pyspark.pandas.groupby.SeriesGroupBy.value_counts#
- SeriesGroupBy.value_counts(sort=None, ascending=None, dropna=True)[source]#
- Compute group sizes. - Parameters
- sortboolean, default None
- Sort by frequencies. 
- ascendingboolean, default False
- Sort in ascending order. 
- dropnaboolean, default True
- Don’t include counts of NaN. 
 
 - Examples - >>> df = ps.DataFrame({'A': [1, 2, 2, 3, 3, 3], ... 'B': [1, 1, 2, 3, 3, np.nan]}, ... columns=['A', 'B']) >>> df A B 0 1 1.0 1 2 1.0 2 2 2.0 3 3 3.0 4 3 3.0 5 3 NaN - >>> df.groupby('A')['B'].value_counts().sort_index() A B 1 1.0 1 2 1.0 1 2.0 1 3 3.0 2 Name: count, dtype: int64 - Don’t include counts of NaN when dropna is False. - >>> df.groupby('A')['B'].value_counts( ... dropna=False).sort_index() A B 1 1.0 1 2 1.0 1 2.0 1 3 3.0 2 NaN 1 Name: count, dtype: int64