Back to Multiple platform build/check report for BioC 3.18:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-04-17 11:36:02 -0400 (Wed, 17 Apr 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4676
palomino4Windows Server 2022 Datacenterx644.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" 4414
merida1macOS 12.7.1 Montereyx86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4437
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 974/2266HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.8.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-04-15 14:05:01 -0400 (Mon, 15 Apr 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_18
git_last_commit: 677208a
git_last_commit_date: 2023-10-24 11:36:21 -0400 (Tue, 24 Oct 2023)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.1 Ventura / arm64see weekly results here

CHECK results for HPiP on nebbiolo2


To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.8.0
Command: /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings HPiP_1.8.0.tar.gz
StartedAt: 2024-04-15 23:50:41 -0400 (Mon, 15 Apr 2024)
EndedAt: 2024-04-16 00:13:15 -0400 (Tue, 16 Apr 2024)
EllapsedTime: 1354.8 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.18-bioc/R/site-library --timings HPiP_1.8.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’
* using R version 4.3.3 (2024-02-29)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.4 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       35.452  0.972  36.425
FSmethod      34.518  0.776  35.296
corr_plot     34.397  0.488  34.885
pred_ensembel 13.456  0.560  10.701
enrichfindP    0.469  0.048   9.622
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK
 OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.18-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.18-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 94.750978 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.571468 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 109.811643 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.194553 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.869559 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.637063 
iter  10 value 93.893341
final  value 93.831039 
converged
Fitting Repeat 2 

# weights:  305
initial  value 109.894267 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.397370 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.875994 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.502235 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 115.663018 
iter  10 value 94.305896
final  value 94.305882 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.295666 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.982660 
final  value 94.275362 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.704547 
final  value 94.448052 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.892852 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.954327 
iter  10 value 94.488560
iter  20 value 94.345266
iter  30 value 86.092464
iter  40 value 84.106750
iter  50 value 83.715153
iter  60 value 83.473569
iter  70 value 81.917909
iter  80 value 81.882583
final  value 81.882582 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.054408 
iter  10 value 94.489904
iter  20 value 94.482368
iter  30 value 94.360332
iter  40 value 94.352643
iter  50 value 94.346553
iter  60 value 94.336115
iter  70 value 94.155556
iter  80 value 92.839728
iter  90 value 86.604517
iter 100 value 84.288128
final  value 84.288128 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.170908 
iter  10 value 94.459238
iter  20 value 86.199875
iter  30 value 84.884070
iter  40 value 84.372083
iter  50 value 83.036558
iter  60 value 82.095049
iter  70 value 81.882586
final  value 81.882582 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.436199 
iter  10 value 94.476891
iter  20 value 87.069253
iter  30 value 84.784946
iter  40 value 84.473950
iter  50 value 83.493388
iter  60 value 82.720309
iter  70 value 82.290132
iter  80 value 81.594729
iter  90 value 81.547469
final  value 81.547435 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.970151 
iter  10 value 94.488533
iter  20 value 94.314645
iter  30 value 86.194157
iter  40 value 85.504215
iter  50 value 85.124367
iter  60 value 84.529050
iter  70 value 83.315879
iter  80 value 83.165303
iter  90 value 83.143753
iter 100 value 82.766719
final  value 82.766719 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 103.838401 
iter  10 value 94.295377
iter  20 value 85.340731
iter  30 value 83.904193
iter  40 value 83.759902
iter  50 value 83.257562
iter  60 value 83.032866
iter  70 value 82.495367
iter  80 value 81.073836
iter  90 value 80.710015
iter 100 value 80.674780
final  value 80.674780 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.936861 
iter  10 value 94.497395
iter  20 value 86.371563
iter  30 value 84.578146
iter  40 value 82.674579
iter  50 value 81.576086
iter  60 value 81.140281
iter  70 value 80.999429
iter  80 value 80.761597
iter  90 value 80.520265
iter 100 value 80.482811
final  value 80.482811 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.756115 
iter  10 value 94.417146
iter  20 value 86.051468
iter  30 value 84.701484
iter  40 value 83.206065
iter  50 value 82.928193
iter  60 value 82.792036
iter  70 value 82.668237
iter  80 value 81.666678
iter  90 value 80.468794
iter 100 value 80.378192
final  value 80.378192 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.390532 
iter  10 value 94.484748
iter  20 value 93.835547
iter  30 value 92.571609
iter  40 value 89.196967
iter  50 value 86.861319
iter  60 value 85.670990
iter  70 value 85.340163
iter  80 value 84.254361
iter  90 value 82.395794
iter 100 value 81.147243
final  value 81.147243 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.565298 
iter  10 value 94.585444
iter  20 value 93.659063
iter  30 value 88.008582
iter  40 value 86.011885
iter  50 value 83.254814
iter  60 value 82.486174
iter  70 value 81.812895
iter  80 value 81.718928
iter  90 value 81.243052
iter 100 value 80.966001
final  value 80.966001 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 130.633032 
iter  10 value 93.917389
iter  20 value 84.702326
iter  30 value 83.756960
iter  40 value 82.881162
iter  50 value 81.888806
iter  60 value 81.637968
iter  70 value 80.955867
iter  80 value 80.838787
iter  90 value 80.644161
iter 100 value 80.490362
final  value 80.490362 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 124.893000 
iter  10 value 94.547255
iter  20 value 93.984274
iter  30 value 87.848977
iter  40 value 84.930089
iter  50 value 83.235757
iter  60 value 82.164039
iter  70 value 80.779960
iter  80 value 80.699341
iter  90 value 80.396320
iter 100 value 80.216033
final  value 80.216033 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.591239 
iter  10 value 100.618764
iter  20 value 94.236447
iter  30 value 90.510799
iter  40 value 86.848704
iter  50 value 84.379170
iter  60 value 83.311219
iter  70 value 81.867820
iter  80 value 80.663086
iter  90 value 80.160169
iter 100 value 79.950344
final  value 79.950344 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.369352 
iter  10 value 90.855763
iter  20 value 86.067997
iter  30 value 83.976483
iter  40 value 83.187115
iter  50 value 81.777684
iter  60 value 81.431040
iter  70 value 80.914813
iter  80 value 80.631590
iter  90 value 80.474925
iter 100 value 80.386203
final  value 80.386203 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.992534 
iter  10 value 94.483784
iter  20 value 85.293731
iter  30 value 84.323578
iter  40 value 83.732696
iter  50 value 81.946173
iter  60 value 81.077602
iter  70 value 80.630585
iter  80 value 80.272158
iter  90 value 80.114004
iter 100 value 79.962085
final  value 79.962085 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 110.940291 
final  value 94.485763 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.633088 
iter  10 value 94.486101
iter  20 value 93.395892
iter  30 value 84.195473
iter  30 value 84.195472
iter  40 value 84.054066
iter  50 value 84.051590
iter  60 value 83.960649
iter  60 value 83.960649
iter  60 value 83.960649
final  value 83.960649 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.954048 
final  value 94.485806 
converged
Fitting Repeat 4 

# weights:  103
initial  value 105.377107 
final  value 94.486407 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.552816 
final  value 94.277087 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.454206 
iter  10 value 94.489087
iter  20 value 93.723687
iter  30 value 92.625284
iter  40 value 89.813018
iter  50 value 89.809782
iter  60 value 84.221563
final  value 84.193713 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.673838 
iter  10 value 94.489074
iter  20 value 94.473528
iter  30 value 94.128825
iter  40 value 90.827820
final  value 90.818890 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.422296 
iter  10 value 92.492807
iter  20 value 87.933307
iter  30 value 87.136797
iter  40 value 87.125358
iter  50 value 86.410056
iter  60 value 86.405018
iter  70 value 86.398285
iter  80 value 86.394889
iter  90 value 86.394623
final  value 86.394126 
converged
Fitting Repeat 4 

# weights:  305
initial  value 123.127689 
iter  10 value 94.489088
iter  20 value 94.376633
iter  30 value 89.197310
iter  40 value 88.430655
iter  50 value 88.425224
iter  60 value 88.314798
iter  70 value 86.178455
iter  80 value 85.330480
iter  90 value 84.389545
iter 100 value 84.387390
final  value 84.387390 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.492204 
iter  10 value 94.488883
iter  20 value 94.473194
iter  30 value 94.341189
iter  40 value 90.082863
iter  50 value 87.956097
iter  60 value 86.273941
iter  70 value 85.109366
iter  80 value 82.413859
iter  90 value 80.670478
iter 100 value 80.486189
final  value 80.486189 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.600419 
iter  10 value 94.494229
iter  20 value 94.489080
iter  30 value 92.018299
iter  40 value 91.566421
iter  50 value 91.465914
final  value 91.465780 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.170356 
iter  10 value 94.321798
iter  20 value 92.360102
iter  30 value 87.952800
final  value 87.952762 
converged
Fitting Repeat 3 

# weights:  507
initial  value 124.120462 
iter  10 value 94.494081
iter  20 value 94.119441
iter  30 value 91.749900
iter  40 value 86.132735
iter  50 value 86.041487
iter  60 value 85.775048
iter  70 value 85.755042
iter  80 value 85.398861
iter  90 value 84.510328
iter 100 value 84.491097
final  value 84.491097 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 130.231369 
iter  10 value 94.314165
iter  20 value 94.278857
iter  30 value 94.198188
iter  40 value 90.059190
iter  50 value 84.836783
iter  60 value 84.227440
iter  70 value 84.210261
iter  80 value 84.209621
final  value 84.209243 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.077309 
iter  10 value 90.798572
iter  20 value 87.218360
iter  30 value 86.743603
iter  40 value 85.459043
iter  50 value 85.368289
final  value 85.367200 
converged
Fitting Repeat 1 

# weights:  103
initial  value 94.374125 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.589252 
iter  10 value 86.392952
iter  20 value 85.478130
final  value 85.101326 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.512357 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.162946 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.772770 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.392494 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.776733 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.403633 
iter  10 value 92.891056
iter  20 value 89.866315
iter  30 value 89.584012
iter  40 value 89.581403
final  value 89.581291 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.453463 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.332836 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.862155 
iter  10 value 93.747273
iter  20 value 93.691390
final  value 93.691359 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.975739 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.941349 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.519214 
iter  10 value 93.692087
final  value 93.679487 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.135031 
final  value 94.052909 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.652848 
iter  10 value 94.002671
iter  20 value 87.410703
iter  30 value 87.217226
iter  40 value 86.595209
iter  50 value 85.771289
iter  60 value 85.228633
iter  70 value 85.124313
iter  80 value 85.045135
final  value 85.044589 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.874652 
iter  10 value 94.030715
iter  20 value 89.888063
iter  30 value 88.574820
iter  40 value 86.993531
iter  50 value 85.132422
iter  60 value 84.257205
iter  70 value 84.120177
iter  80 value 84.101630
iter  90 value 83.715832
iter 100 value 83.419800
final  value 83.419800 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.050195 
iter  10 value 94.032196
iter  20 value 92.018866
iter  30 value 86.709163
iter  40 value 85.563059
iter  50 value 84.934884
iter  60 value 84.748175
final  value 84.737736 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.909134 
iter  10 value 94.059533
iter  20 value 89.097677
iter  30 value 86.714386
iter  40 value 86.234202
iter  50 value 86.120835
iter  60 value 85.901158
iter  70 value 85.806541
iter  80 value 85.790802
iter  80 value 85.790801
iter  80 value 85.790801
final  value 85.790801 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.382485 
iter  10 value 94.057927
iter  20 value 93.948645
iter  30 value 93.823814
iter  40 value 93.722380
iter  50 value 88.621955
iter  60 value 86.506562
iter  70 value 85.278823
iter  80 value 84.826527
iter  90 value 84.564777
iter 100 value 83.570038
final  value 83.570038 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.770297 
iter  10 value 94.028872
iter  20 value 88.572906
iter  30 value 86.647756
iter  40 value 86.455593
iter  50 value 85.410272
iter  60 value 84.747054
iter  70 value 83.307083
iter  80 value 82.093993
iter  90 value 81.709604
iter 100 value 81.161061
final  value 81.161061 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.071756 
iter  10 value 94.217161
iter  20 value 93.043552
iter  30 value 87.494770
iter  40 value 84.073460
iter  50 value 82.293565
iter  60 value 81.913312
iter  70 value 81.755515
iter  80 value 81.620482
iter  90 value 81.573398
iter 100 value 81.560694
final  value 81.560694 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 108.414560 
iter  10 value 94.084683
iter  20 value 92.987030
iter  30 value 88.094152
iter  40 value 87.175692
iter  50 value 86.244029
iter  60 value 86.033267
iter  70 value 84.903210
iter  80 value 84.209693
iter  90 value 83.070624
iter 100 value 82.237247
final  value 82.237247 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.773563 
iter  10 value 94.035151
iter  20 value 92.386399
iter  30 value 87.225001
iter  40 value 86.823864
iter  50 value 85.780836
iter  60 value 82.871866
iter  70 value 82.481202
iter  80 value 82.241574
iter  90 value 81.794771
iter 100 value 81.256484
final  value 81.256484 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.456599 
iter  10 value 93.994564
iter  20 value 88.008275
iter  30 value 87.177603
iter  40 value 86.448327
iter  50 value 86.176209
iter  60 value 85.825300
iter  70 value 85.626021
iter  80 value 85.285363
iter  90 value 84.324778
iter 100 value 82.767466
final  value 82.767466 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.912770 
iter  10 value 94.003879
iter  20 value 92.504186
iter  30 value 89.004730
iter  40 value 86.312410
iter  50 value 85.361847
iter  60 value 84.631213
iter  70 value 83.397192
iter  80 value 82.861087
iter  90 value 82.729343
iter 100 value 82.128432
final  value 82.128432 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.904050 
iter  10 value 94.068190
iter  20 value 91.700073
iter  30 value 85.094933
iter  40 value 83.653229
iter  50 value 82.995458
iter  60 value 82.183193
iter  70 value 82.035108
iter  80 value 81.948518
iter  90 value 81.706640
iter 100 value 81.597994
final  value 81.597994 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 121.334799 
iter  10 value 94.009321
iter  20 value 91.513677
iter  30 value 90.072464
iter  40 value 86.806289
iter  50 value 86.738116
iter  60 value 86.047296
iter  70 value 85.635537
iter  80 value 84.597940
iter  90 value 83.878020
iter 100 value 83.498410
final  value 83.498410 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.797457 
iter  10 value 94.247333
iter  20 value 89.782725
iter  30 value 87.673741
iter  40 value 86.854094
iter  50 value 85.230046
iter  60 value 84.050834
iter  70 value 82.828933
iter  80 value 81.734456
iter  90 value 81.434343
iter 100 value 81.131925
final  value 81.131925 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.800863 
iter  10 value 94.074373
iter  20 value 89.827068
iter  30 value 87.590394
iter  40 value 86.743272
iter  50 value 85.754682
iter  60 value 84.660438
iter  70 value 83.603236
iter  80 value 82.920065
iter  90 value 82.535332
iter 100 value 81.565913
final  value 81.565913 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.329285 
iter  10 value 94.054562
iter  20 value 94.052966
iter  30 value 92.518121
iter  40 value 88.998306
iter  50 value 88.910880
iter  60 value 88.908390
iter  70 value 88.904873
iter  80 value 85.070958
iter  90 value 84.936570
iter 100 value 84.930208
final  value 84.930208 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 95.800545 
final  value 94.054395 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.693690 
final  value 94.039988 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.401742 
final  value 94.054488 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.294972 
iter  10 value 94.054664
iter  20 value 94.048905
iter  30 value 88.549920
iter  40 value 88.517637
iter  50 value 88.485411
final  value 88.485249 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.937560 
iter  10 value 94.043499
iter  20 value 94.038402
iter  30 value 93.824816
iter  40 value 88.540655
iter  50 value 88.422719
iter  60 value 88.374420
iter  70 value 87.594825
final  value 87.594779 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.271028 
iter  10 value 93.702599
iter  20 value 92.563624
iter  30 value 92.526822
iter  40 value 92.116417
iter  50 value 92.100207
iter  60 value 91.881114
iter  70 value 91.860692
final  value 91.854974 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.890765 
iter  10 value 93.966799
iter  20 value 93.916308
iter  30 value 93.911935
final  value 93.911919 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.281386 
iter  10 value 94.057811
iter  20 value 91.552720
iter  30 value 86.379634
iter  40 value 85.664348
iter  50 value 84.892851
iter  60 value 83.301635
iter  70 value 81.003202
iter  80 value 80.605722
iter  90 value 80.427155
iter 100 value 80.260878
final  value 80.260878 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 124.618256 
iter  10 value 94.058596
iter  20 value 94.052724
iter  30 value 93.635324
iter  40 value 87.288996
iter  50 value 86.490585
iter  60 value 86.042658
iter  70 value 85.999881
iter  80 value 85.998413
iter  90 value 85.998174
iter 100 value 85.998109
final  value 85.998109 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.397483 
iter  10 value 94.046529
iter  20 value 94.039242
iter  30 value 89.766378
iter  40 value 86.288762
iter  50 value 85.371975
iter  60 value 85.363400
iter  70 value 84.949348
iter  80 value 84.946490
final  value 84.939857 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.763384 
iter  10 value 94.046121
iter  20 value 94.038615
iter  30 value 93.377321
iter  40 value 91.285211
iter  50 value 91.206840
iter  60 value 91.205183
iter  70 value 90.476441
iter  80 value 90.458222
iter  90 value 90.072984
final  value 90.062397 
converged
Fitting Repeat 3 

# weights:  507
initial  value 93.117936 
iter  10 value 88.606342
iter  20 value 87.988805
iter  30 value 87.837502
iter  40 value 87.836347
iter  50 value 87.803433
iter  60 value 87.798007
iter  60 value 87.798007
final  value 87.798007 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.124797 
iter  10 value 94.060468
iter  20 value 94.052070
iter  30 value 87.397718
iter  40 value 83.999036
iter  50 value 82.353409
iter  60 value 80.047385
iter  70 value 80.037837
final  value 80.037704 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.073983 
iter  10 value 94.046642
iter  20 value 94.027817
iter  30 value 93.810427
final  value 93.810424 
converged
Fitting Repeat 1 

# weights:  103
initial  value 124.760464 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.713036 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.845041 
final  value 92.211113 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.311464 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 113.793450 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.095392 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 115.908939 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.519263 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.027370 
final  value 93.915746 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.869459 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.505195 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  507
initial  value 117.418487 
iter  10 value 92.191089
final  value 92.116925 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.471588 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 122.102468 
iter  10 value 93.288889
iter  10 value 93.288889
iter  10 value 93.288889
final  value 93.288889 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.423219 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.051902 
iter  10 value 94.055138
iter  20 value 93.809998
iter  30 value 93.456360
iter  40 value 93.448658
iter  50 value 93.445785
iter  60 value 92.585801
iter  70 value 87.506931
iter  80 value 86.803527
iter  90 value 82.613117
iter 100 value 80.435025
final  value 80.435025 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 95.909694 
iter  10 value 94.055905
iter  20 value 93.848929
iter  30 value 93.471562
iter  40 value 93.441798
iter  50 value 86.592429
iter  60 value 86.199541
iter  70 value 84.759699
iter  80 value 83.138803
iter  90 value 83.122367
final  value 83.122310 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.887790 
iter  10 value 94.121429
iter  20 value 94.046368
iter  30 value 93.605523
iter  40 value 88.794592
iter  50 value 81.577643
iter  60 value 81.398146
iter  70 value 81.368395
iter  80 value 79.705974
iter  90 value 79.211675
iter 100 value 79.090929
final  value 79.090929 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 105.359802 
iter  10 value 93.806722
iter  20 value 86.388294
iter  30 value 81.251961
iter  40 value 80.209723
iter  50 value 79.520087
iter  60 value 79.373062
iter  70 value 79.175914
iter  80 value 79.097115
final  value 79.096282 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.456410 
iter  10 value 93.276785
iter  20 value 85.020120
iter  30 value 84.140942
iter  40 value 83.316697
iter  50 value 83.159059
iter  60 value 83.128559
final  value 83.128265 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.272110 
iter  10 value 93.758596
iter  20 value 86.923477
iter  30 value 85.694090
iter  40 value 84.042983
iter  50 value 81.995188
iter  60 value 80.666618
iter  70 value 79.718017
iter  80 value 79.440269
iter  90 value 79.367654
iter 100 value 79.351139
final  value 79.351139 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.817375 
iter  10 value 91.431994
iter  20 value 86.967895
iter  30 value 86.078262
iter  40 value 85.878676
iter  50 value 85.278079
iter  60 value 84.690820
iter  70 value 83.723433
iter  80 value 81.479336
iter  90 value 80.671762
iter 100 value 80.612673
final  value 80.612673 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.522314 
iter  10 value 94.040303
iter  20 value 93.802919
iter  30 value 93.505133
iter  40 value 92.573055
iter  50 value 85.919465
iter  60 value 80.782937
iter  70 value 79.545717
iter  80 value 78.909154
iter  90 value 78.580836
iter 100 value 78.521667
final  value 78.521667 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 113.260068 
iter  10 value 93.913354
iter  20 value 89.907459
iter  30 value 87.573515
iter  40 value 85.915389
iter  50 value 84.289092
iter  60 value 82.928195
iter  70 value 81.597865
iter  80 value 80.463766
iter  90 value 78.350577
iter 100 value 77.864182
final  value 77.864182 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 118.129225 
iter  10 value 94.178896
iter  20 value 91.959161
iter  30 value 84.210497
iter  40 value 83.424573
iter  50 value 82.893850
iter  60 value 82.584007
iter  70 value 82.488701
iter  80 value 82.375717
iter  90 value 82.358747
iter 100 value 82.347657
final  value 82.347657 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.143283 
iter  10 value 94.074816
iter  20 value 90.813715
iter  30 value 85.005204
iter  40 value 82.376748
iter  50 value 80.238135
iter  60 value 78.407344
iter  70 value 77.741223
iter  80 value 77.495898
iter  90 value 77.356611
iter 100 value 77.149245
final  value 77.149245 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.187143 
iter  10 value 86.850028
iter  20 value 84.574043
iter  30 value 83.584498
iter  40 value 81.379633
iter  50 value 79.243860
iter  60 value 78.352932
iter  70 value 77.898390
iter  80 value 77.788704
iter  90 value 77.524304
iter 100 value 77.365045
final  value 77.365045 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.851459 
iter  10 value 94.204454
iter  20 value 87.673704
iter  30 value 84.837650
iter  40 value 82.826901
iter  50 value 81.783908
iter  60 value 80.697044
iter  70 value 79.916411
iter  80 value 79.831849
iter  90 value 79.650564
iter 100 value 79.434171
final  value 79.434171 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.619070 
iter  10 value 94.923319
iter  20 value 91.337436
iter  30 value 85.841735
iter  40 value 82.111319
iter  50 value 79.682435
iter  60 value 78.750319
iter  70 value 78.427403
iter  80 value 77.657733
iter  90 value 77.499550
iter 100 value 77.449434
final  value 77.449434 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 118.545026 
iter  10 value 93.586334
iter  20 value 83.318980
iter  30 value 81.113504
iter  40 value 79.943676
iter  50 value 78.660413
iter  60 value 78.445901
iter  70 value 78.292435
iter  80 value 78.181520
iter  90 value 78.048591
iter 100 value 77.963828
final  value 77.963828 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 110.411439 
iter  10 value 93.917759
iter  20 value 93.916056
iter  30 value 84.257641
iter  40 value 82.783510
iter  50 value 82.740344
iter  60 value 82.677922
iter  70 value 82.676874
iter  80 value 82.389712
final  value 82.382518 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.858670 
final  value 94.054320 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.669643 
final  value 94.054557 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.524974 
final  value 93.456737 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.194173 
final  value 94.054598 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.889218 
iter  10 value 94.057833
iter  20 value 94.040655
iter  30 value 93.455137
iter  40 value 93.439734
final  value 93.438810 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.287163 
iter  10 value 93.833539
iter  20 value 83.318773
iter  30 value 81.954465
iter  40 value 81.684524
iter  50 value 81.464448
iter  60 value 81.437742
iter  70 value 81.094029
iter  80 value 80.213212
iter  90 value 80.156872
iter 100 value 80.150992
final  value 80.150992 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 96.724163 
iter  10 value 93.920431
iter  20 value 93.800840
iter  30 value 88.374510
iter  40 value 84.143303
iter  50 value 84.124272
final  value 84.124148 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.590638 
iter  10 value 94.057618
iter  20 value 93.845038
iter  30 value 93.439288
iter  40 value 93.373962
iter  50 value 93.373767
iter  50 value 93.373766
iter  50 value 93.373766
final  value 93.373766 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.084958 
iter  10 value 81.425569
iter  20 value 80.708469
iter  30 value 80.705785
iter  40 value 80.616966
iter  50 value 80.614929
iter  60 value 80.421281
iter  70 value 80.419565
iter  80 value 80.418713
iter  90 value 80.413380
iter 100 value 80.383722
final  value 80.383722 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.590050 
iter  10 value 93.923394
iter  20 value 93.918097
iter  30 value 93.916833
iter  40 value 89.069968
iter  50 value 84.357921
iter  60 value 84.245527
iter  70 value 84.229380
iter  80 value 84.226870
final  value 84.226847 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.345920 
iter  10 value 93.894237
iter  20 value 93.873996
iter  30 value 93.420044
iter  40 value 88.289624
iter  50 value 84.129283
iter  60 value 84.126040
iter  70 value 84.125235
iter  80 value 83.943618
iter  90 value 83.460612
iter 100 value 83.449279
final  value 83.449279 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.234456 
iter  10 value 93.297205
iter  20 value 93.296256
iter  30 value 90.582209
iter  40 value 82.462641
iter  50 value 82.279914
iter  60 value 82.254087
iter  70 value 82.253986
final  value 82.253433 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.630661 
iter  10 value 93.469170
iter  20 value 93.399260
iter  30 value 93.396811
iter  40 value 90.727926
iter  50 value 85.388090
iter  60 value 85.387893
iter  70 value 85.277421
iter  80 value 85.276835
iter  90 value 85.274550
iter 100 value 85.119941
final  value 85.119941 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 129.561255 
iter  10 value 94.061205
iter  20 value 94.054285
iter  30 value 92.259749
iter  40 value 92.011844
iter  50 value 90.956659
final  value 90.955249 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.401187 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.353880 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.157994 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.725251 
iter  10 value 94.461207
iter  10 value 94.461207
iter  10 value 94.461207
final  value 94.461207 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.119397 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.742304 
final  value 93.772973 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.959279 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.979490 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.353445 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.073215 
iter  10 value 94.484794
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.363582 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 103.623486 
iter  10 value 93.564151
final  value 93.540410 
converged
Fitting Repeat 3 

# weights:  507
initial  value 92.636686 
iter  10 value 86.909008
iter  20 value 86.766317
iter  30 value 86.765971
iter  40 value 86.765835
iter  40 value 86.765835
iter  40 value 86.765835
final  value 86.765835 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.752755 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.735823 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 105.133608 
iter  10 value 94.339222
iter  20 value 87.014810
iter  30 value 84.839796
iter  40 value 84.527044
iter  50 value 84.170007
iter  60 value 83.851022
iter  70 value 83.822356
final  value 83.822251 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.302282 
iter  10 value 94.537741
iter  20 value 94.487875
iter  30 value 94.383674
iter  40 value 93.960313
iter  50 value 93.901291
iter  60 value 93.815691
iter  70 value 88.736383
iter  80 value 82.715915
iter  90 value 82.010898
iter 100 value 81.699175
final  value 81.699175 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.634761 
iter  10 value 94.489995
iter  20 value 94.356771
iter  30 value 93.858801
iter  40 value 93.840625
iter  50 value 93.729198
iter  60 value 90.409276
iter  70 value 87.457901
iter  80 value 83.447256
iter  90 value 82.354185
iter 100 value 80.944360
final  value 80.944360 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 98.080689 
iter  10 value 94.500372
iter  20 value 92.665162
iter  30 value 84.609066
iter  40 value 83.956571
iter  50 value 83.870758
iter  60 value 82.965040
iter  70 value 82.608107
iter  80 value 82.261978
iter  90 value 81.600286
iter 100 value 81.147153
final  value 81.147153 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.059900 
iter  10 value 94.472954
iter  20 value 92.667416
iter  30 value 87.913633
iter  40 value 83.275165
iter  50 value 82.823037
iter  60 value 82.604366
iter  70 value 81.771137
iter  80 value 81.764290
final  value 81.764288 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.156075 
iter  10 value 93.701426
iter  20 value 86.069510
iter  30 value 84.312628
iter  40 value 81.452257
iter  50 value 80.599822
iter  60 value 79.878990
iter  70 value 79.715466
iter  80 value 79.648728
iter  90 value 79.639298
iter 100 value 79.633609
final  value 79.633609 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.428329 
iter  10 value 94.236398
iter  20 value 93.675761
iter  30 value 88.686020
iter  40 value 84.920035
iter  50 value 83.859820
iter  60 value 83.547614
iter  70 value 83.390015
iter  80 value 83.057639
iter  90 value 81.556758
iter 100 value 79.986560
final  value 79.986560 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.850214 
iter  10 value 94.392944
iter  20 value 89.428603
iter  30 value 84.382604
iter  40 value 83.451595
iter  50 value 83.220966
iter  60 value 82.583241
iter  70 value 81.997692
iter  80 value 81.721784
iter  90 value 80.062440
iter 100 value 79.716360
final  value 79.716360 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.283669 
iter  10 value 94.361155
iter  20 value 93.775035
iter  30 value 90.124072
iter  40 value 84.663567
iter  50 value 83.978539
iter  60 value 81.159935
iter  70 value 79.738898
iter  80 value 79.222868
iter  90 value 79.119448
iter 100 value 79.054601
final  value 79.054601 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.383114 
iter  10 value 95.718121
iter  20 value 93.287400
iter  30 value 86.248450
iter  40 value 83.809990
iter  50 value 82.977856
iter  60 value 82.120121
iter  70 value 81.229124
iter  80 value 80.611974
iter  90 value 80.203402
iter 100 value 79.979709
final  value 79.979709 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.375140 
iter  10 value 94.765717
iter  20 value 84.963422
iter  30 value 83.981076
iter  40 value 82.278999
iter  50 value 81.614775
iter  60 value 81.514563
iter  70 value 81.269226
iter  80 value 80.869121
iter  90 value 79.757682
iter 100 value 79.483187
final  value 79.483187 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 114.796286 
iter  10 value 87.658863
iter  20 value 85.401673
iter  30 value 84.604551
iter  40 value 81.554776
iter  50 value 80.741177
iter  60 value 79.997328
iter  70 value 79.877511
iter  80 value 79.577355
iter  90 value 79.430239
iter 100 value 79.140918
final  value 79.140918 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.260200 
iter  10 value 96.946835
iter  20 value 94.413147
iter  30 value 92.462854
iter  40 value 91.215593
iter  50 value 83.975062
iter  60 value 83.309086
iter  70 value 82.143690
iter  80 value 80.731207
iter  90 value 80.361634
iter 100 value 80.152153
final  value 80.152153 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.725277 
iter  10 value 94.036906
iter  20 value 93.942124
iter  30 value 87.377901
iter  40 value 83.732351
iter  50 value 82.708322
iter  60 value 81.238062
iter  70 value 80.841504
iter  80 value 80.284552
iter  90 value 80.267257
iter 100 value 80.189421
final  value 80.189421 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.108547 
iter  10 value 94.586698
iter  20 value 94.079947
iter  30 value 88.656389
iter  40 value 87.004813
iter  50 value 83.735848
iter  60 value 81.638293
iter  70 value 81.048530
iter  80 value 79.782936
iter  90 value 79.026733
iter 100 value 78.843752
final  value 78.843752 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.167712 
iter  10 value 94.485679
iter  20 value 94.484225
iter  20 value 94.484225
iter  20 value 94.484225
final  value 94.484225 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.169687 
iter  10 value 93.378684
iter  20 value 93.377341
final  value 93.376562 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.834328 
final  value 94.485799 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.971324 
final  value 94.485782 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.250763 
final  value 94.485849 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.017391 
iter  10 value 93.778244
iter  20 value 93.688040
iter  30 value 92.852302
iter  40 value 86.479715
iter  50 value 81.114236
iter  60 value 79.353548
iter  70 value 78.618911
iter  80 value 78.614483
iter  90 value 78.337442
iter 100 value 78.155847
final  value 78.155847 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.043896 
iter  10 value 93.778451
iter  20 value 93.776845
iter  30 value 93.441964
iter  40 value 84.568527
iter  50 value 81.684519
iter  60 value 81.374631
final  value 81.268535 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.735916 
iter  10 value 94.493883
iter  20 value 94.488688
final  value 94.488600 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.762450 
iter  10 value 94.489090
iter  20 value 94.315418
final  value 93.773342 
converged
Fitting Repeat 5 

# weights:  305
initial  value 117.000040 
iter  10 value 89.552579
iter  20 value 86.101338
iter  30 value 86.094537
final  value 86.093863 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.125923 
iter  10 value 86.312167
iter  20 value 85.902933
iter  30 value 85.428665
iter  40 value 85.426869
iter  50 value 84.999141
iter  60 value 81.054211
iter  70 value 80.320572
iter  80 value 79.885294
iter  90 value 79.882204
final  value 79.881721 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.450328 
iter  10 value 88.031679
iter  20 value 86.171129
iter  30 value 83.874029
iter  40 value 82.859022
iter  50 value 82.350523
iter  60 value 81.960258
final  value 81.959945 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.641876 
iter  10 value 94.492521
iter  20 value 94.366306
iter  30 value 85.260363
iter  40 value 81.980565
iter  50 value 81.965186
iter  60 value 81.964398
iter  70 value 81.963622
iter  80 value 81.611818
iter  90 value 80.763458
iter 100 value 79.335149
final  value 79.335149 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.037601 
iter  10 value 94.492783
iter  20 value 94.484111
iter  30 value 87.728291
iter  40 value 83.029965
iter  50 value 80.255594
iter  60 value 79.922943
iter  70 value 79.895700
iter  80 value 79.289805
iter  90 value 78.992722
final  value 78.992550 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.124242 
iter  10 value 94.365879
iter  20 value 85.774335
iter  30 value 85.718407
iter  40 value 85.642892
iter  50 value 85.572168
final  value 85.572087 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.586351 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 107.042586 
iter  10 value 92.607050
iter  20 value 92.552247
final  value 92.552060 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.677024 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.581076 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 107.443663 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.486752 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 126.799729 
iter  10 value 94.466827
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.308352 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 115.333627 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  305
initial  value 130.742839 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.124173 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 94.873930 
iter  10 value 89.211498
iter  20 value 84.546811
iter  30 value 81.722051
iter  40 value 81.495596
iter  50 value 81.472521
final  value 81.472496 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.238864 
iter  10 value 93.800609
iter  20 value 92.763538
final  value 92.763204 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.902294 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.229837 
iter  10 value 93.997320
iter  20 value 93.946921
final  value 93.946831 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.048586 
iter  10 value 91.572206
iter  20 value 85.801895
iter  30 value 84.368181
iter  40 value 84.089492
iter  50 value 83.906636
iter  60 value 83.570096
iter  70 value 82.108389
iter  80 value 81.835767
iter  90 value 81.832031
final  value 81.832029 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.131279 
iter  10 value 95.318897
iter  20 value 94.494952
iter  30 value 93.549906
iter  40 value 85.434368
iter  50 value 85.340432
iter  60 value 84.478414
iter  70 value 84.066648
iter  80 value 83.951355
iter  90 value 83.927742
iter 100 value 83.801196
final  value 83.801196 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.208042 
iter  10 value 94.491155
iter  20 value 91.960376
iter  30 value 91.771460
iter  40 value 91.699808
final  value 91.698937 
converged
Fitting Repeat 4 

# weights:  103
initial  value 105.809417 
iter  10 value 94.397866
iter  20 value 86.312137
iter  30 value 84.443260
iter  40 value 84.221870
iter  50 value 83.887272
iter  60 value 83.792686
final  value 83.792570 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.591611 
iter  10 value 94.515083
iter  20 value 93.505525
iter  30 value 93.440975
iter  40 value 93.371152
iter  50 value 88.154109
iter  60 value 85.155728
iter  70 value 84.338245
iter  80 value 84.195723
iter  90 value 84.112529
iter 100 value 83.854131
final  value 83.854131 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 108.326091 
iter  10 value 94.457459
iter  20 value 87.106073
iter  30 value 85.824987
iter  40 value 85.180509
iter  50 value 82.268400
iter  60 value 81.153467
iter  70 value 81.073120
iter  80 value 80.968246
iter  90 value 80.762529
iter 100 value 80.591945
final  value 80.591945 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.332797 
iter  10 value 94.580496
iter  20 value 94.405756
iter  30 value 87.067948
iter  40 value 86.408210
iter  50 value 85.955236
iter  60 value 85.474489
iter  70 value 82.434125
iter  80 value 81.653902
iter  90 value 81.206799
iter 100 value 81.135300
final  value 81.135300 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 130.045034 
iter  10 value 93.883207
iter  20 value 86.114503
iter  30 value 85.297367
iter  40 value 84.130523
iter  50 value 82.568532
iter  60 value 82.262995
iter  70 value 82.089982
iter  80 value 81.840175
iter  90 value 81.080730
iter 100 value 80.790015
final  value 80.790015 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 126.208534 
iter  10 value 94.415015
iter  20 value 90.429792
iter  30 value 82.949002
iter  40 value 82.212538
iter  50 value 81.598431
iter  60 value 81.231571
iter  70 value 81.081433
iter  80 value 81.049876
iter  90 value 80.976720
iter 100 value 80.434042
final  value 80.434042 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.149855 
iter  10 value 94.518021
iter  20 value 94.479941
iter  30 value 88.670038
iter  40 value 87.530025
iter  50 value 85.260268
iter  60 value 84.627938
iter  70 value 83.196120
iter  80 value 82.965783
iter  90 value 82.788877
iter 100 value 82.400669
final  value 82.400669 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.881216 
iter  10 value 89.378909
iter  20 value 86.652089
iter  30 value 85.150297
iter  40 value 84.998641
iter  50 value 84.893233
iter  60 value 84.857358
iter  70 value 84.835075
iter  80 value 84.432262
iter  90 value 83.836908
iter 100 value 83.505390
final  value 83.505390 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.442978 
iter  10 value 95.051846
iter  20 value 94.534399
iter  30 value 92.897035
iter  40 value 88.614485
iter  50 value 84.999907
iter  60 value 82.331519
iter  70 value 81.622947
iter  80 value 81.222680
iter  90 value 80.909884
iter 100 value 80.435143
final  value 80.435143 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.493048 
iter  10 value 91.643393
iter  20 value 89.076912
iter  30 value 85.799306
iter  40 value 84.478836
iter  50 value 82.703335
iter  60 value 81.956412
iter  70 value 80.749846
iter  80 value 80.404578
iter  90 value 80.029718
iter 100 value 79.984553
final  value 79.984553 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 118.391105 
iter  10 value 94.439826
iter  20 value 89.062277
iter  30 value 87.747771
iter  40 value 86.903218
iter  50 value 84.605793
iter  60 value 83.425369
iter  70 value 81.263134
iter  80 value 81.041183
iter  90 value 80.522015
iter 100 value 80.312421
final  value 80.312421 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.764892 
iter  10 value 94.755884
iter  20 value 93.100772
iter  30 value 85.326428
iter  40 value 84.020342
iter  50 value 83.920954
iter  60 value 81.965938
iter  70 value 81.857970
iter  80 value 81.543680
iter  90 value 81.025962
iter 100 value 80.167648
final  value 80.167648 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.808401 
final  value 94.485643 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.328201 
final  value 94.485942 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.902811 
final  value 94.485959 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.055553 
iter  10 value 93.890667
iter  20 value 93.294104
iter  30 value 93.292098
iter  40 value 93.291278
final  value 93.290012 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.684015 
final  value 94.485621 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.001101 
iter  10 value 94.489158
iter  20 value 94.376668
iter  30 value 93.487191
iter  40 value 93.413505
iter  50 value 93.211233
iter  60 value 93.209922
final  value 93.209877 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.915713 
iter  10 value 94.434557
iter  20 value 94.433431
iter  30 value 94.307747
iter  40 value 92.321670
iter  50 value 91.865200
iter  60 value 91.863812
iter  70 value 91.862215
iter  80 value 88.884996
iter  90 value 82.320062
iter 100 value 82.132210
final  value 82.132210 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.024963 
iter  10 value 94.489052
iter  20 value 94.466502
iter  30 value 92.692701
iter  40 value 92.514070
final  value 92.514003 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.411910 
iter  10 value 94.488673
iter  20 value 94.422889
iter  30 value 86.942250
iter  40 value 85.954931
iter  40 value 85.954930
iter  40 value 85.954930
final  value 85.954930 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.152196 
iter  10 value 94.471807
iter  20 value 92.627059
iter  30 value 84.667622
iter  40 value 84.232420
final  value 84.232419 
converged
Fitting Repeat 1 

# weights:  507
initial  value 118.827949 
iter  10 value 94.474479
iter  20 value 93.719764
iter  30 value 87.165363
iter  40 value 85.376137
iter  50 value 84.966090
iter  60 value 84.964304
iter  70 value 84.520445
final  value 84.520380 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.640621 
iter  10 value 94.492584
iter  20 value 94.485007
iter  30 value 92.628026
iter  40 value 88.776948
iter  50 value 88.772292
iter  60 value 88.380087
iter  70 value 85.239366
iter  80 value 81.743694
iter  90 value 81.432893
iter 100 value 81.427860
final  value 81.427860 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 113.257916 
iter  10 value 94.474875
iter  20 value 94.318480
iter  30 value 86.115374
iter  40 value 84.719851
iter  50 value 82.792062
iter  60 value 82.781484
iter  70 value 82.780914
iter  80 value 82.561772
final  value 82.561631 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.291187 
iter  10 value 89.019998
iter  20 value 84.895291
iter  30 value 84.801767
iter  40 value 84.721889
iter  50 value 84.692889
iter  60 value 84.178278
iter  70 value 84.146777
iter  80 value 84.146432
iter  90 value 83.404412
iter 100 value 82.955257
final  value 82.955257 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.849527 
iter  10 value 94.562244
iter  20 value 93.460577
iter  30 value 93.370997
iter  40 value 93.330223
iter  50 value 93.309682
iter  60 value 93.303989
iter  70 value 93.295293
iter  80 value 85.248132
iter  90 value 84.975683
iter 100 value 84.912675
final  value 84.912675 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.276297 
iter  10 value 117.508864
iter  20 value 117.506058
iter  30 value 105.882141
iter  40 value 103.456367
iter  50 value 103.393249
iter  60 value 103.280159
iter  70 value 103.238221
iter  80 value 103.237957
iter  90 value 103.237226
final  value 103.237216 
converged
Fitting Repeat 2 

# weights:  507
initial  value 172.035354 
iter  10 value 117.766774
iter  20 value 117.623226
iter  30 value 117.512122
final  value 117.511945 
converged
Fitting Repeat 3 

# weights:  507
initial  value 129.725083 
iter  10 value 117.767042
iter  20 value 117.103679
iter  30 value 110.985989
final  value 110.921347 
converged
Fitting Repeat 4 

# weights:  507
initial  value 125.350904 
iter  10 value 117.897956
iter  20 value 117.808463
iter  30 value 117.060925
iter  40 value 113.720457
iter  50 value 113.717967
iter  60 value 113.558990
iter  70 value 113.398674
final  value 113.351984 
converged
Fitting Repeat 5 

# weights:  507
initial  value 126.449186 
iter  10 value 117.796576
iter  20 value 117.135259
iter  30 value 116.957223
iter  40 value 109.701025
iter  50 value 105.820182
iter  60 value 105.545931
iter  70 value 105.448865
final  value 105.447091 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Mon Apr 15 23:55:02 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 40.929   1.832  44.141 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.518 0.77635.296
FreqInteractors0.2200.0120.232
calculateAAC0.0330.0080.040
calculateAutocor0.3100.0160.326
calculateCTDC0.0720.0000.072
calculateCTDD0.5660.0000.565
calculateCTDT0.2400.0080.248
calculateCTriad0.3370.0240.361
calculateDC0.0830.0030.087
calculateF0.2900.0040.294
calculateKSAAP0.0890.0040.093
calculateQD_Sm1.6290.0321.669
calculateTC1.4490.0601.509
calculateTC_Sm0.2810.0080.289
corr_plot34.397 0.48834.885
enrichfindP0.4690.0489.622
enrichfind_hp0.0910.0201.211
enrichplot0.3250.0270.353
filter_missing_values0.0010.0000.001
getFASTA0.5270.0254.353
getHPI0.0010.0000.000
get_negativePPI0.0010.0000.001
get_positivePPI000
impute_missing_data0.0020.0000.001
plotPPI0.0680.0030.072
pred_ensembel13.456 0.56010.701
var_imp35.452 0.97236.425