Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:05:36 -0400 (Wed, 12 Apr 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 926/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.4.3 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.4.3 |
Command: F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings HPiP_1.4.3.tar.gz |
StartedAt: 2023-04-11 02:23:20 -0400 (Tue, 11 Apr 2023) |
EndedAt: 2023-04-11 02:29:09 -0400 (Tue, 11 Apr 2023) |
EllapsedTime: 349.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings HPiP_1.4.3.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.16-bioc/meat/HPiP.Rcheck' * using R version 4.2.3 (2023-03-15 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.4.3' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 29.50 1.14 30.64 FSmethod 29.17 1.45 30.70 corr_plot 29.59 0.83 30.43 pred_ensembel 12.39 0.59 9.81 enrichfindP 0.44 0.09 51.33 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'F:/biocbuild/bbs-3.16-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.16-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.573266 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.314352 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.700093 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.672109 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.550949 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.640305 iter 10 value 93.900038 final value 93.900034 converged Fitting Repeat 2 # weights: 305 initial value 111.250324 iter 10 value 93.938221 final value 93.938175 converged Fitting Repeat 3 # weights: 305 initial value 97.888603 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.247399 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.481199 final value 94.443243 converged Fitting Repeat 1 # weights: 507 initial value 110.358085 iter 10 value 92.738052 iter 20 value 85.562989 final value 85.562956 converged Fitting Repeat 2 # weights: 507 initial value 109.602117 iter 10 value 83.310067 iter 20 value 83.033315 iter 30 value 82.898112 final value 82.897269 converged Fitting Repeat 3 # weights: 507 initial value 100.245691 final value 94.400000 converged Fitting Repeat 4 # weights: 507 initial value 104.922172 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.093454 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.267501 iter 10 value 94.512716 iter 20 value 94.321262 iter 30 value 84.136900 iter 40 value 83.560599 iter 50 value 82.402469 iter 60 value 81.763738 iter 70 value 81.707387 iter 80 value 81.695418 final value 81.693948 converged Fitting Repeat 2 # weights: 103 initial value 115.632077 iter 10 value 94.486957 iter 20 value 94.136369 iter 30 value 87.259913 iter 40 value 83.144080 iter 50 value 82.908664 iter 60 value 81.275057 iter 70 value 80.859387 iter 80 value 80.830255 iter 90 value 80.418068 final value 80.394299 converged Fitting Repeat 3 # weights: 103 initial value 109.265757 iter 10 value 94.485646 iter 20 value 94.427599 iter 30 value 92.950444 iter 40 value 92.198802 iter 50 value 91.376942 iter 60 value 84.312774 iter 70 value 82.405703 iter 80 value 82.144769 iter 90 value 82.128511 iter 100 value 81.056693 final value 81.056693 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.228711 iter 10 value 94.630700 iter 20 value 94.272626 iter 30 value 91.643214 iter 40 value 89.803156 iter 50 value 89.722167 iter 60 value 88.169438 iter 70 value 86.480102 iter 80 value 85.897845 iter 90 value 82.440443 iter 100 value 81.741021 final value 81.741021 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.463336 iter 10 value 94.451873 iter 20 value 91.308768 iter 30 value 86.070867 iter 40 value 84.823246 iter 50 value 84.097365 iter 60 value 83.629561 iter 70 value 83.148118 iter 80 value 82.310388 iter 90 value 82.172370 iter 100 value 82.132595 final value 82.132595 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.868132 iter 10 value 93.332680 iter 20 value 84.023468 iter 30 value 83.443295 iter 40 value 82.437652 iter 50 value 81.911985 iter 60 value 81.668187 iter 70 value 81.105936 iter 80 value 79.855881 iter 90 value 78.960941 iter 100 value 78.693379 final value 78.693379 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.883744 iter 10 value 94.503006 iter 20 value 87.343563 iter 30 value 84.374426 iter 40 value 82.675909 iter 50 value 80.853901 iter 60 value 79.987760 iter 70 value 79.438789 iter 80 value 79.256027 iter 90 value 79.033356 iter 100 value 78.835109 final value 78.835109 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.529917 iter 10 value 95.220857 iter 20 value 91.995426 iter 30 value 86.429077 iter 40 value 84.361251 iter 50 value 83.118586 iter 60 value 82.989164 iter 70 value 82.904908 iter 80 value 82.152071 iter 90 value 81.848838 iter 100 value 81.797695 final value 81.797695 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.793892 iter 10 value 100.904393 iter 20 value 94.462104 iter 30 value 93.786871 iter 40 value 86.522497 iter 50 value 83.758470 iter 60 value 82.352946 iter 70 value 80.382430 iter 80 value 79.257276 iter 90 value 79.104403 iter 100 value 78.781373 final value 78.781373 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.259369 iter 10 value 94.821399 iter 20 value 94.780834 iter 30 value 88.977119 iter 40 value 83.511461 iter 50 value 83.067275 iter 60 value 81.756002 iter 70 value 81.700151 iter 80 value 81.649264 iter 90 value 81.202112 iter 100 value 80.816228 final value 80.816228 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.306775 iter 10 value 94.566719 iter 20 value 86.821386 iter 30 value 82.584438 iter 40 value 79.293732 iter 50 value 79.015337 iter 60 value 78.769164 iter 70 value 78.725879 iter 80 value 78.673701 iter 90 value 78.495880 iter 100 value 78.395735 final value 78.395735 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.369896 iter 10 value 94.409015 iter 20 value 85.901995 iter 30 value 82.430415 iter 40 value 81.810507 iter 50 value 80.561580 iter 60 value 79.702507 iter 70 value 79.289191 iter 80 value 79.122897 iter 90 value 78.904732 iter 100 value 78.706597 final value 78.706597 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.077761 iter 10 value 94.420536 iter 20 value 85.449939 iter 30 value 84.229048 iter 40 value 84.091701 iter 50 value 82.992111 iter 60 value 82.526778 iter 70 value 82.449128 iter 80 value 82.175241 iter 90 value 81.674385 iter 100 value 81.003208 final value 81.003208 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.299476 iter 10 value 94.666767 iter 20 value 94.355213 iter 30 value 90.436457 iter 40 value 88.298558 iter 50 value 83.043452 iter 60 value 82.397013 iter 70 value 81.950416 iter 80 value 81.822288 iter 90 value 81.757926 iter 100 value 81.025988 final value 81.025988 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.133670 iter 10 value 91.832534 iter 20 value 85.140676 iter 30 value 83.709518 iter 40 value 82.745104 iter 50 value 82.023197 iter 60 value 81.498343 iter 70 value 80.664940 iter 80 value 80.609759 iter 90 value 80.358578 iter 100 value 79.598452 final value 79.598452 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.252183 final value 94.485647 converged Fitting Repeat 2 # weights: 103 initial value 95.318978 iter 10 value 94.485910 iter 20 value 94.484254 final value 94.484214 converged Fitting Repeat 3 # weights: 103 initial value 99.658927 iter 10 value 94.485928 final value 94.484215 converged Fitting Repeat 4 # weights: 103 initial value 98.704556 final value 94.487276 converged Fitting Repeat 5 # weights: 103 initial value 95.499313 final value 94.485569 converged Fitting Repeat 1 # weights: 305 initial value 100.630188 iter 10 value 94.489364 iter 20 value 94.473992 iter 30 value 92.710221 iter 40 value 89.875020 iter 50 value 89.874148 iter 60 value 89.872419 iter 70 value 89.867539 iter 80 value 89.865709 iter 90 value 89.865091 iter 100 value 89.860831 final value 89.860831 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.559661 iter 10 value 93.241990 iter 20 value 85.343989 iter 30 value 85.169518 iter 40 value 85.164264 iter 50 value 85.161373 iter 60 value 85.149749 iter 70 value 84.468720 iter 80 value 81.526669 iter 90 value 80.377382 iter 100 value 80.347092 final value 80.347092 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.778349 iter 10 value 91.783057 iter 20 value 91.344335 iter 30 value 91.302022 iter 40 value 91.040745 iter 50 value 90.770156 iter 60 value 90.756752 final value 90.730340 converged Fitting Repeat 4 # weights: 305 initial value 97.029988 iter 10 value 94.489203 iter 20 value 94.378950 iter 30 value 91.518679 iter 40 value 87.985892 iter 50 value 85.883212 iter 60 value 85.849698 final value 85.849357 converged Fitting Repeat 5 # weights: 305 initial value 102.444487 iter 10 value 94.489290 final value 94.484569 converged Fitting Repeat 1 # weights: 507 initial value 97.153449 iter 10 value 92.959780 iter 20 value 92.250754 iter 30 value 92.249930 iter 40 value 92.244431 final value 92.244409 converged Fitting Repeat 2 # weights: 507 initial value 98.031210 iter 10 value 94.492064 iter 20 value 94.482188 iter 30 value 84.829282 iter 40 value 82.899392 iter 50 value 82.868254 iter 60 value 81.647607 final value 81.645660 converged Fitting Repeat 3 # weights: 507 initial value 108.806608 iter 10 value 94.373750 iter 20 value 94.369778 iter 30 value 94.357379 iter 30 value 94.357378 iter 30 value 94.357378 final value 94.357378 converged Fitting Repeat 4 # weights: 507 initial value 98.303397 iter 10 value 94.417226 iter 20 value 93.704083 iter 30 value 90.598311 iter 40 value 90.549974 iter 50 value 90.541881 iter 60 value 90.531683 iter 70 value 90.424325 iter 80 value 90.392542 iter 90 value 90.388615 iter 100 value 81.814645 final value 81.814645 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.025055 iter 10 value 94.451821 iter 20 value 94.419513 iter 30 value 86.544415 iter 40 value 84.596326 iter 50 value 82.713758 iter 60 value 81.075229 iter 70 value 80.646510 iter 80 value 80.247589 iter 90 value 80.098692 iter 100 value 80.089028 final value 80.089028 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.838356 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.118099 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.028983 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.539046 iter 10 value 88.559556 iter 20 value 83.558327 iter 30 value 83.535476 final value 83.535122 converged Fitting Repeat 5 # weights: 103 initial value 101.635571 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.527409 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 99.306909 iter 10 value 93.410246 iter 10 value 93.410246 iter 10 value 93.410246 final value 93.410246 converged Fitting Repeat 3 # weights: 305 initial value 103.010898 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 97.261173 iter 10 value 93.372145 final value 93.371808 converged Fitting Repeat 5 # weights: 305 initial value 96.147429 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.744032 iter 10 value 94.052911 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 105.966369 iter 10 value 92.127716 iter 20 value 85.460812 iter 30 value 83.139597 iter 40 value 81.105170 iter 50 value 81.061261 iter 60 value 80.989106 final value 80.989094 converged Fitting Repeat 3 # weights: 507 initial value 96.127132 final value 94.052911 converged Fitting Repeat 4 # weights: 507 initial value 122.579830 iter 10 value 93.893856 final value 93.893849 converged Fitting Repeat 5 # weights: 507 initial value 103.859682 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.063317 iter 10 value 94.063770 iter 20 value 93.631642 iter 30 value 92.659836 iter 40 value 92.015902 iter 50 value 89.707637 iter 60 value 85.590524 iter 70 value 84.739954 iter 80 value 84.523030 iter 90 value 84.515078 iter 90 value 84.515077 iter 90 value 84.515077 final value 84.515077 converged Fitting Repeat 2 # weights: 103 initial value 101.907378 iter 10 value 93.995661 iter 20 value 93.486109 iter 30 value 93.467770 iter 40 value 89.480369 iter 50 value 84.909579 iter 60 value 83.716800 iter 70 value 83.558014 final value 83.536732 converged Fitting Repeat 3 # weights: 103 initial value 98.944182 iter 10 value 94.056504 iter 20 value 93.807400 iter 30 value 93.605351 iter 40 value 92.633835 iter 50 value 87.516668 iter 60 value 87.250240 iter 70 value 86.695944 iter 80 value 85.452157 iter 90 value 84.445532 iter 100 value 84.059731 final value 84.059731 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.280429 iter 10 value 94.066744 iter 20 value 91.454692 iter 30 value 90.880962 iter 40 value 90.873340 final value 90.873339 converged Fitting Repeat 5 # weights: 103 initial value 100.950877 iter 10 value 94.054884 iter 20 value 88.010321 iter 30 value 84.841591 iter 40 value 84.529899 iter 50 value 84.515148 final value 84.515078 converged Fitting Repeat 1 # weights: 305 initial value 118.664782 iter 10 value 93.743341 iter 20 value 87.238745 iter 30 value 83.142031 iter 40 value 81.182915 iter 50 value 80.601253 iter 60 value 80.369198 iter 70 value 79.507185 iter 80 value 79.423131 iter 90 value 79.299318 iter 100 value 79.283184 final value 79.283184 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.774267 iter 10 value 93.949627 iter 20 value 86.436954 iter 30 value 83.211095 iter 40 value 81.163336 iter 50 value 80.224565 iter 60 value 78.415649 iter 70 value 78.127889 iter 80 value 78.025950 iter 90 value 78.006305 iter 100 value 77.986674 final value 77.986674 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.115295 iter 10 value 94.013345 iter 20 value 92.429403 iter 30 value 90.945165 iter 40 value 89.882888 iter 50 value 89.726641 iter 60 value 85.589213 iter 70 value 82.280037 iter 80 value 80.560513 iter 90 value 79.795159 iter 100 value 79.537955 final value 79.537955 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.792747 iter 10 value 93.917371 iter 20 value 91.157857 iter 30 value 90.394668 iter 40 value 86.512139 iter 50 value 85.152084 iter 60 value 84.223725 iter 70 value 84.056243 iter 80 value 83.937169 iter 90 value 83.826316 iter 100 value 82.352223 final value 82.352223 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.866415 iter 10 value 94.437323 iter 20 value 92.862502 iter 30 value 87.861519 iter 40 value 86.773149 iter 50 value 82.717860 iter 60 value 81.422917 iter 70 value 81.123393 iter 80 value 80.822861 iter 90 value 80.095991 iter 100 value 79.734925 final value 79.734925 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.713718 iter 10 value 93.204596 iter 20 value 84.354903 iter 30 value 83.529497 iter 40 value 81.277683 iter 50 value 80.117364 iter 60 value 79.690702 iter 70 value 79.362013 iter 80 value 79.088419 iter 90 value 79.039381 iter 100 value 78.959640 final value 78.959640 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.129619 iter 10 value 91.435446 iter 20 value 86.227465 iter 30 value 84.473532 iter 40 value 83.879628 iter 50 value 83.513365 iter 60 value 83.022811 iter 70 value 80.417469 iter 80 value 79.834045 iter 90 value 79.421178 iter 100 value 78.946435 final value 78.946435 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.175943 iter 10 value 94.180965 iter 20 value 91.706198 iter 30 value 85.936804 iter 40 value 82.545248 iter 50 value 82.021013 iter 60 value 81.706014 iter 70 value 81.536507 iter 80 value 81.319796 iter 90 value 81.004631 iter 100 value 80.732706 final value 80.732706 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.027523 iter 10 value 94.651760 iter 20 value 86.500599 iter 30 value 85.321688 iter 40 value 83.902636 iter 50 value 83.552728 iter 60 value 82.970167 iter 70 value 79.890877 iter 80 value 78.894889 iter 90 value 78.282441 iter 100 value 78.168404 final value 78.168404 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.535059 iter 10 value 90.157021 iter 20 value 87.714845 iter 30 value 86.081537 iter 40 value 83.690767 iter 50 value 83.533641 iter 60 value 83.470467 iter 70 value 83.055653 iter 80 value 80.652089 iter 90 value 79.689989 iter 100 value 79.263625 final value 79.263625 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.656362 iter 10 value 93.308474 iter 20 value 93.307507 iter 30 value 92.979649 iter 40 value 92.890789 iter 50 value 92.890547 iter 60 value 92.890005 iter 70 value 91.637152 iter 80 value 91.078919 iter 90 value 91.072263 final value 91.072256 converged Fitting Repeat 2 # weights: 103 initial value 111.469414 final value 94.034391 converged Fitting Repeat 3 # weights: 103 initial value 94.727991 final value 94.054599 converged Fitting Repeat 4 # weights: 103 initial value 99.837809 final value 94.054524 converged Fitting Repeat 5 # weights: 103 initial value 96.347013 final value 94.054531 converged Fitting Repeat 1 # weights: 305 initial value 97.818745 iter 10 value 94.054541 iter 20 value 90.857411 iter 30 value 81.900186 iter 40 value 81.686862 iter 50 value 80.842541 iter 60 value 77.443942 iter 70 value 77.349691 iter 80 value 77.337456 iter 90 value 77.336191 iter 100 value 77.335160 final value 77.335160 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.577657 iter 10 value 93.719077 iter 20 value 93.418798 iter 30 value 85.368819 iter 40 value 84.188605 iter 50 value 81.026667 iter 60 value 80.758524 iter 70 value 80.586887 iter 80 value 80.583652 iter 90 value 80.581478 final value 80.575845 converged Fitting Repeat 3 # weights: 305 initial value 129.397510 iter 10 value 94.039460 iter 20 value 94.033770 iter 30 value 93.410568 iter 40 value 91.395674 iter 50 value 90.410701 final value 90.410456 converged Fitting Repeat 4 # weights: 305 initial value 110.087641 iter 10 value 94.057419 iter 20 value 93.518185 iter 30 value 84.800193 iter 40 value 83.790984 iter 50 value 83.568480 final value 83.567657 converged Fitting Repeat 5 # weights: 305 initial value 106.886647 iter 10 value 94.058546 iter 20 value 94.053053 iter 30 value 90.834850 iter 40 value 82.066017 iter 50 value 81.897517 iter 60 value 81.896344 iter 70 value 81.734701 iter 80 value 80.811818 iter 90 value 80.805796 iter 100 value 80.805685 final value 80.805685 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.822595 iter 10 value 92.304732 iter 20 value 85.319805 iter 30 value 85.249080 iter 40 value 85.248525 iter 50 value 85.169536 iter 60 value 85.151217 iter 70 value 84.988446 iter 80 value 84.467723 iter 90 value 83.187616 iter 100 value 82.230634 final value 82.230634 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.438513 iter 10 value 93.722513 iter 20 value 93.418341 iter 30 value 93.417347 iter 40 value 93.414908 iter 50 value 90.196547 iter 60 value 90.105840 iter 70 value 90.104981 iter 80 value 90.102521 iter 90 value 90.057769 iter 100 value 90.051862 final value 90.051862 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 94.667940 iter 10 value 94.041839 iter 20 value 93.707255 iter 30 value 82.510048 iter 40 value 82.253031 iter 50 value 82.252630 iter 60 value 80.016713 iter 70 value 77.386386 iter 80 value 77.080670 iter 90 value 76.740467 iter 100 value 76.673382 final value 76.673382 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.360600 iter 10 value 94.061581 iter 20 value 85.976328 iter 30 value 81.892358 iter 40 value 81.869751 iter 50 value 81.869325 iter 60 value 81.685963 iter 70 value 80.475026 iter 80 value 79.720888 iter 90 value 77.573640 iter 100 value 76.814106 final value 76.814106 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.663349 iter 10 value 93.721839 iter 20 value 93.674219 iter 30 value 93.398729 iter 40 value 89.946415 iter 50 value 89.852312 final value 89.851892 converged Fitting Repeat 1 # weights: 103 initial value 101.372750 final value 94.144481 converged Fitting Repeat 2 # weights: 103 initial value 96.606872 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.994664 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.093793 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.507151 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 110.554973 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.954906 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.052472 final value 94.484209 converged Fitting Repeat 4 # weights: 305 initial value 115.854621 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 103.908626 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.721294 iter 10 value 94.183362 iter 20 value 92.397087 iter 30 value 89.406554 iter 40 value 84.483613 iter 50 value 84.181446 iter 60 value 84.012916 iter 70 value 83.957922 iter 80 value 83.478859 iter 90 value 83.475835 final value 83.475819 converged Fitting Repeat 2 # weights: 507 initial value 114.899368 iter 10 value 94.470068 final value 94.470000 converged Fitting Repeat 3 # weights: 507 initial value 102.196202 iter 10 value 94.483825 final value 94.483812 converged Fitting Repeat 4 # weights: 507 initial value 98.403644 iter 10 value 93.868520 final value 93.783647 converged Fitting Repeat 5 # weights: 507 initial value 95.457126 iter 10 value 93.834997 iter 20 value 92.922272 final value 92.919320 converged Fitting Repeat 1 # weights: 103 initial value 105.082958 iter 10 value 94.481296 iter 20 value 93.872548 iter 30 value 84.848995 iter 40 value 84.557640 iter 50 value 84.425985 iter 60 value 83.953585 iter 70 value 82.530402 iter 80 value 81.928212 iter 90 value 81.756631 iter 100 value 81.441239 final value 81.441239 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.007040 iter 10 value 94.474755 iter 20 value 93.876312 iter 30 value 92.418161 iter 40 value 92.358842 iter 50 value 87.739198 iter 60 value 84.923161 iter 70 value 84.280200 iter 80 value 83.045906 iter 90 value 81.985082 iter 100 value 81.638946 final value 81.638946 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.180514 iter 10 value 94.488788 iter 20 value 94.388214 iter 30 value 92.152679 iter 40 value 83.998353 iter 50 value 83.067055 iter 60 value 82.124183 iter 70 value 81.631878 iter 80 value 81.422673 iter 90 value 81.297264 iter 100 value 81.265268 final value 81.265268 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.196991 iter 10 value 93.518660 iter 20 value 84.854046 iter 30 value 84.635976 iter 40 value 84.002016 iter 50 value 83.697868 iter 60 value 83.580622 final value 83.580428 converged Fitting Repeat 5 # weights: 103 initial value 96.718542 iter 10 value 88.235643 iter 20 value 86.377586 iter 30 value 85.062634 iter 40 value 84.271717 iter 50 value 83.341634 iter 60 value 83.162820 iter 70 value 83.110345 final value 83.110327 converged Fitting Repeat 1 # weights: 305 initial value 119.308793 iter 10 value 94.524074 iter 20 value 94.221546 iter 30 value 91.468896 iter 40 value 88.304921 iter 50 value 86.311466 iter 60 value 84.696859 iter 70 value 82.240867 iter 80 value 81.934263 iter 90 value 81.556616 iter 100 value 81.051710 final value 81.051710 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.837766 iter 10 value 94.480423 iter 20 value 86.017928 iter 30 value 84.275391 iter 40 value 82.939460 iter 50 value 82.479622 iter 60 value 82.064096 iter 70 value 81.762895 iter 80 value 81.515415 iter 90 value 81.459990 iter 100 value 81.405321 final value 81.405321 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.400196 iter 10 value 94.497651 iter 20 value 88.087114 iter 30 value 85.383760 iter 40 value 84.163032 iter 50 value 82.349481 iter 60 value 82.034145 iter 70 value 81.863361 iter 80 value 81.769473 iter 90 value 81.547001 iter 100 value 81.116373 final value 81.116373 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.910561 iter 10 value 94.530758 iter 20 value 94.485647 iter 30 value 94.292235 iter 40 value 87.692797 iter 50 value 85.516168 iter 60 value 84.359206 iter 70 value 83.431653 iter 80 value 83.194742 iter 90 value 83.132856 iter 100 value 82.988815 final value 82.988815 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.402951 iter 10 value 94.363357 iter 20 value 88.446919 iter 30 value 84.842557 iter 40 value 84.445530 iter 50 value 83.978199 iter 60 value 81.653665 iter 70 value 80.798357 iter 80 value 80.428619 iter 90 value 80.210786 iter 100 value 80.150358 final value 80.150358 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 133.543542 iter 10 value 100.408038 iter 20 value 88.956998 iter 30 value 87.083582 iter 40 value 86.851159 iter 50 value 86.640666 iter 60 value 83.591071 iter 70 value 83.014722 iter 80 value 82.610313 iter 90 value 82.077333 iter 100 value 81.747370 final value 81.747370 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.173542 iter 10 value 101.090978 iter 20 value 99.511515 iter 30 value 90.665019 iter 40 value 83.398430 iter 50 value 81.128944 iter 60 value 80.557177 iter 70 value 80.111168 iter 80 value 79.840125 iter 90 value 79.745553 iter 100 value 79.698482 final value 79.698482 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.656203 iter 10 value 95.585425 iter 20 value 94.604151 iter 30 value 91.034329 iter 40 value 88.759047 iter 50 value 84.614614 iter 60 value 84.168962 iter 70 value 83.892599 iter 80 value 83.797799 iter 90 value 83.431584 iter 100 value 82.775433 final value 82.775433 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.616811 iter 10 value 92.090071 iter 20 value 86.231904 iter 30 value 85.253956 iter 40 value 85.020401 iter 50 value 83.495041 iter 60 value 82.295245 iter 70 value 81.011718 iter 80 value 80.592003 iter 90 value 80.412949 iter 100 value 80.143735 final value 80.143735 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.756988 iter 10 value 96.450325 iter 20 value 87.273542 iter 30 value 86.150819 iter 40 value 85.712539 iter 50 value 84.480526 iter 60 value 83.948348 iter 70 value 83.680243 iter 80 value 83.600111 iter 90 value 83.069261 iter 100 value 81.944336 final value 81.944336 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.596915 final value 94.485849 converged Fitting Repeat 2 # weights: 103 initial value 101.521805 final value 94.485852 converged Fitting Repeat 3 # weights: 103 initial value 100.574014 final value 94.485809 converged Fitting Repeat 4 # weights: 103 initial value 97.419093 final value 94.486111 converged Fitting Repeat 5 # weights: 103 initial value 94.831242 final value 94.486054 converged Fitting Repeat 1 # weights: 305 initial value 101.778197 iter 10 value 94.489190 iter 20 value 94.087257 iter 30 value 86.480756 iter 40 value 86.451662 final value 86.451617 converged Fitting Repeat 2 # weights: 305 initial value 96.839673 iter 10 value 94.359243 iter 20 value 94.354629 iter 30 value 94.320622 iter 40 value 87.962362 iter 50 value 83.603940 iter 60 value 83.586605 final value 83.586536 converged Fitting Repeat 3 # weights: 305 initial value 97.796756 iter 10 value 94.359266 iter 20 value 94.149324 final value 94.145623 converged Fitting Repeat 4 # weights: 305 initial value 95.355244 iter 10 value 94.487795 iter 20 value 94.471941 final value 94.275641 converged Fitting Repeat 5 # weights: 305 initial value 99.662850 iter 10 value 94.488626 iter 20 value 94.356105 iter 30 value 93.114300 iter 40 value 86.885390 iter 50 value 86.856442 iter 50 value 86.856442 iter 50 value 86.856442 final value 86.856442 converged Fitting Repeat 1 # weights: 507 initial value 120.677645 iter 10 value 94.362309 iter 20 value 94.354631 iter 30 value 87.065518 iter 40 value 84.665401 iter 50 value 83.917797 iter 60 value 83.887676 iter 70 value 83.875608 iter 80 value 81.247783 iter 90 value 80.485751 iter 100 value 80.483857 final value 80.483857 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.269048 iter 10 value 94.152844 iter 20 value 94.151738 final value 94.151732 converged Fitting Repeat 3 # weights: 507 initial value 102.691630 iter 10 value 94.362342 iter 20 value 94.355222 iter 30 value 94.353013 iter 40 value 91.309374 iter 50 value 83.953598 iter 60 value 80.238546 iter 70 value 79.927602 iter 80 value 79.918066 iter 90 value 79.916025 iter 100 value 79.914840 final value 79.914840 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.627765 iter 10 value 94.492248 iter 20 value 94.484307 iter 30 value 93.783842 iter 40 value 86.922150 iter 50 value 85.216466 iter 60 value 85.178415 final value 85.178160 converged Fitting Repeat 5 # weights: 507 initial value 104.054359 iter 10 value 94.362886 iter 20 value 94.357262 iter 30 value 93.987679 iter 40 value 93.898081 iter 50 value 85.244332 iter 60 value 85.109992 iter 70 value 85.051557 final value 85.050454 converged Fitting Repeat 1 # weights: 103 initial value 103.345577 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.842621 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.982551 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.728522 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.337410 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.377930 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 119.824510 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.151566 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.301085 iter 10 value 94.112987 final value 94.112903 converged Fitting Repeat 5 # weights: 305 initial value 108.705272 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.226429 final value 94.264858 converged Fitting Repeat 2 # weights: 507 initial value 95.399623 iter 10 value 89.757727 iter 20 value 85.680401 iter 30 value 84.041609 final value 84.001644 converged Fitting Repeat 3 # weights: 507 initial value 96.498941 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 114.900877 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.619420 iter 10 value 93.938043 final value 93.926252 converged Fitting Repeat 1 # weights: 103 initial value 102.392456 iter 10 value 94.488535 iter 20 value 94.444040 iter 30 value 94.303847 iter 40 value 87.448160 iter 50 value 84.033960 iter 60 value 83.561971 iter 70 value 83.514423 iter 80 value 83.417466 iter 90 value 82.300776 iter 100 value 82.069062 final value 82.069062 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.856104 iter 10 value 94.486970 iter 20 value 94.278477 iter 30 value 94.157426 iter 40 value 90.397624 iter 50 value 88.627890 iter 60 value 85.933271 iter 70 value 85.099407 iter 80 value 84.976319 iter 90 value 84.555058 iter 100 value 84.445490 final value 84.445490 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.926839 iter 10 value 94.553339 iter 20 value 91.691995 iter 30 value 84.976308 iter 40 value 84.859212 iter 50 value 84.463907 iter 60 value 84.441676 final value 84.441670 converged Fitting Repeat 4 # weights: 103 initial value 98.435526 iter 10 value 94.489410 iter 20 value 87.039884 iter 30 value 85.768310 iter 40 value 85.529509 iter 50 value 84.607224 iter 60 value 84.442108 final value 84.441669 converged Fitting Repeat 5 # weights: 103 initial value 96.582157 iter 10 value 94.488312 iter 20 value 94.486547 iter 30 value 86.554038 iter 40 value 84.125988 iter 50 value 83.493898 iter 60 value 83.317367 iter 70 value 82.754465 iter 80 value 82.173529 iter 90 value 82.060326 iter 100 value 82.032105 final value 82.032105 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.676474 iter 10 value 94.446079 iter 20 value 87.531385 iter 30 value 83.863469 iter 40 value 82.344402 iter 50 value 81.882070 iter 60 value 81.720260 iter 70 value 81.626900 iter 80 value 81.452650 iter 90 value 81.307393 iter 100 value 81.289498 final value 81.289498 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.971870 iter 10 value 94.701941 iter 20 value 87.388270 iter 30 value 85.929504 iter 40 value 84.717927 iter 50 value 83.232298 iter 60 value 81.566329 iter 70 value 81.487517 iter 80 value 81.405103 iter 90 value 81.259183 iter 100 value 81.172525 final value 81.172525 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.147919 iter 10 value 94.387706 iter 20 value 93.910307 iter 30 value 85.932938 iter 40 value 83.052449 iter 50 value 82.516468 iter 60 value 81.904630 iter 70 value 81.628975 iter 80 value 81.372251 iter 90 value 81.224813 iter 100 value 81.201921 final value 81.201921 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.008937 iter 10 value 88.975949 iter 20 value 85.115174 iter 30 value 84.978006 iter 40 value 84.450116 iter 50 value 84.100973 iter 60 value 84.028284 iter 70 value 83.817509 iter 80 value 82.622312 iter 90 value 81.592541 iter 100 value 81.475023 final value 81.475023 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.653892 iter 10 value 94.455837 iter 20 value 88.882316 iter 30 value 85.015304 iter 40 value 83.980955 iter 50 value 82.924343 iter 60 value 82.009977 iter 70 value 81.370990 iter 80 value 81.091390 iter 90 value 81.033541 iter 100 value 80.970946 final value 80.970946 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.618617 iter 10 value 93.448647 iter 20 value 87.810666 iter 30 value 84.286306 iter 40 value 83.265826 iter 50 value 82.356048 iter 60 value 81.548830 iter 70 value 81.310167 iter 80 value 81.079411 iter 90 value 80.958283 iter 100 value 80.917242 final value 80.917242 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.235368 iter 10 value 93.433088 iter 20 value 86.276629 iter 30 value 85.236448 iter 40 value 82.981152 iter 50 value 81.760775 iter 60 value 81.455074 iter 70 value 80.789151 iter 80 value 80.573903 iter 90 value 80.474106 iter 100 value 80.424088 final value 80.424088 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.152486 iter 10 value 94.099854 iter 20 value 87.937258 iter 30 value 85.256632 iter 40 value 84.278888 iter 50 value 83.532248 iter 60 value 82.970368 iter 70 value 82.543932 iter 80 value 82.298198 iter 90 value 82.154903 iter 100 value 82.078181 final value 82.078181 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.010064 iter 10 value 94.441348 iter 20 value 89.391445 iter 30 value 84.519772 iter 40 value 82.369459 iter 50 value 81.356838 iter 60 value 80.708761 iter 70 value 80.541840 iter 80 value 80.400767 iter 90 value 80.194590 iter 100 value 80.083339 final value 80.083339 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.264038 iter 10 value 91.217530 iter 20 value 87.154501 iter 30 value 84.266187 iter 40 value 82.756126 iter 50 value 82.222700 iter 60 value 81.958142 iter 70 value 81.805349 iter 80 value 81.459398 iter 90 value 80.911796 iter 100 value 80.601946 final value 80.601946 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.623334 final value 94.485791 converged Fitting Repeat 2 # weights: 103 initial value 100.982172 final value 94.486044 converged Fitting Repeat 3 # weights: 103 initial value 97.923962 final value 94.485768 converged Fitting Repeat 4 # weights: 103 initial value 95.628117 iter 10 value 94.114821 iter 20 value 93.439848 iter 30 value 93.425700 iter 40 value 93.228828 final value 93.210254 converged Fitting Repeat 5 # weights: 103 initial value 98.446431 iter 10 value 94.048616 iter 20 value 92.346607 iter 30 value 90.687369 iter 40 value 90.599556 iter 50 value 90.579847 iter 60 value 90.414609 iter 70 value 90.400542 final value 90.399160 converged Fitting Repeat 1 # weights: 305 initial value 99.481408 iter 10 value 94.488195 iter 20 value 94.448626 iter 30 value 84.060219 iter 40 value 84.054312 iter 50 value 84.023905 iter 50 value 84.023905 iter 50 value 84.023905 final value 84.023905 converged Fitting Repeat 2 # weights: 305 initial value 103.482601 iter 10 value 94.117790 iter 20 value 94.115702 iter 30 value 91.754554 iter 40 value 84.212517 iter 50 value 83.363984 iter 60 value 83.241976 iter 70 value 83.136729 iter 80 value 82.732861 iter 90 value 82.718095 iter 100 value 82.717535 final value 82.717535 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.492160 iter 10 value 91.537094 iter 20 value 91.531255 iter 30 value 91.528657 iter 40 value 91.528176 iter 50 value 91.528109 iter 60 value 87.252283 iter 70 value 86.169593 iter 80 value 85.986507 final value 85.985930 converged Fitting Repeat 4 # weights: 305 initial value 96.473505 iter 10 value 94.118121 iter 20 value 94.070410 iter 30 value 84.723963 iter 40 value 84.002028 iter 50 value 83.938802 iter 60 value 83.475190 iter 70 value 82.329856 iter 80 value 81.495534 iter 90 value 81.457992 iter 100 value 81.457757 final value 81.457757 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.972755 iter 10 value 94.489220 iter 20 value 94.484245 iter 30 value 92.246640 iter 40 value 91.399345 iter 50 value 91.237921 iter 60 value 91.220306 iter 70 value 90.997465 iter 80 value 82.838002 iter 90 value 82.373743 iter 100 value 82.368833 final value 82.368833 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.812608 iter 10 value 94.492289 iter 20 value 94.380345 iter 30 value 87.601304 iter 40 value 83.973249 iter 50 value 83.615173 iter 60 value 83.598569 iter 70 value 83.598480 iter 80 value 83.598305 final value 83.598256 converged Fitting Repeat 2 # weights: 507 initial value 96.877292 iter 10 value 94.121499 iter 20 value 94.115521 iter 30 value 94.061873 iter 40 value 86.777704 iter 50 value 83.345158 iter 60 value 82.898098 iter 70 value 82.886599 final value 82.886342 converged Fitting Repeat 3 # weights: 507 initial value 118.478783 iter 10 value 94.120722 iter 20 value 94.115761 iter 30 value 91.176112 iter 40 value 86.560777 iter 50 value 86.462826 iter 60 value 86.276653 iter 70 value 83.999013 iter 80 value 80.964875 iter 90 value 79.514944 iter 100 value 79.169884 final value 79.169884 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.819350 iter 10 value 94.489792 iter 20 value 94.485829 iter 30 value 94.481995 iter 40 value 94.478719 final value 94.478676 converged Fitting Repeat 5 # weights: 507 initial value 102.642907 iter 10 value 93.707945 iter 20 value 93.704977 iter 30 value 86.768302 iter 40 value 86.756831 iter 50 value 86.754531 iter 60 value 86.249202 iter 70 value 85.670662 iter 80 value 84.657568 iter 90 value 82.031077 iter 100 value 81.688060 final value 81.688060 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.131058 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.361564 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.937518 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.462295 iter 10 value 93.705049 iter 20 value 89.927487 iter 30 value 89.037743 iter 40 value 88.983549 iter 40 value 88.983548 iter 40 value 88.983548 final value 88.983548 converged Fitting Repeat 5 # weights: 103 initial value 95.746444 final value 93.921212 converged Fitting Repeat 1 # weights: 305 initial value 102.301199 iter 10 value 90.053578 iter 20 value 85.027179 iter 30 value 84.992192 iter 40 value 84.985129 iter 50 value 84.985087 final value 84.985079 converged Fitting Repeat 2 # weights: 305 initial value 103.715018 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.986831 final value 93.915746 converged Fitting Repeat 4 # weights: 305 initial value 105.591654 final value 93.915746 converged Fitting Repeat 5 # weights: 305 initial value 105.380384 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 106.829997 iter 10 value 93.915746 iter 10 value 93.915746 iter 10 value 93.915746 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 104.624647 iter 10 value 93.603957 iter 20 value 88.341731 iter 30 value 87.950189 final value 87.950034 converged Fitting Repeat 3 # weights: 507 initial value 101.985078 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 108.573241 iter 10 value 93.672974 iter 10 value 93.672974 iter 10 value 93.672973 final value 93.672973 converged Fitting Repeat 5 # weights: 507 initial value 103.065859 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 107.246054 iter 10 value 94.055233 iter 20 value 93.872721 iter 30 value 93.697206 iter 40 value 93.655867 iter 50 value 93.369946 iter 60 value 91.328817 iter 70 value 90.520636 iter 80 value 89.291957 iter 90 value 87.953444 iter 100 value 87.032261 final value 87.032261 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.963859 iter 10 value 93.938988 iter 20 value 91.694450 iter 30 value 87.614232 iter 40 value 87.151295 iter 50 value 86.580639 iter 60 value 86.576640 final value 86.576637 converged Fitting Repeat 3 # weights: 103 initial value 97.056953 iter 10 value 94.060444 iter 20 value 92.245178 iter 30 value 88.147823 iter 40 value 87.295158 iter 50 value 86.650991 iter 60 value 85.372716 iter 70 value 84.949695 iter 80 value 84.650052 iter 90 value 84.635820 final value 84.635062 converged Fitting Repeat 4 # weights: 103 initial value 106.286624 iter 10 value 94.015773 iter 20 value 93.705088 iter 30 value 89.078079 iter 40 value 88.390353 iter 50 value 86.948227 iter 60 value 85.725692 iter 70 value 85.040830 iter 80 value 84.957870 final value 84.955604 converged Fitting Repeat 5 # weights: 103 initial value 97.984902 iter 10 value 93.975406 iter 20 value 93.212342 iter 30 value 91.540530 iter 40 value 89.756619 iter 50 value 87.042950 iter 60 value 86.378240 iter 70 value 85.280721 iter 80 value 84.978612 iter 90 value 84.955786 final value 84.955604 converged Fitting Repeat 1 # weights: 305 initial value 103.213477 iter 10 value 94.022021 iter 20 value 88.134594 iter 30 value 87.519503 iter 40 value 86.841002 iter 50 value 86.553793 iter 60 value 86.401749 iter 70 value 85.643281 iter 80 value 85.363649 iter 90 value 85.240896 iter 100 value 84.866929 final value 84.866929 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.214936 iter 10 value 94.059021 iter 20 value 93.708417 iter 30 value 93.634476 iter 40 value 92.385451 iter 50 value 88.718888 iter 60 value 85.086073 iter 70 value 83.915689 iter 80 value 83.494526 iter 90 value 83.383934 iter 100 value 83.364053 final value 83.364053 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.118547 iter 10 value 94.054267 iter 20 value 88.201745 iter 30 value 86.131124 iter 40 value 84.681264 iter 50 value 84.296598 iter 60 value 84.161053 iter 70 value 83.860759 iter 80 value 83.653800 iter 90 value 83.614956 iter 100 value 83.543429 final value 83.543429 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.270541 iter 10 value 94.089503 iter 20 value 89.331588 iter 30 value 88.312528 iter 40 value 86.957934 iter 50 value 86.461437 iter 60 value 86.427506 iter 70 value 86.234288 iter 80 value 85.854022 iter 90 value 85.675956 iter 100 value 85.657155 final value 85.657155 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.585130 iter 10 value 94.074936 iter 20 value 93.391122 iter 30 value 89.382556 iter 40 value 87.613384 iter 50 value 87.089638 iter 60 value 86.720631 iter 70 value 85.935472 iter 80 value 84.774414 iter 90 value 84.353233 iter 100 value 84.113722 final value 84.113722 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.890877 iter 10 value 94.366133 iter 20 value 89.658196 iter 30 value 88.321393 iter 40 value 85.936420 iter 50 value 85.299109 iter 60 value 84.095952 iter 70 value 83.725230 iter 80 value 83.471898 iter 90 value 83.343822 iter 100 value 83.185759 final value 83.185759 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.718862 iter 10 value 94.082134 iter 20 value 91.426846 iter 30 value 88.318693 iter 40 value 87.978345 iter 50 value 86.815922 iter 60 value 85.896945 iter 70 value 85.407565 iter 80 value 85.019029 iter 90 value 84.883676 iter 100 value 84.528475 final value 84.528475 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.939182 iter 10 value 94.417320 iter 20 value 90.854098 iter 30 value 88.020479 iter 40 value 86.890943 iter 50 value 85.394287 iter 60 value 84.761807 iter 70 value 83.838310 iter 80 value 83.523183 iter 90 value 83.188074 iter 100 value 83.060910 final value 83.060910 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.879282 iter 10 value 94.065017 iter 20 value 93.487397 iter 30 value 89.727134 iter 40 value 86.647694 iter 50 value 85.327711 iter 60 value 84.134150 iter 70 value 83.903018 iter 80 value 83.847263 iter 90 value 83.815302 iter 100 value 83.769877 final value 83.769877 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.494959 iter 10 value 94.108729 iter 20 value 93.965420 iter 30 value 91.439739 iter 40 value 88.797631 iter 50 value 86.445543 iter 60 value 85.310728 iter 70 value 85.104863 iter 80 value 84.652669 iter 90 value 83.793121 iter 100 value 83.240218 final value 83.240218 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.285878 final value 94.054573 converged Fitting Repeat 2 # weights: 103 initial value 101.284344 final value 94.054404 converged Fitting Repeat 3 # weights: 103 initial value 95.988043 final value 94.054871 converged Fitting Repeat 4 # weights: 103 initial value 101.632271 final value 94.054388 converged Fitting Repeat 5 # weights: 103 initial value 97.223221 iter 10 value 94.054471 iter 20 value 94.052968 final value 94.052913 converged Fitting Repeat 1 # weights: 305 initial value 94.968102 iter 10 value 94.057770 iter 20 value 94.049223 iter 30 value 93.542617 iter 40 value 92.830260 final value 92.830211 converged Fitting Repeat 2 # weights: 305 initial value 95.342869 iter 10 value 93.930452 iter 20 value 93.919643 iter 30 value 93.912277 iter 40 value 92.150425 iter 50 value 90.373566 iter 60 value 89.919499 iter 70 value 89.902779 iter 80 value 87.878431 iter 90 value 85.954428 iter 100 value 83.935941 final value 83.935941 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.758367 iter 10 value 93.920644 iter 20 value 93.916962 iter 30 value 93.915981 iter 30 value 93.915981 final value 93.915981 converged Fitting Repeat 4 # weights: 305 initial value 98.091696 iter 10 value 93.920550 iter 20 value 93.869549 iter 30 value 93.607126 iter 40 value 93.604941 final value 93.604886 converged Fitting Repeat 5 # weights: 305 initial value 98.659688 iter 10 value 93.920656 iter 20 value 93.915972 iter 30 value 89.514732 iter 40 value 89.482185 final value 89.482145 converged Fitting Repeat 1 # weights: 507 initial value 104.258642 iter 10 value 94.060097 iter 20 value 94.052890 iter 30 value 91.287060 iter 40 value 87.532841 final value 87.532818 converged Fitting Repeat 2 # weights: 507 initial value 99.748253 iter 10 value 88.713021 iter 20 value 87.568783 iter 30 value 87.521965 iter 40 value 87.426044 iter 50 value 87.421572 iter 60 value 87.419092 iter 70 value 87.418219 iter 80 value 87.417444 iter 90 value 87.415008 iter 100 value 87.413017 final value 87.413017 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.900930 iter 10 value 93.923582 iter 20 value 93.759836 iter 30 value 93.606621 final value 93.604748 converged Fitting Repeat 4 # weights: 507 initial value 100.618313 iter 10 value 94.061330 iter 20 value 94.053167 final value 94.052935 converged Fitting Repeat 5 # weights: 507 initial value 100.190778 iter 10 value 94.053684 iter 20 value 94.053142 iter 30 value 93.669212 iter 40 value 90.744243 iter 50 value 88.894156 iter 60 value 88.880289 iter 70 value 88.879392 iter 70 value 88.879392 final value 88.879392 converged Fitting Repeat 1 # weights: 507 initial value 140.607660 iter 10 value 118.210134 iter 20 value 117.786028 iter 30 value 117.472341 iter 40 value 111.922382 iter 50 value 109.334922 iter 60 value 105.625818 iter 70 value 102.652996 iter 80 value 101.795688 iter 90 value 101.339356 iter 100 value 100.678881 final value 100.678881 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 155.078731 iter 10 value 119.313158 iter 20 value 117.732471 iter 30 value 115.714194 iter 40 value 106.923311 iter 50 value 104.281894 iter 60 value 103.764592 iter 70 value 103.313442 iter 80 value 102.856795 iter 90 value 102.541994 iter 100 value 102.359773 final value 102.359773 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 148.934111 iter 10 value 120.889764 iter 20 value 118.702381 iter 30 value 114.946195 iter 40 value 106.473457 iter 50 value 103.745547 iter 60 value 102.436609 iter 70 value 101.705807 iter 80 value 100.798887 iter 90 value 100.494877 iter 100 value 100.419169 final value 100.419169 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 140.006047 iter 10 value 117.925160 iter 20 value 111.653875 iter 30 value 108.443495 iter 40 value 107.153048 iter 50 value 105.258391 iter 60 value 103.925885 iter 70 value 103.049299 iter 80 value 101.749713 iter 90 value 101.312280 iter 100 value 101.124726 final value 101.124726 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.484670 iter 10 value 115.605488 iter 20 value 108.115537 iter 30 value 105.133350 iter 40 value 102.154535 iter 50 value 101.836569 iter 60 value 101.517386 iter 70 value 101.206160 iter 80 value 101.052128 iter 90 value 100.972597 iter 100 value 100.694059 final value 100.694059 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 11 02:28:58 2023 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 41.18 1.42 83.29
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 29.17 | 1.45 | 30.70 | |
FreqInteractors | 0.32 | 0.00 | 0.35 | |
calculateAAC | 0.03 | 0.02 | 0.05 | |
calculateAutocor | 0.35 | 0.07 | 0.47 | |
calculateCTDC | 0.08 | 0.00 | 0.08 | |
calculateCTDD | 0.71 | 0.08 | 0.81 | |
calculateCTDT | 0.24 | 0.01 | 0.25 | |
calculateCTriad | 0.39 | 0.05 | 0.44 | |
calculateDC | 0.08 | 0.00 | 0.08 | |
calculateF | 0.38 | 0.00 | 0.37 | |
calculateKSAAP | 0.11 | 0.00 | 0.11 | |
calculateQD_Sm | 1.58 | 0.12 | 1.70 | |
calculateTC | 1.67 | 0.07 | 1.74 | |
calculateTC_Sm | 0.31 | 0.01 | 0.33 | |
corr_plot | 29.59 | 0.83 | 30.43 | |
enrichfindP | 0.44 | 0.09 | 51.33 | |
enrichfind_hp | 0.03 | 0.02 | 3.03 | |
enrichplot | 0.3 | 0.0 | 0.3 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.03 | 0.02 | 2.41 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.08 | 0.00 | 0.13 | |
pred_ensembel | 12.39 | 0.59 | 9.81 | |
var_imp | 29.50 | 1.14 | 30.64 | |