pyspark.sql.functions.make_timestamp_ntz#
- pyspark.sql.functions.make_timestamp_ntz(years, months, days, hours, mins, secs)[source]#
- Create local date-time from years, months, days, hours, mins, secs fields. If the configuration spark.sql.ansi.enabled is false, the function returns NULL on invalid inputs. Otherwise, it will throw an error instead. - New in version 3.5.0. - Parameters
- yearsColumnor column name
- The year to represent, from 1 to 9999 
- monthsColumnor column name
- The month-of-year to represent, from 1 (January) to 12 (December) 
- daysColumnor column name
- The day-of-month to represent, from 1 to 31 
- hoursColumnor column name
- The hour-of-day to represent, from 0 to 23 
- minsColumnor column name
- The minute-of-hour to represent, from 0 to 59 
- secsColumnor column name
- The second-of-minute and its micro-fraction to represent, from 0 to 60. The value can be either an integer like 13 , or a fraction like 13.123. If the sec argument equals to 60, the seconds field is set to 0 and 1 minute is added to the final timestamp. 
 
- years
- Returns
- Column
- A new column that contains a local date-time. 
 
 - See also - pyspark.sql.functions.make_timestamp()
- pyspark.sql.functions.make_timestamp_ltz()
- pyspark.sql.functions.try_make_timestamp()
- pyspark.sql.functions.try_make_timestamp_ltz()
- pyspark.sql.functions.try_make_timestamp_ntz()
- pyspark.sql.functions.make_time()
- pyspark.sql.functions.make_interval()
- pyspark.sql.functions.try_make_interval()
 - Examples - >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") - >>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([[2014, 12, 28, 6, 30, 45.887]], ... ['year', 'month', 'day', 'hour', 'min', 'sec']) >>> df.select( ... sf.make_timestamp_ntz('year', 'month', df.day, df.hour, df.min, df.sec) ... ).show(truncate=False) +----------------------------------------------------+ |make_timestamp_ntz(year, month, day, hour, min, sec)| +----------------------------------------------------+ |2014-12-28 06:30:45.887 | +----------------------------------------------------+ - >>> spark.conf.unset("spark.sql.session.timeZone")