pyspark.pandas.DataFrame.plot.bar#
- plot.bar(x=None, y=None, **kwds)#
- Vertical bar plot. - Parameters
- xlabel or position, optional
- Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. 
- ylabel or position, optional
- Allows plotting of one column versus another. If not specified, all numerical columns are used. 
- **kwdsoptional
- Additional keyword arguments are documented in - pyspark.pandas.Series.plot()or- pyspark.pandas.DataFrame.plot().
 
- Returns
- plotly.graph_objs.Figure
- Return an custom object when - backend!=plotly. Return an ndarray when- subplots=True(matplotlib-only).
 
 - Examples - Basic plot. - For Series: - >>> s = ps.Series([1, 3, 2]) >>> s.plot.bar() - For DataFrame: - >>> df = ps.DataFrame({'lab': ['A', 'B', 'C'], 'val': [10, 30, 20]}) >>> df.plot.bar(x='lab', y='val') - Plot a whole dataframe to a bar plot. Each column is stacked with a distinct color along the horizontal axis. - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = ps.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> df.plot.bar() - Instead of stacking, the figure can be split by column with plotly APIs. - >>> from plotly.subplots import make_subplots >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = ps.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> fig = (make_subplots(rows=2, cols=1) ... .add_trace(df.plot.bar(y='speed').data[0], row=1, col=1) ... .add_trace(df.plot.bar(y='speed').data[0], row=1, col=1) ... .add_trace(df.plot.bar(y='lifespan').data[0], row=2, col=1)) >>> fig - Plot a single column. - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = ps.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> df.plot.bar(y='speed') - Plot only selected categories for the DataFrame. - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = ps.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> df.plot.bar(x='lifespan')