Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-03-04 11:37:26 -0500 (Mon, 04 Mar 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.2 Patched (2023-11-13 r85521) -- "Eye Holes" | 4692 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.2 (2023-10-31 ucrt) -- "Eye Holes" | 4445 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes" | 4466 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.8.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz |
StartedAt: 2024-03-03 21:11:38 -0500 (Sun, 03 Mar 2024) |
EndedAt: 2024-03-03 21:16:45 -0500 (Sun, 03 Mar 2024) |
EllapsedTime: 306.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’ * using R version 4.3.2 Patched (2023-11-01 r85457) * using platform: x86_64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.3 (clang-1403.0.22.14.1) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.8.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.914 1.963 38.427 FSmethod 35.134 1.970 37.786 corr_plot 35.034 1.939 37.406 pred_ensembel 14.158 0.616 10.794 enrichfindP 0.498 0.069 8.557 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.953225 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.168879 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 113.369756 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.829594 iter 10 value 94.275371 final value 94.275362 converged Fitting Repeat 5 # weights: 103 initial value 99.203484 final value 94.275362 converged Fitting Repeat 1 # weights: 305 initial value 98.310289 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 116.451812 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 105.376902 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.761578 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.488279 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 97.891767 iter 10 value 94.275367 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 99.896957 iter 10 value 94.483888 iter 20 value 94.300238 iter 30 value 94.249355 final value 94.247835 converged Fitting Repeat 3 # weights: 507 initial value 97.432448 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.888434 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.128788 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.905082 iter 10 value 94.489425 iter 20 value 94.387029 iter 30 value 93.838350 iter 40 value 91.808451 iter 50 value 91.041276 iter 60 value 91.028790 final value 91.028436 converged Fitting Repeat 2 # weights: 103 initial value 96.405332 iter 10 value 94.014822 iter 20 value 87.155751 iter 30 value 86.059131 iter 40 value 84.999091 iter 50 value 81.125022 iter 60 value 80.632701 iter 70 value 80.454261 iter 80 value 80.423634 iter 80 value 80.423634 final value 80.423634 converged Fitting Repeat 3 # weights: 103 initial value 99.369663 iter 10 value 94.266901 iter 20 value 86.356027 iter 30 value 85.901876 iter 40 value 84.780803 iter 50 value 83.098026 iter 60 value 82.940298 iter 70 value 82.826999 final value 82.823642 converged Fitting Repeat 4 # weights: 103 initial value 99.145738 iter 10 value 94.452355 iter 20 value 93.892777 iter 30 value 84.759929 iter 40 value 82.622382 iter 50 value 82.603726 iter 60 value 82.585652 iter 70 value 82.314748 iter 80 value 82.284124 final value 82.283126 converged Fitting Repeat 5 # weights: 103 initial value 101.161228 iter 10 value 94.476993 iter 20 value 87.572606 iter 30 value 86.468337 iter 40 value 86.179352 iter 50 value 84.049186 iter 60 value 82.970550 iter 70 value 82.824360 final value 82.823642 converged Fitting Repeat 1 # weights: 305 initial value 110.217545 iter 10 value 94.353876 iter 20 value 90.080006 iter 30 value 88.209349 iter 40 value 87.518924 iter 50 value 83.908460 iter 60 value 82.559407 iter 70 value 82.316447 iter 80 value 81.823745 iter 90 value 81.291426 iter 100 value 80.568174 final value 80.568174 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.598645 iter 10 value 94.913180 iter 20 value 94.694291 iter 30 value 89.859171 iter 40 value 86.907461 iter 50 value 83.457096 iter 60 value 83.202017 iter 70 value 82.690878 iter 80 value 82.272859 iter 90 value 80.274694 iter 100 value 79.634447 final value 79.634447 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.314303 iter 10 value 94.279140 iter 20 value 88.572462 iter 30 value 83.505589 iter 40 value 83.089681 iter 50 value 82.749285 iter 60 value 82.644851 iter 70 value 82.478356 iter 80 value 81.856817 iter 90 value 80.643598 iter 100 value 79.785705 final value 79.785705 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.224487 iter 10 value 94.660561 iter 20 value 87.172212 iter 30 value 86.368806 iter 40 value 86.124945 iter 50 value 85.742885 iter 60 value 84.651656 iter 70 value 82.745273 iter 80 value 81.822576 iter 90 value 80.439150 iter 100 value 79.821674 final value 79.821674 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.572840 iter 10 value 94.384301 iter 20 value 86.585071 iter 30 value 82.121913 iter 40 value 81.479301 iter 50 value 80.929335 iter 60 value 80.670195 iter 70 value 80.223824 iter 80 value 79.608188 iter 90 value 78.850095 iter 100 value 78.664579 final value 78.664579 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.642160 iter 10 value 94.087043 iter 20 value 86.585321 iter 30 value 83.091241 iter 40 value 82.376721 iter 50 value 81.380111 iter 60 value 81.036683 iter 70 value 79.818905 iter 80 value 79.223950 iter 90 value 78.986722 iter 100 value 78.954170 final value 78.954170 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.525046 iter 10 value 94.504801 iter 20 value 94.204277 iter 30 value 87.336585 iter 40 value 85.907201 iter 50 value 84.614665 iter 60 value 82.853468 iter 70 value 82.609114 iter 80 value 82.496723 iter 90 value 82.354207 iter 100 value 82.070661 final value 82.070661 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.756261 iter 10 value 94.787697 iter 20 value 94.343963 iter 30 value 93.227686 iter 40 value 86.301638 iter 50 value 82.240747 iter 60 value 81.151223 iter 70 value 80.811221 iter 80 value 80.101777 iter 90 value 79.358539 iter 100 value 78.856534 final value 78.856534 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.959755 iter 10 value 94.937932 iter 20 value 94.450500 iter 30 value 90.456047 iter 40 value 87.097223 iter 50 value 84.246943 iter 60 value 82.806291 iter 70 value 81.722458 iter 80 value 80.243990 iter 90 value 79.717654 iter 100 value 79.458081 final value 79.458081 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.644729 iter 10 value 100.000749 iter 20 value 91.520308 iter 30 value 86.592994 iter 40 value 82.530538 iter 50 value 80.554380 iter 60 value 79.896070 iter 70 value 79.775936 iter 80 value 79.213823 iter 90 value 78.830245 iter 100 value 78.718732 final value 78.718732 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.896573 iter 10 value 93.425281 iter 20 value 93.424938 iter 30 value 93.424507 iter 40 value 87.929138 iter 50 value 86.529434 iter 60 value 86.525595 final value 86.525591 converged Fitting Repeat 2 # weights: 103 initial value 95.235694 final value 94.485904 converged Fitting Repeat 3 # weights: 103 initial value 111.574667 iter 10 value 94.486082 iter 20 value 94.484232 final value 94.484213 converged Fitting Repeat 4 # weights: 103 initial value 98.041982 final value 94.485580 converged Fitting Repeat 5 # weights: 103 initial value 101.679702 final value 94.485797 converged Fitting Repeat 1 # weights: 305 initial value 105.356335 iter 10 value 94.280524 iter 20 value 94.276718 iter 30 value 94.255323 iter 40 value 94.224080 iter 50 value 94.223880 final value 94.223834 converged Fitting Repeat 2 # weights: 305 initial value 106.544617 iter 10 value 94.280542 iter 20 value 94.275737 final value 94.275523 converged Fitting Repeat 3 # weights: 305 initial value 98.229181 iter 10 value 94.280534 iter 20 value 94.256568 iter 30 value 88.746396 iter 40 value 86.862447 iter 50 value 86.253172 iter 60 value 86.159889 iter 70 value 85.345610 final value 85.316572 converged Fitting Repeat 4 # weights: 305 initial value 98.837881 iter 10 value 94.280405 iter 20 value 94.276094 iter 30 value 93.883714 iter 40 value 85.258936 final value 85.258589 converged Fitting Repeat 5 # weights: 305 initial value 101.978929 iter 10 value 94.488661 iter 20 value 94.241268 iter 30 value 89.425678 iter 40 value 87.998065 iter 50 value 87.241791 iter 60 value 85.265704 iter 70 value 83.797889 iter 80 value 83.548201 iter 90 value 83.452338 iter 100 value 83.087010 final value 83.087010 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.243035 iter 10 value 94.283195 iter 20 value 94.277449 iter 30 value 90.102596 iter 40 value 79.400844 iter 50 value 79.028711 iter 60 value 79.023495 iter 70 value 79.010619 iter 80 value 78.991328 final value 78.990828 converged Fitting Repeat 2 # weights: 507 initial value 116.046325 iter 10 value 94.491986 iter 20 value 94.484579 iter 30 value 94.454680 iter 40 value 94.259115 iter 50 value 94.249690 iter 60 value 94.248375 final value 94.247930 converged Fitting Repeat 3 # weights: 507 initial value 114.099294 iter 10 value 94.492968 iter 20 value 94.487593 iter 30 value 94.442247 iter 40 value 93.445593 iter 50 value 88.007501 iter 60 value 86.258241 iter 70 value 82.739384 iter 80 value 80.858303 iter 90 value 79.914465 iter 100 value 79.377568 final value 79.377568 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.676444 iter 10 value 94.492086 iter 20 value 94.355556 iter 30 value 94.232947 final value 94.230000 converged Fitting Repeat 5 # weights: 507 initial value 105.001243 iter 10 value 89.363306 iter 20 value 85.849938 iter 30 value 85.648351 iter 40 value 85.499110 iter 50 value 85.484954 iter 60 value 85.470125 iter 70 value 85.467185 iter 80 value 82.653572 iter 90 value 82.169675 iter 100 value 81.142391 final value 81.142391 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.801380 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.684501 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.999337 iter 10 value 92.032213 iter 20 value 81.357293 iter 30 value 80.110657 iter 30 value 80.110656 iter 30 value 80.110656 final value 80.110656 converged Fitting Repeat 4 # weights: 103 initial value 94.561807 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.554120 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.551871 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.087120 iter 10 value 93.633932 final value 93.259020 converged Fitting Repeat 3 # weights: 305 initial value 95.871882 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.078203 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 112.257355 iter 10 value 92.867292 iter 20 value 86.425560 iter 30 value 84.368089 iter 40 value 84.182843 iter 50 value 84.159337 final value 84.159312 converged Fitting Repeat 1 # weights: 507 initial value 104.959777 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 101.374544 iter 10 value 93.330578 final value 93.328261 converged Fitting Repeat 3 # weights: 507 initial value 110.228280 iter 10 value 93.328262 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 106.152512 iter 10 value 93.334982 final value 93.328261 converged Fitting Repeat 5 # weights: 507 initial value 110.994191 iter 10 value 91.432776 final value 91.432749 converged Fitting Repeat 1 # weights: 103 initial value 96.961651 iter 10 value 94.049632 iter 20 value 93.391363 iter 30 value 91.680622 iter 40 value 90.519587 iter 50 value 90.306531 iter 60 value 90.146787 iter 70 value 90.128248 iter 80 value 90.127970 iter 80 value 90.127969 iter 80 value 90.127969 final value 90.127969 converged Fitting Repeat 2 # weights: 103 initial value 102.394535 iter 10 value 94.055335 iter 20 value 93.979260 iter 30 value 93.339933 iter 40 value 91.845830 iter 50 value 83.388241 iter 60 value 81.591558 iter 70 value 80.978236 iter 80 value 80.582919 iter 90 value 80.427499 iter 100 value 80.381168 final value 80.381168 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.873467 iter 10 value 93.598156 iter 20 value 93.305584 iter 30 value 86.368701 iter 40 value 85.706780 iter 50 value 85.245474 iter 60 value 83.536686 iter 70 value 82.833320 iter 80 value 82.764853 iter 90 value 82.762963 final value 82.762335 converged Fitting Repeat 4 # weights: 103 initial value 99.763940 iter 10 value 94.053423 iter 20 value 89.343370 iter 30 value 84.946718 iter 40 value 84.693918 iter 50 value 83.667442 iter 60 value 82.534233 iter 70 value 82.273354 iter 80 value 82.266984 final value 82.266204 converged Fitting Repeat 5 # weights: 103 initial value 98.498893 iter 10 value 93.309306 iter 20 value 92.402419 iter 30 value 89.165725 iter 40 value 88.854261 iter 50 value 88.627124 iter 60 value 86.844613 iter 70 value 84.567709 iter 80 value 80.366326 iter 90 value 79.877646 iter 100 value 79.863140 final value 79.863140 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.289878 iter 10 value 94.281028 iter 20 value 86.233698 iter 30 value 83.199380 iter 40 value 82.725208 iter 50 value 80.654033 iter 60 value 79.649499 iter 70 value 79.495290 iter 80 value 79.339546 iter 90 value 79.087943 iter 100 value 78.644306 final value 78.644306 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.223833 iter 10 value 94.026586 iter 20 value 89.725880 iter 30 value 84.929228 iter 40 value 83.183720 iter 50 value 82.704258 iter 60 value 81.725283 iter 70 value 80.918402 iter 80 value 80.693147 iter 90 value 80.586262 iter 100 value 79.587053 final value 79.587053 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.164013 iter 10 value 94.112049 iter 20 value 90.900818 iter 30 value 82.545376 iter 40 value 82.029515 iter 50 value 79.921599 iter 60 value 79.659185 iter 70 value 79.335953 iter 80 value 79.215931 iter 90 value 79.066377 iter 100 value 78.876530 final value 78.876530 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.608593 iter 10 value 91.378709 iter 20 value 82.948972 iter 30 value 82.207559 iter 40 value 81.875803 iter 50 value 81.280372 iter 60 value 80.120777 iter 70 value 79.258010 iter 80 value 78.533221 iter 90 value 78.430538 iter 100 value 78.211433 final value 78.211433 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.734300 iter 10 value 89.555100 iter 20 value 85.463993 iter 30 value 84.863862 iter 40 value 84.458444 iter 50 value 83.646320 iter 60 value 81.618545 iter 70 value 81.176966 iter 80 value 79.436667 iter 90 value 79.105350 iter 100 value 78.890905 final value 78.890905 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.507062 iter 10 value 92.485511 iter 20 value 89.322071 iter 30 value 83.468155 iter 40 value 81.907520 iter 50 value 80.612456 iter 60 value 80.128016 iter 70 value 80.053377 iter 80 value 79.979468 iter 90 value 79.976753 iter 100 value 79.845798 final value 79.845798 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.589710 iter 10 value 94.006001 iter 20 value 89.942106 iter 30 value 86.313480 iter 40 value 83.845540 iter 50 value 80.852748 iter 60 value 80.549563 iter 70 value 79.972019 iter 80 value 79.382916 iter 90 value 78.657515 iter 100 value 78.209787 final value 78.209787 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.077038 iter 10 value 96.436025 iter 20 value 93.913164 iter 30 value 86.802999 iter 40 value 85.810866 iter 50 value 81.669848 iter 60 value 80.486082 iter 70 value 79.659253 iter 80 value 78.750968 iter 90 value 78.576877 iter 100 value 78.452870 final value 78.452870 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.333459 iter 10 value 96.426649 iter 20 value 86.904560 iter 30 value 80.599161 iter 40 value 78.821770 iter 50 value 78.173628 iter 60 value 77.925494 iter 70 value 77.909160 iter 80 value 77.861907 iter 90 value 77.799116 iter 100 value 77.736968 final value 77.736968 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.786660 iter 10 value 93.492785 iter 20 value 88.493960 iter 30 value 85.681027 iter 40 value 85.157579 iter 50 value 82.897667 iter 60 value 80.232082 iter 70 value 79.705191 iter 80 value 79.002809 iter 90 value 78.809782 iter 100 value 78.746859 final value 78.746859 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.814805 final value 94.054775 converged Fitting Repeat 2 # weights: 103 initial value 97.755137 final value 94.054422 converged Fitting Repeat 3 # weights: 103 initial value 105.290608 final value 94.054316 converged Fitting Repeat 4 # weights: 103 initial value 102.304853 iter 10 value 94.054668 iter 20 value 93.957708 iter 30 value 81.829549 iter 40 value 81.327187 final value 81.323459 converged Fitting Repeat 5 # weights: 103 initial value 111.185980 iter 10 value 94.054702 iter 20 value 93.910416 iter 30 value 85.347112 iter 40 value 84.434640 iter 50 value 84.252484 iter 60 value 84.177489 iter 70 value 84.177267 final value 84.177129 converged Fitting Repeat 1 # weights: 305 initial value 108.056198 iter 10 value 93.188965 iter 20 value 93.127544 final value 93.126586 converged Fitting Repeat 2 # weights: 305 initial value 95.397696 iter 10 value 93.350080 iter 20 value 93.333649 iter 30 value 93.319856 iter 40 value 91.935144 iter 50 value 87.855475 iter 60 value 87.852965 iter 70 value 87.852563 iter 80 value 87.806696 iter 90 value 87.698774 iter 100 value 79.973519 final value 79.973519 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 94.958393 iter 10 value 93.333456 iter 20 value 93.323586 iter 30 value 93.321688 iter 40 value 92.700816 iter 50 value 91.234948 iter 60 value 90.979336 iter 70 value 90.507406 iter 80 value 83.063540 iter 90 value 82.628168 iter 100 value 82.626459 final value 82.626459 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.767167 iter 10 value 94.057170 iter 20 value 93.982804 iter 30 value 91.626281 iter 40 value 90.852052 iter 50 value 90.836764 iter 60 value 90.836616 iter 70 value 90.826506 iter 80 value 90.408953 iter 90 value 80.440934 iter 100 value 80.204238 final value 80.204238 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.150125 iter 10 value 93.333715 iter 20 value 93.332631 iter 30 value 93.032815 iter 40 value 82.994993 iter 50 value 82.030959 iter 60 value 81.605388 final value 81.560546 converged Fitting Repeat 1 # weights: 507 initial value 95.544498 iter 10 value 94.060330 iter 20 value 90.809580 iter 30 value 83.905743 iter 40 value 83.769413 final value 83.769042 converged Fitting Repeat 2 # weights: 507 initial value 105.274692 iter 10 value 91.836564 iter 20 value 82.989580 iter 30 value 80.432102 iter 40 value 79.563536 iter 50 value 79.555067 iter 60 value 79.534811 iter 70 value 79.527455 iter 80 value 79.489212 iter 90 value 79.348519 iter 100 value 79.302190 final value 79.302190 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.160577 iter 10 value 93.343184 iter 20 value 93.336239 iter 30 value 93.329192 iter 40 value 93.153977 iter 50 value 93.076481 iter 60 value 93.075883 iter 70 value 93.075698 iter 80 value 93.075463 iter 90 value 93.054783 iter 100 value 86.837595 final value 86.837595 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.433771 iter 10 value 93.337324 iter 20 value 93.329375 iter 30 value 91.157326 iter 40 value 84.632741 iter 50 value 83.307318 iter 60 value 82.066456 iter 70 value 80.736390 iter 80 value 80.725263 iter 90 value 80.723472 iter 100 value 80.723312 final value 80.723312 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.247971 iter 10 value 85.799964 iter 20 value 84.733012 iter 30 value 84.600051 iter 40 value 84.410687 iter 50 value 84.409140 iter 60 value 84.401881 iter 70 value 83.978498 iter 80 value 82.567795 iter 90 value 82.484493 iter 90 value 82.484492 iter 90 value 82.484492 final value 82.484492 converged Fitting Repeat 1 # weights: 103 initial value 102.195301 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.289116 final value 94.484210 converged Fitting Repeat 3 # weights: 103 initial value 99.954036 final value 93.783647 converged Fitting Repeat 4 # weights: 103 initial value 98.334880 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.180654 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 106.752411 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.789655 iter 10 value 93.717421 iter 20 value 92.930556 iter 30 value 92.928261 iter 30 value 92.928261 final value 92.928257 converged Fitting Repeat 3 # weights: 305 initial value 94.677903 final value 94.400000 converged Fitting Repeat 4 # weights: 305 initial value 99.639146 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.552451 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 109.224682 iter 10 value 90.492606 iter 20 value 85.620630 iter 30 value 85.495057 iter 40 value 85.462373 iter 50 value 85.460136 final value 85.460084 converged Fitting Repeat 2 # weights: 507 initial value 101.261153 iter 10 value 94.467391 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 109.596140 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 121.292421 iter 10 value 94.471113 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 110.553005 iter 10 value 88.320456 iter 20 value 85.827130 iter 30 value 85.813873 final value 85.813734 converged Fitting Repeat 1 # weights: 103 initial value 99.122865 iter 10 value 94.499624 iter 20 value 94.379250 iter 30 value 87.253684 iter 40 value 86.233658 iter 50 value 85.869826 iter 60 value 85.856991 iter 70 value 85.848402 final value 85.848362 converged Fitting Repeat 2 # weights: 103 initial value 99.900644 iter 10 value 94.488583 iter 20 value 94.427584 iter 30 value 93.809625 iter 40 value 89.266293 iter 50 value 86.374311 iter 60 value 86.059116 iter 70 value 85.856432 iter 80 value 85.848363 iter 80 value 85.848362 iter 80 value 85.848362 final value 85.848362 converged Fitting Repeat 3 # weights: 103 initial value 98.076855 iter 10 value 94.422059 iter 20 value 89.914361 iter 30 value 89.455551 iter 40 value 88.314318 iter 50 value 85.756150 iter 60 value 85.485550 iter 70 value 85.479787 iter 80 value 85.478030 final value 85.478019 converged Fitting Repeat 4 # weights: 103 initial value 97.942778 iter 10 value 94.486671 iter 20 value 94.222625 iter 30 value 93.871298 iter 40 value 93.619884 iter 50 value 92.325926 iter 60 value 89.195778 iter 70 value 87.357315 iter 80 value 85.413838 iter 90 value 85.105103 iter 100 value 84.894347 final value 84.894347 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.328864 iter 10 value 94.496547 iter 20 value 94.467062 iter 30 value 94.198433 iter 40 value 94.120033 iter 50 value 89.655501 iter 60 value 89.483086 iter 70 value 86.628694 iter 80 value 86.497678 iter 90 value 85.760053 iter 100 value 85.672842 final value 85.672842 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 124.659487 iter 10 value 94.537227 iter 20 value 90.777904 iter 30 value 86.988857 iter 40 value 85.332214 iter 50 value 84.530568 iter 60 value 84.136183 iter 70 value 83.595520 iter 80 value 83.176830 iter 90 value 83.121899 iter 100 value 83.050524 final value 83.050524 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.544889 iter 10 value 94.313131 iter 20 value 90.023007 iter 30 value 89.051384 iter 40 value 85.745524 iter 50 value 84.857481 iter 60 value 84.064344 iter 70 value 83.855596 iter 80 value 83.560406 iter 90 value 83.412350 iter 100 value 83.371731 final value 83.371731 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.933534 iter 10 value 93.999859 iter 20 value 86.903696 iter 30 value 86.228956 iter 40 value 85.655955 iter 50 value 84.318469 iter 60 value 83.352683 iter 70 value 83.209419 iter 80 value 83.181475 iter 90 value 83.146693 iter 100 value 83.120669 final value 83.120669 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.728308 iter 10 value 93.123523 iter 20 value 86.729127 iter 30 value 86.046895 iter 40 value 85.573594 iter 50 value 85.337968 iter 60 value 85.008903 iter 70 value 83.987195 iter 80 value 83.243963 iter 90 value 83.214301 iter 100 value 83.203519 final value 83.203519 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.713443 iter 10 value 94.970105 iter 20 value 94.136216 iter 30 value 89.751965 iter 40 value 88.997961 iter 50 value 88.279636 iter 60 value 87.171578 iter 70 value 84.499975 iter 80 value 84.142024 iter 90 value 83.507939 iter 100 value 83.180769 final value 83.180769 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.925503 iter 10 value 94.514113 iter 20 value 88.808802 iter 30 value 88.019449 iter 40 value 87.259844 iter 50 value 85.939124 iter 60 value 85.370341 iter 70 value 84.732737 iter 80 value 83.573649 iter 90 value 82.909154 iter 100 value 82.689987 final value 82.689987 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.559392 iter 10 value 94.857927 iter 20 value 94.524230 iter 30 value 94.011848 iter 40 value 89.338821 iter 50 value 87.112899 iter 60 value 85.546259 iter 70 value 84.417918 iter 80 value 83.935646 iter 90 value 83.702190 iter 100 value 83.238157 final value 83.238157 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.137284 iter 10 value 94.494901 iter 20 value 87.879613 iter 30 value 87.276200 iter 40 value 86.544745 iter 50 value 84.788022 iter 60 value 83.461208 iter 70 value 83.149581 iter 80 value 83.086633 iter 90 value 82.915721 iter 100 value 82.820865 final value 82.820865 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.160680 iter 10 value 94.374572 iter 20 value 93.177686 iter 30 value 88.654581 iter 40 value 88.213916 iter 50 value 86.646749 iter 60 value 84.971607 iter 70 value 83.443885 iter 80 value 82.939658 iter 90 value 82.841855 iter 100 value 82.750966 final value 82.750966 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.985014 iter 10 value 92.590873 iter 20 value 88.814812 iter 30 value 86.789245 iter 40 value 84.312070 iter 50 value 83.972648 iter 60 value 83.675293 iter 70 value 83.425968 iter 80 value 83.193611 iter 90 value 83.007786 iter 100 value 82.859168 final value 82.859168 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.133312 final value 94.485763 converged Fitting Repeat 2 # weights: 103 initial value 98.253566 final value 94.307733 converged Fitting Repeat 3 # weights: 103 initial value 97.245431 final value 94.485682 converged Fitting Repeat 4 # weights: 103 initial value 94.798875 final value 94.486254 converged Fitting Repeat 5 # weights: 103 initial value 102.418235 final value 94.485843 converged Fitting Repeat 1 # weights: 305 initial value 109.612436 iter 10 value 94.488528 iter 20 value 94.312318 iter 30 value 93.812512 iter 40 value 93.733666 final value 93.730682 converged Fitting Repeat 2 # weights: 305 initial value 97.364631 iter 10 value 94.480626 iter 20 value 94.471553 iter 30 value 94.467436 iter 30 value 94.467436 final value 94.467436 converged Fitting Repeat 3 # weights: 305 initial value 102.949157 iter 10 value 94.492163 iter 20 value 94.485674 iter 30 value 94.155533 iter 40 value 94.058601 iter 50 value 94.057419 final value 94.057389 converged Fitting Repeat 4 # weights: 305 initial value 96.387645 iter 10 value 92.483102 iter 20 value 89.943445 iter 30 value 89.510252 iter 40 value 89.509324 iter 50 value 86.944617 iter 60 value 86.889855 iter 70 value 86.030719 iter 80 value 85.215176 iter 90 value 85.194807 iter 100 value 85.147234 final value 85.147234 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.865172 iter 10 value 94.489427 iter 20 value 94.476945 iter 30 value 87.817118 iter 40 value 86.063206 iter 50 value 85.415068 iter 60 value 85.411286 iter 70 value 85.345954 iter 80 value 85.071097 iter 90 value 84.869163 final value 84.869159 converged Fitting Repeat 1 # weights: 507 initial value 94.867045 iter 10 value 94.475660 iter 20 value 94.467427 iter 30 value 93.252134 iter 40 value 91.976680 iter 50 value 91.975270 iter 50 value 91.975269 iter 50 value 91.975269 final value 91.975269 converged Fitting Repeat 2 # weights: 507 initial value 100.701342 iter 10 value 94.065439 iter 20 value 93.983925 iter 30 value 88.752977 iter 40 value 88.728401 iter 50 value 88.728323 iter 60 value 87.097334 iter 70 value 86.124969 iter 80 value 82.922359 iter 90 value 82.317926 iter 100 value 82.219101 final value 82.219101 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.413489 iter 10 value 94.156057 iter 20 value 94.148735 iter 30 value 94.141424 iter 40 value 89.457354 iter 50 value 85.228367 iter 60 value 85.133567 iter 70 value 84.615970 iter 80 value 84.226336 iter 90 value 82.693914 iter 100 value 82.558890 final value 82.558890 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.271805 iter 10 value 94.495721 iter 20 value 94.487698 iter 30 value 88.045408 iter 40 value 87.102117 iter 50 value 87.088575 iter 60 value 86.795236 iter 70 value 86.730500 final value 86.730373 converged Fitting Repeat 5 # weights: 507 initial value 105.723541 iter 10 value 94.492575 iter 20 value 94.484672 iter 30 value 94.111643 iter 40 value 94.057688 final value 94.057529 converged Fitting Repeat 1 # weights: 103 initial value 99.638069 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.343627 iter 10 value 89.833956 iter 20 value 89.011454 iter 30 value 88.797124 iter 40 value 88.754415 iter 50 value 88.739572 final value 88.739561 converged Fitting Repeat 3 # weights: 103 initial value 103.227409 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.657219 final value 93.551913 converged Fitting Repeat 5 # weights: 103 initial value 102.874578 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 113.157630 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 107.070860 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.040131 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 104.620927 final value 93.551913 converged Fitting Repeat 5 # weights: 305 initial value 106.515925 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.332411 iter 10 value 93.352955 iter 10 value 93.352954 iter 10 value 93.352954 final value 93.352954 converged Fitting Repeat 2 # weights: 507 initial value 95.373784 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 99.267140 iter 10 value 93.175288 final value 93.164499 converged Fitting Repeat 4 # weights: 507 initial value 107.762966 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 115.135414 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 110.355169 iter 10 value 94.054697 iter 20 value 89.625104 iter 30 value 86.085562 iter 40 value 85.136160 iter 50 value 85.005584 iter 60 value 84.548665 iter 70 value 84.000045 iter 80 value 83.627564 final value 83.623846 converged Fitting Repeat 2 # weights: 103 initial value 101.569123 iter 10 value 94.059800 iter 20 value 93.949030 iter 30 value 89.169174 iter 40 value 84.890421 iter 50 value 83.756001 iter 60 value 83.309926 iter 70 value 82.482641 iter 80 value 81.672805 iter 90 value 81.665248 final value 81.665240 converged Fitting Repeat 3 # weights: 103 initial value 95.742729 iter 10 value 94.057751 iter 20 value 93.765065 iter 30 value 89.859189 iter 40 value 84.766545 iter 50 value 83.855189 iter 60 value 83.402694 iter 70 value 82.994679 iter 80 value 82.882229 iter 90 value 81.692834 iter 100 value 81.665251 final value 81.665251 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.166193 iter 10 value 94.046209 iter 20 value 93.525374 iter 30 value 93.455741 iter 40 value 93.448048 iter 50 value 93.385731 iter 60 value 86.865240 iter 70 value 84.257632 iter 80 value 84.053416 iter 90 value 83.499231 iter 100 value 83.420719 final value 83.420719 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.532527 iter 10 value 94.055338 iter 20 value 93.604754 iter 30 value 89.066053 iter 40 value 87.734785 iter 50 value 85.865444 iter 60 value 84.819567 iter 70 value 84.251892 iter 80 value 83.733089 iter 90 value 83.631673 final value 83.623846 converged Fitting Repeat 1 # weights: 305 initial value 107.487748 iter 10 value 95.714236 iter 20 value 94.177900 iter 30 value 93.488733 iter 40 value 92.728779 iter 50 value 89.783743 iter 60 value 85.406001 iter 70 value 83.044976 iter 80 value 81.380495 iter 90 value 80.958324 iter 100 value 80.430102 final value 80.430102 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.002311 iter 10 value 93.348631 iter 20 value 85.857034 iter 30 value 83.126070 iter 40 value 82.332437 iter 50 value 81.977186 iter 60 value 81.297468 iter 70 value 81.027994 iter 80 value 80.917438 iter 90 value 80.849994 iter 100 value 80.700280 final value 80.700280 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.977505 iter 10 value 93.985128 iter 20 value 85.285945 iter 30 value 84.570899 iter 40 value 84.195090 iter 50 value 83.878785 iter 60 value 83.537118 iter 70 value 83.272674 iter 80 value 82.168744 iter 90 value 81.912573 iter 100 value 81.831114 final value 81.831114 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.184032 iter 10 value 94.076830 iter 20 value 90.119655 iter 30 value 88.063541 iter 40 value 84.391282 iter 50 value 83.493614 iter 60 value 83.343181 iter 70 value 82.587564 iter 80 value 82.503439 iter 90 value 82.440981 iter 100 value 81.932673 final value 81.932673 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.484705 iter 10 value 93.873277 iter 20 value 86.206921 iter 30 value 85.170420 iter 40 value 85.008609 iter 50 value 84.706855 iter 60 value 84.157288 iter 70 value 82.129319 iter 80 value 81.623983 iter 90 value 81.116194 iter 100 value 80.980476 final value 80.980476 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.034232 iter 10 value 95.947991 iter 20 value 87.878151 iter 30 value 85.840166 iter 40 value 82.548263 iter 50 value 82.185942 iter 60 value 81.675157 iter 70 value 81.289249 iter 80 value 80.587137 iter 90 value 80.273254 iter 100 value 80.130009 final value 80.130009 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.681592 iter 10 value 94.064571 iter 20 value 87.054417 iter 30 value 85.368838 iter 40 value 84.856120 iter 50 value 84.143188 iter 60 value 81.999818 iter 70 value 81.411828 iter 80 value 81.173504 iter 90 value 80.696938 iter 100 value 80.508406 final value 80.508406 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.694326 iter 10 value 98.364807 iter 20 value 97.549861 iter 30 value 86.987493 iter 40 value 85.857550 iter 50 value 85.363109 iter 60 value 83.115478 iter 70 value 82.384046 iter 80 value 81.074247 iter 90 value 80.521351 iter 100 value 80.288409 final value 80.288409 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.389014 iter 10 value 95.046116 iter 20 value 84.175871 iter 30 value 82.781390 iter 40 value 81.327207 iter 50 value 80.840025 iter 60 value 80.679669 iter 70 value 80.595350 iter 80 value 80.552399 iter 90 value 80.507853 iter 100 value 80.330085 final value 80.330085 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.525356 iter 10 value 95.174063 iter 20 value 88.686575 iter 30 value 86.920254 iter 40 value 85.417884 iter 50 value 83.624400 iter 60 value 81.762121 iter 70 value 80.894244 iter 80 value 80.660320 iter 90 value 80.482058 iter 100 value 80.270750 final value 80.270750 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.817297 final value 94.054508 converged Fitting Repeat 2 # weights: 103 initial value 97.187422 final value 94.054459 converged Fitting Repeat 3 # weights: 103 initial value 98.312286 final value 94.054588 converged Fitting Repeat 4 # weights: 103 initial value 103.451742 final value 94.054530 converged Fitting Repeat 5 # weights: 103 initial value 96.082239 final value 93.917637 converged Fitting Repeat 1 # weights: 305 initial value 108.935842 iter 10 value 94.058206 iter 20 value 94.052969 iter 30 value 93.699231 iter 40 value 87.636172 iter 50 value 87.623453 final value 87.623357 converged Fitting Repeat 2 # weights: 305 initial value 111.992330 iter 10 value 94.057962 iter 20 value 94.052961 final value 94.052909 converged Fitting Repeat 3 # weights: 305 initial value 100.739477 iter 10 value 93.920491 iter 20 value 93.864689 final value 93.356934 converged Fitting Repeat 4 # weights: 305 initial value 98.366818 iter 10 value 94.057534 iter 20 value 94.052872 iter 30 value 93.957609 iter 40 value 88.305270 iter 50 value 85.102751 iter 60 value 84.776906 iter 70 value 81.517741 iter 80 value 80.770106 iter 90 value 80.634906 final value 80.634213 converged Fitting Repeat 5 # weights: 305 initial value 100.582483 iter 10 value 94.057880 iter 20 value 91.981298 iter 30 value 85.716209 iter 40 value 85.428385 iter 50 value 85.116710 iter 60 value 84.783450 iter 70 value 83.591725 iter 80 value 83.356423 iter 90 value 83.354858 final value 83.353638 converged Fitting Repeat 1 # weights: 507 initial value 98.816160 iter 10 value 93.924233 iter 20 value 93.916268 iter 30 value 92.977808 iter 40 value 86.327063 iter 50 value 84.653481 iter 60 value 84.651638 iter 70 value 84.651286 iter 80 value 84.552595 iter 90 value 84.507688 iter 90 value 84.507688 final value 84.507688 converged Fitting Repeat 2 # weights: 507 initial value 116.133126 iter 10 value 94.061048 iter 20 value 94.054214 iter 30 value 87.763677 iter 40 value 83.393218 iter 50 value 82.091199 iter 60 value 82.038279 iter 70 value 82.035929 iter 80 value 81.525701 iter 90 value 79.811656 final value 79.797999 converged Fitting Repeat 3 # weights: 507 initial value 102.663714 iter 10 value 93.587584 iter 20 value 93.550798 iter 30 value 93.543722 final value 93.018205 converged Fitting Repeat 4 # weights: 507 initial value 94.506399 iter 10 value 86.562397 iter 20 value 86.468859 iter 30 value 86.283708 iter 40 value 85.858706 iter 50 value 85.856971 iter 60 value 85.621544 iter 70 value 85.447963 iter 80 value 85.447911 final value 85.447890 converged Fitting Repeat 5 # weights: 507 initial value 95.369674 iter 10 value 93.560579 iter 20 value 90.256890 iter 30 value 86.207310 iter 40 value 83.038190 iter 50 value 81.856964 iter 60 value 81.854393 iter 70 value 81.853969 iter 80 value 81.853507 iter 90 value 81.850505 iter 100 value 81.833761 final value 81.833761 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.032092 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.626092 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.843453 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.370572 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.384166 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 113.316420 final value 94.461538 converged Fitting Repeat 2 # weights: 305 initial value 105.341595 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 102.360512 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.132407 iter 10 value 93.707667 iter 20 value 92.524602 iter 30 value 92.519298 iter 30 value 92.519298 iter 30 value 92.519298 final value 92.519298 converged Fitting Repeat 5 # weights: 305 initial value 97.568837 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.513883 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.449694 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 135.624983 iter 10 value 94.446920 final value 94.445714 converged Fitting Repeat 4 # weights: 507 initial value 107.079067 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 136.792997 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.010957 iter 10 value 89.427680 iter 20 value 85.399153 iter 30 value 82.396034 iter 40 value 82.110967 iter 50 value 82.028693 iter 60 value 81.782064 iter 70 value 81.623348 final value 81.623069 converged Fitting Repeat 2 # weights: 103 initial value 99.164526 iter 10 value 94.412795 iter 20 value 88.181839 iter 30 value 86.974575 iter 40 value 86.092828 iter 50 value 85.897285 iter 60 value 85.618768 iter 70 value 84.866421 iter 80 value 84.055305 iter 90 value 83.878558 final value 83.878557 converged Fitting Repeat 3 # weights: 103 initial value 106.026296 iter 10 value 94.478145 iter 20 value 88.101177 iter 30 value 85.972882 iter 40 value 85.447301 iter 50 value 85.409396 iter 60 value 85.293219 iter 70 value 85.233024 iter 80 value 84.951863 iter 90 value 84.010801 iter 100 value 83.878564 final value 83.878564 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.041203 iter 10 value 94.171065 iter 20 value 86.955286 iter 30 value 85.291499 iter 40 value 84.677127 iter 50 value 84.522702 iter 60 value 84.335040 iter 70 value 84.280335 iter 80 value 84.170781 final value 84.164926 converged Fitting Repeat 5 # weights: 103 initial value 96.319431 iter 10 value 94.497956 iter 20 value 92.427309 iter 30 value 87.744618 iter 40 value 86.811288 iter 50 value 85.525812 iter 60 value 85.256285 iter 70 value 84.710144 iter 80 value 84.567852 iter 90 value 84.011012 final value 83.878557 converged Fitting Repeat 1 # weights: 305 initial value 115.534611 iter 10 value 94.389957 iter 20 value 92.318017 iter 30 value 88.159420 iter 40 value 85.902390 iter 50 value 83.577828 iter 60 value 80.951072 iter 70 value 80.586958 iter 80 value 80.488092 iter 90 value 80.461047 iter 100 value 80.458020 final value 80.458020 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.415600 iter 10 value 94.455594 iter 20 value 91.988877 iter 30 value 85.033324 iter 40 value 83.232637 iter 50 value 82.834544 iter 60 value 82.744658 iter 70 value 82.255807 iter 80 value 80.932746 iter 90 value 80.809927 iter 100 value 80.783216 final value 80.783216 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 135.201592 iter 10 value 94.925663 iter 20 value 90.877801 iter 30 value 88.146361 iter 40 value 86.192260 iter 50 value 85.308223 iter 60 value 85.069097 iter 70 value 83.804614 iter 80 value 83.090311 iter 90 value 81.737675 iter 100 value 80.912191 final value 80.912191 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.322419 iter 10 value 94.466289 iter 20 value 91.438489 iter 30 value 87.700072 iter 40 value 86.345800 iter 50 value 86.066455 iter 60 value 85.331223 iter 70 value 84.824127 iter 80 value 84.787408 iter 90 value 84.351546 iter 100 value 84.143105 final value 84.143105 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.986124 iter 10 value 90.837249 iter 20 value 86.477585 iter 30 value 86.026765 iter 40 value 85.477486 iter 50 value 84.516440 iter 60 value 84.021301 iter 70 value 82.111910 iter 80 value 81.694354 iter 90 value 81.627148 iter 100 value 81.309318 final value 81.309318 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.323284 iter 10 value 95.236754 iter 20 value 92.029273 iter 30 value 88.835433 iter 40 value 86.080812 iter 50 value 84.419979 iter 60 value 83.357945 iter 70 value 82.146726 iter 80 value 81.860192 iter 90 value 81.703260 iter 100 value 81.494833 final value 81.494833 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.701981 iter 10 value 94.422582 iter 20 value 88.099453 iter 30 value 86.931664 iter 40 value 84.753418 iter 50 value 84.420310 iter 60 value 82.651859 iter 70 value 82.156025 iter 80 value 81.857095 iter 90 value 81.367507 iter 100 value 80.945323 final value 80.945323 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.500866 iter 10 value 92.860523 iter 20 value 86.874690 iter 30 value 85.834025 iter 40 value 83.620466 iter 50 value 83.141962 iter 60 value 82.601611 iter 70 value 82.436019 iter 80 value 81.896175 iter 90 value 80.999336 iter 100 value 80.352871 final value 80.352871 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.867444 iter 10 value 94.488046 iter 20 value 92.942037 iter 30 value 85.810924 iter 40 value 83.679226 iter 50 value 82.674440 iter 60 value 81.394780 iter 70 value 80.970526 iter 80 value 80.829874 iter 90 value 80.660166 iter 100 value 80.357969 final value 80.357969 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.661750 iter 10 value 92.154372 iter 20 value 86.549356 iter 30 value 85.686422 iter 40 value 83.587733 iter 50 value 81.818265 iter 60 value 81.136709 iter 70 value 80.849484 iter 80 value 80.721772 iter 90 value 80.500314 iter 100 value 80.378526 final value 80.378526 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.715542 iter 10 value 94.486042 iter 20 value 94.169580 iter 30 value 84.499795 iter 40 value 84.044617 iter 50 value 83.787511 iter 60 value 83.785574 iter 70 value 83.592163 iter 80 value 83.303131 final value 83.302816 converged Fitting Repeat 2 # weights: 103 initial value 102.453853 final value 94.485643 converged Fitting Repeat 3 # weights: 103 initial value 102.332071 iter 10 value 94.485789 iter 20 value 94.468660 iter 30 value 87.930366 iter 40 value 86.529819 iter 50 value 86.527697 final value 86.527557 converged Fitting Repeat 4 # weights: 103 initial value 100.081348 iter 10 value 94.485798 iter 20 value 94.484225 iter 30 value 94.444537 iter 40 value 85.228753 iter 50 value 85.201241 iter 60 value 85.200783 iter 70 value 83.031814 final value 83.029479 converged Fitting Repeat 5 # weights: 103 initial value 98.466752 final value 94.485630 converged Fitting Repeat 1 # weights: 305 initial value 102.985742 iter 10 value 94.489453 iter 20 value 86.914735 iter 30 value 86.877554 iter 40 value 86.494006 iter 50 value 86.419566 iter 60 value 86.419004 iter 70 value 84.866803 iter 80 value 84.865462 iter 90 value 84.862533 iter 100 value 84.856586 final value 84.856586 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.098668 iter 10 value 94.488588 iter 20 value 94.484246 iter 30 value 94.266078 iter 40 value 91.526721 iter 50 value 87.968736 iter 60 value 87.953347 iter 70 value 87.951478 iter 80 value 87.557567 final value 87.551964 converged Fitting Repeat 3 # weights: 305 initial value 100.427283 iter 10 value 94.484323 iter 20 value 94.466049 iter 30 value 94.462264 iter 40 value 92.609037 iter 50 value 85.699343 iter 60 value 81.976488 iter 70 value 81.976343 iter 80 value 81.732416 iter 90 value 81.717136 iter 100 value 81.716940 final value 81.716940 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.197806 iter 10 value 94.471582 iter 20 value 94.469453 iter 30 value 94.467649 iter 40 value 86.763164 final value 86.145139 converged Fitting Repeat 5 # weights: 305 initial value 95.170410 iter 10 value 94.137717 iter 20 value 94.134193 iter 30 value 94.105861 iter 40 value 94.024515 iter 50 value 94.023060 final value 94.023052 converged Fitting Repeat 1 # weights: 507 initial value 117.342278 iter 10 value 93.952353 iter 20 value 93.146947 iter 30 value 86.919575 iter 40 value 84.262098 iter 50 value 84.259609 iter 60 value 83.376852 iter 70 value 81.822298 iter 80 value 81.408254 iter 90 value 81.013180 iter 100 value 80.836835 final value 80.836835 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.711141 iter 10 value 94.475638 iter 20 value 94.467093 iter 30 value 94.466825 iter 30 value 94.466825 final value 94.466825 converged Fitting Repeat 3 # weights: 507 initial value 114.986417 iter 10 value 94.474605 iter 20 value 92.010918 iter 30 value 85.707713 iter 40 value 84.520343 iter 50 value 84.079081 iter 60 value 83.956665 iter 70 value 83.880624 iter 80 value 83.781238 iter 90 value 83.780122 final value 83.780108 converged Fitting Repeat 4 # weights: 507 initial value 93.987803 iter 10 value 87.956399 iter 20 value 87.952540 iter 30 value 87.561800 iter 40 value 87.263982 iter 50 value 84.896801 final value 84.896476 converged Fitting Repeat 5 # weights: 507 initial value 121.466259 iter 10 value 94.331371 iter 20 value 94.325785 iter 30 value 88.563704 iter 40 value 84.413523 iter 50 value 84.106041 iter 60 value 84.035773 iter 70 value 84.029988 iter 80 value 84.015826 iter 90 value 83.922979 iter 100 value 83.859314 final value 83.859314 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 141.028756 iter 10 value 118.041773 iter 20 value 117.290272 iter 30 value 106.711750 iter 40 value 105.126046 iter 50 value 103.925108 iter 60 value 103.126693 iter 70 value 103.002669 iter 80 value 101.867282 iter 90 value 101.214242 iter 100 value 101.118018 final value 101.118018 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 151.652416 iter 10 value 118.375940 iter 20 value 115.903097 iter 30 value 107.504290 iter 40 value 104.991215 iter 50 value 103.526658 iter 60 value 101.725455 iter 70 value 101.172274 iter 80 value 100.913414 iter 90 value 100.610824 iter 100 value 100.272765 final value 100.272765 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.946151 iter 10 value 121.225735 iter 20 value 109.674286 iter 30 value 109.089092 iter 40 value 105.424686 iter 50 value 103.386837 iter 60 value 102.968635 iter 70 value 102.604418 iter 80 value 102.384762 iter 90 value 101.087713 iter 100 value 100.916049 final value 100.916049 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.953616 iter 10 value 116.810669 iter 20 value 106.652142 iter 30 value 105.989861 iter 40 value 104.737469 iter 50 value 104.341005 iter 60 value 103.655705 iter 70 value 102.723867 iter 80 value 101.902730 iter 90 value 101.451519 iter 100 value 100.981662 final value 100.981662 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 165.394461 iter 10 value 118.212259 iter 20 value 117.835101 iter 30 value 108.816421 iter 40 value 106.981000 iter 50 value 103.421432 iter 60 value 102.606332 iter 70 value 102.158919 iter 80 value 101.870818 iter 90 value 101.379640 iter 100 value 101.005816 final value 101.005816 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Mar 3 21:16:35 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.479 2.133 44.551
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.134 | 1.970 | 37.786 | |
FreqInteractors | 0.286 | 0.015 | 0.306 | |
calculateAAC | 0.044 | 0.009 | 0.054 | |
calculateAutocor | 0.424 | 0.104 | 0.561 | |
calculateCTDC | 0.094 | 0.005 | 0.100 | |
calculateCTDD | 0.661 | 0.033 | 0.701 | |
calculateCTDT | 0.244 | 0.011 | 0.257 | |
calculateCTriad | 0.417 | 0.032 | 0.453 | |
calculateDC | 0.121 | 0.016 | 0.137 | |
calculateF | 0.394 | 0.018 | 0.417 | |
calculateKSAAP | 0.103 | 0.011 | 0.116 | |
calculateQD_Sm | 2.086 | 0.106 | 2.212 | |
calculateTC | 1.980 | 0.199 | 2.197 | |
calculateTC_Sm | 0.288 | 0.020 | 0.313 | |
corr_plot | 35.034 | 1.939 | 37.406 | |
enrichfindP | 0.498 | 0.069 | 8.557 | |
enrichfind_hp | 0.077 | 0.024 | 1.092 | |
enrichplot | 0.436 | 0.014 | 0.456 | |
filter_missing_values | 0.001 | 0.001 | 0.002 | |
getFASTA | 0.070 | 0.015 | 4.121 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.001 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.001 | 0.000 | 0.002 | |
plotPPI | 0.089 | 0.006 | 0.098 | |
pred_ensembel | 14.158 | 0.616 | 10.794 | |
var_imp | 35.914 | 1.963 | 38.427 | |