pyspark.sql.functions.regr_intercept#
- pyspark.sql.functions.regr_intercept(y, x)[source]#
- Aggregate function: returns the intercept of the univariate linear regression line for non-null pairs in a group, where y is the dependent variable and x is the independent variable. - New in version 3.5.0. - Parameters
- Returns
- Column
- the intercept of the univariate linear regression line for non-null pairs in a group. 
 
 - See also - Examples - Example 1: All pairs are non-null - >>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, 2), (3, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+ - Example 2: All pairs’ x values are null - >>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, null) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | NULL| +--------------------+ - Example 3: All pairs’ y values are null - >>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (null, 1) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | NULL| +--------------------+ - Example 4: Some pairs’ x values are null - >>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (3, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+ - Example 5: Some pairs’ x or y values are null - >>> import pyspark.sql.functions as sf >>> df = spark.sql("SELECT * FROM VALUES (1, 1), (2, null), (null, 3), (4, 4) AS tab(y, x)") >>> df.select(sf.regr_intercept("y", "x")).show() +--------------------+ |regr_intercept(y, x)| +--------------------+ | 0.0| +--------------------+