pyspark.pandas.isna#
- pyspark.pandas.isna(obj)[source]#
- Detect missing values for an array-like object. - This function takes a scalar or array-like object and indicates whether values are missing ( - NaNin numeric arrays,- Noneor- NaNin object arrays).- Parameters
- objscalar or array-like
- Object to check for null or missing values. 
 
- Returns
- bool or array-like of bool
- For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. 
 
 - See also - Series.isna
- Detect missing values in a Series. 
- Series.isnull
- Detect missing values in a Series. 
- DataFrame.isna
- Detect missing values in a DataFrame. 
- DataFrame.isnull
- Detect missing values in a DataFrame. 
- Index.isna
- Detect missing values in an Index. 
- Index.isnull
- Detect missing values in an Index. 
 - Examples - Scalar arguments (including strings) result in a scalar boolean. - >>> ps.isna('dog') False - >>> ps.isna(np.nan) True - ndarrays result in an ndarray of booleans. - >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> ps.isna(array) array([[False, True, False], [False, False, True]]) - For Series and DataFrame, the same type is returned, containing booleans. - >>> df = ps.DataFrame({'a': ['ant', 'bee', 'cat'], 'b': ['dog', None, 'fly']}) >>> df a b 0 ant dog 1 bee None 2 cat fly - >>> ps.isna(df) a b 0 False False 1 False True 2 False False - >>> ps.isnull(df.b) 0 False 1 True 2 False Name: b, dtype: bool