TrainValidationSplit#
- class pyspark.ml.tuning.TrainValidationSplit(*, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None)[source]#
- Validation for hyper-parameter tuning. Randomly splits the input dataset into train and validation sets, and uses evaluation metric on the validation set to select the best model. Similar to - CrossValidator, but only splits the set once.- New in version 2.0.0. - Examples - >>> from pyspark.ml.classification import LogisticRegression >>> from pyspark.ml.evaluation import BinaryClassificationEvaluator >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.tuning import TrainValidationSplit, ParamGridBuilder >>> from pyspark.ml.tuning import TrainValidationSplitModel >>> import tempfile >>> dataset = spark.createDataFrame( ... [(Vectors.dense([0.0]), 0.0), ... (Vectors.dense([0.4]), 1.0), ... (Vectors.dense([0.5]), 0.0), ... (Vectors.dense([0.6]), 1.0), ... (Vectors.dense([1.0]), 1.0)] * 10, ... ["features", "label"]).repartition(1) >>> lr = LogisticRegression() >>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() >>> evaluator = BinaryClassificationEvaluator() >>> tvs = TrainValidationSplit(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator, ... parallelism=1, seed=42) >>> tvsModel = tvs.fit(dataset) >>> tvsModel.getTrainRatio() 0.75 >>> tvsModel.validationMetrics [0.5, ... >>> path = tempfile.mkdtemp() >>> model_path = path + "/model" >>> tvsModel.write().save(model_path) >>> tvsModelRead = TrainValidationSplitModel.read().load(model_path) >>> tvsModelRead.validationMetrics [0.5, ... >>> evaluator.evaluate(tvsModel.transform(dataset)) 0.833... >>> evaluator.evaluate(tvsModelRead.transform(dataset)) 0.833... - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with a randomly generated uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of collectSubModels or its default value. - Gets the value of estimator or its default value. - Gets the value of estimatorParamMaps or its default value. - Gets the value of evaluator or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of parallelism or its default value. - getParam(paramName)- Gets a param by its name. - getSeed()- Gets the value of seed or its default value. - Gets the value of trainRatio or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of 'write().save(path)'. - set(param, value)- Sets a parameter in the embedded param map. - setCollectSubModels(value)- Sets the value of - collectSubModels.- setEstimator(value)- Sets the value of - estimator.- setEstimatorParamMaps(value)- Sets the value of - estimatorParamMaps.- setEvaluator(value)- Sets the value of - evaluator.- setParallelism(value)- Sets the value of - parallelism.- setParams(*[, estimator, ...])- setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None): Sets params for the train validation split. - setSeed(value)- Sets the value of - seed.- setTrainRatio(value)- Sets the value of - trainRatio.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - clear(param)#
- Clears a param from the param map if it has been explicitly set. 
 - copy(extra=None)[source]#
- Creates a copy of this instance with a randomly generated uid and some extra params. This copies creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. - New in version 2.0.0. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- TrainValidationSplit
- Copy of this instance 
 
 
 - explainParam(param)#
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - explainParams()#
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - extractParamMap(extra=None)#
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - fit(dataset, params=None)#
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - fitMultiple(dataset, paramMaps)#
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - getCollectSubModels()#
- Gets the value of collectSubModels or its default value. 
 - getEstimator()#
- Gets the value of estimator or its default value. - New in version 2.0.0. 
 - getEstimatorParamMaps()#
- Gets the value of estimatorParamMaps or its default value. - New in version 2.0.0. 
 - getEvaluator()#
- Gets the value of evaluator or its default value. - New in version 2.0.0. 
 - getOrDefault(param)#
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - getParallelism()#
- Gets the value of parallelism or its default value. 
 - getParam(paramName)#
- Gets a param by its name. 
 - getSeed()#
- Gets the value of seed or its default value. 
 - getTrainRatio()#
- Gets the value of trainRatio or its default value. - New in version 2.0.0. 
 - hasDefault(param)#
- Checks whether a param has a default value. 
 - hasParam(paramName)#
- Tests whether this instance contains a param with a given (string) name. 
 - isDefined(param)#
- Checks whether a param is explicitly set by user or has a default value. 
 - isSet(param)#
- Checks whether a param is explicitly set by user. 
 - classmethod load(path)#
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - save(path)#
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - set(param, value)#
- Sets a parameter in the embedded param map. 
 - setCollectSubModels(value)[source]#
- Sets the value of - collectSubModels.
 - setEstimatorParamMaps(value)[source]#
- Sets the value of - estimatorParamMaps.- New in version 2.0.0. 
 - setParallelism(value)[source]#
- Sets the value of - parallelism.
 - setParams(*, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None)[source]#
- setParams(self, *, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, parallelism=1, collectSubModels=False, seed=None): Sets params for the train validation split. - New in version 2.0.0. 
 - setTrainRatio(value)[source]#
- Sets the value of - trainRatio.- New in version 2.0.0. 
 - Attributes Documentation - collectSubModels = Param(parent='undefined', name='collectSubModels', doc='Param for whether to collect a list of sub-models trained during tuning. If set to false, then only the single best sub-model will be available after fitting. If set to true, then all sub-models will be available. Warning: For large models, collecting all sub-models can cause OOMs on the Spark driver.')#
 - estimator = Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')#
 - estimatorParamMaps = Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')#
 - evaluator = Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')#
 - parallelism = Param(parent='undefined', name='parallelism', doc='the number of threads to use when running parallel algorithms (>= 1).')#
 - params#
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - seed = Param(parent='undefined', name='seed', doc='random seed.')#
 - trainRatio = Param(parent='undefined', name='trainRatio', doc='Param for ratio between train and validation data. Must be between 0 and 1.')#
 - uid#
- A unique id for the object.