter 20 value 93.109005 iter 30 value 88.340805 iter 40 value 85.747332 iter 50 value 84.404457 iter 60 value 82.943170 iter 70 value 82.320436 iter 80 value 81.565807 iter 90 value 81.409994 iter 100 value 81.169300 final value 81.169300 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.279885 iter 10 value 94.836452 iter 20 value 87.206866 iter 30 value 85.986149 iter 40 value 85.540995 iter 50 value 85.399437 iter 60 value 84.558973 iter 70 value 83.815312 iter 80 value 83.219701 iter 90 value 82.362273 iter 100 value 81.932641 final value 81.932641 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.477491 iter 10 value 98.001641 iter 20 value 88.707198 iter 30 value 85.133572 iter 40 value 84.574653 iter 50 value 82.592013 iter 60 value 82.139354 iter 70 value 81.411403 iter 80 value 81.193125 iter 90 value 81.154074 iter 100 value 81.092155 final value 81.092155 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.040193 iter 10 value 94.722855 iter 20 value 91.966649 iter 30 value 87.605947 iter 40 value 85.946847 iter 50 value 84.868884 iter 60 value 83.945105 iter 70 value 82.124064 iter 80 value 81.504338 iter 90 value 81.329702 iter 100 value 81.220135 final value 81.220135 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.419143 iter 10 value 95.268934 iter 20 value 88.062138 iter 30 value 86.190423 iter 40 value 85.888642 iter 50 value 85.788192 iter 60 value 85.338968 iter 70 value 83.427279 iter 80 value 83.110506 iter 90 value 81.798448 iter 100 value 81.632729 final value 81.632729 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.148684 final value 94.485791 converged Fitting Repeat 2 # weights: 103 initial value 108.816951 iter 10 value 94.439627 iter 20 value 94.014673 iter 30 value 93.944279 final value 93.944078 converged Fitting Repeat 3 # weights: 103 initial value 105.335667 iter 10 value 94.468096 iter 20 value 93.880179 iter 20 value 93.880179 iter 20 value 93.880179 final value 93.880179 converged Fitting Repeat 4 # weights: 103 initial value 102.429489 iter 10 value 94.166764 iter 20 value 93.922817 iter 30 value 93.879434 iter 40 value 93.879168 final value 93.879166 converged Fitting Repeat 5 # weights: 103 initial value 109.881398 final value 94.485837 converged Fitting Repeat 1 # weights: 305 initial value 98.017913 iter 10 value 86.088877 iter 20 value 85.864402 iter 30 value 85.072559 iter 40 value 85.064689 iter 50 value 84.738285 iter 60 value 84.173399 final value 84.173368 converged Fitting Repeat 2 # weights: 305 initial value 98.504449 iter 10 value 94.488875 iter 20 value 94.462039 iter 30 value 94.208460 iter 40 value 94.148309 iter 50 value 85.564715 iter 60 value 84.773585 iter 70 value 84.207258 iter 80 value 84.004965 iter 90 value 84.003493 iter 100 value 83.492506 final value 83.492506 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.853541 iter 10 value 94.489669 iter 20 value 93.590175 iter 30 value 92.368388 iter 40 value 91.325895 final value 91.324678 converged Fitting Repeat 4 # weights: 305 initial value 101.778051 iter 10 value 93.883238 iter 20 value 93.863634 iter 30 value 93.413699 iter 40 value 91.644369 iter 50 value 86.309463 iter 60 value 85.508663 iter 60 value 85.508663 iter 60 value 85.508663 final value 85.508663 converged Fitting Repeat 5 # weights: 305 initial value 99.085886 iter 10 value 93.611454 iter 20 value 93.252431 iter 30 value 92.841977 iter 40 value 92.796214 iter 50 value 92.789359 iter 60 value 92.788687 iter 70 value 92.786690 iter 80 value 92.461494 iter 90 value 92.254689 final value 92.254685 converged Fitting Repeat 1 # weights: 507 initial value 104.235770 iter 10 value 94.474876 iter 20 value 94.467950 iter 30 value 94.466976 final value 94.466968 converged Fitting Repeat 2 # weights: 507 initial value 96.999390 iter 10 value 87.154650 iter 20 value 85.941274 iter 30 value 85.917066 iter 40 value 85.915088 iter 50 value 84.429283 iter 60 value 81.825844 iter 70 value 81.825655 iter 80 value 81.792833 iter 90 value 81.716776 iter 100 value 81.715569 final value 81.715569 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.027242 iter 10 value 93.709738 iter 20 value 93.704898 iter 30 value 93.703439 iter 40 value 86.738251 iter 50 value 85.342284 iter 60 value 85.068658 final value 85.068565 converged Fitting Repeat 4 # weights: 507 initial value 95.346688 iter 10 value 94.491561 iter 20 value 94.405903 iter 30 value 91.514599 iter 40 value 89.140312 iter 50 value 86.361834 iter 60 value 86.321475 iter 70 value 85.923823 iter 80 value 85.834843 iter 90 value 84.955932 iter 100 value 84.113936 final value 84.113936 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.721784 iter 10 value 94.492017 iter 20 value 94.424835 iter 30 value 92.553244 iter 40 value 92.551053 iter 50 value 92.497934 iter 60 value 86.105668 iter 70 value 86.050834 iter 80 value 85.888603 iter 90 value 85.037497 iter 100 value 84.239092 final value 84.239092 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.570097 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 109.124281 final value 94.484210 converged Fitting Repeat 3 # weights: 103 initial value 104.973044 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.895791 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 108.983262 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.200165 iter 10 value 94.481317 iter 20 value 88.381259 iter 30 value 88.342105 final value 88.341724 converged Fitting Repeat 2 # weights: 305 initial value 102.451610 iter 10 value 94.458008 iter 20 value 94.455565 final value 94.455556 converged Fitting Repeat 3 # weights: 305 initial value 108.308287 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.503220 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.616833 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 103.412946 final value 94.445714 converged Fitting Repeat 2 # weights: 507 initial value 93.979010 iter 10 value 90.862190 iter 20 value 90.768478 iter 30 value 90.764074 iter 40 value 87.778822 iter 50 value 86.219423 iter 60 value 86.133595 final value 86.133333 converged Fitting Repeat 3 # weights: 507 initial value 103.719113 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 99.065704 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 98.715149 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 100.206416 iter 10 value 94.477836 iter 20 value 91.973198 iter 30 value 86.039052 iter 40 value 85.313691 iter 50 value 85.059853 iter 60 value 85.007486 iter 70 value 84.747849 iter 80 value 84.608590 final value 84.608577 converged Fitting Repeat 2 # weights: 103 initial value 98.896102 iter 10 value 94.287142 iter 20 value 89.208988 iter 30 value 86.158069 iter 40 value 85.674242 iter 50 value 85.635583 final value 85.633436 converged Fitting Repeat 3 # weights: 103 initial value 119.639698 iter 10 value 94.484827 iter 20 value 94.201072 iter 30 value 94.163599 iter 40 value 93.787961 iter 50 value 88.464630 iter 60 value 86.589718 iter 70 value 86.126288 iter 80 value 86.047824 iter 90 value 85.540704 iter 100 value 85.276487 final value 85.276487 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.701366 iter 10 value 94.411769 iter 20 value 92.536387 iter 30 value 91.474030 iter 40 value 86.183286 iter 50 value 85.813199 iter 60 value 85.693300 iter 70 value 85.633473 final value 85.633436 converged Fitting Repeat 5 # weights: 103 initial value 101.337416 iter 10 value 94.488523 iter 20 value 92.863890 iter 30 value 89.297985 iter 40 value 86.495758 iter 50 value 86.268108 iter 60 value 86.040507 iter 70 value 85.961711 iter 80 value 85.333484 iter 90 value 85.183411 iter 100 value 85.183159 final value 85.183159 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.214450 iter 10 value 94.474525 iter 20 value 88.358935 iter 30 value 86.352950 iter 40 value 85.991867 iter 50 value 83.635181 iter 60 value 82.788056 iter 70 value 82.539140 iter 80 value 82.404636 iter 90 value 81.741403 iter 100 value 80.691397 final value 80.691397 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.848456 iter 10 value 94.368217 iter 20 value 87.495050 iter 30 value 85.374235 iter 40 value 84.856992 iter 50 value 84.380849 iter 60 value 82.887765 iter 70 value 82.593761 iter 80 value 82.522050 iter 90 value 82.143742 iter 100 value 81.986227 final value 81.986227 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.527643 iter 10 value 95.173506 iter 20 value 94.147146 iter 30 value 92.046341 iter 40 value 87.081695 iter 50 value 83.616847 iter 60 value 83.116511 iter 70 value 82.785894 iter 80 value 82.534886 iter 90 value 82.464271 iter 100 value 82.439605 final value 82.439605 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.471159 iter 10 value 94.458749 iter 20 value 88.907680 iter 30 value 86.030920 iter 40 value 85.798329 iter 50 value 85.660600 iter 60 value 85.646638 iter 70 value 85.371567 iter 80 value 83.845013 iter 90 value 81.724884 iter 100 value 80.835276 final value 80.835276 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.138213 iter 10 value 94.752996 iter 20 value 94.562983 iter 30 value 92.766782 iter 40 value 85.896333 iter 50 value 85.867207 iter 60 value 85.656577 iter 70 value 85.213806 iter 80 value 84.767039 iter 90 value 83.279945 iter 100 value 83.072317 final value 83.072317 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.410867 iter 10 value 94.599085 iter 20 value 92.613811 iter 30 value 90.764706 iter 40 value 87.123826 iter 50 value 84.902634 iter 60 value 83.526423 iter 70 value 81.895089 iter 80 value 81.052515 iter 90 value 80.712994 iter 100 value 80.544014 final value 80.544014 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.902440 iter 10 value 95.040957 iter 20 value 93.987779 iter 30 value 87.883455 iter 40 value 85.771854 iter 50 value 83.619170 iter 60 value 83.223026 iter 70 value 82.712354 iter 80 value 82.564097 iter 90 value 81.579897 iter 100 value 80.983219 final value 80.983219 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.510680 iter 10 value 95.137620 iter 20 value 94.422742 iter 30 value 85.584438 iter 40 value 82.668805 iter 50 value 81.903866 iter 60 value 81.653431 iter 70 value 81.506313 iter 80 value 80.687322 iter 90 value 80.392664 iter 100 value 80.210972 final value 80.210972 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.888953 iter 10 value 94.577470 iter 20 value 94.314311 iter 30 value 88.156802 iter 40 value 84.436780 iter 50 value 83.179228 iter 60 value 82.585679 iter 70 value 82.281334 iter 80 value 81.113104 iter 90 value 80.772730 iter 100 value 80.300397 final value 80.300397 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.697594 iter 10 value 93.559145 iter 20 value 86.405839 iter 30 value 85.971591 iter 40 value 85.643241 iter 50 value 85.173036 iter 60 value 84.419998 iter 70 value 82.961742 iter 80 value 81.737999 iter 90 value 81.031816 iter 100 value 80.654272 final value 80.654272 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.934146 final value 94.485764 converged Fitting Repeat 2 # weights: 103 initial value 96.869067 iter 10 value 94.468544 iter 20 value 94.462548 iter 30 value 84.435951 iter 40 value 84.431770 iter 50 value 84.421870 iter 60 value 84.421328 iter 60 value 84.421328 final value 84.421316 converged Fitting Repeat 3 # weights: 103 initial value 112.242198 final value 94.485933 converged Fitting Repeat 4 # weights: 103 initial value 95.291632 iter 10 value 94.486159 final value 94.484333 converged Fitting Repeat 5 # weights: 103 initial value 104.063955 final value 94.485695 converged Fitting Repeat 1 # weights: 305 initial value 95.623530 iter 10 value 94.471658 iter 20 value 94.468996 iter 30 value 94.467828 iter 40 value 93.555409 iter 50 value 92.105842 iter 60 value 92.102144 final value 92.101422 converged Fitting Repeat 2 # weights: 305 initial value 117.464918 iter 10 value 90.201610 iter 20 value 84.522835 iter 30 value 84.487234 iter 40 value 84.354731 iter 50 value 84.340635 iter 60 value 84.321751 iter 70 value 84.319334 iter 80 value 84.307101 iter 90 value 84.300362 iter 100 value 84.299592 final value 84.299592 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.340989 iter 10 value 94.488948 iter 20 value 94.178512 iter 30 value 88.169369 iter 40 value 87.009117 iter 50 value 86.388555 iter 60 value 83.768886 iter 70 value 82.917321 iter 80 value 82.909715 iter 90 value 82.579889 iter 100 value 82.317828 final value 82.317828 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.957158 iter 10 value 94.484937 iter 20 value 94.132611 iter 30 value 94.109765 iter 40 value 94.109570 iter 40 value 94.109570 iter 40 value 94.109570 final value 94.109570 converged Fitting Repeat 5 # weights: 305 initial value 97.078320 iter 10 value 94.489341 iter 20 value 94.484416 iter 30 value 94.480889 iter 40 value 91.002324 iter 50 value 83.859057 iter 60 value 83.612757 iter 70 value 83.475663 iter 80 value 83.475322 iter 90 value 83.473135 iter 100 value 83.462512 final value 83.462512 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.862621 iter 10 value 94.492249 iter 20 value 94.443525 iter 30 value 84.695852 iter 40 value 84.300974 iter 50 value 84.300682 iter 60 value 84.247732 iter 70 value 84.006519 iter 80 value 81.550790 iter 90 value 80.630932 iter 100 value 80.575233 final value 80.575233 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.989643 iter 10 value 94.370108 iter 20 value 94.337275 iter 30 value 94.166753 iter 40 value 93.402002 iter 50 value 92.538079 iter 60 value 92.498135 final value 92.498049 converged Fitting Repeat 3 # weights: 507 initial value 108.517864 iter 10 value 94.484005 iter 20 value 94.224805 iter 30 value 86.339890 iter 40 value 86.334618 final value 86.332257 converged Fitting Repeat 4 # weights: 507 initial value 111.669031 iter 10 value 94.491266 iter 20 value 94.467649 iter 30 value 87.542361 iter 40 value 86.405085 iter 50 value 86.400642 iter 60 value 86.287563 iter 70 value 83.990847 iter 80 value 83.986815 iter 90 value 83.833817 iter 100 value 83.737207 final value 83.737207 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.825730 iter 10 value 94.491594 iter 20 value 94.483364 iter 30 value 84.448319 iter 40 value 84.241331 iter 50 value 81.576165 iter 60 value 81.370152 iter 70 value 80.806721 iter 80 value 80.803034 iter 90 value 80.595234 iter 100 value 79.822802 final value 79.822802 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.876594 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.531510 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.608343 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.120616 final value 94.443243 converged Fitting Repeat 5 # weights: 103 initial value 96.368385 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.325299 iter 10 value 91.049917 iter 20 value 85.000819 iter 30 value 84.267347 final value 84.267322 converged Fitting Repeat 2 # weights: 305 initial value 99.271484 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.957111 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.050207 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 99.297033 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.269586 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.006661 iter 10 value 94.322907 final value 94.322898 converged Fitting Repeat 3 # weights: 507 initial value 107.098002 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 121.276848 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.980774 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.741634 iter 10 value 94.477571 iter 20 value 88.742471 iter 30 value 86.265469 iter 40 value 86.070845 iter 50 value 85.411364 iter 60 value 85.021701 iter 70 value 84.971695 iter 80 value 84.933663 final value 84.933538 converged Fitting Repeat 2 # weights: 103 initial value 105.240800 iter 10 value 91.984396 iter 20 value 86.131151 iter 30 value 84.795461 iter 40 value 83.887689 iter 50 value 82.706411 iter 60 value 82.615799 iter 70 value 82.614153 iter 70 value 82.614153 iter 70 value 82.614153 final value 82.614153 converged Fitting Repeat 3 # weights: 103 initial value 104.414377 iter 10 value 94.314724 iter 20 value 91.206316 iter 30 value 87.552047 iter 40 value 87.370780 iter 50 value 85.399000 iter 60 value 84.354777 iter 70 value 84.132503 iter 80 value 83.799734 iter 90 value 83.136897 iter 100 value 82.876523 final value 82.876523 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.296408 iter 10 value 94.463260 iter 20 value 93.333260 iter 30 value 89.869002 iter 40 value 89.372626 iter 50 value 88.087129 iter 60 value 85.954856 iter 70 value 85.372144 iter 80 value 84.941959 final value 84.940784 converged Fitting Repeat 5 # weights: 103 initial value 98.972569 iter 10 value 94.716661 iter 20 value 88.406941 iter 30 value 85.023116 iter 40 value 84.409967 iter 50 value 84.141256 iter 60 value 83.999089 iter 70 value 83.475349 iter 80 value 83.266749 iter 90 value 82.876724 iter 100 value 82.660514 final value 82.660514 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.891110 iter 10 value 94.537872 iter 20 value 89.752493 iter 30 value 87.531709 iter 40 value 84.812996 iter 50 value 82.837060 iter 60 value 82.186747 iter 70 value 81.885846 iter 80 value 81.635294 iter 90 value 81.518789 iter 100 value 81.368384 final value 81.368384 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.540439 iter 10 value 94.555995 iter 20 value 94.486642 iter 30 value 94.327230 iter 40 value 88.389042 iter 50 value 86.710132 iter 60 value 84.978258 iter 70 value 84.063913 iter 80 value 83.887816 iter 90 value 83.755485 iter 100 value 83.711789 final value 83.711789 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.164921 iter 10 value 91.674243 iter 20 value 88.983481 iter 30 value 88.705306 iter 40 value 88.166533 iter 50 value 85.589622 iter 60 value 85.136232 iter 70 value 84.924570 iter 80 value 84.731370 iter 90 value 84.677972 iter 100 value 84.568251 final value 84.568251 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.542115 iter 10 value 94.433641 iter 20 value 88.307114 iter 30 value 85.302044 iter 40 value 84.380258 iter 50 value 83.832154 iter 60 value 83.564630 iter 70 value 82.906692 iter 80 value 82.325059 iter 90 value 82.040496 iter 100 value 81.928930 final value 81.928930 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.365638 iter 10 value 93.677240 iter 20 value 86.658356 iter 30 value 85.506369 iter 40 value 84.906614 iter 50 value 83.782000 iter 60 value 82.725424 iter 70 value 82.013702 iter 80 value 81.661083 iter 90 value 81.486932 iter 100 value 81.457366 final value 81.457366 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.216634 iter 10 value 95.815659 iter 20 value 87.164186 iter 30 value 85.474880 iter 40 value 84.167754 iter 50 value 82.362724 iter 60 value 82.134613 iter 70 value 82.083056 iter 80 value 81.791517 iter 90 value 81.689535 iter 100 value 81.380054 final value 81.380054 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.448695 iter 10 value 94.866088 iter 20 value 93.175610 iter 30 value 91.671784 iter 40 value 91.481084 iter 50 value 90.461664 iter 60 value 86.102566 iter 70 value 84.974224 iter 80 value 84.300718 iter 90 value 82.763076 iter 100 value 82.211955 final value 82.211955 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.193909 iter 10 value 94.392231 iter 20 value 88.866785 iter 30 value 86.281585 iter 40 value 84.698947 iter 50 value 83.696509 iter 60 value 82.851028 iter 70 value 82.418433 iter 80 value 82.129056 iter 90 value 82.032758 iter 100 value 81.954669 final value 81.954669 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.746488 iter 10 value 94.598628 iter 20 value 94.287054 iter 30 value 92.727458 iter 40 value 90.538062 iter 50 value 87.170360 iter 60 value 85.306865 iter 70 value 82.565435 iter 80 value 81.764796 iter 90 value 81.597003 iter 100 value 81.314050 final value 81.314050 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.496035 iter 10 value 97.664466 iter 20 value 88.933267 iter 30 value 85.835960 iter 40 value 83.907065 iter 50 value 82.658604 iter 60 value 82.051002 iter 70 value 81.548198 iter 80 value 81.171466 iter 90 value 81.045765 iter 100 value 80.939785 final value 80.939785 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.564776 final value 94.486003 converged Fitting Repeat 2 # weights: 103 initial value 96.535796 iter 10 value 94.444838 iter 20 value 94.442837 iter 30 value 92.085028 final value 91.889643 converged Fitting Repeat 3 # weights: 103 initial value 109.037001 final value 94.485585 converged Fitting Repeat 4 # weights: 103 initial value 105.688207 final value 94.485531 converged Fitting Repeat 5 # weights: 103 initial value 100.535216 iter 10 value 92.425971 iter 20 value 92.422789 iter 30 value 92.302315 iter 40 value 91.866212 final value 91.856778 converged Fitting Repeat 1 # weights: 305 initial value 94.724627 iter 10 value 94.448155 iter 20 value 94.443564 iter 30 value 90.683200 iter 40 value 86.065861 iter 50 value 86.065018 iter 60 value 86.058293 iter 70 value 84.491843 iter 80 value 84.311945 iter 90 value 84.310494 iter 90 value 84.310493 iter 90 value 84.310493 final value 84.310493 converged Fitting Repeat 2 # weights: 305 initial value 108.566274 iter 10 value 94.488556 iter 20 value 93.729837 iter 30 value 88.045147 iter 40 value 87.658204 iter 50 value 87.633210 iter 60 value 87.631541 iter 70 value 87.592764 iter 80 value 85.239044 iter 90 value 84.709930 iter 100 value 84.673313 final value 84.673313 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.122952 iter 10 value 94.488631 iter 20 value 92.001194 iter 30 value 91.051125 iter 40 value 90.907829 iter 50 value 90.885583 final value 90.885289 converged Fitting Repeat 4 # weights: 305 initial value 112.516271 iter 10 value 91.826405 iter 20 value 89.308357 iter 30 value 89.156110 iter 40 value 88.399247 iter 50 value 88.393079 iter 60 value 88.391218 iter 70 value 88.390505 iter 80 value 88.388798 iter 80 value 88.388798 final value 88.388798 converged Fitting Repeat 5 # weights: 305 initial value 103.339053 iter 10 value 94.448793 iter 20 value 94.136164 iter 30 value 91.452897 iter 40 value 91.427737 final value 91.427664 converged Fitting Repeat 1 # weights: 507 initial value 97.257215 iter 10 value 94.491967 iter 20 value 94.475015 iter 30 value 89.430879 iter 40 value 89.037881 iter 50 value 88.724327 iter 60 value 88.399893 iter 70 value 86.412138 iter 80 value 86.208319 iter 90 value 86.074758 iter 100 value 85.791946 final value 85.791946 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.835565 iter 10 value 94.450969 iter 20 value 93.514642 iter 30 value 85.058829 iter 40 value 85.018349 iter 50 value 84.998803 iter 60 value 84.982633 iter 70 value 84.980768 iter 80 value 84.980094 iter 90 value 84.804101 iter 100 value 84.102931 final value 84.102931 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.085715 iter 10 value 94.451779 iter 20 value 94.451650 iter 30 value 94.302661 iter 40 value 94.232956 iter 50 value 92.270600 iter 60 value 92.059334 iter 70 value 91.495687 iter 80 value 91.467110 iter 90 value 91.465715 iter 100 value 91.455903 final value 91.455903 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.704049 iter 10 value 94.331128 iter 20 value 94.329139 iter 30 value 94.323520 final value 94.323498 converged Fitting Repeat 5 # weights: 507 initial value 98.791178 iter 10 value 94.451334 iter 20 value 94.281176 iter 30 value 89.402350 iter 40 value 88.679051 iter 50 value 88.519490 iter 60 value 88.517184 final value 88.517118 converged Fitting Repeat 1 # weights: 103 initial value 96.601705 iter 10 value 94.053143 final value 94.052911 converged Fitting Repeat 2 # weights: 103 initial value 98.251225 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.141377 final value 93.836066 converged Fitting Repeat 4 # weights: 103 initial value 97.305260 final value 93.836066 converged Fitting Repeat 5 # weights: 103 initial value 100.829353 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.492796 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 94.274598 iter 10 value 82.494824 iter 20 value 79.688256 final value 79.673660 converged Fitting Repeat 3 # weights: 305 initial value 113.056667 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 113.984830 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 94.419675 final value 94.028176 converged Fitting Repeat 1 # weights: 507 initial value 95.132968 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 119.910955 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 114.771896 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 4 # weights: 507 initial value 94.507389 iter 10 value 89.391566 iter 20 value 88.788932 iter 30 value 88.788582 iter 40 value 88.788459 iter 50 value 88.720858 final value 88.720494 converged Fitting Repeat 5 # weights: 507 initial value 98.342133 iter 10 value 91.066001 iter 20 value 89.566631 iter 30 value 89.411539 iter 30 value 89.411539 iter 30 value 89.411539 final value 89.411539 converged Fitting Repeat 1 # weights: 103 initial value 98.333172 iter 10 value 94.065354 iter 20 value 94.049917 iter 30 value 93.961876 iter 40 value 91.277427 iter 50 value 81.377717 iter 60 value 80.828036 iter 70 value 80.715313 iter 80 value 79.948946 iter 90 value 79.793770 iter 100 value 78.998320 final value 78.998320 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 95.871746 iter 10 value 93.998762 iter 20 value 92.851287 iter 30 value 92.706954 iter 40 value 88.818431 iter 50 value 79.889569 iter 60 value 79.497004 iter 70 value 77.780503 iter 80 value 77.617444 iter 90 value 77.484195 iter 100 value 77.386934 final value 77.386934 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.183592 iter 10 value 92.525505 iter 20 value 84.854736 iter 30 value 80.929851 iter 40 value 80.687829 iter 50 value 79.736250 iter 60 value 79.195317 iter 70 value 78.775956 final value 78.775906 converged Fitting Repeat 4 # weights: 103 initial value 99.799914 iter 10 value 94.101364 iter 20 value 93.992121 iter 30 value 93.063667 iter 40 value 92.910356 iter 50 value 87.675976 iter 60 value 81.713962 iter 70 value 81.629245 iter 80 value 81.467477 iter 90 value 81.308000 iter 100 value 80.888590 final value 80.888590 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.373525 iter 10 value 91.516816 iter 20 value 90.597641 iter 30 value 86.881691 iter 40 value 81.801438 iter 50 value 80.926290 iter 60 value 80.758862 iter 70 value 80.730675 iter 80 value 80.730515 final value 80.730498 converged Fitting Repeat 1 # weights: 305 initial value 113.489937 iter 10 value 93.998064 iter 20 value 83.153546 iter 30 value 80.918132 iter 40 value 78.246871 iter 50 value 77.058615 iter 60 value 76.796853 iter 70 value 76.520393 iter 80 value 76.266165 iter 90 value 76.040145 iter 100 value 75.753712 final value 75.753712 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.993722 iter 10 value 94.527805 iter 20 value 88.622983 iter 30 value 81.870176 iter 40 value 79.935274 iter 50 value 78.314860 iter 60 value 76.861770 iter 70 value 76.449100 iter 80 value 76.007317 iter 90 value 75.929397 iter 100 value 75.911528 final value 75.911528 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.981270 iter 10 value 94.054711 iter 20 value 93.400173 iter 30 value 89.179960 iter 40 value 87.906705 iter 50 value 87.862220 iter 60 value 87.281732 iter 70 value 81.783037 iter 80 value 78.322858 iter 90 value 77.616347 iter 100 value 76.424547 final value 76.424547 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.733831 iter 10 value 94.152001 iter 20 value 93.393297 iter 30 value 86.029955 iter 40 value 84.400981 iter 50 value 83.997518 iter 60 value 81.744222 iter 70 value 79.459909 iter 80 value 77.855228 iter 90 value 76.629840 iter 100 value 75.984627 final value 75.984627 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.295309 iter 10 value 93.958155 iter 20 value 93.743617 iter 30 value 91.835114 iter 40 value 91.606497 iter 50 value 85.508737 iter 60 value 83.861036 iter 70 value 83.379622 iter 80 value 83.089863 iter 90 value 82.651875 iter 100 value 82.053542 final value 82.053542 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.332994 iter 10 value 94.488021 iter 20 value 92.668404 iter 30 value 83.678390 iter 40 value 81.553740 iter 50 value 80.354210 iter 60 value 79.200988 iter 70 value 78.447322 iter 80 value 77.653440 iter 90 value 77.561927 iter 100 value 77.523362 final value 77.523362 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.575466 iter 10 value 100.313957 iter 20 value 87.087597 iter 30 value 82.333935 iter 40 value 79.704794 iter 50 value 77.961421 iter 60 value 77.585865 iter 70 value 77.323990 iter 80 value 77.195680 iter 90 value 76.864707 iter 100 value 76.437096 final value 76.437096 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.312693 iter 10 value 92.951332 iter 20 value 84.240054 iter 30 value 82.488332 iter 40 value 78.017983 iter 50 value 77.110901 iter 60 value 76.684123 iter 70 value 75.966090 iter 80 value 75.658117 iter 90 value 75.573286 iter 100 value 75.475256 final value 75.475256 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.691159 iter 10 value 94.019651 iter 20 value 84.258817 iter 30 value 82.934552 iter 40 value 80.986003 iter 50 value 78.957793 iter 60 value 78.221984 iter 70 value 77.144458 iter 80 value 76.704814 iter 90 value 76.580026 iter 100 value 76.449615 final value 76.449615 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.471408 iter 10 value 93.895200 iter 20 value 84.725476 iter 30 value 82.974730 iter 40 value 81.243273 iter 50 value 78.686473 iter 60 value 76.574198 iter 70 value 76.127214 iter 80 value 76.033805 iter 90 value 75.962910 iter 100 value 75.922046 final value 75.922046 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.296887 final value 94.054410 converged Fitting Repeat 2 # weights: 103 initial value 103.213097 final value 94.054383 converged Fitting Repeat 3 # weights: 103 initial value 95.012164 final value 94.054476 converged Fitting Repeat 4 # weights: 103 initial value 103.777627 final value 94.054992 converged Fitting Repeat 5 # weights: 103 initial value 104.980985 final value 94.054621 converged Fitting Repeat 1 # weights: 305 initial value 106.028487 iter 10 value 94.057725 iter 20 value 93.942339 iter 30 value 90.305187 iter 40 value 88.619040 iter 50 value 88.616350 iter 60 value 88.430019 iter 70 value 87.915490 iter 80 value 87.913803 iter 90 value 86.481559 iter 100 value 86.469012 final value 86.469012 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.756287 iter 10 value 94.058028 iter 20 value 93.871494 iter 30 value 84.467470 iter 40 value 84.455907 iter 50 value 84.436079 iter 60 value 81.679044 iter 70 value 80.966378 iter 80 value 80.932630 iter 90 value 80.912574 final value 80.911525 converged Fitting Repeat 3 # weights: 305 initial value 111.211425 iter 10 value 91.886455 iter 20 value 88.334068 iter 30 value 88.284433 iter 40 value 87.654078 iter 50 value 87.588340 final value 87.587191 converged Fitting Repeat 4 # weights: 305 initial value 103.111539 iter 10 value 93.840914 iter 20 value 92.913958 iter 30 value 91.020160 iter 40 value 88.542683 iter 50 value 87.243150 iter 60 value 83.512571 iter 70 value 80.344723 iter 80 value 79.253371 iter 90 value 78.249921 iter 100 value 77.620204 final value 77.620204 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.612419 iter 10 value 89.859563 iter 20 value 80.485805 iter 30 value 80.058738 iter 40 value 80.017039 iter 50 value 80.008270 iter 60 value 80.006754 iter 70 value 80.006595 iter 70 value 80.006595 final value 80.006595 converged Fitting Repeat 1 # weights: 507 initial value 100.701311 iter 10 value 93.267239 iter 20 value 89.529195 iter 30 value 86.527826 iter 40 value 86.353807 iter 50 value 81.918556 iter 60 value 80.317129 iter 70 value 80.157373 iter 80 value 80.156146 iter 90 value 80.006830 iter 100 value 79.988289 final value 79.988289 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 94.833271 iter 10 value 90.034643 iter 20 value 88.705188 iter 30 value 87.624825 iter 40 value 86.831963 iter 50 value 86.558713 iter 60 value 86.475581 iter 70 value 86.464368 iter 80 value 86.425849 iter 90 value 85.344324 iter 100 value 80.108791 final value 80.108791 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.301810 iter 10 value 94.061019 iter 20 value 93.534129 iter 30 value 92.564088 final value 92.564056 converged Fitting Repeat 4 # weights: 507 initial value 97.090447 iter 10 value 94.061089 iter 20 value 94.053735 iter 30 value 85.109563 iter 40 value 83.059256 iter 50 value 82.810676 final value 82.758626 converged Fitting Repeat 5 # weights: 507 initial value 98.933595 iter 10 value 93.861880 iter 20 value 93.843076 iter 30 value 93.803455 iter 40 value 80.837918 iter 50 value 80.087706 iter 60 value 77.028416 iter 70 value 76.440008 iter 80 value 75.608319 iter 90 value 75.350993 iter 100 value 75.350063 final value 75.350063 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.730419 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.101721 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.660578 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 105.541946 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.842665 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 106.740354 iter 10 value 93.601520 final value 93.601516 converged Fitting Repeat 2 # weights: 305 initial value 94.819828 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.703164 iter 10 value 93.604520 iter 10 value 93.604520 iter 10 value 93.604520 final value 93.604520 converged Fitting Repeat 4 # weights: 305 initial value 113.546000 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 98.619439 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 111.411718 iter 10 value 89.561518 iter 20 value 84.465749 iter 30 value 82.171159 iter 40 value 81.452948 iter 50 value 81.424593 iter 60 value 80.994313 iter 70 value 80.501919 iter 80 value 80.501845 iter 80 value 80.501845 iter 80 value 80.501845 final value 80.501845 converged Fitting Repeat 2 # weights: 507 initial value 101.531559 iter 10 value 93.602535 final value 93.502241 converged Fitting Repeat 3 # weights: 507 initial value 96.459672 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 99.665173 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 103.606958 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 102.795451 iter 10 value 93.048530 iter 20 value 90.186848 iter 30 value 89.881346 iter 40 value 89.845665 final value 89.845549 converged Fitting Repeat 2 # weights: 103 initial value 102.924286 iter 10 value 94.063447 iter 20 value 93.260517 iter 30 value 89.686805 iter 40 value 84.801369 iter 50 value 83.651856 iter 60 value 83.539724 iter 70 value 83.271910 iter 80 value 83.165414 final value 83.165183 converged Fitting Repeat 3 # weights: 103 initial value 98.950623 iter 10 value 94.055212 iter 20 value 93.769936 iter 30 value 93.634025 iter 40 value 93.555338 iter 50 value 91.670339 iter 60 value 86.016662 iter 70 value 85.976650 iter 80 value 85.879752 iter 90 value 83.901421 iter 100 value 83.639070 final value 83.639070 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.265684 iter 10 value 94.058938 iter 20 value 93.862080 iter 30 value 93.693176 iter 40 value 93.576423 iter 50 value 85.237745 iter 60 value 84.006558 iter 70 value 83.230623 iter 80 value 82.775314 iter 90 value 81.939912 iter 100 value 81.876859 final value 81.876859 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.114474 iter 10 value 93.812590 iter 20 value 91.227033 iter 30 value 90.750882 iter 40 value 90.668730 iter 50 value 90.093191 iter 60 value 89.857550 iter 70 value 89.845631 iter 80 value 84.394297 iter 90 value 83.948184 iter 100 value 83.579594 final value 83.579594 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.040273 iter 10 value 94.118214 iter 20 value 93.138580 iter 30 value 93.103122 iter 40 value 88.496945 iter 50 value 87.903811 iter 60 value 85.761649 iter 70 value 84.299760 iter 80 value 83.414566 iter 90 value 82.817825 iter 100 value 82.783536 final value 82.783536 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.265177 iter 10 value 93.899898 iter 20 value 89.902115 iter 30 value 88.738764 iter 40 value 83.770346 iter 50 value 83.548869 iter 60 value 83.254678 iter 70 value 83.075694 iter 80 value 82.757937 iter 90 value 81.500636 iter 100 value 81.438703 final value 81.438703 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.933507 iter 10 value 94.199219 iter 20 value 91.699693 iter 30 value 86.608900 iter 40 value 85.035306 iter 50 value 83.894580 iter 60 value 83.635563 iter 70 value 83.440125 iter 80 value 83.382474 iter 90 value 83.124879 iter 100 value 82.894789 final value 82.894789 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.631642 iter 10 value 94.475705 iter 20 value 87.038465 iter 30 value 84.078471 iter 40 value 83.173276 iter 50 value 81.896805 iter 60 value 80.983338 iter 70 value 80.279337 iter 80 value 80.222856 iter 90 value 80.081881 iter 100 value 79.896090 final value 79.896090 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.182372 iter 10 value 94.904360 iter 20 value 93.948628 iter 30 value 90.168808 iter 40 value 87.108774 iter 50 value 84.125799 iter 60 value 83.432399 iter 70 value 83.249442 iter 80 value 83.228772 iter 90 value 83.175210 iter 100 value 82.089509 final value 82.089509 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.704170 iter 10 value 94.928060 iter 20 value 88.420880 iter 30 value 85.844680 iter 40 value 83.688467 iter 50 value 80.960403 iter 60 value 80.543456 iter 70 value 80.418126 iter 80 value 80.413382 iter 90 value 80.405372 iter 100 value 80.277874 final value 80.277874 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.007392 iter 10 value 93.819159 iter 20 value 93.598769 iter 30 value 91.628854 iter 40 value 84.290488 iter 50 value 83.863626 iter 60 value 83.447709 iter 70 value 83.098757 iter 80 value 82.788992 iter 90 value 82.226229 iter 100 value 80.638598 final value 80.638598 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.253200 iter 10 value 93.475299 iter 20 value 85.254685 iter 30 value 83.612774 iter 40 value 82.314905 iter 50 value 81.866575 iter 60 value 81.605040 iter 70 value 81.345010 iter 80 value 81.176350 iter 90 value 80.839312 iter 100 value 80.628902 final value 80.628902 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.461291 iter 10 value 93.892963 iter 20 value 86.169386 iter 30 value 84.984210 iter 40 value 81.398015 iter 50 value 80.772897 iter 60 value 80.258707 iter 70 value 79.964798 iter 80 value 79.884033 iter 90 value 79.876734 iter 100 value 79.846875 final value 79.846875 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.369536 iter 10 value 94.123863 iter 20 value 91.990901 iter 30 value 89.220261 iter 40 value 87.983827 iter 50 value 85.479690 iter 60 value 84.659055 iter 70 value 82.447391 iter 80 value 82.211693 iter 90 value 81.480095 iter 100 value 81.041448 final value 81.041448 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.207210 final value 94.054465 converged Fitting Repeat 2 # weights: 103 initial value 108.555500 final value 94.054616 converged Fitting Repeat 3 # weights: 103 initial value 96.525761 final value 94.054679 converged Fitting Repeat 4 # weights: 103 initial value 104.145714 final value 94.054155 converged Fitting Repeat 5 # weights: 103 initial value 96.813879 final value 94.054407 converged Fitting Repeat 1 # weights: 305 initial value 97.041679 iter 10 value 94.057811 iter 20 value 89.497882 iter 30 value 84.519003 iter 40 value 84.324863 iter 50 value 84.217596 iter 60 value 84.184810 final value 84.184706 converged Fitting Repeat 2 # weights: 305 initial value 93.473167 iter 10 value 87.206073 iter 20 value 82.576291 iter 30 value 82.410965 iter 40 value 82.409741 iter 50 value 82.400132 final value 82.392512 converged Fitting Repeat 3 # weights: 305 initial value 94.305323 iter 10 value 94.055099 iter 20 value 93.082912 iter 30 value 85.263473 iter 40 value 85.260383 iter 50 value 85.247866 iter 60 value 85.147511 iter 70 value 85.138795 iter 80 value 85.132681 iter 90 value 82.672226 iter 100 value 82.640158 final value 82.640158 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.671967 iter 10 value 92.864862 iter 20 value 89.881165 iter 30 value 89.620754 iter 40 value 89.611225 iter 50 value 89.574160 iter 60 value 88.296745 iter 70 value 85.219022 iter 80 value 84.926364 iter 90 value 82.861769 iter 100 value 81.071768 final value 81.071768 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.429670 iter 10 value 91.515907 iter 20 value 91.429750 iter 30 value 91.429231 iter 40 value 88.540349 iter 50 value 85.807832 iter 60 value 85.766083 iter 70 value 85.751721 iter 80 value 85.704055 iter 90 value 85.699650 final value 85.699247 converged Fitting Repeat 1 # weights: 507 initial value 108.722266 iter 10 value 93.936657 iter 20 value 93.879171 iter 30 value 92.901220 iter 40 value 92.893659 iter 50 value 88.420172 iter 60 value 82.716904 iter 70 value 82.509566 iter 80 value 82.265054 iter 80 value 82.265054 final value 82.265054 converged Fitting Repeat 2 # weights: 507 initial value 98.009217 iter 10 value 94.060707 iter 20 value 93.905468 iter 30 value 87.387494 iter 40 value 84.334088 iter 50 value 84.333007 iter 60 value 84.142985 final value 84.116852 converged Fitting Repeat 3 # weights: 507 initial value 109.222092 iter 10 value 93.590991 iter 20 value 93.055371 iter 30 value 86.897947 iter 40 value 81.791394 iter 50 value 80.147112 iter 60 value 78.981987 iter 70 value 78.597131 iter 80 value 78.458984 iter 90 value 78.380019 iter 100 value 78.266079 final value 78.266079 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.230327 iter 10 value 94.057569 iter 20 value 92.938721 iter 30 value 92.835710 iter 40 value 92.560236 final value 92.560223 converged Fitting Repeat 5 # weights: 507 initial value 106.685920 iter 10 value 90.605026 iter 20 value 85.652104 iter 30 value 85.571535 iter 40 value 85.570840 iter 50 value 85.551625 iter 60 value 85.372113 iter 70 value 85.230057 iter 80 value 85.138508 iter 90 value 85.134584 iter 100 value 84.033109 final value 84.033109 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 127.726192 iter 10 value 117.895330 iter 20 value 117.889894 iter 30 value 115.912867 iter 40 value 114.727097 final value 114.727094 converged Fitting Repeat 2 # weights: 305 initial value 121.599528 iter 10 value 117.891755 iter 20 value 110.767142 final value 110.078716 converged Fitting Repeat 3 # weights: 305 initial value 128.150844 iter 10 value 117.721382 iter 20 value 117.677127 iter 30 value 117.671348 iter 40 value 117.301834 iter 50 value 117.159615 iter 60 value 117.155962 iter 70 value 116.659421 iter 80 value 116.653557 final value 116.653502 converged Fitting Repeat 4 # weights: 305 initial value 140.435480 iter 10 value 117.895329 iter 20 value 117.890531 iter 30 value 117.788694 iter 40 value 117.511501 final value 117.511413 converged Fitting Repeat 5 # weights: 305 initial value 132.239493 iter 10 value 109.175922 iter 20 value 108.513207 iter 30 value 105.323887 iter 40 value 104.624961 iter 50 value 102.854144 iter 60 value 102.634564 iter 70 value 102.473875 iter 80 value 102.379062 iter 90 value 102.024626 iter 100 value 100.884081 final value 100.884081 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 16 01:47:49 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 45.21 1.54 47.60
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.17 | 1.43 | 33.66 | |
FreqInteractors | 0.38 | 0.00 | 0.40 | |
calculateAAC | 0.07 | 0.00 | 0.06 | |
calculateAutocor | 0.51 | 0.10 | 0.61 | |
calculateCTDC | 0.1 | 0.0 | 0.1 | |
calculateCTDD | 0.84 | 0.06 | 0.90 | |
calculateCTDT | 0.41 | 0.02 | 0.42 | |
calculateCTriad | 0.48 | 0.06 | 0.55 | |
calculateDC | 0.14 | 0.00 | 0.14 | |
calculateF | 0.45 | 0.03 | 0.49 | |
calculateKSAAP | 0.14 | 0.02 | 0.15 | |
calculateQD_Sm | 2.44 | 0.04 | 2.49 | |
calculateTC | 2.20 | 0.10 | 2.29 | |
calculateTC_Sm | 0.24 | 0.00 | 0.24 | |
corr_plot | 31.09 | 1.01 | 32.14 | |
enrichfindP | 0.61 | 0.11 | 12.60 | |
enrichfind_hp | 0.09 | 0.02 | 1.14 | |
enrichplot | 0.47 | 0.01 | 0.48 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.02 | 2.31 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.11 | 0.02 | 0.12 | |
pred_ensembel | 14.38 | 0.50 | 11.02 | |
var_imp | 33.15 | 0.67 | 33.84 | |