pyspark.sql.DataFrame.printSchema#
- DataFrame.printSchema(level=None)[source]#
- Prints out the schema in the tree format. Optionally allows to specify how many levels to print if schema is nested. - New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- levelint, optional
- How many levels to print for nested schemas. - New in version 3.5.0. 
 
 - Examples - Example 1: Printing the schema of a DataFrame with basic columns - >>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df.printSchema() root |-- age: long (nullable = true) |-- name: string (nullable = true) - Example 2: Printing the schema with a specified level for nested columns - >>> df = spark.createDataFrame([(1, (2, 2))], ["a", "b"]) >>> df.printSchema(1) root |-- a: long (nullable = true) |-- b: struct (nullable = true) - Example 3: Printing the schema with deeper nesting level - >>> df.printSchema(2) root |-- a: long (nullable = true) |-- b: struct (nullable = true) | |-- _1: long (nullable = true) | |-- _2: long (nullable = true) - Example 4: Printing the schema of a DataFrame with nullable and non-nullable columns - >>> df = spark.range(1).selectExpr("id AS nonnullable", "NULL AS nullable") >>> df.printSchema() root |-- nonnullable: long (nullable = false) |-- nullable: void (nullable = true)